七年级数学第一学期期末模拟试卷(一)
2022-2023学年四川省观音片七年级数学第一学期期末监测模拟试题含解析
2022-2023学年七上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p -D .2y z ÷2.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )A .遇B .见C .未D .来3.若单项式53a b -与m a b 是同类项,则m=( )A .5B .2C .1D .-34.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm ,宽为6cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .16cmB .24cmC .28cmD .32cm 5.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b == B .1,2a b ==C .1,3a b ==D .2,2a b == 6.若n -m =1,则2()22m n n m --+的值是A .3B .2C .1D .-17.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个 C .3个 D .4个8.用 “△”表示一种运算符号,其意义是2a b a b ∆=-,若(1)2x ∆-=,则x 等于( )A .1B .12C .32D .29.如图,三条直线a 、b 、c 相交于一点,则∠1+∠2+∠3=( )A .360°B .180°C .120°D .90°10.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .11.下列各式中是同类项的是( )A .2ab -和2abcB .3x y 和23xyC .mn 和nm -D .a 和b12.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角(AOM BOM ∠=∠),当点P 第2019次碰到矩形的边时,点P 的坐标为( )A .(0,3)B .(5,0)C .(1,4)D .(8,3)二、填空题(每题4分,满分20分,将答案填在答题纸上)13.在数轴上,点A 与表示-1的点的距离为3,则点A 所表示的数是 .14.己知 2n =a ,3n =b ,则6n =_______15.﹣|﹣2|=____.16.已知多项式225x mx ++是完全平方式,且0m >,则m 的值为__________.17.x=1是关于x 的方程2x -a=0的解,则a 的值是_____.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)如图,点A 、B 、C 在数轴上分别表示的数为-10,2,8,点D 是BC 中点,点E 是AD 中点.(1)求EB 的长;(2)若动点P 从点A 出发,以1cm /s 的速度向点C 运动,达到点C 停止运动,点Q 从点C 出发,以2cm /s 的速度向点A 运动,到达点A 停止运动,若运动时间为ts ,当t 为何值时,PQ =3cm ?(3)点A ,B ,C 开始在数轴上运动,若点A 以1cm /s 的速度向左运动,同时,点B 和点C 分别以4cm /s 和9cm /s 的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB ,请问:AB -BC 的值是否随时间t 的变化而变化?若变化,请说明理由;若不变,请求其常数值.19.(5分)计算:﹣42÷(﹣2)3-49×(﹣32)2 20.(8分)为了迎接期末考试,某中学对全校七年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如图两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:(1)在这次调查中,被抽取的学生的总人数为多少?(2)请将表示成绩类别为“中”的条形统计图补充完整.(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是多少?(4)学校七年级共有1000人参加了这次数学考试,估计该校七年级共有多少名学生的数学成绩可以达到优秀.21.(10分)计算(1)-3+2-4×(-5);(2)27211(4)9353⎛⎫÷--⨯- ⎪⎝⎭ 22.(10分)先化简,再求值:22113122323a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中22203a b ⎛⎫-++= ⎪⎝⎭. 23.(12分)希腊数学家丢番图(公元3- -4世纪)的墓碑上记载着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿了死后,他在极度悲痛中度过了四年,也与世常辞了.”根据以上信息,请你求出:(1)丢番图的寿命;(2)儿子死时丢番图的年龄.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、A【分析】根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z ,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2、D【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可得“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故答案选D .考点:正方体的展开图.3、A【分析】根据同类项的定义,即可得到答案.【详解】解:∵53a b -与m a b 是同类项,∴m 5=,故选择:A.【点睛】本题考查了同类项的定义,解题的关键是熟记同类项的定义.4、B【分析】根据题意,结合图形列出关系式,去括号合并即可得到结果.【详解】设小长方形的长为xcm ,宽为ycm ,根据题意得:7-x=3y ,即7=x+3y ,则图②中两块阴影部分周长和是:2×7+2(6-3y )+2(6-x )=14+12-6y+12-2x=14+12+12-2(x+3y )=38-2×7=24(cm ).故选B .【点睛】此题考查了整式的加减,正确列出代数式是解本题的关键.5、C【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.6、D【解析】()222m n n m --+=()()22m n n m ---=(-1)2-2×1=-1,故选D. 7、C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD =,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.8、B【分析】已知等式利用题中的新定义化简,计算即可求出x 的值.【详解】解:根据题中的新定义化简得:x △(-1)=2x+1=2,解得:x=12, 故选:B .【点睛】此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.9、B【解析】解:根据对顶角相等及平角的定义可得∠1+∠2+∠3=180°,故选B .10、C【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A 选项为该立体图形的俯视图,不合题意;B 选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.11、C【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)来解答即可.-和2abc中所含的字母不同,所以它们不是同类项,故本选项错误;【详解】A、2ab3xy中所含字母相同,但相同字母的指数不同,此选项不符合题意;B、3x y和2-中所含的字母相同,它们的指数也相同,所以它们是同类项,故本选项正确;C、mn和nmD、a和b中所含的字母不同,所以它们不是同类项,故本选项错误.故选:C.【点睛】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.12、D【分析】根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,动点回到起始的位置,将2019除以6得到336,且余数为3,说明点P第2019次碰到矩形的边时为第337个循环组的第3次反弹,因此点P 的坐标为(8,3).【详解】如图,根据反射角与入射角的定义作出图形,解:如图,第6次反弹时回到出发点,∴每6次碰到矩形的边为一个循环组依次循环,∵2019÷6=336余3,∴点P第2019次碰到矩形的边时是第336个循环组的第3次碰边,坐标为(8,3).故选:D.【点睛】本题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、-4或1【分析】分两种情况:要求的点可以在已知点的左侧或右侧.【详解】解:若点在-1的左面,则点为-4;若点在-1的右面,则点为1.故答案为-4或1.14、ab【解析】试题分析:利用积的乘方把目标整式化成已知,整体代入.试题解析:6n =(2×3)n = 2n ×3n =ab .15、﹣1. 【分析】计算绝对值要根据绝对值的定义求解2-,然后根据相反数的性质得出结果.【详解】﹣|﹣1|表示﹣1的绝对值的相反数,|﹣1|=1,所以﹣|﹣1|=﹣1.【点睛】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.16、1【解析】根据多项式225x mx ++是完全平方式,可得:m=2×1×5±,由m >0,据此求出m 的值是多少即可.【详解】解:∵多项式225x mx ++是完全平方式,∴m=2×1×5±=±1.∵m >0,∴m=1故答案为:1.【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b )2=a 2±2ab+b 2. 17、1【分析】将x=1代入方程即可解出a .【详解】将x=1代入方程得:1-a=0,解得a=1,故答案为:1.【点睛】本题考查解方程,关键在于掌握解方程的步骤.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)9 2(2)3;7(3)AB-BC的值不随t的变化而变化,其常数值为6【分析】(1)根据点D是BC中点,点E是AD中点确定D、E表示的数,即可求出EB.(2)已知P、Q两点的运动速度和运动轨迹,AC之间的总长度,若运动时间为t,PQ=3cm,路程等于速度乘以时间,根据总路程是18,可列出关于t的方程,本题有两种情况,第一种情况P、Q未相遇距离为3 cm,第二种情况P、Q相遇之后继续前进之后相距为3 cm.(3)根据A,B,C的运动情况即可确定AB,BC的变化情况,即可确定AB-BC的值.【详解】(1)∵点D是BC中点,D表示的数为285 2+=又∵点E是AD中点确定,E表示的数为105522 -+=-∴EB=2-5 ()2-=92故答案:9 2(2)根据题意可得:AC=18①P、Q未相遇距离为3 cmt+3+2t=18t=5当t=5时,PQ=3cm②P、Q相遇之后继续前进之后相距为3 cm2t-3+t=18t=7答案:5;7t秒钟后,A点位置为:−10−t,B点的位置为:2+4t,C点的位置为:8+9t BC=8+9t−(2+4t)=6+5tAB=5t+12AB−BC=5t+12−(5t+6)=6AB-BC的值不随t的变化而变化,其常数值为6【点睛】本题考查了已知数轴上的两个点,如何表示出中点;考查了数轴上两点间的距离的意义和求法.19、1【解析】先计算乘方,再计算乘除,最后计算加减可得.【详解】原式=﹣16÷(﹣8)4994-⨯=2﹣1=1.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.20、(1)被抽取的学生的总人数为50人;(2)补图见解析;(3)72°;(4)估计该校七年级共有200名学生的数学成绩可以达到优秀.【分析】(1)利用成绩为良的人数以及百分比求出总人数即可.(2)求出成绩为中的人数,画出条形图即可.(3)根据圆心角=360°×百分比即可.(4)用样本估计总体的思想解决问题即可.【详解】(1)8÷16%=50(人).答:被抽取的学生的总人数为50 人.(2)50×20%=10(人),如图.(3)因为成绩类别为“优”的扇形所占的百分比为10÷50=20%,所以表示成绩类别为“优”的扇形所对应的圆心角的度数是360°×20%=72°(4)1000×20%=200(名).答:估计该校七年级共有200名学生的数学成绩可以达到优秀.【点睛】本题考查读条形统计图和扇形统计图的能力,考查利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21、(1)19;(2)-113【分析】(1)原式先计算乘法运算,再进行回头运算即可得到结果;(2)原式先计算乘方和括号内的,再计算乘除运算,最后进行加减运算即可.【详解】(1)-3+2-4×(-5)=-3+2+20=19;(2)27211(4)9353⎛⎫÷--⨯- ⎪⎝⎭ =771169153÷-⨯ =51633- =113- 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.22、-3a+b 2,559-【分析】先对整式进行化简,然后代值求解即可.【详解】解:原式=2221231232323a ab a b a b -+-+=-+, 又22203a b ⎛⎫-++= ⎪⎝⎭,∴22,3a b ==-, 把22,3a b ==-代入求解得:原式=22453265399⎛⎫-⨯+-=-+=- ⎪⎝⎭. 【点睛】本题主要考查整式的化简求值及非负性,熟练掌握整式的运算及绝对值和偶次幂的非负性是解题的关键.23、(1)84岁; (2)80岁 .【分析】(1)设丢番图的寿命为x 岁,则根据题中的描述他的年龄=16x 的童年+生命的112x +17x +5年+儿子的年龄+4年,可列出方程,即可求解;(2)他的寿命减去4即可.【详解】解:(1)设丢番图的寿命为x 岁,由题意,得5461272x x x x x +++++=, 解得:x =84,经检验符合题意∴丢番图的寿命是84岁;(2)儿子死时丢番图的年龄:84-4=80(岁) .【点睛】本题考查了一元一次方程的应用,掌握列方程解应用题的方法与步骤,解题关键是要读懂题目的意思,根据题目给出的条件,列出丢番图的年龄的表达式,抓住等量关系,列出方程.。
浙教版七年级(上)期末数学模拟试卷(一)及答案
浙教版七年级(上)期末数学模拟试卷(一)一、选择题(每小题3分,共30分)1.计算:|0﹣2019|=( )A. 0B. ﹣2019C. 2019D. ±20192.几个同学在公园里玩、发现一个源亮的“古董”、甲:它有10个面乙:它由24条棱丙:它有8个面是正方形、2个面是多边形丁:如果把它们的侧面展开、是一个长方形、这个长方形有八种顔色、挺好看,通过这四个同学的对话、从几何体的名称来看、这个“古董”的形状可能是( )A. 八棱柱B. 十棱柱C. 二十四棱柱D. 棱锥3.已知∠α=60°32’,则∠α的余角是( )A. 29°28’B. 29°68’C. 119°28’D. 119°68’4.√81 的平方根是( )A. 3B. ±3C. ±9D. 95.下列各式中,去括号正确的是( )A. a +(b -c )=a -b -cB. a -(b +c )=a -b +cC. a +2(b +c )=a +2b +cD. a -2(b -c )=a -2b +2c6.若代数式4x -5与 2x−12 的值相等,则x 的值是( )A. 1B. 32C. 23D. 27.如图,实数a 和b 在数轴上的对应点如图所示,则下列式子中错误的是( )A. a +b <0B. a ﹣b <0C. ab >0D. a b <18.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为4a 2b 则图2中纸盒底部长方形的周长为( )A. 4abB. 8abC. 4a +bD. 8a +2b9.点A ,B ,C 在同一直线上,已知AB =3cm ,BC =1cm ,则线段AC 的长是( )A. 2cmB. 3cmC. 4cmD. 2cm 或4cm10.观察算式,探究规律:当n =1时,S 1=13=1=12;当n =2时,S 2=13+23=9=32;当n =3时,S 3=13+23+33=36=62;当n =4时,S 4=13+23+33+43=100=102;…那么S n 与n 的关系为( )A. 14n 4+12n 3B. 14n 4+12n 2C. 14n 2(n +1)2D. 12n (n +1)2 二、填空题(每小题3分,共18分)11. 2018年至2019上半年,累计来北流铜石岭旅游人数达130400人,把它精确到万位,用科学记数法表示为________.12.如图,已知,OE 平分∠AOB ,OF 平分∠BOC ,∠EOF =65°,则∠AOC =________度13.按照下面程序计算:若输入x 的值为﹣2,则输出的结果为________.14.一个实数的两个平方根分别是a +3和2a -5,则这个实数是________.15.若 −x +2y =5 ,则 7−3x +6y =________.16.古代有这样一个数学问题:韩信点一队士兵人数,三人一组余两人,五人一组余三人,七人一组余四人.问这队士兵至少多少人?我国古代学者早就研究过这个问题.例如明朝数学家程大位在他著的《算法统宗》中就用四句口诀暗示了此题的解法:三人同行七十稀,五树梅花甘一枝,七子团圆正半,除百零五便得知.这四句口诀暗示的意思是:当除数分别是3,5,7时,用70乘以用3除的余数(例如:韩信点兵问题中用70乘以2),用21乘以用5除的余数,用15乘以用7除的余数,然后把三个乘积相加.加得的结果如果比105大就除以105,所得的余数就是满足题目要求的最小正整数解.按这四句口诀暗示的方法计算韩信点的这队士兵的人数为________.三、解答题(共3题;共22分)17.计算:(9分)(1)3−(−7)+(−2)(2)(−1)2019+(16−34)×(−12)(3)−32÷32−√8318. (8分)(1)5(x −6)=−4x −3 ;(2)2x+13=1+1−10x 6 .19.(5分)先化简,再求值(a ﹣6b )﹣2(2a +3b )+b ,其中a = 23 ,b =﹣1.四、解答题(共6题;共50分)20.为了解用电量的多少,小月在九月初连续几天同一时刻观察家里电表显示的度数,记录如下:请问:(1)小月家哪一天用电量最多,用了多少度?(2)小月家这六天的总用电量是多少?(3)如果每度电的价格是0.53元,估计小月家这个月的电费是多少?(一个月以30天计算).21.已知|a|=7, b2=36且|ab|=−ab,求:(1)a,b的值;(2)当a<b时,计算(a+b)2019−(a−b)2的值.22.(1)已知4的算术平方根为a,﹣27的立方根为b,最大负整数是c,则a=________,b=________,c=________;(2)将(1)中求出的每个数表示在数轴上.(3)用“<”将(1)中的每个数连接起来.23.为喜迎祖国70华诞,某校计划购买牵牛花、孔雀草、鸡冠花共1500盆布置校园,营造喜庆祥和的节日氛围. 经市场调查,收集到三种鲜花的单价信息:(1)若购买牵牛花x盆,孔雀草y盆,请列式表示购买这1500盆鲜花所需费用;(2)当x=500,y=800时,求购买这1500盆鲜花共花多少元?24.光华中学在运动会期间准备为参加前导队的同学购买服装(前导队包括花束队、彩旗队和国旗队)其中花束队有60名同学,彩旗队有30名同学,国旗队有10名同学,已知花束队的服装与彩旗队的服装单价比为4:3,国旗队的服装单价比彩旗队的服装单价多5元。
人教版七年级数学第一学期期末考试模拟题【含答案】(共4套)
15.(3 分)如图,已知点 A、O、B 在同一条直线上,若 OA 的方向是北偏西 28°,则 OB 的方向是南偏东 .
16.(3 分)时钟 3:40,时针与分针所夹的角是 度.
17.(3 分)一商店把彩电按标价的 9 折出售,仍可获利 20%,若该彩电的进价
是 2400 元,则彩电的标价为 元.
)
A.∠COE B.∠BOC C.∠BOE D.∠AOE 【考点】余角和补角. 【专题】计算题. 【分析】求∠AOE 的余角,根据互余的定义,即是求与∠AOE 的和是 90°的角, 根据角相互间的和差关系可得. 解:已知点 O 在直线 AB 上,∠BOC=90°, ∴∠AOC=90°,
∴∠AOE+∠COE=90°,
C、0 是单项式,x2+xy+y2 是多项式,故本选项错误;
D、a,6,abc,
都是整式,故本选项正确;
故选 D. 【点评】本题考查了单项式、多项式以及整式的定义:数或字母的积组成的式 子叫做单项式,单独的一个数或字母也是单项式;几个单项式的和叫做多项式, 每个单项式叫做多项式的项,其中不含字母的项叫做常数项;单项式和多项式 统称为整式. 6.(3 分)从三个不同方向看一个几何体,得到的平面图形如图所示,则这个 几何体是( )
A.8 B.9 C.3 D.2 10.(3 分)已知 ab=3,c+d=2,则(b+c)(ad)的值为( ) A.1 B.5 C.5 D.1 11.(3 分)有理数32,(3)2,|33|, 按从小到大的顺序排列是( ) A. <32<(3)2<|33| B.|33|<32< <(3)2 C.32< <(3)2<|33| D. <32<|33|<(3)2 12.(3 分)按下面的程序计算:
第一学期期末模拟考试七年级数学试卷
第一学期期末模拟考试七年级数学试卷一,填空题(每小题3分,共36分)1,-3的相反数是 ( ) A ,-3 B ,3 C ,±3, D ,1/32,在数轴上与数3距离为5单位的点所表示的数为 ( ) A 3 B , 8 C ,-2 D ,-2或83,下列说法错误的是 ( ) A .275万精确到万位 B .3.46精确到百分位C .0.0320有四个有效数字D .1000保留三个有效数字为1.00×1034,下列说法中,正确的有 ( ) ①52xy 的系数为52 ;②—2²b a 2的次数是5;③多项式1332-+-n mn n m 的次数是3;④x y -和12a都是整式.A .1个B .2个C .3个D .4个5,下面计算正确的是 ( ) A ,3x ²—x ²=3 B ,3a ²+2 a ³=5 a5 C , 3+x=3x D -0.25ab+0.25ba=0 6,方程213x +=与2-03a x -=的解相同,则a 的值是( ) A.7 B.0 C.3 D.57,某测绘装置上一枚指针原来指向南偏西50°如图,把这枚指 针按逆时针方向旋转90°,则指针的指向为 ( )A 南偏东50°B 西偏北50°C 南偏东40°D 东南方向8,把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是 ( ) A 线段可以比较大小 B 线段有两个端点 C 两点之间线段最短 D 过两点有且只有一条直线 9,如图,O 为直线AB 上一点,OC 平分AOE ∠,DOE ∠=90º,.则以下结论正确的是 ( ) ①AOD ∠与BOE ∠互为余角; ②COE AOD ∠=∠21;③COD BOE ∠=∠2;④若BOE ∠=57º50′,则COE ∠=61º5′ A 、①④ B 、①③④ C 、③④ D 、①②③④10.有m 辆客车及n 个人, 若每辆客车坐40人, 则还有10人不能上车, 若每辆客车坐43人, 则只有1人不能上车.有下列四个等式: ①40m +10=43m -1; ②4314010+=+n n ; ③4314010-=-n n ;④40m +10=43m +1.其中正确的是 ( ) A .①② B .②④ C .①③ D .③④11 ,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 为NA 的中点,Q 是AM 的中点,则MN :PQ 等于 ( ). A .1 B .2 C .3 D .412.下列说法:①平方等于64的数是8;②若a 、b 互为相反数,则ab=-1:③若︱-a ︱=a ,则(-a )3的值为负数;④若ab ≠o ,则aa +bb 的取值在0,1,2,-2这四个数中,不可取的值是0.其中正确的个数为 ( ) A .0个 B .1个 C .2个 D .3个二,填空题(每小题3分,共12分)13,长江水位高于正常水位5.7m ,记作+5.7m ,那么低于正常水位3.2m 记为 。
北师大版七年级上学期期末考试数学试卷(含答案)一
北师大版七年级数学第一学期期末考试试题及答案本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣12的相反数是( )A .12B .121C .121-D .﹣12 2.下列各图中,表示“射线CD ”的是( )A .B .C .D .3.下列图形中,不是正方体表面展开图的是( )A .B .C .D .4.小明投掷一枚硬币100次,出现“正面朝上”51次,则“正面朝上”的频率为( )A .49B .51C .0.49D .0.515.由5个相同的小正方体组成的几何体如图所示,从正面看该几何体得到的平面图形是( )A .B .C .D .6.世界文化遗产﹣﹣长城的总长约为2100000m ,数据2100000用科学记数法可表示为( )A .0.21×107B .2.1×105C .2.1×106D .21×1057.下列各选项中不是同类项的是( )A .﹣3与13B .2a 与2bC .5x 2y 与﹣2x 2yD .﹣xy 与2yx8.下列调查中最适合采用全面调查的是( )A .调查七(1)班学生定制校服的尺寸B .调查市场上奶制品的质量情况C .调查黄河水质情况D .调查全市《习语近人》节目的观看情况9.若x =1是关于x 的方程2x +a =0的解,则a 的值为( )A .﹣1B .﹣2C .1D .210.一幢房子一面墙的形状由一个长方形和一个三角形组成(如图),若把该墙面设计成长方形形状,面积保持不变,且底边长仍为a ,则这面墙的高度应该为( )A .2b +hB .h b 21C .b +2hD .b +h 11.如图,在正方形ABCD 中,E 为DC 边上一点,沿线段BE 对折后,若∠ABF 比∠EBF 大15°,则∠EBC 的度数是( )A .15°B .20°C .25°D .30°第11题图 第12题图 12.“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.如图2,用“格子乘法”表示两个两位数相乘,则a 的值为( )A .2B .3C .4D .5第Ⅱ卷(非选择题共102分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣23= .14.五边形的对角线一共有 条.15.在空气的成分中,氮气约占78%,氧气约占21%,其他微量气体约占1%.若要表示以上信息,最合适的统计图是 .16.如图是一个生日蛋糕盒,这个盒子棱数一共有 条.17.下面的框图表示了小明解方程3(x +5)+x =﹣5的流程:其中,步骤“③”的依据是 .18.已知1<x <a ,写一个符合条件的x (用含a 的代数式表示): .三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(﹣3.2)+12.5+(﹣16.8)﹣(﹣2.5).20.(本题4分)化简:(x +2)﹣(3﹣2x ).21.(本题4分)解方程:3x ﹣2=4+x .22.(本题5分)根据下列语句,画出图形.如图,已知四点A ,B ,C ,D .①画直线AB ;②连接AC 、BD ,相交于点O ;③画射线AD ,BC ,交于点P .23.(本题5分)解方程:36231=+--x x24.(本题6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.25.(本题6分)先化简,再求值:xy +2y 2+2(x 2﹣y 2)﹣2(x 2﹣xy ),其中x =﹣3,y =2.26.(本题6分)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?27.(本题8分)某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为名,补全条形统计图(画图并标注相应数据);(2)“陶艺”课程所对应的扇形圆心角的度数是°?(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?28.(本题8分)某校七年级(1)班想买一些运动器材供班上同学大课间活动使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?根据这段对话,请你求出篮球和排球的单价各是多少元?29.(本题10分)阅读下面材料:数学课上,老师给出了如下问题如图1,∠AOB=80°,OC平分∠AOB,若∠BOD=20°,请你补全图形,并求∠COD的度数.以下是小明的解答过程:解:如图2,因为OC平分∠AOB,∠AOB=80°,所以∠BOC=∠AOB=°.因为∠BOD=20°,所以∠COD=∠BOC + =°.小静说:“我觉得这个题有两种情况,小明考虑的是OD在∠AOB外部的情况,事实上,OD还可能在∠AOB的内部”.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图3中画出另一种情况对应的图形,并求出此时∠COD的度数.30.(本题12分)在数学综合实践活动课上,小亮同学借助于两根小木棒m、n研究数学问题:如图,他把两根木棒放在数轴上,木棒的端点A、B、C、D在数轴上对应的数分别为a、b、c、d,已知|a+5|+(b+1)2=0,c=3,d=8.(1)求m和n的长度;(2)小亮把木棒m、n同时沿x轴正方向移动,m、n的速度分别为4个单位/s和3个单位/s,设平移时间为t (s)①若在平移过程中原点O恰好是木棒m的中点,则t=(s);②在平移过程中,当木棒m、n重叠部分的长为2个单位长度时,求t的值.。
2022-2023学年北京市平谷区七年级数学第一学期期末监测模拟试题含解析
2022-2023学年七上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108B .6.5×107C .6.5×108D .65×1062.2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为( ) A .96.8×105B .9.68×106C .9.68×107D .0.968×1083.在一条南北方向的跑道上,张强先向北走了10米,此时他的位置记作10+米.又向南走了13米,此时他的位置在( ) A .23+米处B .13+米处C .3-米处D .23-米处4.如图,两个三角形的面积分别为16,9,若两阴影部分的面积分别为a 、b (a >b ),则(a ﹣b )等于( )A .8B .7C .6D .55.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°6.北京,武汉,广州,南宁今年某一天的气温变化范围如下:北京8-℃~4-℃,武汉3℃~12℃,广州13℃~18℃,南宁3-℃~10℃,则这天温差较小的城市是() A .北京B .武汉C .广州D .南宁7.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形. A .6B .5C .8D .78.下列说法错误的是( )A .若a b =,则22a b -=-B .若ac bc =,则a b =C .若a b =,则33a b -=-D .若22a b=,则a b = 9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个10.已知代数式和是同类项,则m -n 的值是( )A .-1B .-2C .-3D .0二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,直线//a b ,165∠=︒,2140∠=︒,则3∠的度数是___________度.12.比较大小:2020-___________12020-(填“>”“<”“=”) 13.某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是______元.14.某车间有21名工人,每人每天可以生产螺栓12个或螺母18个,设y 名工人生产螺栓,其他工人生产螺母,要求每天生产的螺栓和螺母按1:2刚好配套,则可列方程为___________.15.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组.设这个班共有x 名学生,则可列方程为___. 16.02-=_______.三、解下列各题(本大题共8小题,共72分)17.(8分)如图,线段AB 8=,点C 是线段AB 的中点,点D 是线段BC 的中点.()1求线段AD 的长;()2在线段AC 上有一点E ,1CE BC 3=,求AE 的长.18.(8分)如图,直线AB、CD相交于点O,OE⊥AB,OF⊥CD.(1)写出图中∠AOF的余角;(2)如果∠EOF=∠AOD,求∠EOF的度数.19.(8分)解方程:2(x﹣1)﹣2=4x20.(8分)根据《中华人民共和国个人所得税法》,新个税标准将于2019年1月1日起施行.其中每月纳税的起征点增加到5000元,即2019年1月以后每月工资中的5000元将不必缴纳税款.根据相关政策,纳税部门给大家制作了如下纳税表格(未完整):级数全月应纳税所得额(含税级距)税率(%)速算扣除数1 不超过3000元的部分3%02 超过3000元至12000元的部分10%2103 超过12000元至25000元的部分20%14104 超过25000元至35000元的部分25%m5 超过35000元至55000元的部分30%44106 超过55000元至80000元的部分35%71607 超过80000元的部分n15160-=元应该纳税,纳税数额为:例如:张三2019年1月如果月收入为21000元,则他1月中的21000500016000⨯+⨯+⨯=++=(元).30003%900010%400020%909008001790(1)如果李士业2019年1月份收入为7000元,则他1月份应纳税多少元?(2)如果王努利2019年1月份收入为10000元,则他月份应纳税多少元?(3)钱勒凤跟朋友说,估计自己1月份应纳税3400元,则钱勤奋1月份收入约有多少元?(4)根据表中各数据关系,求表格中的m,n的值.21.(8分)学校体育室有两个球筐,已知甲筐内的球比乙筐内球的个数的2倍还多6只.现进行如下操作:第一次,从甲筐中取出一半放入乙筐;第二次,又从甲筐中取出若干只球放入乙筐.设乙筐内原来有a 只球. (1)第一次操作后,乙筐内球的个数为 只;(用含a 的代数式表示) (2)若第一次操作后乙筐内球的个数比甲筐内球的个数多10只,求a 的值; (3)第二次操作后,乙筐内球的个数可能是甲筐内球个数的2倍吗?请说明理由.22.(10分)如图所示,已知线段m ,n ,求作线段AB ,使它等于m +2n .(用尺规作图,不写做法,保留作图痕迹.)23.(10分)先化简(2341x x +-﹣21x -)÷2221x x x +-+,再从﹣2,﹣1,0,1,2中选一个你认为合适的数作为x 的值代入求值.24.(12分)如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA 、PB 与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转. (1)①如图1,∠DPC = 度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD 不动,三角板PAC 从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t 为多少时,这两个三角形是“孪生三角形”.(2)如图3,若三角板PAC 的边PA 从PN 处开始绕点P 逆时针旋转,转速3°/秒,同时三角板PBD 的边PB 从PM 处开始绕点P 逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC 转到与PM 重合时,两三角板都停止转动).设两个三角板旋转时间为t 秒,以下两个结论:①CPDBPN∠∠为定值;②∠BPN +∠CPD 为定值,请选择你认为对的结论加以证明.参考答案一、选择题(每小题3分,共30分)【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×1.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.所以将9680000用科学记数法表示为:9.68×106,故选B.3、C【分析】以出发点为原点的,张强先向北走了10米,记作+10米.又向南走了13米,记作−13米,此时的位置可用+10−13来计算.【详解】+10−13=−3米,故选:C.【点睛】考查数轴表示数、正数、负数的意义,正负数可以表示具有相反意义的量,有理数由符号和绝对值构成.4、B【解析】可以设空白面积为x,然后三角形的面积列出关系式,相减即可得出答案.【详解】设空白面积为x,得a+x=16,b+x=9,则a-b=(a+c)-(b+c)=16-9=7,所以答案选择B项.【点睛】本题考察了未知数的设以及方程的合并,熟悉掌握概念是解决本题的关键.5、C【详解】∵OC平分∠DOB,∠COB=35°,∴∠BOD=2∠COB=2×35°=70°,∴∠AOD=180°-70°=110°.故选C.【分析】分别计算出各个城市的温差,然后即可做出判断. 【详解】解:北京的温差为:-4-(-8)=4℃, 武汉的温差为:12-3=9℃, 广州的温差为:18-13=5℃, 南宁的温差为:10-(-3)=13℃, 则这天温差最小的城市是北京, 故选A. 【点睛】本题考查了有理数减法的实际应用,熟练掌握运算法则是解题关键. 7、B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形. 故选B .【点睛】本题考查的知识点为:从n 边形的一个顶点出发,可把n 边形分成(n-2)个三角形. 8、B【分析】根据等式的基本性质逐一判断即可.【详解】A . 若a b =,将等式的两边同时减去2,则22a b -=-,故本选项正确; B . 若ac bc =,当c=0时,等式的两边不能同时除以c ,不能得到a b =,故本选项错误; C . 若a b =,将等式的两边同时乘(-3),则33a b -=-,故本选项正确; D . 若22a b=,将等式的两边同时乘2,则a b =,故本选项正确. 故选B . 【点睛】此题考查的是等式的变形,掌握等式的基本性质是解决此题的关键. 9、B【分析】根据平行线的判定定理对各小题进行逐一判断即可. 【详解】解:①∵∠1=∠3,∴l 1∥l 2,故本小题正确; ②∵∠2+∠4=180°,∴l 1∥l 2,故本小题正确; ③∵∠4=∠5,∴l 1∥l 2,故本小题正确; ④∠2=∠3不能判定l 1∥l 2,故本小题错误; ⑤∵∠6=∠2+∠3,∴l 1∥l 2,故本小题正确. 故选B .【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.10、A【解析】由同类项的定义可先求得m和n的值,从而求出代数式的值.【详解】∵代数式和是同类项,∴m−1=1,2n=6,∴m=2,n=3,∴m−n=2−3=−1,故选:A.【点睛】此题考查同类项,解题关键在于求得m和n的值.二、填空题(本大题共有6小题,每小题3分,共18分)11、105【分析】首先过点A作AB∥a,由a∥b,可得AB∥a∥b,然后利用两直线平行,同旁内角互补与两直线平行,同位角相等,即可求得答案.【详解】解:过点A作AB∥a,∵a∥b,∴AB∥a∥b,∴∠2+∠4=180°,∵∠2=140°,∴∠4=40°,∵∠1=65°,∴∠3=∠1+∠4=65°+40°=105°(两直线平行同位角相等).【点睛】此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意两直线平行,同旁内角互补与两直线平行,同位角相等定理的应用.12、<【分析】根据两个负数比较,绝对值大的反而小进行比较即可. 【详解】∵|-2020|=2020,11||20202020-=,且120202020>, ∴2020-<12020-. 故答案为:<. 【点睛】此题考查了两个负数的大小比较,注意:两个负数比较,绝对值大的反而小. 13、64【分析】根据题意,找出相等关系为:进价×(1+25%)=100×80%,设未知数列方程求解. 【详解】解:解:设这件玩具的进价为x 元,依题意得: (1+25%)x=100×80%, 解得:x=64. 故答案为:64. 【点睛】此题考查的是一元一次方程的应用,解题的关键是找出相等关系. 14、21218(21)y y ⨯=⨯-【分析】此题中的等量关系有:①生产螺栓人数+生产螺母人数=21人;②每天生产的螺栓和螺母按1:2配套,那么螺栓要想与螺母的数量配套,则螺栓数量的2倍=螺母数量. 【详解】解:设y 名工人生产螺栓,根据生产螺栓人数+生产螺母人数=21人,生产螺母人数为 (21- y )人, 根据螺栓数量的2倍=螺母数量,得方程2×12y=18(21-y). 故答案为:2×12y=18(21-y). 【点睛】本题考查了由实际问题抽象出一元一次方程,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量. 15、8x =6x﹣1. 【分析】设这个班学生共有x 人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了2组,根据此列方程求解.【详解】设这个班学生共有x 人,根据题意得:286x x=-. 故答案是:286x x=-.【点睛】此题考查了由实际问题抽象出一元一次方程,其关键是找出等量关系及表示原来和后来各多少组. 16、-2【分析】根据有理数减法法则计算即可. 【详解】0-2=0+(-2)=-2, 故答案为:-2 【点睛】此题考查有理数的减法法则,熟记法则即可正确解答.三、解下列各题(本大题共8小题,共72分) 17、(1)6,(2)83. 【分析】()1根据AD AC CD =+,只要求出AC 、CD 即可解决问题;()2根据AE AC EC =-,只要求出CE 即可解决问题;【详解】解:()1AB 8=,C 是AB 的中点,AC BC 4∴==,D 是BC 的中点, 1CD DB BC 22∴===, AD AC CD 426∴=+=+=.()12CE BC 3=,BC 4=,4CE 3∴=,48AE AC CE 433∴=-=-=.【点睛】本题考查两点间距离、线段的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 18、(1)∠AOC 、∠FOE 、∠BOD .(2)30°.【解析】(1)由垂直的定义可知∠AOF+∠COA=90°,∠AOF+∠FOE=90°,从而可知∠COA 与∠FOE 是∠AOF 的余角,由对顶角的性质从而的得到∠BOD 是∠AOF 的余角;(2)依据同角的余角相等可知∠FOE=∠DOB ,∠EOF=∠AOD ,从而得到∠EOF=平角.【详解】解:(1)∵OE ⊥AB ,OF ⊥CD , ∴∠AOF+∠COA=90°,∠AOF+∠FOE=90°. ∴∠COA 与∠FOE 是∠AOF 的余角. ∵由对顶角相等可知:∠AOC=∠BOD , ∴∠BOD+∠AOF=90°. ∴∠BOD 与∠APF 互为余角.∴∠AOF 的余角为∠AOC ,∠FOE ,∠BOD ; 故答案为:∠AOC 、∠FOE 、∠BOD .(2)解:∵∠AOC=∠EOF ,∠AOC+∠AOD=180°,∠EOF=∠AOD ,∴6∠AOC=180°. ∴∠EOF=∠AOC=30°. 【点睛】本题主要考查的是垂线、余角的定义、对顶角、邻补角的定义,掌握相关性质是解题的关键. 19、x =﹣1.【分析】根据一元一次方程的解法,去括号,移项合并同类项,系数化为1即可. 【详解】解:去括号得:1x ﹣1﹣1=4x , 移项合并得:﹣1x =4, 解得:x =﹣1, 故答案为:x =-1. 【点睛】本题考查了一元一次方程的解法,掌握一元一次方程的解法是解题的关键. 20、(1)60元;(2)290元;(3)20950元;(4)2660m =,0045n =【分析】(1)总收入减去5000算出应纳税所得额是2000,没有超过3000元,乘以3%即为纳税额;(2)总收入减去5000算出应纳税所得额为5000,分为两个部分前3000元税率为3%,后2000元税率为10%,再把两个部分税额相加即为答案;(3)设1月份收入为x 元,由税额超过了3000×3%+9000×10%=990元,故应纳税所得额超过了12000元,故分为三个部分计算税额,即3000×3%+9000×10%+(x−5000−3000−9000)×20%=3400,解方程杰克求出总收入; (4)由数据得出速算扣除额=上一级最高应纳税所得额×(本级税率−上级税率)+上一级速算扣除数,即可求出m和n 的值.【详解】解:(1)(70005000)3%60-⨯=元;∴1月份纳税60元;(2)30003%(1000050003000)10%290⨯+--⨯=元,∴应纳税290元;(3)设1月份收入为x 元,依题意得,30003%900010%(500030009000)20%3400x ⨯+⨯+---⨯=解得,29050x =.∴1月收入约有29050元.(4)由数据关系可知,300022%900015%130005%2660m =⨯+⨯+⨯=;依题意得,80000(35%)716015160n ⨯-+=解得,45%n =.∴2660m =,45%n =.【点睛】本题考查了一元一次方程的应用,能搞清楚题目中各个量之间的关系是解决问题的关键,这里注意总收入中需要减去5000才是应纳税所得额.21、(2)2a +3 (2)2 (3)可能;第二次从甲筐中取出2只球放入乙筐【分析】(2)根据题意列出代数式即可;(2)根据题意,可得等量关系:乙-甲=2,列出一元一次方程即可得到答案;(3)设第二次,又从甲筐中取出x 只球放入乙筐,找到等量关系:第一次操作后乙+x=2(第一次操作后甲-x),根据题意列出等式,解出即可.【详解】解:(2)由题意可得, 甲筐原来有:(2a+6)个球,乙筐原来有a 个球,第一次操作后,甲筐有:12(2a+6)=(a+3)个球,乙筐有:a+(a+3)=(2a+3)个球, (2)由题意可得,(2a+3)-(a+3)=2,解得,a=2,即a 的值是2.答:第一次操作后乙筐内球的个数比甲筐内球的个数多2只,则a 的值是2.(2)由题意可得,若第二次操作后,乙筐内球的个数可能是甲筐内球个数的2倍,则:设第二次,又从甲筐中取出x 只球放入乙筐.(2a+3)+x=2[(a+3)-x] .解得x=2.检验,当x=2时符合题意.答:可能;第二次从甲筐中取出2只球放入乙筐.【点睛】本题考查列代数式、一元一次方程的应用,解题的关键是明确题意,列出相应的代数式或者方程,会求代数式的值和解方程.22、见解析【分析】首先画射线,然后在射线上依次截取AC =CD =n ,DB =m 可得答案.【详解】解:如图所示:,线段AB =m +2n .【点睛】本题考查了尺规作图——作一条线段等于已知线段,熟记圆规的用法是解决此题的关键.23、原式=11x x -+,当x=0时,原式=﹣1. 【解析】括号内先通分进行分式的加减法运算,然后再进行分式的除法运算,最后选择使分式的意义的x 的值代入进行计算即可得.【详解】原式=()()()()()23422211111x x x x x x x x ⎡⎤+++-÷⎢⎥+-+--⎢⎥⎣⎦ =()()()212·112x x x x x -++-+ =11x x -+, ∵x≠±1且x≠﹣2,∴x 只能取0或2,当x=0时,原式=﹣1.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.24、(1)①90;②t 为3s 或6s 或9s 或18s 或21s 或24s 或27s ;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:180,DPC CPA DPB ∠=︒-∠-∠从而可得答案;②当//BD PC 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当//PA BD 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC DP 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BD 时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BP 时的旋转时间与//PA BD 相同;(2)分两种情况讨论:当PD 在MN 上方时,当PD 在MN 下方时,①分别用含t 的代数式表示,CPD BPN ∠∠,从而可得CPD BPN∠∠的值;②分别用含t 的代数式表示,CPD BPN ∠∠,得到BPN CPD ∠+∠是一个含t 的代数式,从而可得答案.【详解】解:(1)①∵∠DPC =180°﹣∠CPA ﹣∠DPB ,∠CPA =60°,∠DPB =30°,∴∠DPC =180﹣30﹣60=90°,故答案为90;②如图1﹣1,当BD ∥PC 时,∵PC ∥BD ,∠DBP =90°,∴∠CPN =∠DBP =90°,∵∠CPA =60°,∴∠APN =30°,∵转速为10°/秒, ∴旋转时间为3秒;如图1﹣2,当PC ∥BD 时,∵//,PC BD ∠PBD =90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,∵转速为10°/秒,∴旋转时间为21秒,如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC绕点P逆时针旋转的角度为90°,∵转速为10°/秒,∴旋转时间为9秒,如图1﹣4,当PA∥BD时,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,∵转速为10°/秒,∴旋转时间为27秒,如图1﹣5,当AC∥DP时,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC绕点P逆时针旋转的角度为60°,∵转速为10°/秒,∴旋转时间为6秒,AC DP时,如图1﹣6,当//AC DP,//∴∠=∠=︒,DPA PAC90∠+∠=︒-︒+︒=︒,DPN DPA1803090240∴三角板PAC绕点P逆时针旋转的角度为240︒,∵转速为10°/秒,∴旋转时间为24秒,如图1﹣7,当AC∥BD时,∵AC∥BD,∴∠DBP=∠BAC=90°,∴点A在MN上,∴三角板PAC绕点P逆时针旋转的角度为180°,∵转速为10°/秒,∴旋转时间为18秒,当//AC BP时,如图1-3,1-4,旋转时间分别为:9s,27s.综上所述:当t为3s或6s或9s或18s或21s或24s或27s时,这两个三角形是“孪生三角形”;(2)如图,当PD在MN上方时,①正确,理由如下:设运动时间为t秒,则∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,21802,BPN CPD t∴∠=∠=︒-∴1.2 CPD BPN∠=∠②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.当PD在MN下方时,如图,①正确,理由如下:设运动时间为t秒,则∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=230,t-︒∠APN=3t.∴∠CPD=360CPA APN DPB BPN︒-∠-∠-∠-∠()360603301802t t=︒-︒--︒-︒-=90t︒-21802,BPN CPD t∴∠=∠=︒-∴1.2 CPD BPN∠=∠②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.综上:①正确,②错误.【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.。
人教版初中数学第一学期期末模拟七年级数学试卷
D CB A βββααα第一学期期末模拟 七年级数学试卷卷 Ⅰ一、选择题(每小题2分,共20分)1.如果+5表示一个物体向西运动5米,那么-3表示( )A .向南走3米B .向北走3米C .向东走3米D .向西走3米 2.如图,O 为原点,点A 表示的数最接近下列四个数中的( )A .-31 B .-32C .2D .-2 3.如图,把弯曲的道路改直,能够缩短行程,其道理用数学知识解释应是( ) A .两点之间,线段最短 B .两点确定一条直线 C .线段可以大小比较 D .垂线段最短 4.下列说法正确的是( )A .x2 不是整式 B .同位角相等C .若a 2=b 2,则a =b D .绝对值比1小的数有无数个5.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )6.如果要在一条直线上得到6条不同的线段,那么在这条直线上应选几个不同的点( ) A.3个 B.4个 C.5个 D.6个7.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程( ).A .98+x =x -3B .98-x =x -3C .(98-x )+3=xD .(98-x )+3=x -38.设“●、■、▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架也平衡,那么“?”处应放“■”的个数为 ( )(1) (2) (3) A .5个 B .4个 C .3个 D .2个9.在《棋盘上的米粒》故事中,皇帝往棋盘的第1格中放1粒米,第2格中放2粒米,在ADBC第3格上加倍至4粒,…,依次类推,每一格均是前一格的两倍,那么他在第12格中所放的米粒数是( )A .22粒B .24粒C .211粒D .212粒10.钟面角是指时钟的时针与分针所成的角,如果时间从上午6点整到上午9点整,钟面角为90°的情况有( )A .有三种B .有四种C .有五种D .有六种 二、填空题(每小题3分,共30分)11.108000用科学记数法表示是 .12.多项式2x 2y -xy +1的次数是 ,第二项的系数是 .13.如图,直线AB 、CD 相交于点O ,OE ⊥AB ,∠1=120°,则∠COE 的度数为 .(第13题图) (第14题图)14.把一张长方形纸条按图的方式折叠后,量得∠DE B '=100°,则∠CO B '= . 15.已知x =-2是关于x 的方程a 2x = x -b 的解,则整式3-2a 2+b 的值是 . 16.如图,线段AB 和线段CD 的重合部分CB 的长是线段AB 长的三分之一,M 、N 分别是线段AB 和线段CD 的中点,若AB =12cm ,MN =10cm ,则线段AD 的长为 .17 找出以下图形变化的规律,(1) (2) (3) (4) (5) 则第2012个图形中黑色..正方形的数量是 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A)-1; (B)1; (C)3; (D)5.
4.如果a<0,那么下列各式中值为负数的是: ( )
(A)-a; (B)∣a∣; (C)1-a; (D)―(―a)―1.
9. 一张正方形桌子可坐4人,按图中所示的方式将桌子
拼在一起,n张桌子可坐_______人。 其它国家72%
· · · · · ·
· · · · · · ……
八、(7分)若∣a+3∣+(b+1)2=0,代数式的值b-a+m比多1,求m的值?
九、(8分)两条轮船分别从江岸同时开出,它们各自的速度是固定的,第一次相遇在距一岸700米处;相遇后继续前进,到对岸后立即返回(转向时间不计),第二次相遇在距另一岸400米处,求江面的宽是多少米?
6. 计算:(-1)+(-1)2+(-1)3+…+(-1)99+(-1)100=___________.
7. ________________________,叫做两点之间的距离。2%
8. 如图所示的世界人口扇形统计表中, 中国20%
关于中国部分的圆心角的度数为__________。 印度18%
2. =-
六、(6分)某种商品因换季而准备打折出售,如果按定价的八折出售将赔10元,而按定价的九折出售将赚20元。求这种商品的定价是多少?
七、(6分)已知线段AB=10cm,在直线AB上有一点C,BC=4cm,M是线段AC的中点,求AM的长?
(A)3×108; (B)3×107; (C)3×106; (D)0.3×108.
2. 一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是: ( )
(A)120元; (B)125元; (C)135元; (D)140元.
· · · · · ·
10. 刘东以8折的优惠买了一件上衣,省了25元,那么刘东实际花了________元。
三、计算下列各题:(每小题5分,共15分)
1. 0-[-2 -(-4)+(+2)] 2. -25÷(-4)×()2-12(-15+24)3
A
B
C
D
4. 袋中装有红球2个,黄球3个和绿球5个共10个球,每个球除了颜色外都相同,若从上面袋子中任意摸出一个球,则摸到______球的可能性最大。
5. 在下列事件的后面的括号里填上确定事件或不确定事件:
①明天下雨.( ) ②地球围绕太阳转.( )
5. 室内温度是16℃,室外温度是-5℃,室内温度比室外温度高: ( )
(A)-21℃; (B)-11℃; (C)11℃; (D)21℃.
6. 某班共有x个学生,其ห้องสมุดไป่ตู้男生人数占48%,那么女生人数是: ( )
(A)48%x; (B)(1-48%)x; (C); (D)
7. 下列的几何体:①圆柱;②正方体;③棱柱;④球;⑤圆锥;⑥长方体. 在这些几何体中截面可能是圆的有: ( )
(A)2种; (B)3种; (C)4种; (D)5种.
8. 有理数a,b在数轴上的对应位置如图所示,下列结论正确的是: ( )
(A)a+b>0 (B)a-b>0
(C)b-a=0 (D)a-b<0 a 0 b
9.如果∣a∣=2,b=-1,那么∣a+b∣的值为: ( )
(A)1; (B)3; (C)1或3; (D)-1或-3.
10.下列各组式子中,为同类项的是: ( )
(A)3x2y与-5xy2;(B)6x与6x2;(C)-2xy与yx; (D)2x3y4与2x3z4.
二 填空题:(每小题2分,共20分)
1. 一个数的平方是它本身,则这个数是_____________;数轴上与表示-5的点距离为8个单位的点所表示的数为__________________.
2. “m的倒数与-3的差”,用代数式表示为__________________________
3. 如图,图中共有_____条线段,______条射线。
3. (-)2÷(-)×(-1)8-(1+2-3)×24
四 化简:(每小题4分,共8分)
1. (-4x2+2x-8)-( x-1) 2. 2(a2b+ab2)-2(a2b-1)+2ab2-2
五、解方程:(每小题5分,共10分)
1. +x+6=-
七年级数学第一学期期末模拟试卷(一)
班级 姓名 学号 成绩
一、选择题:把下列各题唯一正确的答案的代号填在题后的括号里(每小题2分,共20分)
1. 人类的遗传物质是DNA,人类的DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为: ( )