动态规划问题
动态规划资源分配问题
S1
7
X1
12
3
4
P1(x1)
44
5
8
F2+ p1 21 19
17 18
f1(s1)
21
X1*
1
• 当k=2时;
f2(s2) = max [p2(x2)+ f3(s3) ]
1< x2 < s2 3< s2< 6 计算结果:
S2 X2 p2(x2) F3+ p2 f2(s2) X2*
34 1 12 3 35 10 12 12 10 12 1 1或2
f(k* sk ) max{ fk (sk , xk )}
xk 1,2,3...,sk
4
xi sk
ik
xi大于等于1且为整数
将递推关系写出即是
f
* k
(
sk
)
xk
max
1, 2 ,..., sk
{Pk
(
xk
)
f
* k 1
(
sk
xk )}
f(5* s5)=0
k 1,2,3
当k=4时;
f4(s4) = max [p4(x4)]
S3 X3 p3(x3) F3+ p3 f3(s3) X3*
23 1 12 5 56 7 98 79 11
4 123 568 12 10 10 12 1
5 1 2 34 5 6 88 13 13 12 10 13 1或2
• 当k=1时;
f1(s1) = max [p1(x1)+ f2(s2) ]
1< x1< s1 s1=7 计算结果:
5 123 35 6 15 14 13 15 1
一、用动态规划方法手工求解下面的问题:
一、用动态规划方法手工求解下面的问题:生产单位产品的成本费为1(千元)。
同时,在任何一个月内,生产能力所允许的最大生产批量为不超过6个单位。
又知每单位产品的库存费用为每月0.5(千元),同时要求在第一个月开始之初, 及在第四个月末,均无产品库存。
问:在满足上述条件下,该厂应如何安排各个时期的生产与库存,使所花的总成本费用最低?解:这是一个多阶段问题,我们按照计划时间自然划分阶段。
状态变量k x 定义为第k 月月初时的存储量,决策变量k u 定义为第k 月的产量,记每个月需求量为k s ,则状态转移方程为:4,3,2,1,0,1=≥-+=+k x s u x x k k k k k第k 月允许决策集合 }60|{)(≤≤=k kk k u u x D阶段指标为阶段的生产成本费用和存储费用之和,即:⎩⎨⎧=>++=00035.0),(k k k k k k k u u u x u x v指标函数为∑==41,1),(k k k k n u x v V)(k k x f 表示由第k 月出发采用最优方案到第4月月底4个月时间内总成本{}1,2,3,4,)(),(min )(11)(=+=++∈k x f u x v x f k k k k k x D u k k k k k由条件可得到递推式:()⎪⎪⎩⎪⎪⎨⎧+⎩⎨⎧=>++==++∈}00035.0{min )(0)(11)(55k k k k k k x D u k k x f u u u x x f x f k k k k=4,3,2,1()}00035.0{min )(554444)(44444x f u u u x x f x D u +⎩⎨⎧=>++=∈)(44444354x D x x s x u ∈-=-+=4f (0)=7 4u =4 4f (1)=6.5 4u =3 4f (2)=6 4u =2 4f (3)=5.54u =1 4f (4)=24u =0()}00035.0{min )(443333)(33333x f u u u x x f x D u +⎩⎨⎧=>++=∈)(233343343x D x x x s x u ∈-+=-+= 3f (0) = min {12, 12.5, 13, 13.5, 11} = 11 3u =63f (1) = min {11.5, 12, 12.5, 13, 10.5} = 10.53u =6 3f (2) = min {8, 11.5, 12, 12.5, 10} = 8 3u =0 3f (3) = min {8, 11.5, 12, 9.5} = 8 3u =0 3f (4) = min {8, 11.5, 9} = 83u =0 3f (5) = min {8, 8.5} = 8 3u =0 3f (6) = min {5} = 53u =0()}00035.0{min )(332222)(22222x f u u u x x f x D u +⎩⎨⎧=>++=∈)(322232232x D x x x s x u ∈-+=-+=2f (0) = min {17, 17.5, 16, 17} = 162u =52f (1) = min {16.5, 17, 15.5, 16.5, 17.5} = 15.5 2u =4 2f (2) = min {16, 16.5, 15, 16, 17, 18} = 152u =3 2f (3) = min {12.5, 14, 14.5, 15.5, 16.5, 17.5, 15.5} = 12.52u =0 2f (4) = min {12.5, 14, 15, 16, 17, 15} = 12.52u =0 2f (5) = min {10.5, 14.5, 15.5, 16.5, 14.5} = 10.52u =0 2f (6) = min {11, 15, 16, 14} = 112u =0()}00035.0{min )(221111)(11111x f u u u x x f x D u +⎩⎨⎧=>++=∈)(211121121x D x x x s x u ∈-+=-+= 1f (0) = min {21, 21.5, 22, 20.5, 21.5} = 20.51u =5逆推可得 u={5, 0, 6, 0} x={0, 3, 0, 4}即第1个月生产5单位产品,第4个月生产6单位产品,第2、3月不生产。
动态规划问题求解步骤
动态规划问题求解步骤动态规划问题是指在具有重叠子问题和最优子结构特性的问题中,通过将问题分解成更小的子问题,利用已解决的子问题的解来求解原问题。
动态规划问题的求解过程可分为以下几个步骤。
1. 定义状态:首先,我们需要明确问题的状态。
状态是指问题的子问题所依赖的变量或参数,即决定子问题解的输入。
状态可以是多个变量组成的元组,也可以是一个单一的变量。
定义好状态有助于我们更好地理解问题的本质,并能够将问题分解成更小的子问题。
2. 定义初始状态:在动态规划问题中,初始状态是问题的边界条件或者基本情况。
我们需要确定初始状态的值,并将其作为问题求解的起点。
初始状态的设置应符合问题的需求,并满足问题求解的逻辑。
3. 确定状态转移方程:状态转移方程是动态规划问题的核心。
通过定义状态之间的转移关系,我们可以将原问题分解为一系列的子问题,并通过已解决的子问题的解来求解当前问题的解。
状态转移方程的推导需要通过分析子问题间的关联关系,并根据问题的特点来定义。
状态转移方程应具备递推性,即当前问题的解可以通过之前子问题的解得到。
4. 确定计算顺序:在确定了状态转移方程后,我们需要确定求解问题的顺序。
一般来说,动态规划问题可以采用自底向上或自顶向下的方式进行求解。
自底向上的求解方式从初始状态开始,按照计算顺序逐步求解,直至得到最终问题的解;而自顶向下的求解方式则从最终问题的解开始,通过递归或备忘录等方式来求解子问题,最终得到初始状态的解。
5. 计算最优解:在得到了问题的所有状态和状态转移方程后,我们可以利用动态规划的思想来计算最优解。
根据计算顺序,我们先计算出初始状态的值,然后按照状态转移方程逐步计算,直到得到最终问题的解。
在计算的过程中,我们可以使用辅助数组或表格来存储和更新中间状态的值,以便于后续的计算,并最终得到问题的最优解。
通过以上步骤,我们可以较为系统地解决动态规划问题。
这种求解方法具有重用已解决子问题的解、减少重复计算和提高时间效率等优势,适用于诸如最优路径、最长子序列、最大连续子数组和背包问题等多种场景。
动态规划问题常见解法
动态规划问题常见解法
动态规划是一种高效解决优化问题的方法。
它通常用于涉及最
优化问题和最短路径的计算中。
下面是一些常见的动态规划问题解法:
1. 背包问题
背包问题是动态规划中的经典问题之一。
其目标是在给定的背
包容量下,选择一些物品放入背包中,使得物品总价值最大。
解决
这个问题的常见方法是使用动态规划的思想,定义一个二维数组来
记录每个物品放入背包时的最大价值,然后逐步计算出最终的结果。
2. 最长公共子序列问题
最长公共子序列问题是寻找两个字符串中最长的公共子序列的
问题。
解决这个问题的常见方法是使用动态规划的思想,定义一个
二维数组来记录两个字符串中每个位置的最长公共子序列的长度。
然后通过递推关系来计算出最终的结果。
3. 矩阵链乘法问题
矩阵链乘法问题是计算一系列矩阵相乘的最佳顺序的问题。
解
决这个问题的常见方法是使用动态规划的思想,定义一个二维数组
来记录每个矩阵相乘时的最小乘法次数,然后逐步计算出最终的结果。
4. 最长递增子序列问题
最长递增子序列问题是寻找一个序列中最长的递增子序列的问题。
解决这个问题的常见方法是使用动态规划的思想,定义一个一
维数组来记录每个位置处的最长递增子序列的长度,然后通过递推
关系来计算出最终的结果。
以上是一些常见的动态规划问题解法。
通过灵活运用这些方法,我们可以更高效地解决优化问题和最短路径计算等相关任务。
数学建模中的动态规划问题
数学建模中的动态规划问题动态规划是一种常见且重要的数学建模技术,它在解决许多实际问题中发挥着关键作用。
本文将介绍动态规划问题的基本概念和解题方法,并通过几个实例来说明其在数学建模中的应用。
一、动态规划的基本概念动态规划是解决多阶段决策问题的一种方法。
一般来说,动态规划问题可以分为以下几个步骤:1. 确定阶段:将问题划分为若干个阶段,每个阶段对应一个决策。
2. 确定状态:将每个阶段的可能状态列出,并定义对应的决策集合。
3. 确定状态转移方程:根据当前阶段的状态和上一个阶段的决策,确定状态的转移关系。
4. 确定初始条件:确定问题的初始状态。
5. 确定决策的评价标准:根据问题的具体要求,确定决策的评价标准。
6. 使用递推或递归公式求解:根据状态转移方程,使用递推或递归公式求解问题。
二、动态规划问题的解题方法在解决动态规划问题时,一般可以使用自顶向下和自底向上两种方法。
自顶向下的方法,也称为记忆化搜索,是指从问题的最优解出发,逐步向下求解子问题的最优解。
该方法通常使用递归来实现,并通过记忆化技术来避免重复计算。
自底向上的方法,也称为动态规划的迭代求解法,是指从问题的初始状态出发,逐步向上求解各个阶段的最优解。
该方法通常使用迭代循环来实现,并通过存储中间结果来避免重复计算。
三、动态规划在数学建模中的应用1. 01背包问题:给定一组物品和一个背包,每个物品有对应的价值和重量,要求选择一些物品放入背包中,使得背包中物品的总价值最大,而且总重量不超过背包的容量。
这是一个经典的动态规划问题,在数学建模中经常遇到。
2. 最短路径问题:在给定的有向图中,求解从一个顶点到另一个顶点的最短路径。
该问题可以使用动态规划的思想对其进行求解,其中每个阶段表示到达某个顶点的最短路径。
3. 最长公共子序列问题:给定两个序列,求解它们最长的公共子序列的长度。
该问题可以使用动态规划的方法解决,其中每个阶段表示两个序列的某个子序列。
四、实例分析以01背包问题为例进行具体分析。
动态规划总结经典题目(经典中的经典)
动态规划总结——经典问题总结本文着重讨论状态是如何表示,以及方程是怎样表示的。
当然,还附上关键的,有可能作为模板的代码段。
但有的代码的实现是优化版的。
经典问题总结最长上升子序列(LIS)问题描述如下:设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm。
求最大的m值。
这里采用的是逆向思维的方法,从最后一个开始想起,即先从A[N](A数组是存放数据的数组,下同)开始,则只有长度为1的子序列,到A[N-1]时就有两种情况,如果a[n-1] < a[n] 则存在长度为2的不下降子序列a[n-1],a[n];如果a[n-1] > a[n] 则存在长度为1的不下降子序列a[n-1]或者a[n]。
有了以上的思想,DP方程就呼之欲出了(这里是顺序推的,不是逆序的):DP[I]=MAX(1,DP[J]+1)J=0,1,...,I-1但这样的想法实现起来是)O(n^2)的。
本题还有更好的解法,就是O(n*logn)。
利用了长升子序列的性质来优化,以下是优化版的代码://最长不降子序const int SIZE=500001;int data[SIZE];int dp[SIZE];//返回值是最长不降子序列的最大长度,复杂度O(N*logN)int LCS(int n) { //N是DATA数组的长度,下标从1开始int len(1),low,high,mid,i;dp[1]=data[1];for(i=1;i<=n;++i) {low=1;high=len;while( low<=high ) { //二分mid=(low+high)/2;if( data[i]>dp[mid] ) {low=mid+1;}else {high=mid-1;}}dp[low]=data[i];if( low>len ) {++len;}}return len;}最长公共子序列(LCS)给出两个字符串a, b,求它们的最长、连续的公共字串。
如何使用动态规划解决问题
如何使用动态规划解决问题动态规划,是一种解决多阶段最优化决策过程的数学思想。
在实际应用中,它常常能够解决一些困扰人们已久的问题。
本文将介绍动态规划的基本思想、应用场景以及解决问题的方法。
一、动态规划的基本思想动态规划的基本思想是:分治 + 最优子结构。
顾名思义,分治即把问题拆分成若干个子问题,最优子结构则指子问题之间的相互关系。
在解决问题的过程中,我们可以将其划分为若干个阶段。
每个阶段都有自己的决策,而且当前阶段的决策会影响下一阶段的状态。
所以,通过对每个阶段中的决策进行最优化,就可以得到整个问题的最优解。
二、动态规划的应用场景动态规划可以应用于多种领域,如金融、计算机科学等。
常见的应用场景包括:1. 最长公共子序列问题2. 背包问题3. 网格取数问题4. 最大子段和问题5. 最短路问题6. 控制论问题7. 生产调度问题三、使用动态规划解决问题的方法使用动态规划解决问题的方法有“自顶向下”和“自底向上”两种。
1. 自顶向下自顶向下的方法也称为“记忆化搜索”,其主要思想是“分支回溯”。
首先我们将整个问题拆分成若干个子问题,每个子问题对应一个状态。
然后使用记忆化技术,把每次计算的结果储存下来。
这样,如果遇到一个已经计算过的状态,就可以直接返回结果。
当然,我们也可以通过回溯的方法来搜索到历史计算结果,并以此为基础继续计算。
2. 自底向上自底向上的方法也称为“迭代法”,其主要思想是“推导递归”。
我们首先需要定义一个状态转移方程,即,用子问题的最优解来推导出原问题的最优解。
然后,我们从子问题开始依次计算,不断往上计算,最终得到整个问题的最优解。
总的来说,自顶向下的方法比较直观、简单,但有时效率不高;自底向上的方法虽然有点抽象,但是在处理大规模问题时,它的效率远高于自顶向下的方法。
四、动态规划的优缺点使用动态规划解决问题有以下优点:1. 适用范围广:可以处理多种复杂性问题。
2. 解决效率高:可以通过使用一些优化策略提高计算效率。
动态规划和几个经典问题
动态规划和⼏个经典问题动态规划 (本⽂适合⼊门理解思想,后期多刷题) 动态规划是运筹学的⼀个分⽀,是求解多阶段决策过程最优化问题的数学⽅法,在经济管理、⼯程技术、⼯农业⽣产及军事部门中都有着⼴泛的应⽤,并且获得了显著的效果。
学习动态规划,我们⾸先要了解多阶段决策问题。
多阶段决策问题例⼦: ⽣产决策问题:企业在⽣产过程中,由于需求是随时间变化的,因此企业为了获得全年的最佳⽣产效益,就要在整个⽣产过程中逐⽉或逐季度地根据库存和需求决定⽣产计划。
机器负荷分配问题:某种机器可以在⾼低两种不同的负荷下进⾏⽣产。
要求制定⼀个五年计划,在每年开始时,决定如何重新分配完好的机器在两种不同的负荷下⽣产的数量,使在五年内产品的总产量达到最⾼。
航天飞机飞⾏控制问题:由于航天飞机的运动的环境是不断变化的,因此就要根据航天飞机飞⾏在不同环境中的情况,不断地决定航天飞机的飞⾏⽅向和速度(状态),使之能最省燃料和完成飞⾏任务(如软着陆)。
多阶段决策过程的特点: 根据过程的特性可以将过程按空间、时间等标志分为若⼲个互相联系⼜互相区别的阶段。
在每⼀个阶段都需要做出决策,从⽽使整个过程达到最好的效果。
各个阶段决策的选取不是任意确定的,它依赖于当前⾯临的状态,⼜影响以后的发展。
当各个阶段的决策确定后,就组成了⼀个决策序列,因⽽也就决定了整个过程的⼀条活动路线,这样的⼀个前后关联具有链状结构的多阶段过程就称为多阶段决策问题。
针对多阶段决策过程的最优化问题,美国数学家Bellman等⼈在20世纪50年代初提出了著名的最优化原理,把多阶段决策问题转化为⼀系列单阶段最优化问题,从⽽逐个求解,创⽴了解决这类过程优化问题的新⽅法:动态规划。
对最佳路径(最佳决策过程)所经过的各个阶段,其中每个阶段始点到全过程终点的路径,必定是该阶段始点到全过程终点的⼀切可能路径中的最佳路径(最优决策),这就是Bellman提出的著名的最优化原理。
动态规划算法详解及经典例题
动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。
(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。
⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。
动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。
这样就能够从表中得到原始问题的解。
(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。
关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。
⽽在各阶段中。
⼈们都须要作出⽅案的选择。
我们称之为决策。
⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。
这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。
因为各个阶段可供选择的决策往往不⽌⼀个。
因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。
每⼀个策略都对应地确定⼀种活动的效果。
我们假定这个效果能够⽤数量来衡量。
因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。
经常是⼈们所关⼼的问题。
我们称这种策略为最优策略,这类问题就称为多阶段决策问题。
(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。
在⾼负荷下⽣产时。
产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y的关系为h=h(y)。
(完整版)动态规划问题常见解法
(完整版)动态规划问题常见解法动态规划问题常见解法一、背包问题1. 0/1背包问题0/1背包问题是动态规划中的经典问题,解决的是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化。
常见的解法有两种:记忆化搜索和动态规划。
记忆化搜索是一种自顶向下的解法,通过保存子问题的解来避免重复计算,提高效率。
动态规划是一种自底向上的解法,通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。
2. 完全背包问题完全背包问题是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化,且每种物品可以选择任意个。
常见的解法有两种:记忆化搜索和动态规划。
记忆化搜索和动态规划的思路和0/1背包问题相似,只是在状态转移方程上有所不同。
二、最长公共子序列问题最长公共子序列问题是指给定两个序列,求它们之间最长的公共子序列的长度。
常见的解法有两种:递归和动态规划。
递归的思路是通过分别考虑两个序列末尾元素是否相等来进一步缩小问题规模,直至问题规模减小到边界情况。
动态规划的思路是通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。
三、最短路径问题最短路径问题是指在加权有向图或无向图中,求解从一个顶点到另一个顶点的最短路径的问题。
常见的解法有两种:Dijkstra算法和Bellman-Ford算法。
Dijkstra算法是通过维护一个距离表,不断选择距离最短的顶点来更新距离表,直至找到目标顶点。
Bellman-Ford算法是通过进行多次松弛操作,逐步缩小问题规模,直至找到目标顶点或发现负权环。
总结:动态规划是一种解决最优化问题的常见方法,它通过分组子问题、定义状态、确定状态转移方程和填表格的方式,来得到整个问题的最优解。
在解决动态规划问题时,可以采用记忆化搜索或者动态规划的策略,具体选择哪种方法可以根据问题的特点和优化的需要来决定。
动态规划算法适用于哪些问题
动态规划算法适用于哪些问题在计算机科学和数学领域,动态规划算法是一种非常强大且实用的解题策略。
它通过将复杂的问题分解为一系列相互关联的子问题,并通过保存子问题的解来避免重复计算,从而有效地提高了计算效率。
那么,动态规划算法究竟适用于哪些问题呢?首先,动态规划常用于解决具有最优子结构性质的问题。
最优子结构意味着一个问题的最优解包含了其子问题的最优解。
比如说在寻找最短路径的问题中,如果从起点到终点的最短路径经过某个中间节点,那么从起点到该中间节点的路径必然也是起点到该中间节点的最短路径。
这种性质使得我们可以通过逐步求解子问题来得到原问题的最优解。
背包问题就是一个典型的具有最优子结构的问题。
假设有一个背包,它有一定的容量限制,同时有若干种物品,每种物品有其重量和价值。
我们要在不超过背包容量的前提下,选择一些物品放入背包,使得背包内物品的总价值最大。
在这个问题中,如果一个包含某些物品的选择是最优的,那么对于这些物品的子集,它们在相应的子背包中的选择也必然是最优的。
其次,动态规划适用于具有重叠子问题的情况。
重叠子问题指的是在求解问题的过程中,多次出现相同的子问题。
如果每次遇到这些子问题都重新计算,将会导致大量的重复计算,效率低下。
通过动态规划,我们可以保存已经计算过的子问题的解,当再次遇到相同的子问题时,直接使用之前保存的结果,从而大大提高计算效率。
例如在斐波那契数列的计算中,如果我们使用递归的方法,会发现对于相同的斐波那契数会被多次计算。
而通过动态规划,我们可以创建一个数组来保存已经计算出的斐波那契数,当需要某个数时,直接从数组中获取,避免了重复计算。
动态规划在资源分配问题中也有广泛的应用。
比如生产计划的制定,工厂有一定的资源(如人力、材料、时间等),需要安排生产多种产品,每种产品的生产需要不同的资源投入和产生不同的收益。
我们需要确定每种产品的生产数量,以最大化总收益。
在这个过程中,我们可以将问题分解为不同阶段,每个阶段对应不同的资源分配决策,通过动态规划来找到最优的分配方案。
动态规划应用案例
动态规划应用案例动态规划是一种解决复杂问题的优化算法。
它通过将问题拆分成多个子问题,并记录每个子问题的解,以避免重复计算,从而提高算法的效率。
在实际应用中,动态规划被广泛用于解决各种问题,包括最优化问题、路径搜索问题、序列问题等。
本文将介绍几个动态规划的应用案例,以展示其在实际问题中的强大能力。
案例一:背包问题背包问题是动态规划中经典的一个例子。
假设有一个背包,容量为V,现有n个物品,每个物品的重量为wi,价值为vi。
要求在不超过背包容量的前提下,选取一些物品放入背包,使得背包中的物品总价值最大。
这个问题可以用动态规划来解决。
首先定义一个二维数组dp,其中dp[i][j]表示在前i个物品中选择一些物品,使得它们的总重量不超过j时的最大总价值。
然后,可以得到如下的状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)最后,根据状态转移方程,可以循环计算出dp[n][V]的值,即背包中物品总价值的最大值,从而解决了背包问题。
案例二:最长递增子序列最长递增子序列是指在一个序列中,选取一些数字,使得这些数字按照顺序排列,且长度最长。
动态规划也可以应用于解决最长递增子序列问题。
假设有一个序列nums,长度为n。
定义一个一维数组dp,其中dp[i]表示以nums[i]为结尾的最长递增子序列的长度。
然后,可以得到如下的状态转移方程:dp[i] = max(dp[j] + 1),其中j < i且nums[j] < nums[i]最后,循环计算出dp数组中的最大值,即为最长递增子序列的长度。
案例三:最大子数组和最大子数组和问题是指在一个数组中,选取一段连续的子数组,使得子数组的和最大。
动态规划也可以用于解决最大子数组和问题。
假设有一个数组nums,长度为n。
定义一个一维数组dp,其中dp[i]表示以nums[i]为结尾的连续子数组的最大和。
然后,可以得到如下的状态转移方程:dp[i] = max(dp[i-1] + nums[i], nums[i])最后,循环计算出dp数组中的最大值,即为最大子数组的和。
动态规划问题常见解法
动态规划问题常见解法动态规划(Dynamic Programming)是一种常用的算法思想,用于解决一类具有重叠子问题性质和最优子结构性质的问题。
动态规划通常通过将问题划分为若干个子问题,并分别求解子问题的最优解,从而得到原问题的最优解。
以下是动态规划问题常见的解法:1. 斐波那契数列斐波那契数列是动态规划问题中的经典案例。
它的递推关系式为 F(n) = F(n-1) + F(n-2),其中 F(0) = 0,F(1) = 1。
可以使用动态规划的思想来解决斐波那契数列问题,通过保存已经计算过的子问题的结果,避免重复计算。
2. 背包问题背包问题是一个经典的优化问题,可以使用动态规划的方法进行求解。
背包问题包括 0/1 背包问题和完全背包问题。
0/1 背包问题中每个物品要么被选中放入背包,要么不选。
完全背包问题中每个物品可以被选中多次放入背包。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解背包问题。
3. 最长递增子序列最长递增子序列是一个常见的子序列问题,可以使用动态规划的方法进行求解。
最长递增子序列指的是在一个序列中,找到一个最长的子序列,使得子序列中的元素按照顺序递增。
通过定义状态转移方程和使用动态规划的思想,可以有效地求解最长递增子序列问题。
4. 最长公共子序列最长公共子序列是一个经典的字符串问题,可以使用动态规划的方法进行求解。
给定两个字符串,找到它们之间最长的公共子序列。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解最长公共子序列问题。
5. 矩阵链乘法矩阵链乘法是一个求解最优括号化问题的经典案例,可以使用动态规划的方法进行求解。
给定多个矩阵的大小,需要找到一个最优的计算顺序,使得计算乘积的次数最少。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解矩阵链乘法问题。
以上是动态规划问题的常见解法,通过使用动态规划的思想和方法,可以解决这些问题,并求得最优解。
动态规划问题-经典模型的状态转移方程
动态规划问题-经典模型的状态转移⽅程状态转移⽅程动态规划中当前的状态往往依赖于前⼀阶段的状态和前⼀阶段的决策结果。
例如我们知道了第i个阶段的状态Si以及决策Ui,那么第i+1阶段的状态Si+1也就确定了。
所以解决动态规划问题的关键就是确定状态转移⽅程,⼀旦状态转移⽅程确定了,那么我们就可以根据⽅程式进⾏编码。
在前⾯的⽂章讲到了如何设计⼀个动态规划算法,有以下四个步骤:1、刻画⼀个最优解的结构特征。
2、递归地定义最优解的值。
3、计算最优解的值,通常采⽤⾃底向上的⽅法。
4、利⽤计算出的信息构造⼀个最优解。
对于确定状态转移⽅程就在第⼀步和第⼆步中,⾸先要确定问题的决策对象,接着对决策对象划分阶段并确定各个阶段的状态变量,最后建⽴各阶段的状态变量的转移⽅程。
例如⽤dp[i]表⽰以序列中第i个数字结尾的最长递增⼦序列长度和最长公共⼦序列中⽤dp[i][j]表⽰的两个字符串中前 i、 j 个字符的最长公共⼦序列,我们就是通过对这两个数字量的不断求解最终得到答案的。
这个数字量就被我们称为状态。
状态是描述问题当前状况的⼀个数字量。
⾸先,它是数字的,是可以被抽象出来保存在内存中的。
其次,它可以完全的表⽰⼀个状态的特征,⽽不需要其他任何的辅助信息。
最后,也是状态最重要的特点,状态间的转移完全依赖于各个状态本⾝,如最长递增⼦序列中,dp[x]的值由 dp[i](i < x)的值确定。
若我们在分析动态规划问题的时候能够找到这样⼀个符合以上所有条件的状态,那么多半这个问题是可以被正确解出的。
所以说,解动态规划问题的关键,就是寻找⼀个好的状态。
总结下⾯对这⼏天的学习总结⼀下,将我遇到的各种模型的状态转移⽅程汇总如下:1、最长公共⼦串假设两个字符串为str1和str2,它们的长度分别为n和m。
d[i][j]表⽰str1中前i个字符与str2中前j个字符分别组成的两个前缀字符串的最长公共长度。
这样就把长度为n的str1和长度为m的str2划分成长度为i和长度为j的⼦问题进⾏求解。
常见动态规划题目详解
常见动态规划题⽬详解1.爬楼梯题⽬描述:假设你正在爬楼梯。
需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。
你有多少种不同的⽅法可以爬到楼顶呢?注意:给定 n 是⼀个正整数。
⽰例 1:输⼊: 2输出: 2解释:有两种⽅法可以爬到楼顶。
1. 1 阶 + 1 阶2. 2 阶⽰例 2:输⼊: 3输出: 3解释:有三种⽅法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶2. 1 阶 + 2 阶3. 2 阶 + 1 阶实现代码:class Solution {public:int climbStairs(int n) {vector<int> a(n);a[0] = 1;a[1] = 2;if(n == 1){return 1;}if(n == 2){return 2;}for(int i = 2; i < n;i++){a[i] = a[i - 1] + a[i - 2];}return a[n - 1];}};2.变态跳台阶题⽬描述:⼀只青蛙⼀次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。
求该青蛙跳上⼀个n级的台阶总共有多少种跳法。
实现代码:class Solution {public:int jumpFloorII(int number) {if(number == 0){return 0;}int total = 1;for(int i = 1; i < number; i++){total *= 2;}return total;}};3.n年后⽜的数量题⽬描述:假设农场中的母⽜每年会产⽣⼀头⼩母⽜,并且永远不会死。
第⼀年农场中只有⼀头成熟的母⽜,第⼆年开始,母⽜开始⽣⼩母⽜,每只⼩母⽜三年之后成熟⼜可以⽣⼩母⽜,给定整数N,求N年后母⽜的数量。
实现代码:class solution{ public: int f(int n){ if(n < 1){ return 0; } if(n == 1|| n== 2||n == 3){ return n; } int res = 3; int pre = 2; int prepre = 1; int tmp1=0; int tmp2 = 0; for(int i = 4;i < n;i++){ tmp1 = res; tmp2 = pre; res = pre + prepre; pre = tmp1; prepre = tmp2; } return res; }};4.矩形覆盖题⽬描述:我们可以⽤2*1的⼩矩形横着或者竖着去覆盖更⼤的矩形。
动态规划问题
动态规划问题动态规划(Dynamic Programming)是一种将复杂问题分解成更小的子问题并逐步解决的算法思想。
它通常用于解决涉及重叠子问题和最优子结构性质的问题,通过将问题分解成更小的子问题,并将解保存在一个表格中,以便后续的计算可以直接使用。
动态规划算法的核心思想是,通过维护一个辅助的状态表格来存储子问题的解,以便在需要用到子问题的解时,可以直接查表获取,避免重复计算。
在解决问题的过程中,我们通常会先从最小的子问题开始解决,并将解保存在表格中。
然后,根据较大规模子问题的解来逐步解决较小规模的子问题,最终得到整个问题的解。
动态规划算法的关键步骤可以描述如下:1. 定义子问题:将问题分解成更小规模的子问题,描述子问题的解与原问题解的关系;2. 定义状态:定义子问题的解与状态之间的对应关系,用于将子问题的解存储在状态表格中;3. 定义状态转移方程:描述较大规模子问题的解与较小规模子问题的解之间的关系,用于从表格中获取已计算的解;4. 初始化状态表格:将表格中所有的状态初始化为无效值,以便在获取解时可以判断是否已计算;5. 根据状态转移方程计算状态表格中的所有解;6. 根据问题的要求从状态表格中获取最优解。
动态规划算法可以用于解决各种问题,如最长递增子序列、最短路径、背包问题等。
通过分解问题、定义状态和状态转移方程,动态规划算法可以高效地求解复杂的问题,并避免重复计算。
在实际应用中,通过合理设计状态转移方程和思考问题的最优子结构性质,可以使动态规划算法更加高效和准确。
总之,动态规划是一种将问题分解成更小子问题的算法思想,通过保存子问题的解并使用状态转移方程,可以高效地求解复杂问题。
通过合理设计状态和思考最优子结构性质,可以使动态规划算法更加高效。
动态规划算法在实际应用中具有广泛的应用价值,在算法设计和问题求解过程中发挥着重要的作用。
动态规划经典问题
动态规划经典问题动态规划(Dynamic Programming)是一种常用的求解最优化问题的方法,它通过将问题分解成若干子问题,并保存子问题的解,从而避免重复计算,提高计算效率。
在动态规划中,经典问题有不少,其中包括背包问题、最长公共子序列问题、最长递增子序列问题等。
本文将介绍其中的两个经典问题:背包问题和最长递增子序列问题。
一、背包问题背包问题是动态规划中的经典问题之一,它描述了一个给定容量的背包和一系列物品,每一个物品有自己的分量和价值,在限定的容量下,如何选择物品使得背包中的总价值最大化。
假设有一个背包,容量为W,有n个物品,每一个物品的分量分别为w1,w2, ..., wn,对应的价值分别为v1, v2, ..., vn。
要求在限定的背包容量下,选择一些物品放入背包,使得背包中物品的总价值最大。
解决背包问题的一种常用方法是使用动态规划。
我们可以定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。
根据动态规划的思想,我们可以得到如下的状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)其中,dp[i-1][j]表示不选择第i个物品时的最大价值,dp[i-1][j-wi] + vi表示选择第i个物品时的最大价值。
具体求解背包问题的步骤如下:1. 初始化dp数组,将dp[0][j]和dp[i][0]均设为0,表示背包容量为0时和没有物品可选时的最大价值均为0。
2. 逐个计算dp[i][j]的值,根据状态转移方程更新dp数组。
3. 最终得到dp[n][W]的值,即为所求的最大价值。
例如,假设背包容量为10,有4个物品,它们的分量和价值分别如下:物品1:分量2,价值6物品2:分量2,价值3物品3:分量3,价值5物品4:分量4,价值8根据上述步骤,可以得到如下的dp数组:0 1 2 3 4 5 6 7 8 9 100 0 0 0 0 0 0 0 0 0 0 01 0 0 6 6 6 6 6 6 6 6 62 0 0 6 6 9 9 9 9 9 9 93 0 0 6 6 9 9 11 11 14 14 144 0 0 6 6 9 9 11 11 14 14 17可以看到,dp[4][10]的值为17,表示在背包容量为10时,选择物品1、物品3和物品4可以得到的最大价值为17。
动态规划应用动态规划解决问题的思路与技巧
动态规划应用动态规划解决问题的思路与技巧动态规划应用 - 动态规划解决问题的思路与技巧动态规划(Dynamic Programming)是一种常见的算法思想,用于解决一些具有重叠子问题和最优子结构性质的问题。
通过将大问题划分为小问题,并将小问题的解存储起来以避免重复计算,可以在一定程度上优化问题的求解过程。
本文将介绍动态规划的应用,并提供一些思路与技巧。
一、动态规划的基本思路动态规划问题通常可以由以下步骤解决:1. 定义状态:将问题划分成若干子问题,并确定每个子问题需要记录的状态。
2. 定义状态转移方程:通过分析子问题之间的关系,建立状态转移方程,以表达子问题的最优解与更小规模子问题的关系。
3. 初始化边界条件:确定最小规模子问题的解,并初始化状态转移方程中需要用到的边界条件。
4. 递推求解:按照状态转移方程的定义,从较小规模的子问题开始逐步推导出较大规模的问题的解。
5. 求解目标问题:根据最终推导出的状态,得到原始问题的最优解。
二、动态规划的技巧与优化1. 滚动数组:为了降低空间复杂度,可以使用滚动数组来存储状态。
滚动数组只记录当前状态与之前一部分状态相关的信息,避免了存储所有状态的需求。
2. 状态压缩:对于某些问题,可以将状态压缩成一个整数,从而大幅减小状态的数量。
例如,当问题中涉及到某些特定的组合或排列时,可以使用二进制位来表示状态。
3. 前缀和与差分数组:对于某些问题,可以通过计算前缀和或差分数组,将问题转化为求解累加或差对应数组中的某个区间的值的问题,从而简化计算过程。
4. 贪心思想:有些动态规划问题可以结合贪心思想,在每个阶段选择局部最优解,然后得到全局最优解。
5. 双重循环与多重循环:在实际解决问题时,可以使用双重循环或多重循环来遍历状态空间,求解问题的最优解。
三、动态规划的实际应用动态规划广泛应用于各个领域,包括但不限于以下几个方面:1. 最短路径问题:例如,求解两点之间的最短路径、最小生成树等。
动态规划问题(斐波那契数列)
动态规划问题(斐波那契数列)算法1. 动态规划题⽬1:写⼀个函数,输⼊ n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。
斐波那契数列的定义如下:F(0) = 0, F(1)= 1F(N) = F(N - 1) + F(N - 2), 其中 N > 1.斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加⽽得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
⽰例 1:输⼊:n = 2思路:1. ⾸先想到的是递归,后⾯的函数需要调⽤前⾯的函数,并且有明显的停⽌条件。
2. 然后是动态规划,要计算第三个数,只需要知道前⾯两个数即可,⽽最开始的两个很容易得出。
再下⼀次计算中舍弃第⼀个,保留第⼆三个数。
作为下⼀轮的第⼀⼆位。
如此重复操作即可。
(就是⼀个循环的问题)代码:public class Fib {//测试public static void main(String[] args) {System.out.println(fib(22));System.out.println(fib01(1000));}//思路1public static int fib(int n) {if (n == 0 || n == 1) {return n;}return fib(n - 1) + fib(n - 2);}//思路2public static int fib01(int n) {if (n < 2) {return n;}final int MOD = 1000000007;int a = 0;int b = 1;int c = 0;for (int i = 1; i < n; i++) {c = (a + b) % MOD;a = b;b = c;}return c;}}题⽬2:⼀只青蛙⼀次可以跳上1级台阶,也可以跳上2级台阶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/5/22
动态决策问题的特点: 系统所处的状态和时刻是进行决策的重要因
素; 即在系统发展的不同时刻(或阶段)根据系
第一节 动态规划问题
§1.1 多阶段决策问题 §1.2 动态规划问题举例
§1.1 多阶段决策问题
所谓多阶段决策问题是指一类活动过程,它可以分为 若干个相互联系的阶段,在每个阶段都需要作出决策。 这个决策不仅决定这一阶段的效益,而且决定下一阶 段的初始状态。
每个阶段的决策确定以后,就得到一个决策序列, 称为策略。多阶段决策问题就是求一个策略,使各阶 段的效益的总和达到最优.
q1 Q1(x1) q2 Q2 (x2 )
决策
决策
状态 1
状态
2 状态 状态
x1 S1 R1(x1, q1) x2 T1(x1, q1)
决策
n
n
opt{ Rk (xk , qk )}
k 1
2020/5/22
§1.1 多阶段决策问题
动态规划是用来解决多阶段决策过程最优化 的一种数量方法。其特点在于,它可以把一个n 维决策问题变换为几个一维最优化问题,从而一 个一个地去解决。
g=g(u1)
这时,机器的年完好率为a,即如果年初完好机器 的数量为u,到年终完好的机器就为au, 0<a<1。
2020/5/22
机器负荷分配问题
在低负荷下生产时,产品的年产量h和投入生产 的机器数量u2的关系为
h=h(u2)
相应的机器年完好率b, 0< b<1。 假定开始生产时完好的机器数量为s1。要求制定
5 A
3
1 B1 3
6
8 B2 7
6
C1 6 8
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
1
2
2020/5/22
3
4
5
6
不包含时间因素的静态决策问题(本质上是一次 决策问题)也可以适当地引入阶段的概念,作为多 阶段的决策问题用动态规划方法来解决。
4 . 线性规划、非线性规划等静态的规划问题也可 以通过适当地引入阶段的概念,应用动态规划方法 加以解决交通网络图如下,其中 两点之间的数字表示距离(或花费),试求从A点到 G点的最短距离(总费用最小)。
生产决策问题
某工厂生产某种季节性商品,需要作下一年度的 生产计划,假定这种商品的生产周期需要两个 月,全年共有6个生产周期,需要作出各个周期 中的生产计划。设已知各周期对该商品的需要 量如下表所示:
周期 1 2 3 4 5 6
需求量 5 5 10 30 50 8
2020/5/22
生产决策问题
假设这个工厂根据需要可以日夜两班生产或只是日班生产, 当开足日班时,每一个生产周期能生产商品15个单位,每生 产一个单位商品的成本为100元。当开足夜班时,每一生产 周期能生产的商品也是15个,但是由于增加了辅助性生产设 备和生产辅助费用,每生产一单位商品的成本为120元。由 于生产能力的限制,可以在需求淡季多生产一些商品储存起 来以备需求旺季使用,但存储商品是需要存储费用的,假设 每单位商品存储一周期需要16元,已知开始时存储为零,年 终也不存储商品备下年使用,问应该如何作生产和存储计划, 才能使总的生产和存储费用最小?
2020/5/22
生产决策问题(续)
2020/5/22
生产决策问题(续)
5
f
(xi )
112000xxii
,0
xi 15 300,15
xi
30
2020/5/22
§1.2 动态规划问题举例
2. 机器负荷分配问题:某种机器可以在高低两种 不同的负荷下进行生产。在高负荷下进行生产时, 产品的年产量g和投入生产的机器数量u1的关系为
一个五年计划,在每年开始时,决定如何重新分配 完好的机器在两种不同的负荷下生产的数量,使在 五年内产品的总产量达到最高。
2020/5/22
3. 航天飞机飞行控制问题:由于航天飞机的运 动的环境是不断变化的,因此就要根据航天飞机飞 行在不同环境中的情况,不断地决定航天飞机的飞 行方向和速度(状态),使之能最省燃料和实现目 的(如软着落问题)。
决策 状态 状态
1
决策 2 状态 状态
决策 n
2020/5/22
§1.2 动态规划问题举例 多阶段决策问题的典型例子:
1 . 生产决策问题:企业在生产过程中,由于需求 是随时间变化的,因此企业为了获得全年的最佳生 产效益,就要在整个生产过程中逐月或逐季度地根 据库存和需求决定生产计划。
2020/5/22
统所处的状态,不断地做出决策; 找到不同时刻的最优决策以及整个过程的最
优策略。
2020/5/22
多阶段决策问题: 是动态决策问题的一种特殊形式; 在多阶段决策过程中,系统的动态过程可以按照 时间进程分为状态相互联系而又相互区别的各 个阶段;
每个阶段都要进行决策,目的是使整个过程的 决策达到最优效果。