运筹学课件05动态规划
合集下载
运筹学课件
f k ( sk ) = f 5 ( s5 ) = max
0≤ uk≤ sk
{ 8 uk + 5( sk - uk )+ fk+1(sk+1)},k= 4,3,2,1 ( , , , , { 8 u5 + 5 ( s5 - u5 )}
max
0≤ u5≤ s5
9、逆序递推求解动态规划基本方程。 、逆序递推求解动态规划基本方程。 k=5
uk* = s 3
5
动态规划 Dynamic Programming (DP) )
动态规划——Dynamic Programming 动态规划
建立 DP 模型与求解 k=2 f2 ( s 2 ) =
0 ≤ u2 ≤ s2
Max
[ 9x2 + f3(s3)] = Max [ 9x2 + 2s32 ]
8.
建立动态规划基本方程:(逆序递推方程) 建立动态规划基本方程:(逆序递推方程) :(逆序递推方程 fk ( s k ) = max
0 ≤ uk ≤ sk
[ gk(xk)+ fk+1(sk+1)] ,k = 3,2,1 , ,
f4 ( s 4 ) = 0
4
动态规划 Dynamic Programming (DP) )
3
动态规划 Dynamic Programming (DP) )
动态规划——Dynamic Programming 动态规划
建立 DP 模型与求解
1. 动态规划结构图
k阶段 阶段
k+1阶段 阶段
max
sk
gk(xk) 0 ≤ uk ≤ sk
sk+1 = sk - uk
0≤ uk≤ sk
{ 8 uk + 5( sk - uk )+ fk+1(sk+1)},k= 4,3,2,1 ( , , , , { 8 u5 + 5 ( s5 - u5 )}
max
0≤ u5≤ s5
9、逆序递推求解动态规划基本方程。 、逆序递推求解动态规划基本方程。 k=5
uk* = s 3
5
动态规划 Dynamic Programming (DP) )
动态规划——Dynamic Programming 动态规划
建立 DP 模型与求解 k=2 f2 ( s 2 ) =
0 ≤ u2 ≤ s2
Max
[ 9x2 + f3(s3)] = Max [ 9x2 + 2s32 ]
8.
建立动态规划基本方程:(逆序递推方程) 建立动态规划基本方程:(逆序递推方程) :(逆序递推方程 fk ( s k ) = max
0 ≤ uk ≤ sk
[ gk(xk)+ fk+1(sk+1)] ,k = 3,2,1 , ,
f4 ( s 4 ) = 0
4
动态规划 Dynamic Programming (DP) )
3
动态规划 Dynamic Programming (DP) )
动态规划——Dynamic Programming 动态规划
建立 DP 模型与求解
1. 动态规划结构图
k阶段 阶段
k+1阶段 阶段
max
sk
gk(xk) 0 ≤ uk ≤ sk
sk+1 = sk - uk
运筹学课件--动态规划
J 表示留在左岸的仆人人数
初始状态s1是T(3,3)
结束状态sn是 T(0,0)
可达状态有哪些?(3,J) (2,2) (1,1) (0,J) J 3 2 1 0
2013-6-9
A
1
运筹学课件
2
3
I
阶段指标——每阶段选定决策xk后所产生的效益,记
vk= vk(Sk, xk)。
指标函数——各阶段的总效益,记相应于Pkn的指标函数
2013-6-9 运筹学课件
动态规划模型的分类: 以“时间”角度可分成:
离散型和连续型。
从信息确定与否可分成:
确定型和随机型。
从目标函数的个数可分成: 单目标型和多目标型。
2013-6-9 运筹学课件
8.2基本概念与方程
1.基本概念
阶段(Stage)——分步求解的过程,用阶段变量k表示,k=1,,n 状态(State)——每阶段初可能的情形或位置,用状态变 量Sk表示。 按状态的取值是离散或连续,将动态规划问题分为
当 k 3,f Max f v
3 0
3 3
3
4
Max 3x 5s 13.6(0.9s 0.2x )
0
3 3
3
3
3
3
Max 0.28x 17.24s
0
3 3
3
3
x s , f 17.52s ,即第3年初将全部完好机器都 投入高负荷。
指标函数vkn=
v
5
表示第k至5年的总产量;
1
递推公式:f Max f v
6
f 0, k 5, ,1
2013-6-9
运筹学课件
初始状态s1是T(3,3)
结束状态sn是 T(0,0)
可达状态有哪些?(3,J) (2,2) (1,1) (0,J) J 3 2 1 0
2013-6-9
A
1
运筹学课件
2
3
I
阶段指标——每阶段选定决策xk后所产生的效益,记
vk= vk(Sk, xk)。
指标函数——各阶段的总效益,记相应于Pkn的指标函数
2013-6-9 运筹学课件
动态规划模型的分类: 以“时间”角度可分成:
离散型和连续型。
从信息确定与否可分成:
确定型和随机型。
从目标函数的个数可分成: 单目标型和多目标型。
2013-6-9 运筹学课件
8.2基本概念与方程
1.基本概念
阶段(Stage)——分步求解的过程,用阶段变量k表示,k=1,,n 状态(State)——每阶段初可能的情形或位置,用状态变 量Sk表示。 按状态的取值是离散或连续,将动态规划问题分为
当 k 3,f Max f v
3 0
3 3
3
4
Max 3x 5s 13.6(0.9s 0.2x )
0
3 3
3
3
3
3
Max 0.28x 17.24s
0
3 3
3
3
x s , f 17.52s ,即第3年初将全部完好机器都 投入高负荷。
指标函数vkn=
v
5
表示第k至5年的总产量;
1
递推公式:f Max f v
6
f 0, k 5, ,1
2013-6-9
运筹学课件
管理运筹学第5章动态规划
递推关系的建立
根据阶段划分、状态转移方程和最优解的性质,建立递推关系。
递推关系的求解
通过递推关系求解各阶段的最优解,最终得到整个问题的最优解。
03
动态规划的求解方法
逆推法
总结词
逆推法是从目标状态出发,逆向推算出达到目标状态的最优决策,逐步推算出初始状态的最优决策。
详细描述
逆推法的基本思想是将问题分解为若干个相互联系的阶段,从最后阶段开始,依次向前推算出每个阶 段的最优决策,直到达到初始状态。这种方法适用于具有重叠子问题和最优子结构的问题,可以避免 重复计算,提高求解效率。
详细描述
资源分配问题通常需要考虑资源的约束条件、 各部门或个体的需求和优先级,以及如何平 衡各方利益。动态规划通过将问题分解为一 系列子问题,逐一求解最优解,最终得到整 体最优解。
生产与存储问题
总结词
生产与存储问题主要研究在生产过程 中如何平衡生产与库存的关系,以最 小化生产成本和库存成本。
详细描述
特点
动态规划适用于具有重叠子问题和最优子结构特性的问题,通过将原问题分解 为子问题,逐个求解并存储子问题的解,避免了重复计算,提高了求解效率。
动态规划的重要性
解决复杂问题
动态规划能够解决一些复杂的问题,如资源分配、生产计 划、物流调度等,这些问题通常难以通过传统方法求解。
提高计算效率
通过避免重复计算,动态规划能够显著提高计算效率,尤 其在处理大规模问题时,能够大大减少计算时间和资源消 耗。
05
动态规划的优化策略
多阶段决策优化
01
02
03
阶段划分
将问题划分为若干个相互 关联的阶段,每个阶段都 有自己的决策变量和状态 转移方程。
状态转移
根据阶段划分、状态转移方程和最优解的性质,建立递推关系。
递推关系的求解
通过递推关系求解各阶段的最优解,最终得到整个问题的最优解。
03
动态规划的求解方法
逆推法
总结词
逆推法是从目标状态出发,逆向推算出达到目标状态的最优决策,逐步推算出初始状态的最优决策。
详细描述
逆推法的基本思想是将问题分解为若干个相互联系的阶段,从最后阶段开始,依次向前推算出每个阶 段的最优决策,直到达到初始状态。这种方法适用于具有重叠子问题和最优子结构的问题,可以避免 重复计算,提高求解效率。
详细描述
资源分配问题通常需要考虑资源的约束条件、 各部门或个体的需求和优先级,以及如何平 衡各方利益。动态规划通过将问题分解为一 系列子问题,逐一求解最优解,最终得到整 体最优解。
生产与存储问题
总结词
生产与存储问题主要研究在生产过程 中如何平衡生产与库存的关系,以最 小化生产成本和库存成本。
详细描述
特点
动态规划适用于具有重叠子问题和最优子结构特性的问题,通过将原问题分解 为子问题,逐个求解并存储子问题的解,避免了重复计算,提高了求解效率。
动态规划的重要性
解决复杂问题
动态规划能够解决一些复杂的问题,如资源分配、生产计 划、物流调度等,这些问题通常难以通过传统方法求解。
提高计算效率
通过避免重复计算,动态规划能够显著提高计算效率,尤 其在处理大规模问题时,能够大大减少计算时间和资源消 耗。
05
动态规划的优化策略
多阶段决策优化
01
02
03
阶段划分
将问题划分为若干个相互 关联的阶段,每个阶段都 有自己的决策变量和状态 转移方程。
状态转移
运筹学课件PPT课件
整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。
运筹学教材课件(第四章动态规划)
最优解的存在性
对于多阶段决策问题,如果每个 阶段的决策空间是有限的,则存 在最优解。
最优解的唯一性
对于某些多阶段决策问题,可能 存在多个最优解。在这种情况下, 我们需要进一步分析问题的性质 和约束条件,以确定最优解的个 数和性质。
最优解的稳定性
在某些情况下,最优解可能受到 参数变化的影响。我们需要分析 最优解的稳定性,以确保最优解 在参数变化时仍然保持最优。
VS
详细描述
排序问题可以分为多种类型,如冒泡排序 、快速排序、归并排序等。动态规划可以 通过将问题分解为子问题,逐一求解最优 解,最终得到全局最优解。在排序问题中 ,动态规划可以应用于求解最小化总成本 、最大化总效益等问题。
04
动态规划的求解方法
逆推法
逆推法
从问题的目标状态出发,逆向推算出达到目标状态的 最优决策,直到达到初始状态为止。
案例二:投资组合优化问题
要点一
总结词
要点二
详细描述
投资组合优化问题是动态规划在金融领域的重要应用,通 过合理配置资产,降低投资风险并提高投资收益。
投资组合优化问题需要考虑市场走势、资产特性、风险偏 好等多种因素,通过动态规划的方法,可以确定最优的投 资组合,使得投资者在风险可控的前提下,实现收益最大 化。
详细描述
在背包问题中,给定一组物品,每个物品都有一定的重量和价值,要求在不超过背包容量的限制下, 选择总价值最大的物品组合。通过动态规划的方法,可以将背包问题分解为一系列子问题,逐一求解 最优解。
排序问题
总结词
排序问题是动态规划应用的另一个重要 领域,主要涉及到将一组元素按照一定 的顺序排列,以达到最优的目标。
本最小化和效率最大化。
感谢您的观看
运筹与优化--动态规划.ppt
2.2. 动态 规划的基本思想和基本方程
最短路线有一个重要特性:如果L是允许策略集
合P中从始点A到终点E的最短路线,M是L中的一点,则
从M沿L到E的路是从M到E的最短路线.
寻找最短路线的方法,可以从最后一段开始,由后
向前逐步递推,求出各点到后一点的最短路线,最后求
得始点到终点的最短路线.所以,动态规划的方法是从
终点逐段向始点方向寻找最短路线的一种方法. 如图
所示:
行进方向
始点 1 2 3
n 终点
寻优途径
例1、最短路径问题
2
A5
1
B1
12 14
10
6
B2 10
4 13
B3
12 11
C1
3
9
6
C2
5 8
C3
10
求从A到E的最短路径
D1
5
E
D2 2
2
A5
1
B1
12 14
10
6
B2 10
4 13
B3
12 11
B1 12 14
2 f2(B2)=110 4
6
5
B2 10
4
1
13
B3
12 11
f2(B3)=19
f3(C1)=8
C1
3
9
f3(C2)=7
6
C2
5 8
C3
10
f3(C3)=12
f4(D1)=5
D1
5 f5(E)=0
E
D2 2
f4(D2)=2
状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态 A ( A,B2) B2 (B2,C1) C1 (C1,D1) D1
第五章 物流运筹学——动态规划
即由第 阶段的状态 利用这个原理,可以把多阶段决策问题求解过程表示成一个连续的递推过程,由后向前逐步计算。
的单件重量和装载收费如表5-1所示,又规 由于它表示了由 段到 段的状态转移
因此,在物流管理中,如何进行决策,制定一个最优的设备维护更新策略,是非常重要的。
第三节 动态规划模型的建立与求解
定货物2和货物3都至多装两件。问如何装 但假设初始状态虽已给定,终点状态有多个,需比较到达不同终点状态的各个路径及最优指标函数值,以选取总效益最正确的终点状
3
• 【例5-1】〔生产与存储问题〕工厂在3个季度中
• 安排某种产品的生产方案。假设该季度生产此
种产x
x2
• 品 〔吨〕,那么本钱为 元。假设当季
生产的
• 每吨产品未销售a k 掉,那么进库,季末需付存储费,
• 产品每季的存储费为1元。现估计3个季度对该 产
• 品的需求量 分别为100吨,110吨和120吨,
3
j 仪器
1
2
3
10
9
14
9
12
10
6
5
8
7
• 【例5-4】〔机器负荷问题〕设某机器可以在高、
• 低两种不同的负荷下进行生产。假设年初x 有 台
• 机器在高负荷下进行生产,那么产品年a产 8x
量
,
0.3
y
• 机器的年折损率
低
0.1
;假设年b 初5有y 台机器在
• 负荷下进行生产,那么产品年产量
,机器
的
• 年折损率
。假设初始时有性能正常的机器
1000
• 台,要求制定机器负荷的四年分配方案,确定每
年
8
A
的单件重量和装载收费如表5-1所示,又规 由于它表示了由 段到 段的状态转移
因此,在物流管理中,如何进行决策,制定一个最优的设备维护更新策略,是非常重要的。
第三节 动态规划模型的建立与求解
定货物2和货物3都至多装两件。问如何装 但假设初始状态虽已给定,终点状态有多个,需比较到达不同终点状态的各个路径及最优指标函数值,以选取总效益最正确的终点状
3
• 【例5-1】〔生产与存储问题〕工厂在3个季度中
• 安排某种产品的生产方案。假设该季度生产此
种产x
x2
• 品 〔吨〕,那么本钱为 元。假设当季
生产的
• 每吨产品未销售a k 掉,那么进库,季末需付存储费,
• 产品每季的存储费为1元。现估计3个季度对该 产
• 品的需求量 分别为100吨,110吨和120吨,
3
j 仪器
1
2
3
10
9
14
9
12
10
6
5
8
7
• 【例5-4】〔机器负荷问题〕设某机器可以在高、
• 低两种不同的负荷下进行生产。假设年初x 有 台
• 机器在高负荷下进行生产,那么产品年a产 8x
量
,
0.3
y
• 机器的年折损率
低
0.1
;假设年b 初5有y 台机器在
• 负荷下进行生产,那么产品年产量
,机器
的
• 年折损率
。假设初始时有性能正常的机器
1000
• 台,要求制定机器负荷的四年分配方案,确定每
年
8
A
运筹学课程动态规划课件
5 A
3
1 B1 3
6
8 B2 7
6
C1 6 8
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
1
2
3 4 运筹学课程动态规划
5
6
7
示例5(生产与存储问题):
某工厂生产并销售某种产品。已知今后四个月市场需求 预测及每月生产j个单位产品的费用如下:
上一个阶段的决策直接影响下一个阶段的决策
运筹学课程动态规划
8
示例6(航天飞机飞行控制问题):
由于航天飞机的运动的环境是不断变化的,因 此就要根据航天飞机飞行在不同环境中的情况, 不断地决定航天飞机的飞行方向和速度(状态), 使之能最省燃料和实现目的(如软着落问题)。
运筹学课程动态规划
9
所谓多阶段决策问题是指一类活动过程,它可以分为若 干个相互联系的阶段,在每个阶段都需要作出决策。这 个决策不仅决定这一阶段的效益,而且决定下一阶段的 初
1 6
C3
D1
10
E
D2
6
运筹学课程动态规划
12
以上求从A到E的最短路径问题,可以转化为四个性质完
全相同,但规模较小的子问题,即分别从 Di 、 Ci 、Bi、
A到E的最短路径问题。
第四阶段:两个始点 D 1 和 D 2 ,终点只有一个;
本阶段始点 (状态)
D1 D2
本阶段各终点(决策) E 10 6
cj30j
j0 j1,2,6
月1 2 3
4
需求 2 3 2
运筹学-第3版-课件-第5章 动态规划
C1
2
1 2 2 3
D1 D2
3
2
A
B2
5
C2
6
E
4
2
B3
C3
3
D3
同样的理由,可以递推得其余阶段的铺设路线,如阶 段3在C1点的决策是D1,阶段4在D1点的决策只有E点; 由于到E点是整个铺设管道的终点,至此,决策过程完成, 铺设一条A点到E点的管道是由四个阶段的管道组成的, 如A---B3---C1---D1---E,它也称为一个策略。
B
阶段2
C
阶段3
D
阶段4
E
5
B1
4 4
6
3 6
C1
2
1 2
2
D1 D2 D3
3 4
2
A
B2
5
C2
6
E
2
3
B3
C3
3
在阶段2,从B3点出发,只有C1、C3两种可 选择的点, 如选C1,则C1就是阶段2在B3点的决策结果; C1点既是阶段2铺设管道的终点,又是阶段3 铺设管道的起点;
5
B1
4 4
6 3 6
使S= f ( xi ) 16 u j =
i 1 6 t
f ( x ) 16(5x
为最小,其中
i 1 i
6
j 1
1
4 x2 3x3 2 x4 x5 185)
100xi ,0 xi 15 f ( xi ) 120xi 300,15 < xi 30
第5章 动态规划
运 筹 帷 幄 之 中 Dynamic Programming
决 胜 千 里 之 外
大学运筹学经典课件第五章动态规划
生产计划问题的动态规划解法
根据生产阶段和生产量的不同组合,构建动 态规划模型进行求解。
经典案例
多阶段生产问题、批量生产计划问题等。
图像处理与计算机视觉中的应用
图像处理中的动态规划应用
通过动态规划算法对图像进行分割、边缘检测、特征提取等 操作。
计算机视觉中的动态规划应用
在目标跟踪、立体视觉、光流计算等领域,利用动态规划求 解最优路径或策略。
决策的无后效性
在动态规划中,每个阶段的决策只与 当前状态有关,而与过去的状态和决 策无关。
边界条件与状态转移方程
边界条件
动态规划问题的边界条件通常指的是问题的初始状态和终止 状态。
状态转移方程
描述问题状态之间转移关系的方程,通常根据问题的具体性 质建立。通过状态转移方程,可以逐步推导出问题的最优解 。
应用领域
03
适用于具有时序性和阶段性特点的问题,如资源分配、任务调
度、路径规划等。
动态规划与人工智能的融合应用
强化学习
结合动态规划和强化学习算法, 通过智能体与环境交互学习最 优决策策略,实现自适应的动
态规划求解。
深度学习
利用深度学习模型强大的特征 提取和表达能力,对动态规划 中的状态转移和决策规则进行
经典案例
图像分割中的最短路径算法、立体匹配中的动态规划算法等 。
06
动态规划的扩展与前沿研究
随机动态规划
随机动态规划模型
描述随机环境下多阶段决策 问题的数学模型,涉及期望 总收益最大化或期望总成本
最小化。
求解方法
通过引入状态转移概率和决 策规则,将随机动态规划问 题转化为确定性动态规划问 题求解,常用方法有值迭代
自顶向下的求解方法(记忆化搜索)
运筹学课件 第五章动态规划
2013-11-30 11
(1)在第四阶段 此时只要再走一步即到终点⑩ (B地)。 目前状态 s4可以是⑧或⑨,可选择的下一状 态X4 是⑩ 所以f4 (8) =d4 (8, 10) =3, f4 (9)=d4 (9, 10)=4 (2)在第三阶段 在第三阶段,还需两步才能到达终点,此时 f3 ( s3)=min{d3 ( s3,X3)+f4 (s4)} 目前状态s3可 以是⑤、⑥、⑦,可选择的下一状态X3有两个 点⑧或⑨
通过计算,可知从 A地到 B地总路程最小 值为 11。
2013-11-30 16
三、动态规划的基本概念
1、阶段: 把所给问题的过程恰当地分为 若干个相互联系的阶段,以便能按一定的次序 去求解。描述阶段的变量称为阶段变量,常用 k 表示。 阶段的划分,一般是根据时间和空间的自然 特征来划分,但要便于把问题的过程能转化为 多阶段的决策过程,如例 1中可分为4个阶段来 求解,k=1, 2, 3, 4。
uk
2013-11-30 27
* pk ,n 表示sk sn的最优策略, 则最优值函数
基本方程 f k ( sk ) opt vk ( sk , u k ) f k 1 ( sk 1 ) u k Dk sk 1 Tk ( sk , u k ) k 1,2, , n f (s ) 0 n 1 n 1 这是一个逆推方程.
2013-11-30 20
4.策略 策略:决策按顺序构成的序列,用p表示。
p k ,n ( sk ) : 第k阶段起至第n阶段止的策略 pk ,n ( sk ) {uk ( sk ), uk 1 ( sk 1 )... , un ( sn )} 当k 1时. p1,n ( s1 )为全过程策略. p1,n ( s1 ) P ,n ( s1 ) 1
(1)在第四阶段 此时只要再走一步即到终点⑩ (B地)。 目前状态 s4可以是⑧或⑨,可选择的下一状 态X4 是⑩ 所以f4 (8) =d4 (8, 10) =3, f4 (9)=d4 (9, 10)=4 (2)在第三阶段 在第三阶段,还需两步才能到达终点,此时 f3 ( s3)=min{d3 ( s3,X3)+f4 (s4)} 目前状态s3可 以是⑤、⑥、⑦,可选择的下一状态X3有两个 点⑧或⑨
通过计算,可知从 A地到 B地总路程最小 值为 11。
2013-11-30 16
三、动态规划的基本概念
1、阶段: 把所给问题的过程恰当地分为 若干个相互联系的阶段,以便能按一定的次序 去求解。描述阶段的变量称为阶段变量,常用 k 表示。 阶段的划分,一般是根据时间和空间的自然 特征来划分,但要便于把问题的过程能转化为 多阶段的决策过程,如例 1中可分为4个阶段来 求解,k=1, 2, 3, 4。
uk
2013-11-30 27
* pk ,n 表示sk sn的最优策略, 则最优值函数
基本方程 f k ( sk ) opt vk ( sk , u k ) f k 1 ( sk 1 ) u k Dk sk 1 Tk ( sk , u k ) k 1,2, , n f (s ) 0 n 1 n 1 这是一个逆推方程.
2013-11-30 20
4.策略 策略:决策按顺序构成的序列,用p表示。
p k ,n ( sk ) : 第k阶段起至第n阶段止的策略 pk ,n ( sk ) {uk ( sk ), uk 1 ( sk 1 )... , un ( sn )} 当k 1时. p1,n ( s1 )为全过程策略. p1,n ( s1 ) P ,n ( s1 ) 1
运筹学课件动态规划
C4 A — B— C — D — E
f2(C1)=7,f3(C2)=8,f3(C3)=10,f3(c4)=9
阶段1
阶段2 阶段3 阶段4
S0={A} S1={B1,B2} S2={C1,C2,C3,C4 } S3={D1,D2} S4={E}
f3(D1)=11,f4(D2)=13
案例---资源分配
D1 5 E
D2 2
[引例] 马车驿站问题
f(C1)=8
阶段 起点 1A
终点
B1 B2
可选路线
AB1 AB2
路线数 2
f(B1)=8
B1 5 A
f(A)=313 8
B2
2 3 6
7 6
C1 6
f(C2)=85
C2 3
f(C3)=54
3 C3 3
84
f(B2)=11 C4
f(C1)=5
A —B— C —
最k优=4化原理
(Optimality principle) :
最k优=3策略具备这样的决性策质::无D1论初E始 状态与初始决策如何,以后诸决策对 以第一个决策所形成的状态作为初 始状态的过程而言,必决然策构:成D2最优E策 策略.通俗地说:最优策略的子策略 也k是=2最优的.
例 A13—k如,其=B1,子1—在策C导略2入—:B案D11—例—C中决E2决决,,—策最策策最D:短::1优A距—CC策12离E略B,为1DD是11 C2—D1—E, D1—E也决是策最:优C3的。D2
(4)状态转移方程 (5)递归方程(k→n)
1、划分为4个阶段 2、用点集表示各阶段的状态 S1={A};s2= {B1,B2,B3}, s3= {C1,C2,C3}; s4= {D1,D2} 3、指标函数:Vk,4(i)为第k阶段第i点到E点的距离 4、最优值函数fk(i)为i点到E的最短距离 5、决策变量xk=d[i,j]为第k阶段第i状态的选择 6、边界条件: f5(E)=0 7、基本方程: fk(i)=min{d[i,j]+ fk+1(j) }(k=1,2,3,4)
运筹学课件(动态规划)
(二)、动态规划的基本思想 1、动态规划方法的关键在于正确地写出基本的递推 关系式和恰当的边界条件(简称基本方程)。要做到 这一点,就必须将问题的过程分成几个相互联系的阶 段,恰当的选取状态变量和决策变量及定义最优值函 数,从而把一个大问题转化成一组同类型的子问题, 然后逐个求解。即从边界条件开始,逐段递推寻优, 在每一个子问题的求解中,均利用了它前面的子问题 的最优化结果,依次进行,最后一个子问题所得的最 优解,就是整个问题的最优解。
d( B1,C1 ) + f1 (C1 ) 3+1 f2 ( B1 ) = min d( B1,C2 ) + f1 (C2 ) = min 3+3 d( B1,C3 ) + f1 (C3 ) 1+4 4 = min 6 = 4 (最短路线为B1→C1 →D) 5
3
2 A 4 B2 B1 2 1 3
最优策略为(30,20),此时最大利润为105万元。
f 2 ( 40)
g2 ( y) y 0 ,10 ,, 40
max
f1 ( 40 y )
90
最优策略为(20,20),此时最大利润为90万元。
f 2 (30)
g2 ( y) y 0 ,10 , 20 , 30
max
f1 (30 y )
70
最优策略为(20,10),此时最大利润为70万元。
f 2 ( 20) ma 0 ,10 , 20
50
最优策略为(20,0),此时最大利润为50万元。
f 2 (10) maxg 2 ( y ) f1 (10 y )
3 2 A 4 B2 B1 2 3 1 3 1
C1 C2 4 3
运筹学――动态规划课件
当k=1时F1(s1)就是从初始状态到全过程的整体最优函 数.
8
指标函数的常见形式:
(1)过程和它的任一子过程的指标是它所包n 含的各阶段
(2的)指过标程的和和它。的Vk任,n(一sk子, u过k程, s的k+指1,标… 是sn它+1所)=包含jk 的v j (各s j阶,u段j) 的1
指标的乘积。Vk,n(sk,
23
1、动态规划模型的建立
建立动态模型的6个要素: 1)阶段k 2)状态SK 3)决策uk(sk) 4)状态转移方程 5)阶段指标函数 6)指标递推方程
24
2、动态规划模型的解法
动态规划的求解方法有两种: 逆序解法与顺序解法
1、在已知初始状态S1下,采用逆序解法:(反向递归) 2、在已知终止状态Sn下,采用顺序解法(正向递归)
fk (Sk )
dk Dk
OPt{vk (Sk , dk ) fk1( Sk1 )} fk (sk ) 0Pt Uk (sk , dk )
(k n, n 1,1)
dk Dk (k 1,2,n)
fk1(sk1 )
fn1( Sn1 ) 1
f0 (s0 ) 1
26
计 k 算 顺1如 序时下 解,: 法按解kuff( ( ( 111例0BsB1, 2) 11) ) :f的 ( 0 4A定 sA1)义45有f( 0: uf( ( A11BB) B1B2222) ) 538077,5A这C是 CCC1234边 845835界 44 条DDD件123156。 323
13
二、动态规划的基本思想和基本方程
最短路线有一个重要特性:如果由起点A经P点和H点 最终到达F点是一条最短路线,则由P点出发经过H点 最终到达F点的这条路线必定也是从P点到F点的最短路 。
8
指标函数的常见形式:
(1)过程和它的任一子过程的指标是它所包n 含的各阶段
(2的)指过标程的和和它。的Vk任,n(一sk子, u过k程, s的k+指1,标… 是sn它+1所)=包含jk 的v j (各s j阶,u段j) 的1
指标的乘积。Vk,n(sk,
23
1、动态规划模型的建立
建立动态模型的6个要素: 1)阶段k 2)状态SK 3)决策uk(sk) 4)状态转移方程 5)阶段指标函数 6)指标递推方程
24
2、动态规划模型的解法
动态规划的求解方法有两种: 逆序解法与顺序解法
1、在已知初始状态S1下,采用逆序解法:(反向递归) 2、在已知终止状态Sn下,采用顺序解法(正向递归)
fk (Sk )
dk Dk
OPt{vk (Sk , dk ) fk1( Sk1 )} fk (sk ) 0Pt Uk (sk , dk )
(k n, n 1,1)
dk Dk (k 1,2,n)
fk1(sk1 )
fn1( Sn1 ) 1
f0 (s0 ) 1
26
计 k 算 顺1如 序时下 解,: 法按解kuff( ( ( 111例0BsB1, 2) 11) ) :f的 ( 0 4A定 sA1)义45有f( 0: uf( ( A11BB) B1B2222) ) 538077,5A这C是 CCC1234边 845835界 44 条DDD件123156。 323
13
二、动态规划的基本思想和基本方程
最短路线有一个重要特性:如果由起点A经P点和H点 最终到达F点是一条最短路线,则由P点出发经过H点 最终到达F点的这条路线必定也是从P点到F点的最短路 。