运筹学动态规划PPT

合集下载

第07章 动态规划 《运筹学》PPT课件

第07章  动态规划  《运筹学》PPT课件
最优路径问题 资源分配问题 排序问题 投资问题 装载问题 生产计划与库存问题 生产过程的最优控制等
动态规划
模型分类
离散确定型 离散随机型 连续确定型 连续随机型
§1 多阶 段决 策过 程的 最优

多阶段决策问题
(Multi-Stage decision process)
决策u1 决策u2
决策uk
32
维护费
8 8 9 9 10 6 6 8 8 10 5 6 8 9 5 5 6 4 54Βιβλιοθήκη 新设备购置费 5050
52 52 55 60
旧设备折价
20 15 10 5 2 30 25 20 15 10 31 26 21 15 33 28 20 35 30
40
§1 多阶 段决 策过 程的 最优

3)连续生产过程的控制 问题:一般化工生产过程中,
本章 内容
多阶段决策过程的最优化 动态规划的基本概念和基本原理 动态规划模型的建立与求解 动态规划在经济管理中的应用 马氏决策规划简介
创始时间 创始人
上个世纪50年代
美国数学家贝尔曼 (Richard. Bellman)
是运筹学的一个主要分支 是解决多阶段决策过程的最优化的一
种方法多阶段决策过程: 多阶段决策过程的最优化的目标: 达到整个活动过程的总体效果最优 •主要用于解决:
不过,实际中尚有许多不包含时间 因素的一类“静态”决策问题,就其本 质而言是一次决策问题,是非动态决策 问题,但是也可以人为地引入阶段的概 念当作多阶段决策问题,应用动态规划 方法加以解决。
§1 多阶 段决 策过 程的 最优

4)资源分配问题:便属于这类静 态问题。如:某工业部门或公司,拟对 其所属企业进行稀缺资源分配,为此需 要制定出收益最大的资源分配方案。这 种问题原本要求一次确定出对各企业的 资源分配量,它与时间因素无关,不属 动态决策,但是,我们可以人为地规定 一个资源分配的阶段和顺序,从而使其 变成一个多阶段决策问题(后面我们将 详细讨论这个问题)。

运筹帷幄之中决胜千里之外运筹学课件-动态规划PPT文档共35页

运筹帷幄之中决胜千里之外运筹学课件-动态规划PPT文档共35页
运筹帷幄之中决胜千里之外运筹学课

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
件-动态规划
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

动态规划问题的基本要素和最优化原理ppt课件

动态规划问题的基本要素和最优化原理ppt课件
2、正确选择状态变量
选择变量既要能确切描述过程演变又要满足无后效性, 而且各阶段状态变量的取值能够确定。一般地,状态变量 的选择是从过程演变的特点中寻找。
3、确定决策变量及允许决策集合
通常选择所求解问题的关键变量作为决策变量,同时要 给出决策变量的取值范围,即确定允许决策集合。
精品课程《运筹学》
ppt精选版
4、确定状态转移方程
根据k 阶段状态变量和决策变量,写出k+1阶段状态变 量,状态转移方程应当具有递推关系。
5、确定阶段指标函数和最优指标函数,建立动 态规划基本方程
阶段指标函数是指第k 阶段的收益,最优指标函数是指 从第k 阶段状态出发到第n 阶段末所获得收益的最优值, 最后写出动态规划基本方程。
f1(s1)
最优目标函数值
V 1 * ,n V 1 * ,n (s 1 * ,u 1 * 子, 从策略k ,的到s 最终n * 优点,u 目最n * 标优)函策数略值
fs ov ps tu s
, , ,
k k
k ,n k k
uu , ,
k
n
n 1
精品课程《运筹学》
ppt精选版
§2.2 动态规划的基本思想
最优化原理:作为整个过程的最优策略具有这样 的性质:无论过去的状态和决策如何,相对于前面 的决策所形成的状态而言,余下的决策序列必然构 成最优子策略。”也就是说,一个最优策略的子策 略也是最优的。
精品课程《运筹学》
ppt精选版
§2.3 建立动态规划模型的步骤
1、划分阶段
划分阶段是运用动态规划求解多阶段决策问题的第一步, 在确定多阶段特性后,按时间或空间先后顺序,将过程划 分为若干相互联系的阶段。对于静态问题要人为地赋予 “时间”概念,以便划分阶段。

运筹学课件PPT课件

运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。

第8章 动态规划《管理运筹学》PPT课件

第8章 动态规划《管理运筹学》PPT课件
Vk,n (sk , uk , , sn1) fk [sk , uk ,Vk 1,n (sk 1, uk 1, , 1)] ③函数 fk (sk , uk ,Vk 1,n ) 对于变量 Vk1,n 要严格单调。
8.2 动态规划模型建立
下面以投资问题为例介绍动态规划的建模条件。
【例8-2】 某公司现有资金20万元,若投资于三个
8.1 动态规划基础知识
(5)状态转移方程:状态转移方程是确定过程由一
个状态转移到另一个状态的演变过程。动态规划中某一状
态以及该状态下的决策,与下一状态之间具有一定的函数
关系,称这种函数关系的表达式为状态转移方程。如果第
k段的状态为 sk ,该阶段的决策为
的状态就可以用下式来表示:
uk
sk
,则第k+1段
阶段的指标函数,是该阶段最优的指标函数。
8.2 动态规划模型建立
建立动态规划模型,就是在分析实际问题的基础上建 立该问题的动态规划基本方程。成功地应用动态规划方法 的关键,在于识别问题的多阶段特征,将问题分解成为可 用递推关系式联系起来的若干子问题,或者说正确地建立 具体问题的基本方程,这需要经验与技巧。而正确建立基 本递推关系方程的关键又在于正确选择状态变量,保证各 阶段的状态变量具有递推的状态转移关系。
第8章 动态规划
动态规划(DYnamic Programming,缩写为DP)方法 ,是本世纪50年代初期由美国数学家贝尔曼(Richard E ,Bellman)等人提出,后来逐渐发展起来的数学分支, 它是一种解决多阶段决策过程最优化问题的数学规划法 。动态规划的数学模型和求解方法比较灵活,对于连续 的或离散的,线性的或非线性的,确定性的或随机性的 模型,只要能构成多阶段决策过程,便可用动态规划方 法求其最优解。因而在自然科学、社会科学、工程技术 等许多领域具有广泛的用途,甚至一定程度上比线性规 划(LP)、非线性规划(NLP)有成效,特别是对于某 些离散型问题,解析数学无法适用,动态规划方法就成 为非常有用的求解工具。

运筹学教材课件(第四章动态规划)

运筹学教材课件(第四章动态规划)

最优解的存在性
对于多阶段决策问题,如果每个 阶段的决策空间是有限的,则存 在最优解。
最优解的唯一性
对于某些多阶段决策问题,可能 存在多个最优解。在这种情况下, 我们需要进一步分析问题的性质 和约束条件,以确定最优解的个 数和性质。
最优解的稳定性
在某些情况下,最优解可能受到 参数变化的影响。我们需要分析 最优解的稳定性,以确保最优解 在参数变化时仍然保持最优。
VS
详细描述
排序问题可以分为多种类型,如冒泡排序 、快速排序、归并排序等。动态规划可以 通过将问题分解为子问题,逐一求解最优 解,最终得到全局最优解。在排序问题中 ,动态规划可以应用于求解最小化总成本 、最大化总效益等问题。
04
动态规划的求解方法
逆推法
逆推法
从问题的目标状态出发,逆向推算出达到目标状态的 最优决策,直到达到初始状态为止。
案例二:投资组合优化问题
要点一
总结词
要点二
详细描述
投资组合优化问题是动态规划在金融领域的重要应用,通 过合理配置资产,降低投资风险并提高投资收益。
投资组合优化问题需要考虑市场走势、资产特性、风险偏 好等多种因素,通过动态规划的方法,可以确定最优的投 资组合,使得投资者在风险可控的前提下,实现收益最大 化。
详细描述
在背包问题中,给定一组物品,每个物品都有一定的重量和价值,要求在不超过背包容量的限制下, 选择总价值最大的物品组合。通过动态规划的方法,可以将背包问题分解为一系列子问题,逐一求解 最优解。
排序问题
总结词
排序问题是动态规划应用的另一个重要 领域,主要涉及到将一组元素按照一定 的顺序排列,以达到最优的目标。
本最小化和效率最大化。
感谢您的观看

《管理运筹学》案例演示(动态规划)

《管理运筹学》案例演示(动态规划)

x1
[
]
第一季度生产量加库存量要满足本季度需求量, 又不能超过第一到第四季度的总需求: 最高生产量为6个单位:
2 ≤ x1 + s1 ≤11 0 ≤ x1 ≤ 6
f1 ( s1 )
x1
0 1 2
21
Байду номын сангаас
3
21.5
4
22
5
6
f1 ( s1 )
∗ x1
s1
0
20.5 21.5 20.5
5
第四步:最佳生产决策:第一季度生产5单位产品,期末库存量为 3单位;第二季度不生产,期末库存量为零;第三季度生产6单位 产品,期末库存量为4单位;第四季度不安排生产。
8 100 75 53
A B C
问如何确定三个项目计划的投资额,才能使8千万元的资金投 资后的利润最大。 解: 阶段变量k ( k =1,2, 3 ):每投资一个项目作为一个阶段; 状态变量sk :可以对第k个项目投资的资金数(即投资 第k个项目前的资金数); 决策变量xk:第k 个项目的投资, 0≤xk≤sk;
11 10.5 8 8 8 8 5
6 5 0 0 0 0 0
第三步:第二到第四季度的最佳生产决策; 第二到第四季度的最低生产成本:
f2 (s2 ) = m c2( x2 , s2 ) + f3 (s3 ) in
x2
[
]
约束条件: 由于第一季度期初库存s1= 0,而最高生产量x1= 6 ,市场需求量d1=2,所以,第二季度期初的库存量应为: 第二季度生产量加库存量要满足本季度需求量, 又不能超过第二到第四季度的总需求: 最高生产量为6个单位:
该季度生产量不能超过6个单位:

第五章 物流运筹学——动态规划

第五章 物流运筹学——动态规划
即由第 阶段的状态 利用这个原理,可以把多阶段决策问题求解过程表示成一个连续的递推过程,由后向前逐步计算。
的单件重量和装载收费如表5-1所示,又规 由于它表示了由 段到 段的状态转移
因此,在物流管理中,如何进行决策,制定一个最优的设备维护更新策略,是非常重要的。
第三节 动态规划模型的建立与求解
定货物2和货物3都至多装两件。问如何装 但假设初始状态虽已给定,终点状态有多个,需比较到达不同终点状态的各个路径及最优指标函数值,以选取总效益最正确的终点状
3
• 【例5-1】〔生产与存储问题〕工厂在3个季度中
• 安排某种产品的生产方案。假设该季度生产此
种产x
x2
• 品 〔吨〕,那么本钱为 元。假设当季
生产的
• 每吨产品未销售a k 掉,那么进库,季末需付存储费,
• 产品每季的存储费为1元。现估计3个季度对该 产
• 品的需求量 分别为100吨,110吨和120吨,
3
j 仪器
1
2
3
10
9
14
9
12
10
6
5
8
7
• 【例5-4】〔机器负荷问题〕设某机器可以在高、
• 低两种不同的负荷下进行生产。假设年初x 有 台
• 机器在高负荷下进行生产,那么产品年a产 8x


0.3
y
• 机器的年折损率

0.1
;假设年b 初5有y 台机器在
• 负荷下进行生产,那么产品年产量
,机器

• 年折损率
。假设初始时有性能正常的机器
1000
• 台,要求制定机器负荷的四年分配方案,确定每

8
A

动态规划(完整)ppt课件

动态规划(完整)ppt课件

3
• Ⅲ --Ⅳ :
B1—C1—T
4
• Ⅱ--Ⅲ--Ⅳ :A2—B1—C1—T
7
• Ⅰ--Ⅱ--Ⅲ --Ⅳ:

Q—A2—B1—C1—T
11

Q--A3—B1—C1—T
11

Q--A3—B2—C2—T
11
最新版整理ppt
3
最短路径
11
4
7
A1
4
2
6
11
47
3 2
Q
A2
4
B1
1
4 76
3
C1
3
B2 3
最新版整理ppt
16
(4)策略和允许策略集合
策略(Policy)也叫决策序列.策略有全过程 策略和 k 部子策略之分,全过程策略是指具 有n 个阶段的全部过程,由依次进行的 n 个 阶段决策构成的决策序列,简称策略,表示
为 p1,n{x1,x2, ,xn}。从 k 阶段到第 n 阶段,
依次进行的阶段决策构成的决策序列称为 k
新分支的创立。
最新版整理ppt
6
• 动态规划将复杂的多阶段决策问题分解为 一系列简单的、离散的单阶段决策问题, 采用顺序求解方法, 通过解一系列小问题 达到求解整个问题目的;
• 动态规划的各个决策阶段不但要考虑本阶 段的决策目标, 还要兼顾整个决策过程的 整体目标, 从而实现整体最优决策.
最新版整理ppt
第七章 动态规划
主要内容:
§7.1多阶段决策问题 §7.2 动态规划的基本概念和基本原理 §7.3 动态规划应用举例
最新版整理ppt
1
例 求解最短路问题
2
Q
4

清华大学运筹学完整ppt课件2024新版

清华大学运筹学完整ppt课件2024新版

分支定界法的优缺点
优点是可以求解较大规模的整数规划 问题,缺点是计算量较大,需要多次 迭代和比较。
割平面法
割平面法的基本思想
通过添加割平面来切割掉原问题中不满足整数约束条件的部分,从而得到新的可行域,并 在新的可行域上继续求解。
割平面法的步骤
构造一个割平面,将原问题的可行域切割为两部分;求解切割后的问题,若得到的最优解 满足整数约束条件,则停止迭代;否则继续添加割平面进行切割,直到得到满足整数约束 条件的最优解或确定原问题无解。
线性规划问题的对偶理论与灵敏度分析
对偶问题
每一个线性规划问题都有一个与 之对应的对偶问题,对偶问题的 目标函数和约束条件与原问题密 切相关。
对偶性质
原问题和对偶问题之间存在一系 列重要的性质,如弱对偶性、强 对偶性等。
灵敏度分析
灵敏度分析用于研究当原问题的 参数发生变化时,最优解和最优 值会如何变化。这对于实际问题 中的决策制定具有重要意义。
THANK YOU
感谢聆听
最优解
03
目标函数等值线与可行域的交点中,使目标函数达到最优(最
大或最小)的点称为最优解。
单纯形法
初始基可行解
单纯形法从一个初始基可行解开始,该解通常是通过添加人工变 量构造的。
迭代过程
单纯形法通过一系列迭代过程,不断改进当前解,直到找到最优 解或确定问题无解。
旋转操作
在每次迭代中,单纯形法通过旋转操作将当前非基变量替换为基 变量,同数规划问题的数学模型
01
整数规划问题的定 义
整数规划是一类要求部分或全部 决策变量取整数值的数学规划问 题。
02
整数规划问题的分 类
根据整数变量的取值范围,可分 为纯整数规划、混合整数规划和 0-1整数规划。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d( B1,C3 ) + f1 (C3 ) 4
3+1 = min 3+3
1+4
= min 6 = 4
5
(最短路线为B1→C1 →D)
3
C1
2 B1 3
1
A
1 2
3
C2
3
D
4 B2 1
4
C3
d( B2,C1 ) + f1 (C1 ) f2 ( B2 ) = min d( B2,C2 ) + f1 (C2 )
动态决策问题的特点: 系统所处的状态和时刻是进行决策的重要因素; 即在系统发展的不同时刻(或阶段)根据系统 所处的状态,不断地做出决策; 找到不同时刻的最优决策以及整个过程的最优策略。
多阶段决策问题: 是动态决策问题的一种特殊形式; 在多阶段决策过程中,系统的动态过程可以按照时间 进程分为状态相互联系而又相互区别的各个阶段;
描述阶段的变量称为阶段变量。阶段的划分,一般是 根化2、据为状时多态间阶:和段表空决一一一示间策个组个每的。数数向个自、、 阶然段特开征始来所进处行年的的路、自段,月然但、状要况便或于客问观题转 条件。通常一量个阶段有若干个状态,描述过程状态的 变量称为状态变量。
状态变量的取值有一定的允许集合或范围,此集合 称为状态允许集合。
系统在某一阶段的状态转移不但与系统的当前的状态 和决策有关,而且还与系统过去的历史状态和决策有 关。
其状态转移方程如下(一般形式)
ss32
TT12((ss11,,
uu11
) ,
s2
,
u2
)
sk1 Tk (s1, u1, s2 , u2 , , sk , uk )
图示如下:
状态转移方程是确定 过程由一个状态到另 一个状态的演变过程。 如果第k阶段状态变量 sk的值、该阶段的决策 变量一经确定,第k+1 阶段状态变量sk+1的值 也就确定。
2、正确选择状态变量
选择变量既要能确切描述过程演变又要满足无后效性, 而且各阶段状态变量的取值能够确定。一般地,状态 变量的选择是从过程演变的特点中寻找。
3、确定决策变量及允许决策集合
通常选择所求解问题的关键变量作为决策变量,同时 要给出决策变量的取值范围,即确定允许决策集合。
4、确定状态转移方程
2、在多阶段决策过程中,动态规划方法是既把当前 一段和未来一段分开,又把当前效益和未来效益结合 起来考虑的一种最优化方法。因此,每段决策的选取 是从全局来考虑的,与该段的最优选择答案一般是不 同的.
3、在求整个问题的最优策略时,由于初始状态是 已知的,而每段的决策都是该段状态的函数,故最优 策略所经过的各段状态便可逐段变换得到,从而确定 了最优路线。
每个阶段都要进行决策,目的是使整个过程的决策 达到最优效果。
决策 状态 状态
1
决策 2 状态 状态
决策 n
多阶段决策问题的典型例子:
1 . 生产决策问题:企业在生产过程中,由于需求 是随时间变化的,因此企业为了获得全年的最佳生 产效益,就要在整个生产过程中逐月或逐季度地根 据库存和需求决定生产计划。
动态规划模型的指标函数,应具有可分离性,并满 足递推关系。
小结:
无后效性
动态规划本质上是多阶段决策过程;
概念 : 阶段变量k﹑状态变量sk﹑决策变量uk;
方程 :状态转移方程 sk1 Tk (sk , uk )
指标: Vk,n Vk,n (sk , uk , sk1, uk1, , sn1)
效益
3、决策:表示当过程处于某一阶段的某个状态时, 可以作出不同的决定,从而确定下一阶段的状态,这 种决定称为决策。
描述决策的变量,称为决策变量。决策变量是状态 变量的函数。可用一个数、一组数或一向量(多维情 形)来描述。
在实际问题中决策变量的取值往往在某一范围之内, 此范围称为允许决策集合。
4、多阶段决策过程 可以在各个阶段进行决策,去控制过程发展的多段过 程;其发展是通过一系列的状态转移来实现的;
5 A
3
1 B1 3
6
8 B2 7
6
C1 6 8
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
最优路线为:A → B1 → C2 → D1 → E2 → F2 → G 路长=18
5
B1
1 3
A
6
3
B2
8 7
6
C1 6
8
C2 3 5
k
k
k,n
u u , ,
k
n
k
k
n1
(二)、动态规划的基本思想
1、动态规划方法的关键在于正确地写出基本的递推 关系式和恰当的边界条件(简称基本方程)。要做到 这一点,就必须将问题的过程分成几个相互联系的阶 段,恰当的选取状态变量和决策变量及定义最优值函 数,从而把一个大问题转化成一组同类型的子问题, 然后逐个求解。即从边界条件开始,逐段递推寻优, 在每一个子问题的求解中,均利用了它前面的子问题 的最优化结果,依次进行,最后一个子问题所得的最 优解,就是整个问题的最优解。
f
k
(sk)
opt V
uk, ,un
s k,n ( k
,uk ,
s, n1)
Vk,n (sk , uk , sk1, uk1, , sn1)
可递推
k [sk , uk ,Vk 1,n (sk 1, uk 1, , sn1 )]
指标函数形式: 和、 积
解多阶段决策过程问题,求出 最优策略,即最优决策序列
C3 3 3
C4 8 4
D1 2
2
D2 1
2
D3
3 3
E1 3 5 F1 4
k=6, F1 G f6(F1)=4
E252
G
F2 G ,f6(F2)=3
6 F2 E3 6
3
k=5,出发点E1、E2、E3
f 5(E1) min
dd55
E1, F1 f6F1 E1, F2 f6F2
34
d( B2,C3 ) + f1 (C3 ) 3
2+1 = min 3+3
1+4
= min 6 = 3 (最短路线为B2→C1 →D) 5
3
C1
2 B1 3
1
A
1 2
3
C2
3
D
4 B2 1
4
C3
第三阶段( A → B ): A 到B 有二条路线。
f3(A)1 = d(A, B1 )+ f2 ( B1 ) =2+4=6 f3 (A)2 = d(A, B2 )+ f2 ( B2 ) =4+3=7
5 A
3
1 B1 3
6
8 B2 7
6
C1 6 8
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
1
2
3
4
5
6
一、动态规划的基本思想
(一)、基本概念
1、阶段:
把一个问题的过程,恰当地分为若干个相互联系的阶 段,以便于按一定的次序去求解。
不包含时间因素的静态决策问题(本质上是一次 决策问题)也可以适当地引入阶段的概念,作为多 阶段的决策问题用动态规划方法来解决。
4 . 线性规划、非线性规划等静态的规划问题也可 以通过适当地引入阶段的概念,应用动态规划方法 加以解决。
5 . 最短路问题:给定一个交通网络图如下,其中 两点之间的数字表示距离(或花费),试求从A点到 G点的最短距离(总费用最小)。
∴ f3 (A) = min
d(A, B1 )+ f2 ( B1 ) d(A, B2 )+ f2 ( B2 )
= min{6,7}=6
(最短路线为A→B1→C1 →D)
3
C1
2 B1 3
1
A
1 2
3
C2
3
D
4 B2 1
4
C3
最短路线为 A→B1→C1 →D 路长为 6
练习1: 求从A到G的最短路径
2. 机器负荷分配问题:某种机器可以在高低两种 不同的负荷下进行生产。在高负荷下进行生产时, 产品的年产量g和投入生产的机器数量u1的关系为
g=g(u1)
这时,机器的年完好率为a,即如果年初完好机器 的数量为u,到年终完好的机器就为au, 0<a<1。
在低负荷下生产时,产品的年产量h和投入生产 的机器数量u2的关系为
5、策略:是一个按顺序排列的决策组成的集合。在 实际问题中,可供选择的策略有一定的范围,称为允 许策略集合。从允许策略集合中找出达到最优效果的 策略称为最优策略。
6、状态转移方程:是确定过程由一个状态到另一个 状态的演变过程,描述了状态转移规律。
7、指标函数和最优值函数:用来衡量所实现过程优 劣的一种数量指标,为指标函数。指标函数的最优值, 称为最优值函数。在不同的问题中,指标函数的含义 是不同的,它可能是距离、利润、成本、产量或资源 消耗等。
二、最短路径问题
例一、从A 地到D 地要铺设一条煤气管道,其中需经过 两级中间站,两点之间的连线上的数字表示距离,如 图所示。问应该选择什么路线,使总距离最短?
3
C1
2 B1 3
1
A
1 2
3
C2
3
D
4 B2 1
4
C3
3
C1
相关文档
最新文档