化工原理课程设计之清水吸收填料吸收塔设计
化工原理课程设计水吸收氨气填料塔设计
《化工原理》课程设计——水吸收氨气填料塔设计学院专业班级姓名学号指导教师2012年12月11 日设计任务书水吸收氨气填料塔设计(一)设计题目试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。
混合气体的处理量为____3200____m3/h,其中含氨为____8%____(体积分数),混合气体的进料温度为25℃。
要求:①塔顶排放气体中含氨低于____0.04%____(体积分数);(二)操作条件(1)操作压力:常压(2)操作温度:20℃(3)吸收剂用量为最小用量的倍数自己确定(三)填料类型聚丙烯阶梯环吸收填料塔(四)设计内容(1)设计方案的确定和说明(2)吸收塔的物料衡算;(3)吸收塔的工艺尺寸计算;(4)填料层压降的计算;(5)液体分布器简要设计;(6)绘制液体分布器施工图(7)吸收塔接管尺寸计算;(8)设计参数一览表;(9)绘制生产工艺流程图(A3号图纸);(10)绘制吸收塔设计条件图(A3号图纸);(11)对设计过程的评述和有关问题的讨论。
目录前言 ............................................................................................................. 错误!未定义书签。
第一节填料塔主体设计方案的确定.................................................. 错误!未定义书签。
1.1装置流程的确定 .................................................................................. 错误!未定义书签。
1.2 吸收剂的选择.................................................................................. 错误!未定义书签。
化工原理课程设计-水吸收氨填料吸收塔设计
化工原理课程设计-水吸收氨填料吸收塔设计一、背景介绍氨是一种重要的化学制品,用于制造各种类型的化学产品,也可用作氨加热系统的燃料,但它作为强氧化剂挥发到大气中,有害环境,因此必须采取对策进行处理,以保护我们的环境。
水吸收氨填料吸收塔是一种典型的操作过程,通过在塔内部放入一定量的吸收填料,使得氨气更有效地与液体相混合,从而降低氨的挥发率,防止它的溢出。
二、设计目的本设计的目的是设计一种能够有效降低氨气挥发率的水吸收氨填料吸收塔系统。
三、塔结构设计1.水吸收塔的形式:此水吸收塔采用真空反应塔的形式,包括加热装置、塔体及其重要部件。
2.水吸收塔的尺寸:该水吸收塔直径为3m,高度为12m,采用真空式反应塔设计。
3.吸收填料:此设计采用纤维吸收填料,其密度为180 kg/m3,吸附能力0.5%,并选择优质的、耐磨的材料,保证耐久性。
4.液相:选择介质为硝酸钠溶液,介质比重1.1,温度在25℃以下,以确保氨吸收剂的低温稳定性。
5.混合器:采用有效搅拌,减少氨气挥发,氨气完全溶于液体,增加氨气的反应机会,增加吸6.塔内设备:除了加热器,还设有安全阀等设备,以防出现意外。
四、设计步骤1.根据氨吸收水填料吸收塔的工艺特点,研究氨挥发的特性,确定反应条件,估算反应速率和塔的大小及包装密度。
2.确定吸收填料的类型,以保证其对氨气的特性挥发特性。
3.细化设计,考虑塔内混合器及其优势,同时留意水塔设计具体内容,计算安全阀等设备的大小,以及确定塔内设备的位置。
4.确认成本,包括:原材料、安装和实际操作。
五、最终结论本文研究了一套水吸收氨填料吸收塔,设计了其安全阀及其它设备,以及填料的特性,确定了反应条件,估算反应速率,详细设计了塔的形式,尺寸,位置等,通过认真的工作,可以提出设计方案,完成水吸收氨填料吸收塔的设计任务。
水吸收二氧化硫填料吸收塔课程设计完整版
水吸收二氧化硫填料吸收塔--课程设计完整版水吸收二氧化硫填料吸收塔课程设计一、设计背景随着工业化的快速发展,大量的二氧化硫排放进入大气中,严重污染了环境。
为了降低二氧化硫的排放,采用填料吸收塔进行二氧化硫吸收是一种经济有效的技术。
本次课程设计旨在设计一座水吸收二氧化硫填料吸收塔,以控制工业二氧化硫排放。
二、设计要求1.设计一座水吸收二氧化硫填料吸收塔,要求能够有效地吸收工业排放的二氧化硫。
2.考虑填料吸收塔的经济性、可靠性和环保性。
3.确定最佳的操作条件,包括吸收液的流量、喷淋密度、填料高度等。
4.对填料吸收塔的设计进行优化,以提高吸收效率。
三、设计原理填料吸收塔是利用填料作为两相接触的表面,使二氧化硫气体能够与水充分接触。
在填料塔内,气相和液相逆流接触,二氧化硫气体通过填料表面的液膜扩散进入水中,从而降低气相中的二氧化硫浓度。
四、设计方案1.填料选择考虑到二氧化硫吸收的效率和经济的因素,选择聚丙烯鲍尔环作为填料。
聚丙烯鲍尔环具有高的比表面积和通量,可以增加气液接触面积,提高二氧化硫吸收效率。
2.结构设计填料吸收塔的结构包括塔体、进气管、出水管、填料支撑板和聚丙烯鲍尔环填料。
塔体采用圆形结构,直径为1.2m,高度为12m;进气管安装在塔顶部,用于引入二氧化硫气体;出水管位于塔底部,用于排出吸收后的废水;填料支撑板位于塔体中部,用于支撑聚丙烯鲍尔环填料。
3.操作条件在填料吸收塔的操作过程中,需要控制以下条件:(1)吸收液的流量:通过调整水泵的流量来控制吸收液的流量,使其保持在一个最佳值,以提高吸收效率。
(2)喷淋密度:通过调整喷嘴的数量和喷射角度来控制喷淋密度,使水能够均匀地分布在填料上,增加气液接触机会。
(3)填料高度:选择合适的填料高度,以确保气液充分接触,提高吸收效率。
五、设计优化1.增加填料层数:通过增加填料的层数,可以增加气液接触的机会,提高吸收效率。
但是填料层数过多会增加压降和塔的能耗,因此需要综合考虑。
化工原理填料吸收塔课程设计
化工原理填料吸收塔课程设计引言:填料吸收塔是化工工艺中常用的一种设备,用于将气体中的有害物质通过吸收剂吸附或反应的方式去除。
本次课程设计旨在通过对填料吸收塔的设计和工艺参数的优化,实现高效的气体净化效果。
一、填料吸收塔的基本原理及结构填料吸收塔是利用填料表面积大、内部通道多、与气体充分接触的特点,通过物理吸附或化学吸收的方式将气体中的有害成分去除。
其基本结构包括进气口、出气口、填料层和液体循环系统等。
二、填料的选择及特性填料是填料吸收塔中起到关键作用的部分,其选择应根据气体的性质和处理效果的要求来确定。
常用的填料包括球状填料、骨架填料和网状填料等,它们具有不同的表面积、孔隙率和液体分布性能,对吸收效果和塔内气液分布起到重要影响。
三、填料吸收塔的设计步骤及要点1. 确定气体的物理和化学性质,包括流量、温度、压力、组成等;2. 选择合适的填料类型和尺寸,考虑填料的表面积、孔隙率和液体分布性能;3. 确定填料层数和塔径高比,以及液体循环系统的设计参数;4. 进行塔内气液分布的模拟和优化,保证填料与气体充分接触;5. 进行设备的结构设计和材料选择,考虑耐腐蚀性和操作安全性;6. 进行设备的动态模拟和优化,确定最佳操作条件和效果。
四、填料吸收塔的性能评价及优化填料吸收塔的性能评价主要包括吸收效率、压降和能耗等指标。
通过调整填料层数、液体循环系统和操作条件等参数,可以实现吸收效率的提高和能耗的降低。
同时,还应考虑填料的寿命和维护等方面的因素,以保证设备的稳定运行和经济性。
五、填料吸收塔的应用及发展趋势填料吸收塔广泛应用于化工、环保和能源等行业,用于废气处理、脱硫和脱硝等工艺。
随着环保要求的提高和技术的进步,填料吸收塔的设计和优化将更加注重能耗和运行成本的降低,同时也将更加重视对废气中微量有害物质的去除效果。
结论:填料吸收塔作为一种重要的气体净化设备,在化工工艺中发挥着重要作用。
通过合理的设计和优化,可以实现高效的气体净化效果和能耗降低。
化工原理课程设计(水吸收氨填料吸收塔设计)
化工原理课程设计(水吸收氨填料吸收塔设计)目录第1节前言31.1填料塔的主体结构与特点31.2填料塔的设计任务及步骤31.3填料塔设计条件及操作条件4第2节精馏塔主体设计方案的确定42.1装置流程的确定42.2吸收剂的选择52.3填料的类型与选择52.3.1填料种类的选择52.3.2填料规格的选择52.3.3填料材质的选择62.4基础物性数据62.4.1液相物性数据62.4.2气相物性数据72.4.3气液相平衡数据72.4.4物料横算8第3节填料塔工艺尺寸的计算93.1塔径的计算93.2填料层高度的计算及分段113.2.1传质单元数的计算113.2.2传质单元高度的计算113.2.3填料层的分段143.3填料层压降的计算14第4节填料塔内件的类型及设计154.1塔内件类型154.2塔内件的设计164.2.1液体分布器设计的基本要求:164.2.2液体分布器布液能力的计算16注:171.填料塔设计结果一览表 (17)2.填料塔设计数据一览 (18)3.参考文献 (19)4.后记及其他 (19)附件一:塔设备流程图20附件二:塔设备设计图20表索引表 21工业常用吸收剂 (5)表 22 常用填料的塔径与填料公称直径比值D/d的推荐值 (6)图索引图 11 填料塔结构图 (3)图 31 Eckert图 (15)第1节前言1.1填料塔的主体结构与特点结构图错误!文档中没有指定样式的文字。
1所示:图错误!文档中没有指定样式的文字。
1 填料塔结构图填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。
液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。
因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。
1.2填料塔的设计任务及步骤设计任务:用水吸收空气中混有的氨气。
(推荐)化工原理课程设计-吸收塔
(推荐)化工原理课程设计-吸收塔1. 课程设计背景化工原理是化学工程专业基础性课程之一。
吸收塔作为化工过程中的一种重要的物理操作单元,广泛应用于各个领域,如炼油、化肥、冶金、环保等。
本课程设计旨在通过吸收塔的设计和模拟计算,使学生掌握吸收塔的工作原理、设计方法和实际应用。
2. 设计要求(1)设计一座与设计要求相符合的吸收塔,并确定其操作条件和流程要求。
(2)根据设计要求,绘制出吸收塔的流程图和设备图,并说明各个部件的作用和参数。
(3)进行吸收塔的热力学计算,确定塔内各个操作区的物质平衡、能量平衡和质量传递方程,并进行模拟计算。
(4)根据计算结果,分析吸收塔的工作效率和能耗,并提出改进方案。
3. 设计步骤(1)确定吸收塔的物理和化学性质,包括塔径、高度、填料、进口和出口流量、进口温度和浓度等。
(2)绘制吸收塔的流程图和设备图,并确定各个部件的作用和参数。
(3)进行物质平衡计算,确定塔内各个操作区的物质平衡方程,包括气相和液相组分浓度、进出口流量和进出口浓度等。
(4)进行能量平衡计算,确定塔内各个操作区的能量平衡方程,包括各个操作区的温度和热流量等。
(5)进行质量传递计算,确定各个部位的传质系数和质量传递方程,包括气相和液相组分浓度、气液相之间的界面质量传递等。
(6)进行模拟计算,分析吸收塔的工作效率和能耗,并提出改进方案,包括从设计、操作和维护等多方面分析并提出改善措施。
4. 设计结果展示(1)绘制吸收塔的流程图和设备图,说明各个部件的作用和参数。
(2)进行物质平衡、能量平衡和质量传递计算,并通过图表等形式展示各个方程的计算结果。
(3)分析吸收塔的工作效率和能耗,并提出改进方案。
5. 总结通过本次课程设计,学生深入了解吸收塔的工作原理和设计方法,并通过实际计算和分析得出了吸收塔的工作效率和能耗等方面的结论,并提出了改进方案,使学生在理论和实践上都有了较好的提高。
同时,本课程设计也提高了学生的创新意识和实际操作能力。
化工原理课程设计水吸收氨填料吸收塔设计(1)
化工原理课程设计水吸收氨填料吸收塔设计
(1)
化工原理课程设计——水吸收氨填料吸收塔设计
一、选择填料
本设计所选用的填料为塔形环状填料,其主要优点在于能够提高氨气
与水接触的时间和接触面积,从而提高吸收效率。
其次,填料的表面
积大,对氨气的吸附强度较高。
二、计算填料高度
根据质量平衡公式,吸收塔中氨气的质量=进入氨气的质量-出口氨气
的质量-吸收氨气的质量。
结合我们所设计的填料种类和工艺流程,可
以得到计算填料高度的公式:
θ=(W/N) ln [(C0-C)/(Co-Ct)]
其中,W是空气中氨气的质量流量,单位为kg/h;N是塔形环状填料每立方米的比表面积,单位为m²/m³;C0是氨气从入口口进入吸收器的
浓度,单位为mg/Nm³;Ct是出口处氨气的平均浓度,单位为mg/Nm³;
C是入口处水的浓度,单位为mg/L。
三、塔的直径
根据经验公式可得:填料在瞬间液晶表面液流速等于液降的经验公式。
v=1.2/(μ)½ (ΔP/ρ) ¼
其中,v是液体在塔体内部的平均流速,单位为m/s;μ是液体的粘度,单位为Pa*s;ΔP是液体在塔体内产生的液降,单位为Pa;ρ是液体
的密度,单位为kg/m³。
四、结论
经过以上各个方面的计算和分析,我们得到了适合本工艺流程,并且
具有高效的填料塔高度及塔直径,使本工艺流程吸收效率达到最优化
程度。
我们所选用的填料塔设计方案具有成本低、效率高及运行稳定
等特点,非常符合实际工序的需要。
清水吸收丙酮填料塔的设计
《化工原理》课程设计清水吸收丙酮填料塔的设计学院医药化工学院专业高分子材料与工程班级高分子材料与工程13(1)班姓名李凯杰学号 xx指导教师严明芳、龙春霞年月日设计书任务(一)设计题目试设计一座填料吸收塔,用于脱除空气中的丙酮蒸汽。
混合气体处理量为___4000____m3/h。
进口混合气中含丙酮蒸汽__6%__(体积百分数);混合气进料温度为35℃。
采用25℃清水进行吸收,要求:丙酮的回收率达到___95%___(二)操作条件(1)操作压力101.6 kPa(2)操作温度25℃(3)吸收剂用量为最小用量的倍数自己确定(4)塔型与填料自选,物性查阅相关手册。
(三)设计内容(1)设计方案的确定和说明(2)吸收塔的物料衡算;(3)吸收塔的工艺尺寸计算;(4)填料层压降的计算;(5)液体分布器简要设计;(6)绘制液体分布器施工图;(7)其他填料塔附件的选择;(8)塔的总高度计算;(9)泵和风机的计算和选型;(10)吸收塔接管尺寸计算;(11)设计参数一览表;(12)绘制生产工艺流程图(A3号图纸);(13)绘制吸收塔设计条件图(A3号图纸);(14)对设计过程的评述和有关问题的讨论。
目录前言 (1)第1章填料塔主体设计方案的确定 (2)1.1 装置流程的确定 (2)1.2 吸收剂的选择 (2)1.3 操作温度与压力的确定 (2)1.4 填料的类型与选择 (2)第2章基础物性数据与物料衡算 (2)2.1 基础物性衡算 (3)2.1.1 液相物性数据 (3)2.1.2 气相物性数据 (3)2.1.3 气液相平衡数据 (4)2.2 物料衡算 (4)第3章填料塔的工艺尺寸计算 (5)3.1 塔径的计算 (5)3.2 泛点率的校核 (6)3.3 填料规格校核 (7)3.4 液体喷淋密度校核 (7)3.5 填料塔填料高度的计算 (7)3.5.1 传质单元数的计算 (7)3.5.2 传质单元高度的计算 (8)3.5.3 填料层高度的计算 (9)3.6 填料塔附属高度的计算 (10)3.7 填料层压降的计算 (10)第4章填料塔附件的选择与计算 (11)4.1 液体分布器简要设计 (11)4.1.1 液体分布器的选型 (11)4.1.2 分布点密度计算 (11)4.1.3 布液计算 (12)4.2 液体收集及分布装置 (12)4.3 气体分布装置 (13)4.4 除沫装置 (14)4.5 填料支承及压紧装置 (14)4.5.1 填料支承装置 (14)4.5.2 填料限定装置 (14)4.6 裙座 (14)4.7 人孔 (15)第5章填料塔的流体力学参数计算 (15)5.1 吸收塔主要接管的计算 (15)5.1.1 液体进料管的计算 (15)5.1.2 气体进料管的计算 (16)5.2 离心泵和风机的计算与选型 (16)5.2.1 离心泵的计算与选型 (16)5.2.2 风机的计算与选取 (18)设计参数一览表 (20)对设计过程的评述和有关问题的讨论 (24)参考文献 (25)前言吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。
化工原理课程设计(水吸收氨填料吸收塔设计)
水吸收氨填料吸收塔设计1 题目含氨为5%的混合气体, 处理量为500m3/h, 尾气中含氨低于0.02%,采用清水进行吸收, 吸收剂的用量为最小用量的1.5倍. (均为体积分数).,2 设计任务和操作条件:(1)操作压力常压。
(2)操作温度 20℃(3)年工作300天,每天24小时运行.3 填料类型 聚丙烯阶梯环填料,规格自选.4 设计内容(1)吸收塔的物料衡算(2)填料层压降的计算(3)液体分布器的简单设计(4)吸收塔塔体工艺尺寸的计算(5)绘制分布器施工图(6)对本设计进行评述5 基础数据20℃下氨在水中的溶解度系数为0.725Kmol/( m3. kpa)一吸收工艺流程的确定采用常规逆流操作流程.流程如下。
二物料计算(l). 进塔混合气中各组分的量取塔平均操作压强为101.3kPa,故:混合气量= 500()×= 20.80kmol/h混合气中氨量=20.80×0.543 =1.129 kmol/h = 19.2kg/h混合气中空气量=20.80-1.129 = 19.671kmol/h=570.5kg/h (2).混合气进出塔的(物质的量)组成==0.05430;(3).混合气进出塔(物质的量比)组成Y1==0.0574Y2=(1-)=0.0574×=0.0002296(以塔顶排放气体中氨含量0.02%计)三 平衡曲线方程查表知:20℃时,氨在水中的亨利系数E=277.3Kpa;m = = = 2.737故操作线方程为:Y=2.737X.吸收剂(水)的用量Ls由操作线方程知:当Y1=0.0574时,X1*=0.021,计算最小吸收剂用量=19.671×=53.77 kmol/h取安全系数为1.5,则Ls=1.5×53.77=80.65kmol/h = 1451.7kg/h依物料衡算式塔底吸收液浓度= 19.671×= 0.014四塔径计算塔底气液负荷大,依塔底条件(混合气20℃),101.325kPa图1 通用压降关联图(1).采用Eckert通用关联图法(图1)计算泛点气速①有关数据计算塔底混合气流量V`S=570.5+19.2=589.7kg/h吸收液流量L`=1451.7kg/h进塔混合气密度=×=1.206kg/(混合气浓度低,可近似视为空气的密度)吸收液密度=998.2kg/吸收液黏度=1.005 mP a·s经比较,选DN38mm聚丙烯阶梯环。
化工原理课程设计--填料吸收塔的设计
化工原理课程设计--填料吸收塔的设计《化工原理》课程设计填料吸收塔的设计学院南华大学船山学院专业制药工程班级 10级姓名龙浩学号 20109570111指导教师王延飞2012年11月25日1.水吸收氨气填料塔工艺设计方案简介任务及操作条件①混合气(空气、NH3 )处理量:10003/m h;②进塔混合气含NH3 7% (体积分数);温度:20℃;③进塔吸收剂(清水)的温度:20℃;④NH3回收率:96%;⑤操作压力为常压101.3k Pa。
1设计方案的确定用水吸收氨气属于等溶解度的吸收过程,为提高传质效率,选用逆流吸收过程。
因用水做座位吸收剂,且氨气不作为产品,股采用纯溶剂。
该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。
经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。
2填料的选择对于水吸收氨气的过程,操作温度计操作压力较低。
工业上通常是选用塑料散装填料。
在塑料散装中,塑料阶梯环填料的综合性能较好,见下图:根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。
设计选用填料塔,填料为散装聚丙烯DN50阶梯环填料。
国内阶梯环特性数据52. 工艺计算2.1基础物性数据 2.1.1液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。
由手册查的,20℃水的有关物性数据如下: 密度为 ρ1 =998.2Kg /m 3粘度为 μL =1.005mPa ·S =0.001Pa ·S=3.6Kg /(m ·h ) 表面张力为 σL =72.6dyn /cm=940 896Kg /h 2氨气在水中的扩散系数:D L =1.80×10-9 m 2/s=1.80×10-9×3600 m 2/h=6.480 ×10-6m 2/h2.1.2气相物性的数据 混合气体平均摩尔质量为M VM =Σy i M i =0.101×17+0.899×28=26.889混合气体的平均密度为ρvm =RTPM VN=101.3×26.889/(8.314×293)=1.116Kg /m 3 混合气体的粘度可近似取为空气的粘度,查手册的20℃空气的粘度为μV =1.81×10—5Pa ·s=0.065Kg /(m ·h )查手册得氨气在20℃空气中扩散系数为D v = 0.189 cm 2/s=0.068 m 2/s2.1.3气液相平衡数据20C 下氨在水中的溶解度系数:)/(725.03kpa m kmol H ⋅=,常压下20℃时亨利系数:SLHM E ρ==998.2/(0.725×18.02)=76.40Kpa相平衡常数为755.01.10140.76===P E m溶解度系数为717.02.184.762.98=⨯==SLEM H ρ998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯ 2.1.4 物料衡算 进塔气相摩尔比为Y 1=11y 1y —=0.101/(1—0.101)=0.11235 出塔气相摩尔比为Y 2=Y 1(1—φ)=0.11235×(1—0.9996)=0.000045进塔惰性气相流量为V=1000/22.4×273/(273+20)×(1—0.101)=34.29Kmol /h该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算,即;(V L )min =2121m X Y Y Y —/— 对纯溶剂吸收过程,进塔液相组成为 X 2=0(VL)min =(0.11235—0.000045)/[0.11235/(0.754—0)]=0.753 取操作液气比为最小液气比1.8VL=1.8×0.753=1.355 L=1.355×34.29=46.516Kmol /hV (Y 1—Y 2)=L (X 1—X 2)X 1=34.29×(0.11235—0.000045) /46.516=0.08278 5填料塔的工艺尺寸的计算 1) 塔径的计算采用Eckert 通用关联图计算泛点气速 塔径气相质量流量为V ω=1000×1.103=1103Kg /h液相质量流量可近似按纯水的流量计算,即:L ω=46.516×18.02=838.218㎏/hEckert 通过关联图的横坐标为025.0)2.998116.1(1103218.838)(5.05.0=⨯=L V V L w w ρρ 21.02.02=ψΦL LV F F g u μρρ1170-=Φm F95.01116.111702.99881.921.021.02.02.0=⨯⨯⨯⨯⨯=ψΦ=L V F L F g u μρρ729.0665.014.33600/100044=⨯⨯==uV D Sπ圆整塔经,取D=0.8ms m u u F /665.095.07.07.0=⨯==泛点率校核:)%(69%1008.0785.03600/10002在允许范围内=⨯⨯=u填料规格校核:805.2138800>==d D112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=-3.017/f u m s = ()0.50.85f u u =-取泛点率为0.8 取u =0.8u F =0.8×3.017m/s =2.41m/sD =u4πSV = [(4×1000/3600)/(3.14×2.41)] 0.5=0.38m 圆整后取 ()()0.4400D m mm ==2.泛点率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85范围之间) 3.填料规格校核:40016825D d ==> 4.液体喷淋密度校核:取最小润湿速率为:U min =(L W )min · a t =0.101×114.2=11.534m 3/m 2·h 查常用散装填料的特性参数表,得at=114.2m 2/m 3 U=46.516×18.02/998.2/(0.785×0.42)=6.717>U min经以上校核可知,填料塔直径选用D= 400mm 是合理的。
清水吸收SO2填料吸收塔设计
设计任务书一、设计任务:设计一台SO气体填料吸收塔2二、设计条件:气体冷却到30℃,用20℃清水洗涤出去SO2气体流量:2575m3/h空气和SO混合气2摩尔分率:0.06混合气中SO2吸收率:94%SO2操作方式:连续操作操作温度:20℃操作压力:101。
33kPa三、设计内容1.根据设计任务和工艺要求,确定设计方案;2.根据设计任务和工艺要求,合理选择填料;3.确定塔径、填料层高度等工艺尺寸;4。
计算填料层压降;5。
填料塔附属高度及其附件。
四、设计基础数据:参考教材及参考资料.五、设计成果:1。
设计说明书一份;2.填料吸收塔主体设备图;3.填料吸收塔工艺流程图。
注:吸收塔常规操作,液气比很大,吸收温度不变,近似为清水温度目录1、概述 (2)1。
1吸收的定义 (2)1。
2吸收的目的 (2)1。
3填料吸收塔简介 (2)2、设计方案简介 (2)2.1吸收剂的选择 (3)2。
2吸收流程的选择 (4)2.2。
1气体吸收过程分类 (4)2.2。
2吸收装置的流程 (4)2.3填料的类型和选择 (5)2。
4设计步骤 (6)3、工艺计算 (6)3.1基础物性数据 (6)3。
1.1液相物性数据 (6)3.1。
2气相物性数据 (6)3.1.3气液相平衡数据 (7)3。
1.4物料衡算 (7)3。
2填料塔的工艺尺寸的计算 (8)3.2。
1塔径的计算 (8)3.2。
2填料层高度计算 (11)3.2。
3填料层压降计算 (14)4、辅助设备的计算及选型 (15)4。
1除雾沫器 (15)4.2液体分布器简要设计 (15)4.3液体再分布器--—-升气管式液体再分布器 (17)4。
4填料支撑装置 (17)4。
5填料压紧装置 (17)4。
6气体和液体的进出口装置 (17)5、设计结果汇总 (19)6、主要符号说明 (20)7、设计评述 (21)8、参考文献 (22)1、概述1.1吸收的定义吸收是分离气体混合物的单元操作,其分离原理是利用气体混合物中各组分在液体溶剂中溶解度的差异来实现不同气体的分离。
化工原理课程设计水吸收氨填料吸收塔设计-V1
化工原理课程设计水吸收氨填料吸收塔设计-V1化工原理课程设计——水吸收氨填料吸收塔设计化工生产中,氨气是一种常见的化学气体,亦是一种毒性气体。
为了保证生产安全,常常需要使用填料吸收塔对氨气进行处理。
本次化工原理课程设计的主题是水吸收氨填料吸收塔设计,下面将从设计的流程、填料选择、设备选型及操作控制方面进行详细阐述。
一、设计流程1.确定设计要求:包括氨气的进入浓度、出口浓度、进入流量、处理效率要求等。
2.确定填料种类:选择适合水吸收氨的填料种类。
3.塔体设计:根据进入流量和处理效率要求计算出塔体高度,以及塔体的内径和壁厚。
4.设备选型:根据填料种类和塔体设计的要求选型。
5.操作控制:确定运行参数和控制策略等。
二、填料选择1.氨气水解和物理吸收的填料:骨炭、石英、聚丙烯、陶瓷、活性炭等。
2.氨气化学吸收的填料:硫酸铵、硝酸铵、硫酸钙、硝酸钙、硫酸钠等。
综合考虑吸附容积、吸附速度、吸附效率、化学稳定性等因素,本设计选择硝酸铵作为填料。
三、设备选型1.填料吸收塔:根据设计要求和填料种类选择适合的填料吸收塔。
2.进气风机:根据进气流量和风阻要求选型。
3.冷却器:为了防止氨气过热,常常需要在进入填料吸收塔前,在氨气进风口处安装冷却器。
四、操作控制1.进气速度:进气速度过快会导致氨气不能充分吸收,进气速度过慢则会影响处理效率。
一般控制在0.5-1.5m/s。
2.水位控制:为了保证填料的湿润度,需要控制水的流量和水位。
3.塔体温度控制:为了保证填料吸收效率,需要控制塔体温度,一般保持在20-35℃。
4.出口浓度控制:通过调节水的流量和塔体内填料的密度,控制出口浓度。
结语:本次化工原理课程设计通过设计流程、填料选择、设备选型及操作控制方面的详细阐述,较为全面地介绍了水吸收氨填料吸收塔的设计过程。
对于化工领域的实践和专业知识积累具有一定的参考价值。
化工原理课程设计说明书---填料吸收塔设计
化工原理课程设计目录摘要-----------------------------------------------------------3 前言-----------------------------------------------------------4 一填料吸收塔工艺尺寸的设计计算-------------------------------5 1.1 工艺流程及设计指标--------------------------------------5 1.1.1 工艺流程------------------------------------------51.1.2 设计参数,指标------------------------------------51.2 物性参数的计算-----------------------------------------5 1.2.1 原料气物性参数------------------------------------51.2.2 吸收液物性参数------------------------------------61.2.3 填料物性参数--------------------------------------71.3 吸收塔的物料衡算---------------------------------------7 1.4 塔体的计算---------------------------------------------8 1.4.1 塔径的计算----------------------------------------8(1)液泛气速----------------------------------------8(2)塔径--------------------------------------------9 1.4.2 填料层高度的计算----------------------------------9(1)传质单元数--------------------------------------9(2)传质单元高度-----------------------------------10 二吸收塔优化设计--------------------------------------------13 2.1 系统的年总费用----------------------------------------13 2.2 吸收塔塔体和平台扶梯年折旧及维修费用------------------13 2.3 填料年折旧费用----------------------------------------13 2.4 离心泵年折旧和维修费用及操作费用----------------------13 2.5 风机年折旧和维修费及操作费用--------------------------15 2.6 吸收剂费用--------------------------------------------15 三内部结构设计----------------------------------------------16 3.1 液体分布装置------------------------------------------16 3.2 填料支撑装置------------------------------------------16 3.3 液体分布装置------------------------------------------16 3.4 除沫器------------------------------------------------16 四设计校核--------------------------------------------------17 4.1 主要工艺参数校核--------------------------------------17 4.1.1 塔直径与塔中填料直径之比--------------------------174.1.2 液体喷淋密度--------------------------------------174.1.3 实际气速与液泛气速比------------------------------174.2 强度校核---------------------------------------------174.2.1 筒体材料的选用与计算-----------------------------174.2.2 封头厚度的计算-----------------------------------184.2.3 塔体的强度与稳定计算-----------------------------184.2.4 质量载荷计算-------------------------------------184.2.5 塔体的风载荷和风力矩-----------------------------19(1)、风力矩的计算公式-------------------------------19(2)、总弯矩的计算-----------------------------------19(3)、塔的自振周期计算-------------------------------20(4)、地震载荷计算-----------------------------------20 4.2.6 塔体的强度与稳定校核-----------------------------21(1)、塔体危险截面(1-1)的轴向应力计算----------------21(2)、塔体危险截面(1-1)抗压强度及轴向稳定性计算------214.2.7 裙座的强和稳定计算、校核-------------------------224.2.8 水压试验时塔的强度和稳定性验算-------------------22(1)、水压试验时塔体(1-1)截面的强度校核--------------22(2)、水压试验时裙座底部(0-0)截面强度和轴向稳定要求--234.2.9 基础环板的设计-----------------------------------23(1)、基础环板内外径的确定---------------------------23(2)、基础环板厚度的设计-----------------------------234.2.10 地脚螺栓的设计----------------------------------244.2.11 混凝土的强度校核--------------------------------24五主要符号说明---------------------------------------------25六优化程序及其运行结果-------------------------------------296.1 传质单元数的计算程序及运算结果-----------------------296.2 液气比优化程序及运算结果-----------------------------31小结---------------------------------------------------------35参考文献-----------------------------------------------------36摘要[中文摘要]PC作为工业化脱二氧化碳的吸收剂,有着很大的优势。
《化工原理》课程设计水吸收氨气填料塔设计 (14)
《化工原理》课程设计水吸收氨气填料塔设计水吸收氨气填料塔设计任务(一)设计题目试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。
混合气体的处理量为__5000__m3/h,其中含氨为_5%_(体积分数),混合气体的进料温度为25℃。
要求:氨气的回收率达到_95%_。
(二)操作条件(1)操作压力:常压(2)操作温度:20℃(3)吸收剂用量为最小用量的倍数自己确定(三)填料类型填料类型与规格自选。
(四)设计内容(1)设计方案的确定和说明(2)吸收塔的物料衡算;(3)吸收塔的工艺尺寸计算;(4)填料层压降的计算;(5)液体分布器简要设计;(6)绘制液体分布器施工图(7)吸收塔接管尺寸计算;(8)设计参数一览表;(9)绘制生产工艺流程图(A3号图纸);(10)绘制吸收塔设计条件图(A3号图纸);(11)对设计过程的评述和有关问题的讨论。
目录前言 (1)1. 水吸收氨气填料塔工艺设计方案简介 (4)1.1任务及操作条件 (4)1.2设计案的确定 (4)1.3填料的选择 (4)2. 工艺计算 (5)2.1 基础物性数据 (5)2.1.1液相物性的数据 (6)2.1.2气相物性的数据 (6)2.1.3气液相平衡数据 (6)2.1.4 物料衡算 (6)2.2 填料塔的工艺尺寸的计算 (7)2.2.1 塔径的计算 (7)2.2.2 填料层高度计算 (9)2.2.3 填料层压降计算 (11)2.2.4 液体分布器简要设计 (12)3. 辅助设备的计算及选型 (13)3.1 填料支承设备 (13)3.2填料压紧装置 (14)3.3液体再分布装置 (14)4. 设计一览表 (16)5. 后记 (17)6. 参考文献 (18)7. 主要符号说明 (19)8. 附图(工艺流程简图、主体设备设计条件图) (20)前言在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。
塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。
化工原理课程设计--清水吸收变换气的填料塔装置设计
化工原理课程设计--清水吸收变换气的填料塔装置设计化工原理课程设计--清水吸收变换气的填料塔装置设计化工原理课程设计指导教师:张先龙目录一、摘要2 二、合成氨工艺2 三、填料吸收塔设计资料总结3 3.1、填料塔简介3 3.1.1、概念4 3.1.2、填料塔的结构4 3.1.3、填料塔的特性5 3.1.4、填料塔的工作原理5 3.2、填料塔的流程操作6 3.2.1、逆流操作6 3.2.2、并流操作6 3.2.3、单塔或多塔串联操作7 3.3、填料类型及特点7 3.4、填料塔的辅助构件(塔内件)10 3.4.1、液体分布器10 3.4.2、液体再分布器12 3.4.3、填料支承装置12 3.4.4、除沫器13 3.4.5、填料压板与床层限制板13 3.4.6、气体的进出口装置与排液装置13 四、填料塔工艺尺寸的计算14 4.1、基础物性数据14 4.1.1、液相物性数据14 4.1.2、气相物性数据14 4.2、气液平衡曲线17 4.3、最小液气比及吸收剂用量计算17 4.4、塔径计算18 4.5、填料层高度计算20 4.5.1、传质单元数20 4.5.2、传质单元高度20 4.5.3、液相传质系数22 五、压降23 5.1、填料层压降23 六、辅助设备及选型24 6.1、分布点密度计算24 6.2、液体喷淋装置25 6.3、液体再分布器25 6.4、填料支承装置26 6.5、塔顶除沫器26 6.6、吸收塔接管尺寸计算27 6.7、离心泵的选型28 七、材料选择及塔总高计算29 7.1、吸收塔体选择29 7.1.1、吸收塔材料29 7.1.2、壁厚的计算29 7.2、封头的选择30 7.2.1、封头的选型30 7.2.2、封头材料31 7.2.3、封头壁厚的计算31 7.3、塔支座的选择与焊接32 7.4、塔总高计算32 八、工艺流程及塔设备的PID 图33 九、设计一览表34 十、收获、感悟及总结35 十二、参考文献37 课程设计任务书1、设计题目:清水吸收变换气的填料塔装置设计2、设计任务及条件:(1)生产能力:进入系统的变换气为:1260(标准状况) (2)变换气的组成(体积):组分进塔气体,(V ol%)27.4 2.5 47.8 22.3 (3)塔顶出口净化气体中二氧化碳<1%(体积)(4)吸收温度为30℃,连续操作(5)操作压力3、设计内容(1)流程的确定与论证;(2)吸收塔技术指标与操作指标确定,包括:塔径、填料层的高度、填料层的压力降等:(3)工艺计算、结构设计;(4)辅助设备的选型;4、设计成果(1)设计说明书一份(2)工艺流程图的(3)填料吸收塔的装配图一、摘要本次我们课程设计的任务是处理变换气量1260m³/h的填料吸收塔的设计。
化工原理课程设计——填料吸收塔设计
化工原理课程设计——填料吸收塔设计化工原理课程设计——填料吸收塔设计化工原理课程设计设计题目:班级:姓名:学号:指导教师:完成日期:年月日化工系设计内容及要求一、设计内容1.设计方案的选定对给定或选定的工艺流程、主要设备的型式进行简要的论述;2.主要设备的工艺设计计算选定工艺参数,物料衡算,热量衡算,单元操作的工艺计算并绘制相应的工艺流程图,标出物流量及主要测量点;3.设备设计设备的结构设计和工艺尺寸的设计计算,并绘制设备的工艺条件图。
图面应包括设备的主要工艺尺寸、技术特性和接管表;4.辅助设备选型典型辅助设备主要工艺尺寸的计算,设备规格、型号的选定;二、设计说明书编写(1)封面课程设计题目、班级、姓名、指导教师、时间(2)设计任务书(3)目录(4)设计方案简介(5)设计条件及主要物性参数表(6)填料塔的化工计算(7)填料塔的结构设计及核算(8)填料塔的简单结构及辅助设备的计算、选型(9)设计结果汇总表(10)设计评述,设计者对本设计的评述及通过设计的收获体会(11)附图(带控制点的工艺流程简图、主题设备设计条件图)(12)参考文献(13)主要符号说明图纸要求:工艺流程图采用4号图纸,设备装置图采用3号图纸,要求布局美观,图面整洁,图表清楚,尺寸标识准确,各部分线形精细符合国家化工制图标准。
报告内容必须齐全,打印或手写。
打印用A4纸,字号为宋体、小四,标题加黑。
三、参考资料1.陈英南,刘玉兰.常用化工单元设备的设计.华东理工大学出版社.2005 2.上海医药设计院编.化工工艺设计手册(第二版).化学工业出版社.1996 3.江体乾等.化工工艺手册.上海科学技术出版社.1992 4.茅晓东,李建伟.典型化工设备机械设计指导.华东理工大学出版社.1995 5.化学工程手册编委.化学工程手册(第1篇)化工基础数据.化学工业出版社.1980 6.化工制图8.陈敏恒等.化工原理(第三版).化学工业出版社.2006 9.化工设备技术全书编辑委员会.化工设备全书—塔设备设计.上海:上海科学技术出版1988 设计任务书:化工原理课程设计任务书一一、设计题目:清水吸收变换气的填料塔装置设计二、设计任务及条件:(1)进入系统的变换气为:____Nm3/h(标准状况);(2)变换气的组成(体积):组分CO2 CO H2 N2 进塔气体,(V ol%)28 2.5 47.2 22.3 (3)塔顶出口净化气中CO21.6MPa(绝) 序号 1 2 3 4 5 6 7 8 9 10 11 12 处理量(Nm3/h) 1500 1500 1500 2000 2000 2000 2500 2500 2500 21000 3000 3000 吸收剂用量L/Lmin 1.4 1.6 1.8 1.4 1.6 1.8 1.4 1.6 1.8 1.4 1.6 1.8 化工原理课程设计任务书二一、设计题目:碳酸丙烯酯(PC)脱碳填料塔的工艺设计二、操作条件(1)设计一座碳酸丙烯酯(PC)脱碳填料塔,要求年产合成氨t/a。
化工原理课程设计-填料吸收塔的设计
化工原理课程设计-填料吸收塔的设计课程设计题目:填料吸收塔的设计教学院:化学与材料工程学院专业:化学工程与工艺(精细化工方向)学号:学生姓名:指导教师:2012 年 5 月31 日目录1 绪论 (1)1.1吸收技术概况 (1)1.2吸收过程对设备的要求及设备的发展概况 (1)2 课程设计任务 (2)2.1设计内容 (2)2.2设计要求 (2)2.3设计方案介绍 (3)3 吸收塔的工艺计算 (4)3.1 基础物性数据计算 (4)3.1.1 物料衡算 (4)3.1.2 液气比的计算 (5)3.1.3 吸收剂的用量 (5)3.2 塔径的计算及校核 (5)3.2.1 填料选择 (5)3.2.2 泛点气速、塔径的计算 (6)3.2.3 数据校核 (7)3.3 填料层高度的计算 (7)3.3.1 传质单元高度计算 (7)3.3.2 传质单元数的计算 (9)3.3.3 总高度的计算 (10)3.4流体力学参数计算 (10)3.4.1 吸收塔的压力降 (10)3.4.2 气体动能因子 (11)3.4.3 吸收因子 (11)3.5 吸收塔辅助设备计算及选型 (12)3.5.1 液体初始分布器 (12)3.5.2 液体再分布器 (12)3.5.3 其他附属塔内件 (12)4 解吸塔工艺计算 (13)4.1基础数据计算 (13)4.1.1 最小气液比及吸收剂用量 (13)4.2塔径的计算及校核 (14)4.2.1 填料的选择 (14)4.2.2 塔径计算 (14)4.2.3 数据校核 (15)4.3.1 传质单元高度计算 (16)4.3.2 传质单元数的计算 (17)4.3.3 总高度的计算 (18)4.4 流体力学参数的计算 (18)4.4.1 解吸塔的压力降 (19)4.4.2 气体动能因子 (19)4.4.3 解吸因子 (19)4.5解吸塔的辅助设备的计算与选型 (20)4.5.1 液体初始分布器 (20)4.5.2 其他附属内件 (20)5设计结果及评述 (21)5.1设计结果一览表 (21)5.2设计评述 (22)6 参考文献 (23)1 绪论1.1吸收技术概况气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一清水吸收填料塔的设计 (3)1概述 (3)2设计方案的确定 (3)2.1设备方案 (3)2.2 流程方案 (3)2.3 吸收剂的选择 (4)2.4填料的选择 (4)二工艺计算 (5)2.1平衡关系的确定 (5)2.2吸收剂用量及操作线的确定 (7)(1)吸收剂用量的确定 (7)(2)操作线方程的确定 (9)2.3物性参数 (9)2.4 塔径的计算 (12)2.5核算 (15)喷淋密度的核算 (15)2.7 填料层的高度 (16)2.7.1传质系数的计算 (17)2.7.2 填料层高度 (19)三结果评价 (19)学习心得 (22)参考文献 (23)前言根据混合气体中个组分在某溶液溶剂中的溶解度不同而将气体混合物分离的操作称为气体吸收,而吸收又是塔设备中的单元操作,属于气液传质过程。
化工生产中有些气体直接排出会造成大气的污染或者原料的浪费,为此出于对环境的保护和经济性两方面的考虑,在很多场合需要对混合气体的吸收处理。
本说明书介绍的是清水吸收混合气中氨的原理,操作过程。
主要介绍了填料塔的设计、填料层的高度。
填料塔是气液呈连续接触的气液传质设备,它的结构和安装比板式塔简单。
塔的底部都有支撑板用来支撑填料,并允许气液通过。
支撑板上的填料有整齐和乱堆两种方式。
填料层的上方有液体分布装置,从而使液体均匀喷洒于填料层上。
在塔的设计中,填料的选择至关重要,它关系到塔的高度,整个操作的费用的高低、经济效益等。
在一个吸收的单元操作中应该充分考虑填料、塔高等方面的选择与计算,这才能使塔的效率最高,收益最大。
关键词:吸收、塔、填料一、清水吸收填料吸收塔的设计拟定1.概述气体吸收是利用气体在液体中的溶解度差异来分离气态均相混合物的一种单元操作。
用于吸收的设备类型很多,如我们常见的填料塔、板式塔。
填料塔是气液成连续性接触的气液传质设备。
塔的底部有支撑板用来支撑填料,并允许气液通过。
支撑板上的填料有整砌和乱堆两种方式。
填料层的上方有液体分布装置,从而使液体均匀喷洒于填料层上。
当填料层较高时就可以通过分段来减少“壁流”现象的影响。
2.设计方案的确定2.1设备方案填料塔具有结构简单、容易加工、生产能力大、压降小、吸收效果好、操作弹性大等优点,所以在工业吸收操作中被广泛应用。
在本次课设中,要求用清水吸收氨气,且氨气含量较高,故选用填料塔。
2.2 流程方案由于氨气属于易溶气体,设计条件中氨气含量较高,逆流操作适用于平均推动力大的吸收,吸收剂利用率高,完成一定分离任务所需的传质面积小,故选为逆流操作。
但吸收剂用量特别大时,逆流容易引起液泛,所以需要通过调节液体流量来控制。
根据设计任务书选用清水作为吸收剂。
由于是逆流操作,需要泵将水抽到塔顶,因泵输送的是清水,所以只需选用满足工艺要求的普通水泵。
气体则需选用风机。
泵和风机一个型号需配置两台,供替换使用。
实际操作中的流量计和压力表等也需要考虑出现问题以后不影响正常工作。
2.3 吸收剂的选择本次课设的题目中,已给出吸收剂清水,对于吸收空气氨气混合气体选用清水有如下优点:1. 溶解度大;2.选择性好;3. 挥发度低;4. 吸收剂具有较低的黏度,且不易产生泡沫;5. 对设备腐蚀性小,无毒;6. 价廉、易得、化学稳定性好,便于再生,不以燃烧。
2.4填料的选择填料的选择要根据以下几个方面来考虑:1. 比表面积要大;2. 能提供大的流体通量;3. 填料层的压降小;4. 填料的操作性能好;5. 液体的再分布性能要好;6. 要有足够的机械强度;7. 价格低廉。
二、工艺计算整个工艺计算过程包括以下几点:1. 确定气液平衡关系2. 确定吸收剂用量及操作线方程3. 准备计算所需的物性参数4. 填料的选择以及确定塔径及塔的流体力学性能计算5. 填料层高度的计算(一)平衡关系的确定由于原料气组成中,氨气占45%,含量较高,用清水吸收时会产生明显的热效应,使塔内温度显著升高,对气液平衡关系和吸收速度产生明显影响,属于非等温吸收。
在逆流吸收塔中气液平衡关系是温度的函数,温度升高,平衡关系便要改变,所以,在这种情况下不能再利用亨利定律,应重新按照非等温吸收的热衡算,根据液相浓度和温度的变化情况,定出实际的平衡关系。
①非等温吸收的热效应主要包括:②吸收质与吸收剂混合时产生的混合热,即溶解热。
③气体溶解时由气态转变为液态时放出的潜热。
化学反应热。
物理吸收计算中只考虑溶解热,溶解热分为积分溶解热和微分溶解热。
在吸收过程中所用的吸收剂量很大,液相浓度一般变化较小,于是混合热可考虑为微分溶解热。
在假定非等温吸收的平衡关系时,为简化计算,通常做如下三点假设:①忽略热损失。
②忽略吸收剂带走的热量。
③忽略气相带走的热量。
以上假设使溶解热全部用来液体温度升高。
在给定的设计条件中得知,要设计的是高浓度气体的非等温吸收。
由塔顶到塔底的浓度及温度变化较大,平衡关系的确定常采用近似法。
在液相浓度范围0-0.1内平均分为20份,浓度变化为=0.005。
根据课程设计书中的推导过程及公式则有H =34900–6250x(kJ/kmol)(2-1)t= t + (x-x) = t + Δx(2-2)式中:,—第i段两端的液相温度,℃;Δ—第i段两端的液相浓度差;—溶液流率,kmol/h(由于Δx很小,L可视为常数)—溶液的平均比热(kJ/kmol·K)H—溶质的微分溶解热,kJ/Kmol(可取x与x间的平均值)在非等温吸收操作中,吸收塔内液相的浓度和温度分别由塔顶处的,增加到塔底处的,。
在此液相浓度和温度范围内,随着和t的变化,气液两相的平衡关系也在改变,即不同温度对应着不同的平衡曲线。
实际平衡关系可由温度与浓度的关系得到,也可由经验公式来确定。
对于氨气和水溶液的平衡物系,若选用经验公式,可作如下计算:lg P = 1.1 lg x - + 8.92 (2-3)式中:—氨在水溶液中的摩尔分率T —溶液的温度, KP —溶液上方氨的平衡风压,㎜Hg由于是常压下吸收,气相可是为理想气体,按道尔顿分压定律,计算与x相平衡的y:=(2-4)式中:P —操作压强,mmHg(kJ/kmo Hl)(kJ/kmoHl)t(℃)T(K)(mmHgp)03490025298.15000.00534868.7534884.37527.31300.463.6680.005460.01034837.534853.12529.62302.778.7100.012970.01534806.2534821.87531.93305.0815.0490.022410.0203477534790.62534.24307.3922.8030.033960.02534743.7534759.37536.54309.6932.1290.047850.03034712.534727.12538.84311.9943.2190.064360.03534681.2534696.87541.14314.2956.2820.083810.0403465034665.62543.44316.5971.5480.106550.04534618.7534634.37545.74318.8989.2790.132950.05034587.534603.12548.03321.18109.7010.163360.05534556.2534571.87550.32323.47133.1370.19827 0.063452534540.62552.61325.74159.9240.23816 0.06534493.7534509.37554.9328.05190.3930.28353 0.0734462.534478.12557.19330.34224.9240.33495 0.07534431.2534446.87559.47332.62263.8200.39288 0.083440034415.62561.75334.9307.5800.45804 0.08534368.7534384.37564.03337.18356.6000.53113 0.0934337.534353.12566.31339.46411.5480.61287 0.09534306.2534321.87568.59341.74472.7630.70403 0.103427534290.62570.86344.01540.6780.80517根据计算结果,以为横坐标,为纵坐标,在坐标纸上绘出非等温吸收的平衡关系曲线。
由、关系,代入=0.45,0.0468对下表数据内插求得、0.0200.0250.0750.0800.033960.047850.392880.45804=0.07938,=0.0246(二)吸收剂用量及操作线的确定(1)吸收剂用量的确定最小吸收剂用量(2-5)(2-6)式中: V —惰性气体摩尔流率,Kmol/h—最小吸收剂用量 ,Kmol/hY,X —气相和液相组成摩尔比:=; =;;下标: 1—塔底; 2—塔顶吸收剂用量由设计任务书知氨气体积分率为45%,空气的体积分率55% ;原料气温度35 ℃;吸收率不低于 94%;吸收剂为25℃地下水;操作压力为89590Pa,个参数计算过程如下:由道尔顿分压定律知 = 45% =0.45 所以Y==0.8182由回收率为94%得Y= Y(1-94%)=0.0491 所以==0.0468因为所选用的吸收极为清水,所以x=X=0对表中数据采用插法求,结合数据表代入=0.45知0.01750.0800.458040.39288= 0.45采用内插法得=0.0794所以X= =0.0862 所以=8.9223因为V==109.75kmol/h取液气比为最小液气比的1.5倍得=8.9223×1.5=13.3835,代入V值得:L=1468.84kmol/h所以==13.3835,将上面求的的Y=0.8182, Y=0.0491,X=0代入解得:X=0.0576 代入公式==0.0545(2)操作线方程的确定对于高浓度的气体吸收,溶质含量一般用摩尔分率来表示。
于是高浓度气体的逆流吸收,其操作线方程为:=×+代入以上公式所需要的数据得到操作线方程为:=13.3835×+0.047300.00.00.00.00.00.00.00.00.00510152025303540450.045160.102780.154320.200710.242670.280820.315640.347340.376930.40403 0.0500.0550.0600.0650.0700.0750.0800.0850.0900.0950.100 0.429120.452430.474120.494360.51330.531050.547730.563430.578280.59220.60542代入由=0.45,0.0468与的关系内插求得的=0.0794,=0.0246到操作线方程解得操作关系=0.54572,0.27789根据如上数据以为横坐标,为纵坐标可绘得操作线,且将操作线和平衡线绘制到同一张坐标纸上。