2018高考数学文科(北京卷)含答案

合集下载

2018年高考文科数学北京卷及答案解析

2018年高考文科数学北京卷及答案解析

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前北京市2018年普通高等学校招生全国统一考试文科数学本试卷满分150分.考试时长120分钟.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{||}2|x A x =<,2,0,{1,2}B =-,则A B = ( )A .{}0,1B .{}1,0,1-C .{}2,0,1,2-D .{}1,0,1,2-2.在复平面内,复数11i-的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.执行如图所示的程序框图,输出的s 值为( )A .12B .56C .76D .7124.设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献。

十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于f ,则第八个单音频率为( )ABC.D. 6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .47.在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是( )A .AB B .CDC .EFD .GH毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)8.设集合{(,)|1,4,2}A x y x y ax y x ay =-+>-≥≤,则 ( )A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.设向量(1,0)a =,(1,)b m =-,若()a ma b ⊥-,则m = .10.已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为 .11.能说明“若a b >,则11a b<”为假命题的一组a ,b 的值依次为 .12.若双曲线2221(0)4x y a a -=>,则a = . 13.若x ,y 满足12x y x +≤≤,则2y x -的最小值是 . 14.若ABC △222)a c b +-,且C ∠为钝角,则B ∠= ;c a的取值范围是 .三、解答题共6小题,共80分。

2018年北京市高考数学试题含答案解析

2018年北京市高考数学试题含答案解析

2018年普通高等学校招生全国统一考试(北京卷)数学(文史类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2)在复平面内,复数的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ).A .12 B .56C .76D .7124.设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件 .5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .6.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .47. 在平面直角坐标系中,»AB ,»CD ,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中的一段上,角α是以Ox 为始边,OP 为始边.若tan cos sin ααα<<,则P 所在的圆弧是(A )»AB(B )»CD (C )»EF(D )¼GH8. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉ ()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉ 二.填空(9)设向量()1,0a =r ,()1,b m =-r。

2018年北京文数高考真题文档版(含答案)

2018年北京文数高考真题文档版(含答案)

绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(x||x|<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 学科#网 (A )32f (B )322f (C )1252f(D )1272f(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面直角坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O x 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD(C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018年数学真题及解析_2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)

2018年数学真题及解析_2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)

2018年云南省高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5.00分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5.00分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0.4 C.0.6 D.0.76.(5.00分)函数f(x)=的最小正周期为()A.B.C.πD.2π7.(5.00分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x) D.y=ln(2+x)8.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]9.(5.00分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.10.(5.00分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2 C.D.211.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.12.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54二、填空题:本题共4小题,每小题5分,共20分。

2018北京高考数学卷

2018北京高考数学卷

2018北京高考数学卷数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A ={}2x x <,B ={−2,0,1,2},则A B = ()A.{0,1} B.{−1,0,1}C.{−2,0,1,2}D.{−1,0,1,2}2.在复平面内,复数11i-的共轭复数对应的点位于A.第一象限 B.第二象限C.第三象限D.第四象限3.执行如图所示的程序框图,输出的s 值为A.12B.56C.76D.7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第八个单音的频率为A.fB.C.D.5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.46.设a ,b 均为单位向量,则“33a b a b -=+ ”是“a b ⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B.2C.3D.48.设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则A.对任意实数a ,(2,1)A ∈B.对任意实数a ,(2,1)A ∉C.当且仅当a <0时,(2,1)A ∉D.当且仅当32a ≤时,(2,1)A ∉第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

 2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2018年全国统一高考数学试卷(文科)(全国新课标Ⅰ)一、选择题目:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}2.(5分)设z=+2i,则|z|=()A.0B.C.1D.3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.5.(5分)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π6.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x7.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+ 8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为49.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.210.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C 所成的角为30°,则该长方体的体积为()A.8B.6C.8D.811.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.112.(5分)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1]B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)二、填空题目:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

关注公众号”一个高中僧“获取更多高中资料
第 3 页(共 28 页)
18.(12 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
(1)证明:平面 ACD⊥平面 ABC; (2)Q 为线段 AD 上一点,P 为线段 BC 上一点,且 BP=DQ= DA,求三棱锥
A.12 π
B.12π
C.8 π
D.10π
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积. 菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】利用圆柱的截面是面积为 8 的正方形,求出圆柱的底面直径与高,然后
求解圆柱的表面积.
【解答】解:设圆柱的底面直径为 2R,则高为 2R,
(2)估计该家庭使用节水龙头后,日用水量小于 0.35m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,
同一组中的数据以这组数据所在区间中点的值作代表)
20.(12 分)设抛物线 C:y2=2x,点 A(2,0),B(﹣2,0),过点 A 的直线 l 与 C 交于 M,N 两点.
参考答案与试题解析
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选 项中,只有一项是符合题目要求的。
1.(5 分)已知集合 A={0,2},B={﹣2,﹣1,0,1,2},则 A∩B=( )
A.{0,2}
B.{1,2}
C.{0}
D.{﹣2,﹣1,0,1,2}
【考点】1E:交集及其运算. 菁优网版权所有
问题解决问题的能力.

2018年北京文数高考试题文档版(含答案)

2018年北京文数高考试题文档版(含答案)

绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(x||x|<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为 学科#网 (A )32f (B )322f (C )1252f(D )1272f(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面直角坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以O x 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD(C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018年全国统一高考数学试题(文)(Word版,含答案解析)

2018年全国统一高考数学试题(文)(Word版,含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

 2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.36.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x7.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.28.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+49.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

2018年北京高考试卷(文科)—含答案

2018年北京高考试卷(文科)—含答案

2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(x||x|<2)},B={−2,0,1,2},则A B=(A){0,1} (B){−1,0,1}(C){−2,0,1,2}(D){−1,0,1,2}(2)在复平面内,复数11i-的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C )76(D )712(4)设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 学科#网(A (B(C )(D )(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(7)在平面直角坐标系中,,,,AB CD EF GH 是圆221x y +=上的四段弧(如图),点P在其中一段上,角α以O x 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB(B )CD (C )EF(D )GH(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则(A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉ (C )当且仅当a <0时,(2,1)A ∉(D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018年高考文科数学试卷及详解答案

2018年高考文科数学试卷及详解答案
(22) <本题满分10分)选修4-1:几何证明选讲
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:Zzz6ZB2Ltk
<I)BE=EC;
<II)AD·DE=2PB2。
【解读】
<1)
<2)
(23)<本小题满分10分)选修4-4:坐标系与参数方程
【答案】 3
【解读】
<16)数列 满足 = , =2,则 =_________.
【答案】
【解读】
(7)解答题:解答应写出文字说明过程或演算步骤。
(15)<本小题满分12分)
四边形ABCD的内角A与C互补,AB=1,BC=3, CD=DA=2.
(I>求C和BD;
(II>求四边形ABCD的面积。
【答案】 (1> (2>
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
<1)已知集合A=﹛-2,0,2﹜,B=﹛ | - - ﹜,则A B=
(A> <B) <C) (D>
【答案】B
所以,市民对甲、乙部门的评分大于90的概率分别为0.1,0.16
(20)<本小题满分12分)
设F1 ,F2分别是椭圆C: <a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N。LDAYtRyKfE
<I)若直线MN的斜率为 ,求C的离心率;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高考数学文科(北京卷)含答案绝密★启封并使用完毕前2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合{}|2A x x =<,{}2,0,1,2B =-,则AB =(A ){0,1} (B ){−1,0,1} (C ){−2,0,1,2} (D ){−1,0,1,2} (2)在复平面内,复数11i-的共轭复数对应的点位于(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)执行如图所示的程序框图,输出的s 值为(A)12(B)56(C)76(D)712(4)设a,b,c,d是非零实数,则“ad bc”是“a,b,c,d成等比数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率f,则第八个单音频率为(A32(B)322(C)1252(D)1272(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3 (D )4 (7)在平面坐标系中,,,,AB CD EF GH 是圆221xy +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是(A )AB (B )CD(C )EF (D )GH (8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈ (B )对任意实数a ,(2,1)A ∉ (C )当且仅当0a <时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)设向量(1,0)=a ,(1,)m =-b ,若()m ⊥-a a b ,则m =_________.(10)已知直线l过点(1,0)且垂直于x轴,若l被抛物线24y ax=截得的线段长为4,则抛物线的焦点坐标为_________. (11)能说明“若a b>,则11a b<”为假命题的一组a ,b 的值依次为_________. (12)若双曲线2221(0)4x y a a -=>a =_________.(13)若x ,y 满足12x y x +≤≤,则2y x -的最小值是_________. (14)若ABC△的面积为222)a c b +-,且C∠为钝角,则B ∠=_________;c a的取值范围是_________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程。

(15)(本小题13分) 设{}na 是等差数列,且123ln 2,5ln 2aa a =+=.(Ⅰ)求{}na 的通项公式; (Ⅱ)求12ee e na a a +++.(16)(本小题13分)已知函数2()sin cos f x x x x=.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值.(17)(本小题13分)电影公司随机收集了电影的有关数据,经分类整理得到下表:部数好评率0.4 0.2 0.15 0.25 0.2 0.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;学科*网(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)(18)(本小题14分)如图,在四棱锥P ABCD-中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA PD⊥,PA PD=,E,F分别为AD,PB的中点.(Ⅰ)求证:PE BC⊥;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF平面PCD.(19)(本小题13分)设函数2()[(31)32]e xf x axa x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. (20)(本小题14分)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为3,焦距为斜率为k的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程; (Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C,D 和点71(,)42Q - 共线,求k .参考答案1.A 2.D 3.B 4.B 5.D 6.C 7.C 8.D 9.1- 10.(1,0) 11.11-(答案不唯一) 12.413.3 14.60(2,)︒+∞15.(共13分)解:(I )设等差数列{}na 的公差为d ,∵235ln 2aa +=,∴1235ln 2a d +=, 又1ln 2a =,∴ln 2d =.∴1(1)ln 2na a n d n =+-=.(II )由(I )知ln 2nan =,∵ln 2ln 2e ee=2nna n n==,∴{e }n a 是以2为首项,2为公比的等比数列.∴212ln 2ln 2ln 2ee e e e e nn a a a +++=+++2=222n+++1=22n +-.∴12ee e n a a a +++1=22n +-.16.(共13分)【解析】(Ⅰ)1cos 211π1()sin 22cos 2sin(2)2222262x f x x x x x -=+=-+=-+,所以()f x 的最小正周期为2ππ2T ==.(Ⅱ)由(Ⅰ)知π1()sin(2)62f x x =-+. 因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--. 要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1.所以ππ262m -≥,即π3m ≥. 所以m 的最小值为π3. 17.(共13分)(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为500.0252000=.(Ⅱ)方法一:由题意知,样本中获得好评的电影部数是 140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51 =372.故所求概率估计为37210.8142000-=.方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B . 没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(0P B ==. (Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率. 18.(共14分)【解析】(Ⅰ)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥. ∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(Ⅱ)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,学科.网∵PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (Ⅲ)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =.∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥, ∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD . 19. (13分)解:(Ⅰ)因为2()[(31)32]e xf x ax a x a =-+++,所以2()[(1)1]e xf x axa x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)ea -=,解得12a =. (Ⅱ)方法一:由(Ⅰ)得2()[(1)1]e (1)(1)e x xf x ax a x ax x '=-++=--.若a >1,则当1(,1)x a ∈时,()0f x '<; 当(1,)x ∈+∞时,()0f x '>.所以()f x 在x =1处取得极小值.若1a ≤,则当(0,1)x ∈时,110ax x -≤-<, 所以()0f x '>.所以1不是()f x 的极小值点. 综上可知,a 的取值范围是(1,)+∞. 方法二:()(1)(1)e xf x ax x '=--.(1)当a =0时,令()0f x '=得x =1.(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1ax x==.①当12x x =,即a =1时,2()(1)exf x x '=-≥,∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极小值,即a >1满足题意. (3)当a <0时,令()0f x '=得121,1ax x==.(),()f x f x '随x 的变化情况如下表:∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,)+∞. 20.(共14分)【解析】(Ⅰ)由题意得2c =,所以c = 又c e a ==,所以a =2221ba c =-=,所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+, 由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330xmx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m<,设11(,)Ax y ,22(,)B xy ,则1232mx x +=-,212334m x x -=, 则12|||2AB x x =-==,易得当2m =时,max||AB =,故||AB .(Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+,由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y可得2222111(13)121230k x k x k +++-=,则2113211213k x x k +=-+,即2131211213k x x k =--+,又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D的坐标代入化简可得12121y y x x -=-,即1k =.。

相关文档
最新文档