大数据概念技术27.pptx
大数据ppt课件
• 智慧城市:大数据在智慧城市领域的应用主要包括交通管理、环境监测、公共 安全等方面。通过对城市运行数据的挖掘和分析,政府可以更加准确地掌握城 市运行状况、预测未来发展趋势、制定科学合理的城市规划和管理策略等。
数据存储与处理技术的发展趋势
如数据湖、数据仓库等技术的融合和发展,以及 AI技术在数据存储和处理领域的应用。
03
大数据采集与预处 理
数据采集方法与技术
网络爬虫技术
通过模拟浏览器行为,自动抓 取网页数据。
API接口调用
利用应用程序编程接口,获取 结构化数据。
数据流捕获
实时监听和捕获数据流中的数 据。
自然语言处理
利用深度学习技术处理文 本数据,如情感分析、机 器翻译等。
05
大数据可视化技术 与实践
数据可视化原理与方法
数据映射原理
将数据映射到视觉元素(如颜色 、形状、大小等),通过视觉感 知呈现数据的内在结构和规律。
数据驱动的图形渲
染
利用计算机图形学技术,根据数 据特征动态生成图形图像,实现 数据的直观展示。
交互与动态展示
提供丰富的交互手段(如拖拽、 缩放、筛选等),支持数据的动 态更新和实时展示,增强用户体 验。
常见数据可视化工具介绍
Tableau
功能强大的数据可视化工具,支持多种数据源连接,提供丰富的图 表类型和自定义选项。
Power BI
微软推出的商业智能工具,集成了数据查询、建模和可视化功能, 易于上手且具有丰富的可视化效果。
大数据介绍ppt
大数据的价值与影响
01
价值
02
商业价值:通过大数据分析,企业可以更准确地了 解市场需求,优化产品和服务。
03
社会价值:政府和企业可以利用大数据提高公共服 务和决策效率。
大数据的价值与影响
• 个人价值:大数据也可以帮助个人更好地了解自己和他人 。
大数据的价值与影响
影响 经济影响:大数据产业已经成为全球经济的重要组成部分。
医疗资源优化
通过分析医疗资源的使用数据,优化医疗资源的 配置和调度,提高医疗效率和质量。
金融投资
1 2
市场预测
通过对历史市场数据的挖掘和分析,预测市场走 势和未来趋势,为投资决策提供支持。
风险管理
通过对金融数据的分析和建模,识别和评估潜在 的风险因素,为风险管理提供依据。
3
客户画像
通过对客户数据的挖掘和分析,了解客户的投资 偏好和风险承受能力,为个性化服务提供支持。
数据完整性
由于数据丢失、篡改等原因,数据完整性难以保证,需要采用数据 校验和恢复技术。
数据可信度
由于数据造假、欺骗等问题,数据可信度受到挑战,需要建立数据 信任机制。
数据处理与分析效率问题
数据存储与处理
大数据量巨大,需要高效的数据 存储和处理技术,如分布式存储 、并行计算等。
数据查询与分析
大数据查询和分析需要快速响应 和高效处理,需要采用实时计算 、流式计算等技术。
数据安全与隐私保护
数据安全
通过加密技术、访问控制和安全审计等手段,确保大数据的 安全性和完整性。
隐私保护
在处理大数据时,需要遵守隐私保护原则,保护个人隐私和 敏感信息,避免数据泄露和滥用。
03
大数据应用领域
大数据培训课件pptx
基于大数据分析的市场趋势预测,可以帮助投资者制定更科学的投 资策略。
反欺诈检测
利用大数据技术,金融机构可以实时监测交易行为,有效识别并预防 金融欺诈行为。
医疗行业大数据应用案例分享
个性化医疗
通过分析患者的历史数据和基因信息,医生可以为患者提供个性 化的治疗方案。
流行病预测
基于大数据分析,医疗机构可以预测流行病的传播趋势,提前制定 防控措施。
数据处理技术
数据处理技术是对数据进行采集、存储、检索、加工、 变换和传输的技术。数据处理的基本目的是从大量的、 可能是杂乱无章的、难以理解的数据中抽取并推导出对 于某些特定的人们来说是有价值、有意义的数据。数据 处理是系统工程和自动控制的基本环节。数据处理贯穿 于社会生产和社会生活的各个领域。数据处理技术的发 展及其应用的广度和深度,极大地影响了人类社会发展 的进程。
数据可视化案例分析
商业智能应用
01
通过数据可视化展示企业的销售、库存、财务等数据,帮助企
业决策者更好地了解企业运营情况。
智慧城市应用
02
利用数据可视化技术展示城市的交通、环境、安全等数据,为
城市规划和管理提供有力支持。
医疗健康应用
03
通过数据可视化展示病人的病历、检查结果、用药情况等数据
,为医生和病人提供更好的医疗服务和健康管理。
大数据采集与预处
03
理
数据采集方法与技术
01 02
网络爬虫技术
通过模拟浏览器行为,自动抓取互联网上的数据。包括通用爬虫和聚焦 爬虫两种类型,前者用于大规模网页数据抓取,后者针对特定主题或网 站进行数据抓取。
API接口调用
通过调用网站或应用提供的API接口,获取结构化数据。这种方式需要 了解目标API的调用方式和数据格式。
大数据的介绍PPT课件
所谓大数据,是一个综合性概念,它包括: (1)因具备3V特征而难以进行管理的数据 (2)对这些数据进行存储、处理、分析的技术 (3)以及能够通过分析这些数据获得实用意义和观点的人才和组织
9
麻省理工与通货紧缩预测软件
美国劳工统计局的人员每个月都要公布消费物价指数(CPI),这是用来测试通货膨 胀率的。
30
VISA&MasterCard与商户推荐
像VISA和MasterCard这样的信用卡发行商,它们能够从自己的服务网获取更多的 交易信息和顾客的消费信息
它们的商业模式从单纯的处理支付行为转变成了收集数据
一个称为MasterCard Advisors的部门收集和分析了来自210个国家的15亿信用卡 用户的650亿条交易记录,用来预测商业发展和客户的消费趋势。然后,它把这些分 析结果卖给其他公司
5
大数据的典型特征(3V)
Volume(容量) 现在基本上是指从几十TB到几PB这样的数量级,未来,可能只有几EB数量级的数
据量才能称得上是大数据了。(1T=1024G,1P=1024T) Variety(多样性)
结构化和非结构化数据 Velocity(速度)
数据产生和更新的频率
6
广义的大数据
如数据代理益百利旗下的网页流量测量公司Hitwise,让客户采集搜索流量来揭示消 费者的喜好。
14
物联网
物联网(Internet of Things,缩写IOT)是一个基于互联网、传统电信网等信息承载 体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。
在物联网上,每个人都可以应用电子标签将真实的物体上网联结,在物联网上都可 以查找出它们的具体位置。
疾控中心得到流感方面的信息往往会有一两周的滞后,这种滞后导致公共卫生机构 在疫情爆发的关键时期反而无所适从。
大数据技术及应用教学课件第1章-大数据技术概述
大数据技术及应用
Big Data Technology and Application
目录
CONCENTS
第1章 大数据技术概述 第2章 大数据采集与预处理 第3章 大数据存储技术 第4章 大数据分析挖掘-分类 第5章 大数据分析挖掘-回归
目录
CONCENTS
cont.
第6章 大数据分析挖掘-聚类 第7章 大数据分析挖掘-关联规则 第8章 大数据可视化技术 第9章 电信行业大数据应用 第10章 其他行业大数据应用
的纷繁复杂,而不再追求精确性;最后,不再探
求难以捉摸的因果关系,转而关注事物的相关关
系。
• —— Viktor Mayer-Schönberger
2 大数据技术
ห้องสมุดไป่ตู้
用户
企业
政府机构
科研部门
数据展现
数据分析
数据存储 与管理
数据可视化
传统技 术
数据挖掘
机器学习
数理统计
云计算技 术
并行计算
实时计算与流式计算
第1章
大数据技术概述
主要内容
01
什么是大数据
02
大数据技术
03
大数据应用
1 什么是大数据?
大数据是需要新处
大数据是指大小超 出传统数据库工具
01
理模式才能具有更 强的决策力、洞察
的获取、存储、管
发现力和流程优化
理和分析能力的数 据集。 —麦肯锡
04
能力的海量、高增
02
长率和多样化的信 息资产。 —Gartner
数据规约
在不损害挖掘结果准确性的前 提下, 通过有效的数据采样和 属性选择, 缩小数据集的规模, 提高数据挖掘的效率。
大数据介绍课件
大数据介绍课件随着现代科技的迅猛发展,大数据已成为人们日常生活中不可或缺的一部分。
在各个行业中,大数据的应用越来越广泛,对于企业的发展和决策起到了至关重要的作用。
本课件将详细介绍大数据是什么以及它在不同领域中的应用和重要性。
一、什么是大数据大数据可以理解为海量、多样化的数据集合,无法使用传统的数据处理工具进行处理和分析。
大数据的特点主要有以下几点:1. 数量庞大:大数据集合包含数量庞大的数据,这些数据往往以TB(1TB=1024GB)和PB(1PB=1024TB)为单位。
只有通过大数据分析工具,才能处理和管理这样大量的数据。
2. 类型多样:大数据包含了结构化数据(如关系型数据库中的数据)和非结构化数据(如社交媒体中的帖子、图片和视频等),还包括文本、音频、视频等多种形式。
3. 时效性强:大数据的特点之一是时效性强,数据的产生速度很快,并且需要在短时间内进行快速地分析和响应。
二、大数据的应用领域1. 零售业:大数据分析可以帮助零售业预测消费者的购买行为和需求,并根据数据分析结果优化商品陈列、定价策略和促销活动,提升销售额和利润空间。
2. 金融行业:对金融交易数据的分析可以帮助银行和金融机构发现潜在的欺诈行为和风险,提高风险管理水平,并通过数据分析提供更精准的金融服务和产品。
3. 健康医疗:通过大数据分析可以挖掘医疗数据中的隐藏信息,帮助医疗机构更好地管理患者数据、提高临床决策的准确性,并促进疾病的早期预测和预防。
4. 交通运输:大数据分析可以提供交通流量的实时信息和交通拥堵预测,帮助交通管理部门优化交通流动,提高交通效率,减少交通事故发生率。
5. 媒体和广告:通过大数据分析可以对用户的兴趣、行为和需求进行深入了解,从而为媒体和广告商提供精准的广告投放和个性化推荐服务。
三、大数据的重要性大数据的出现对企业和社会产生了深远的影响,具有以下重要性:1. 战略决策:通过大数据分析,企业可以获取更全面、准确的市场数据和消费者提供的信息,有助于企业制定更科学的战略决策和发展规划。
大数据ppt(数据有关文档)共30张
利用流处理技术,实时采集数据源中的数 据。
网络爬虫技术
通过编写爬虫程序,从互联网上抓取指定 网站的数据。
API接口调用
通过调用第三方提供的API接口,获取相 关数据。
数据清洗与预处理
数据清洗
去除重复数据、处理缺失值、异常值 检测与处理、文本清洗(如去除停用 词、特殊符号等)。
数据转换
将数据转换成适合分析的格式,如将 文本数据转换为数值型数据。
常见的NoSQL数据库 列举几种常见的NoSQL数据库,如MongoDB、 Cassandra、Redis等,并简要介绍它们的特点 和应用场景。
NoSQL数据库的选择与使用 探讨如何根据实际需求选择合适的NoSQL数据 库,并给出使用NoSQL数据库的一般步骤和注 意事项。
数据仓库与数据挖掘技术
数据仓库概述
Tableau
专业的数据可视化工具,支持拖拽式操作和 丰富的图表类型。
Python可视化库
如Matplotlib、Seaborn等,提供强大的数 据可视化功能,可定制化程度高。
05
大数据在各领域应用案例
金融行业应用案例
01
风险管理与合规
利用大数据分析技术,金融机构可以更准确地评估和管理风险,提高合
的后盾支持。
大数据发展趋势
实时性要求更高
随着业务需求的不断变化,对大数据实时 性要求越来越高。
数据安全备受关注
大数据的快速增长使得数据安全问题日益 凸显,如何保障数据安全成为重要议题。
与人工智能深度融合
大数据与人工智能技术的深度融合将推动 智能化应用的快速发展。
行业应用不断拓展
大数据在各行各业的应用将不断拓展,为 行业转型升级提供有力支持。
大数据培训课件pptx
将处理后的数据以易于理解的方式呈 现给用户,如仪表板、报告等。
Part
03
大数据工具与平台
Hadoop生态系统
Hadoop分布式文件系统(HDFS)
提供高可靠性的数据存储,支持大规模数据集。
MapReduce编程模型
用于处理和生成大数据集,通过映射和规约操作实现。
Hive数据仓库工具
提供数据汇总、查询和分析功能。
大数据的来源与类型
总结词
大数据的来源和类型
详细描述
大数据的来源主要包括互联网、物联网、社交媒体、企业数据库等。根据不同的 分类标准,大数据可以分为结构化数据、非结构化数据、时序数据、地理空间数 据等类型。
大数据的应用场景
总结词
大数据的应用场景
详细描述
大数据在各个领域都有广泛的应用,如商业智能、金融风控、医疗健康、智慧城市、科研等。通过大 数据分析,可以挖掘出海量数据中的有价值信息,为决策提供科学依据,提高企业的竞争力和创新能 力。
01
大数据可以帮助企业实时监测设备运行状态,预测设备维护需
求。
智能物流与供应链管理
02
大数据可以提高物流和供应链管理的智能化程度,优化资源配
置。
智能家居与智慧城市
03
大数据可以为智能家居和智慧城市建设提供数据支持和分析服
务。
大数据面临的挑战与解决方案
1 2
数据安全与隐私保护
加强数据安全和隐私保护技术的研究和应用,如 加密技术、匿名化处理等。
在数据丢失或损坏时,通过备份数据快速恢复数据,确保业务的连续性。
隐私保护法律法规与标准
法律法规
了解和遵守相关法律法规,如《个人信息保 护法》等,确保大数据处理合法合规。
(完整版)大数据介绍ppt
定义
大数据是指在传统数据处理软件难以处理的庞大的、复杂的数据集。这些数据可 以是结构化的,如数据库里的表格,也可以是非结构化的,如社交媒体上的文字 或图片。
大数据通常涉及对海量数据的采集、存储、管理和分析,以发现数据背后的规律 和趋势,从而帮助企业和组织做出更好的决策。
特性:4V(体量、速度、多样性和价值)
传感器
各种传感器在工业生产、环境监测等领域中广泛应用,能 够实时监测和收集各种数据,如温度、湿度、压力等。
生成方式
社交网络
用户在社交媒体上的互动行为 ,如发布动态、点赞、评论等 ,以及社交网络中的用户关系
数据。
电子商务
在线购物平台上的商品浏览、 添加购物车、下单等行为,以 及用户的购买记录和偏好数据 。
数据治理与元数据管理
加强数据治理和元数据管理,确保数据的统一管理和有效利用。
PART 06
大数据未来发展趋势与展 望
人工智能与大数据的融合
人工智能与大数据的融合将进一步加深,通过数据挖掘、机 器学习和深度学习等技术,实现更高效的数据处理和分析, 为各行业提供更智能的决策支持。
人工智能将进一步提高大数据的处理速度和准确性,同时大 数据也将为人工智能提供更丰富、更真实的训练数据,促进 人工智能技术的不断进步。
疾病诊断与预测
通过分析患者的医疗记录、生理数据 等,辅助医生进行疾病诊断,同时预 测疾病发展趋势和预后情况。
金融
风险评估
通过对企业的财务数据、市场数据等 进行深度分析,评估企业的信用风险 和投资风险,帮助金融机构做出更明 智的决策。
欺诈检测
投资策略
通过分析市场数据、经济数据等,制 定更有效的投资策略和风险管理方案 ,提高投资回报率。
大数据技术入门ppt课件模板
MLlib:提供机器学 习算法库,支持分 类、回归、聚类等 常见机器学习任务
Flink生态系统
01
Flink是一个开源的分布式流处理 02
Flink生态系统包括Flink Core、
框架,用于处理大规模、低延迟的
Flink SQL、Flink Streaming、
数据流。
Flink Machine Learning等组件。
和隐私保护得到有效保障
数据可视化与交互技术的创新发展
数据可视化:将复杂数据转化为直观易懂的图表, 便于分析与决策
交互技术:通过人机交互,实现数据与信息的实 时交互与反馈
创新点:结合大数据技术,实现数据可视化与交 互技术的智能化、个性化和实时化
应用领域:广泛应用于金融、医疗、教育、交通 等领域,提高工作效率和决策质量
实时数据流
02
StormSQL:基 于Storm的实时 计算工具,支持
SQL查询
03
应用场景:实时 数据处理、实时 分析、实时监控
等
04
特点:高可用性、 高扩展性、低延
迟、高吞吐量
HBase、Cassandra等分布式存储系统
HBase:基于 Hadoop的分布式数 据库,适用于大规模 结构化数据存储
数据处理:金融风控预警系统需 要对采集到的数据进行清洗、转 换、整合等处理,为风险评估提 供高质量的数据。
预警机制:金融风控预警系统需 要根据风险评估结果,设定预警 阈值,一旦风险超过阈值,系统 将自动发出预警信息,提醒相关 部门采取措施。
智能交通管理系统
01
实时监控:通过大数据技术, 实时监控道路交通状况,提 高实时性:大数据技术需要处理海量数据,实时性 是提高数据处理效率的关键。
大数据简介PPT课件
通过任务重试和失败转移等机制,确保计算任务的可靠性。
分布式数据库HBase
列式存储
支持高效的数据压缩和快速的数据访问。
可扩展性
可线性扩展存储和计算能力,满足大规模数据处理需求。
实时性
提供实时的数据读写能力,支持在线事务处理。
数据仓库Hive
数据建模
支持复杂的数据结构和数据类型,满足多样 化的数据分析需求。
提升数据处理和分析能力
企业应不断提升自身的数据处理和分析能力 ,充分挖掘大数据的潜在价值。
培养大数据人才
企业应积极培养具备大数据技能和专业素养 的人才,为大数据应用提供有力支持。
THANKS FOR WATCHING
感谢您的观看
理技术和工具。
成熟期
03
2013年至今,大数据技术逐渐成熟,应用领域不断拓展,成为
推动社会进步的重要力量。
大数据应用领域
• 金融行业:大数据在金融领域的应用主要包括风险管理、客户分析、投资决策等方面。通过对海量数据的挖掘 和分析,金融机构可以更加准确地评估风险、了解客户需求、制定投资策略等。
• 医疗行业:大数据在医疗领域的应用主要包括疾病预测、个性化治疗、医疗资源优化等方面。通过对医疗数据 的挖掘和分析,医疗机构可以提高疾病预测的准确性、实现个性化治疗、优化医疗资源配置等。
数据可视化技术
将数据以图形、图像等形式展现出来 ,帮助用户更直观地理解数据和分析 结果。
04 大数据存储与管理
分布式存储原理及实践
分布式存储概念
介绍分布式存储的定义、特点及其与传统存储的区别 。
分布式存储架构
详细阐述分布式存储的架构,包括数据分布、副本管 理、一致性协议等关键技术。
大数据基本介绍ppt课件(2024)
包括数据清洗、数据集成、数据 变换和数据规约等步骤,为后续 的数据分析和挖掘提供高质量的
数据。
2024/1/30
数据挖掘算法
如分类、聚类、关联规则挖掘、时 间序列分析等,用于发现数据中的 潜在规律和模式。
数据可视化技术
将数据以图形或图像的形式展现出 来,帮助用户更直观地理解数据和 分析结果。
11
2024/1/30
03
大数据基础设施建设
12
云计算平台构建
2024/1/30
云计算平台架构
包括IaaS、PaaS、SaaS等层次,提供弹 性可扩展的计算、存储、网络等资源。
虚拟化技术应用
通过虚拟化技术实现资源的池化、动态分 配和高效利用。
容器化技术
采用Docker等容器化技术,实现轻量级 、快速部署的应用运行环境。
15
2024/1/30
04
大数据在各行业应用案例
16
金融行业应用案例
2024/1/30
风险管理与合规
利用大数据分析技术,金融机构可以更有效地识别、评估和监控 风险,确保合规经营。
客户洞察
通过分析客户行为、偏好和交易数据,金融机构可以提供更个性 化的产品和服务,提高客户满意度。
信贷评估
大数据可以帮助金融机构更准确地评估借款人的信用状况,降低 信贷风险。
13
数据中心建设与运维
数据中心选址与设计
考虑地质、气候、能源等因素,进行 科学合理的选址和设计。
智能化运维管理
运用人工智能、大数据等技术,实现 数据中心的智能化运维管理,提高运 维效率和质量。
高可用性与容灾备份
采用冗余设计、负载均衡等技术手段 ,确保数据中心的高可用性和容灾备 份能力。
《大数据的介绍》课件
大数据的优势和应用场景
大数据的优势包括帮助企业做出数据驱动的决策、提供个性化的用户体验以 及改进产品和服务等。应用场景涵盖金融、医疗、教育等多个领域。
大数据的工具与技术
大数据的工具与技术包括Hadoop、Spark、NoSQL数据库、数据挖掘和机器学 习等,用于存储、处理和分析海量数据。
云计算与大数据的关系
大数据分析流程
大数据分析流程包括数据收集、数据清洗、数据处理、数据分析和数据可视 化等环节,帮助企业从数据中获得有价值的信息。
大数据可视化与呈现
通过数据可视化工具和技术,将大数据转化为易于理解和交互的图表和可视 化形式,帮助人们更好地理解和应用数据。
大数据与人工智能结合发展趋 势
大数据和人工智能相互促进,人工智能的发展需要大数据支持,而大数据的 分析也可以为人工智能提供更有力的决策依据。
பைடு நூலகம்
大数据的安全问题
大数据的安全问题涉及数据泄露、数据篡改、非法数据收集和使用等,需要 进行有效的数据保护措施。
大数据的隐私保护
在大数据时代,保护个人隐私是一项重要的任务。合规合法的数据收集和隐私保护是确保大数据 发展可持续的关键。
大数据的伦理考虑
在利用大数据时,需要考虑伦理和道德问题,包括数据使用的透明性、公平 性以及数据收集和使用的合规性。
大数据的教育应用和创新实践
大数据在教育领域的应用和创新实践能够提升教学质量、个性化学习和教育 管理的效果,推动教育的改革和创新。
大数据的行业应用:金融、医 疗、教育等
大数据在金融、医疗、教育等行业有着广泛的应用,可以帮助提高风控能力、 优化医疗资源分配和个性化教育等。
大数据与智慧城市的建设
大数据在智慧城市的建设中起着重要的作用,通过数据的整合和分析,实现城市的智能化管理和 优化。
大数据的概念及相关技术
一.大数据的概念大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
“大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。
二.大数据的相关技术1.大数据采集技术数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。
重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。
必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。
2.大数据预处理技术主要完成对已接收数据的辨析、抽取、清洗等操作。
1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。
2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据引领我们走向数据智能化时代
目录
大数据的定义理解 相关技术与应用
机遇与挑战
一
大数据的定义理解
大数据的定义理解
1
大数据时代的背景 Dada大
什么是大数据
Hale Waihona Puke 2大数据的“4V”特征
3
大数据的构成
大数据时代的背景
“大数据”的诞生:
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的 程度。它不仅使世界充斥着比以往更多的信息,而且其增长速度也在加快。信息爆炸的学科如天文学 和基因学,创造出了“大数据”这个概念*。如今,这个概念几乎应用到了所有人类智力与发展的领域 中。
年…
每天亚马逊上将产生 6.3 百万笔订单… 每个月网民在Facebook 上要花费7 千亿分钟,被移动互联网使用者发送和接收的数据高达1.3EB… Google 上每天需要处理24PB 的数据…
大数据时代到来
数据量增加
数据结构日趋复杂
大量新数据源的出现则导致了非结构化、半结构化数据 爆发式的增长
• 结构化数据:
• 统计和分析:A/B test; top N排行榜;地域占比; 海量数据的查询、统计、更新等操作效率低
文本情感分析
• 非结构化数据
• 数据挖掘:关联规则分析;分类;聚类
图片、视频、word、pdf、ppt等文件存储
• 模型预测:预测模型;机器学习;建模仿真
不利于检索、查询和存储
海量数据处理: 大数据的涌现已经催生出了设计用于数据密集型处理的 架构。例如具有开放源码、在商品硬件群中运行的 Apache Hadoop。
大数据要解决的问题
Streams Real time Near time
Batch
Velocity 快速的数据流转
Value
Structured
Unstructured
实时分析而非批量式分析
“大量速化(度VoVluemloe)c、it多y 样化(Va数立rie据竿ty输见)、入影快、而速处非化理事(V与后elo丢见ci弃效ty)、价值密度低(Value)”就是
“大数据”的显著特征,或者说,只有具备这些特点的数据,才是大数据。
大数据的构成
大数据包括: 交易数据和交互数据 集在内的所有数据集
体量Volume 多样性Variety
非结构化数据的超大规模和增长 总数据量的80~90% 比结构化数据增长快10倍到50倍 是传统数据仓库的10倍到50倍
大数据的异构和多样性 很多不同形式(文本、图像、视频、机器数据) 无模式或者模式不明显 不连贯的语法或句义
价值密度Value
大量的不相关信息 对未来趋势与模式的可预测分析 深度复杂分析(机器学习、人工智能Vs传统商务智 能(咨询、报告等)
…
facebook 社交网络
电子商务
淘宝、 ebuy
…
…
微博、 Apps
移动互联
21世纪是数据信息大发展的时 代,移动互联、社交网络、电子商务 等极大拓展了互联网的边界和应用范 围,各种数据正在迅速膨胀并变大。
互联网(社交、搜索、电商)、移动 互联网(微博)、物联网(传感器, 智慧地球)、车联网、GPS、医学影 像、安全监控、金融(银行、股市、 保险)、电信(通话、短信)都在疯 狂产生着数据。
根据IDC 监测,人类产生的数据量正在呈指数级增
长,大约每两年翻一番,这个速度在2020 年之前会
继续保持下去。这意味着人类在最近两年产生的数
据量相当于之前产生的全部数据量
TB
PB
EB
ZB
▪ 这些由我们创造的信息背后产生的这些数据早已经远远超越了目前人力所能处理的范畴 ▪ 大数据时代正在来临..
大数据的4V特征
Big Data名词由来
2011年5 月,在“云计算相遇大数据” 为主题的EMC World 2011 会议中,EMC 抛出了Big Data概念
20世纪90年代,数据仓库之父的Bill Inmon就经常提及Big Data
大数据时代到来
新的时代,人们从信息的被动接受者变成了主动创造者
全球每秒钟发送 2.9 百万封电子邮件,一分钟读一篇的话,足够一个人昼夜不息的读5.5 年… 每天会有 2.88 万个小时的视频上传到Youtube,足够一个人昼夜不息的观看3.3 年… 推特上每天发布 5 千万条消息,假设10 秒钟浏览一条信息,这些消息足够一个人昼夜不息的浏览16
大数据 = 海量数据 + 复杂类型的数据
海量交易数据: 企业内部的经营交易信息主要包括联机交易数据和联机 分析数据,是结构化的、通过关系数据库进行管理和访 问的静态、历史数据。通过这些数据,我们能了解过去 发生了什么。
海量交互数据: 源于Facebook、Twitter、LinkedIn及其他来源的社交 媒体数据构成。它包括了呼叫详细记录CDR、设备和传 感器信息、GPS和地理定位映射数据、通过管理文件传 输Manage File Transfer协议传送的海量图像文件、 Web文本和点击流数据、科学信息、电子邮件等等。可 以告诉我们未来会发生什么。
大数据技术将被设计用于 在成本可承受 (economically)的条件 下,通过非常快速 (velocity)的采集、发现 和分析,从大量化 (volumes)、多类别 (variety)的数据中提取 价值(value),将是IT 领 域新一代的技术与架构
一些相关技术
➢ 分析技术:
➢ 存储
• 数据处理:自然语言处理技术
• 半结构化数据
转换为结构化存储
按照非结构化存储
➢ 大数据技术:
➢ 解决方案:
• 数据采集:ETL工具 • 数据存取:关系数据库;NoSQL;SQL等 • 基础架构支持:云存储;分布式文件系统等 • 计算结果展现:云计算;标签云;关系图等
• Hadoop(MapReduce技术) • 流计算(twitter的storm和yahoo!的S4)
TB
Semi-structured
PB
All the above
EB
Variety 多样的数据类型
巨大的数据价值
Volume 海量的数据规模
二
相关技术与应用
相关技术
相关技术
1
大数据时代的背景相关技术
大数据怎么用 2
云计算与大数据
3
大数据领的应用
什么是Big Data技术
企业用以分析的数据越全面,分析的结果就越接近于真实。大数据分析意味着企业能够从 这些新的数据中获取新的洞察力,并将其与已知业务的各个细节相融合