两级直接耦合放大电路
7 两级阻容耦合放大电路PCB图单面板设计

实验七、两级阻容耦合三极管放大电路 PCB 图单面板设计一、实验目的1.学会元件封装的放置2.熟练掌握 PCB 绘图工具3.熟悉单面板面印制板的手工布局、布线二、实验内容根据图 7-1设计和编辑两级阻容耦合三极管放大电路的PCB 图。
+VCC图 7-1 两级阻容耦合三极管放大电路的 PCB 图三、实验步骤1.启动 Protel 99 SE PCB,新建文件“ 两级阻容耦合三极管放大电路.PCB ”,进入 PCB 图编辑界面。
如图7-2所示.2.装入制作 PCB 时比较常用的元件封装库,如 Advpcb.ddb 或者Miscellaneoux.ddb 等。
(1) 单击“Browse PCB”按钮,进入PCB编辑界面;在PCB编辑器窗口内,单击“Browse”(浏览)窗内的下拉按钮,选择“Libraries”(元件封装图形库)作为浏览对象。
(2) 如果元件库列表窗内没有列出所需元件封装图形库,如PCB Footprints.lib,可单击“Add/Remove”按钮。
在如图7-3所示的“PCB Libraries”窗口内,不断单击“搜寻(I)” 下拉列表窗内目录,将Design Explorer 99\Library\PCB\Generic Footprints目录作为当前搜寻目录,在PCB库文件列表窗内,寻找并单击相应的库文件包,如Advpcb. ddb,再单击“Add”按钮,即可将指定图形库文件加入到元件封装图形库列表中,然后再单击“OK”按钮,退出如图7-3所示的“PCB Libraries”窗口。
图7-2 PCB编辑界面3.放置元件封装及其他一些实体,并设置元件属性、调整元件位置。
表 9 给出了该电路所需元件的封装形式、标号及所属元件库。
在PCB编辑器中,放置元件的操作过程如下:图7-3 PCB库文件列表窗(1) 单击“放置”工具栏内的“放置元件”工具,在如图7-4所示“Place Component”的窗口内,直接输入元件的封装形式、序号和注释信息。
第3章 直接耦合放大电路和集成运算放大器

+ u i1
Rid 2 Rb rbe -
(4)输出电阻
Ro 2Rc
+
ui2
_ReV
-
EE
2. 双端输入单端输出
(1)差模电压放大倍数
Aud
Rc 2Rb
//
RL rbe
+VCC
Rc
Rc
+
这种方式适用 于将差分信号转换
Rb T1 RL
uo1 -
T2 Rb
为单端输出的信号。 +
-
R3
R2 R1
流电阻并不大。
_
V EE
恒流源使共模放大倍数减小,而
不影响差模放大倍数,从而增加
共模抑制比。
3.2.4 差动放大电路的四种接法
差动放大器共有四种输入输出方式:
1. 双端输入、双端输出(双入双出) 2. 双端输入、单端输出(双入单出) 3. 单端输入、双端输出(单入双出) 4. 单端输入、单端输出(单入单出)
用于衡量差分放大对管输入电流的大小。
IIB
1 2
IB1 IB2
4.开环差模电压放大倍数 Aod :
无反馈时的差模电压增益。
一般Aod在100~120dB左右,高增益运放可达140dB以上。
Au = 10000
若输出有1 V的漂移
电压 。
+
ui
则等效输入有100 —
Rc1 Rb1
T1 Re1
Re2
+ VCC
+u o T2
- VEE
uV的漂移电压
等效 100 uV
漂移
3. 减小零漂的措施
两级放大器的四种耦合方式

两级放大器的四种耦合方式
两级放大器的四种耦合方式包括:
1. 阻容耦合方式:后级放大器的输入端通过电容与前级放大器的输出端相接。
阻容耦合放大电路具有两级放大器的直流工作点互不影响、放大倍数高、信号传输损耗小等优点,但也存在不能放大直流信号和结构相对复杂、不便于集成等缺点。
2. 直流耦合:把放大器的输出电路与其他电路完全相连接,从而使放大器在输出信号时,其接收电路的端口可以共同体现出信号的“直流”特性。
3. 移相耦合:放大器利用信号的相位变化来进行耦合,通常用于振荡器和滤波器等。
4. 变容耦合:利用电容的容量变化来实现信号的耦合,通常用于调频和调相等应用。
以上信息仅供参考,如有需要,建议咨询专业技术人员。
两级阻容耦合放大电路设计与仿真

两级阻容耦合放大电路设计与仿真阻容耦合放大电路是一种经典的放大电路结构,常用于放大小信号。
其基本原理是利用电容器和电阻的耦合作用,实现信号的放大和增强。
在设计阻容耦合放大电路时,需要考虑电路的增益、频率响应、稳定性等方面的问题。
下面将以两级阻容耦合放大电路为例,进行设计和仿真。
1.电路结构设计首先,我们需要确定电路的结构图和参数。
两级阻容耦合放大电路由两个放大级组成,每个放大级包括一个晶体管和相应的偏置电路。
可以选择晶体管的类型,比如常用的BJT三极管或MOSFET场效应管。
偏置电路可以采用基准电源或稳流源等方式。
2.电路参数计算在确定电路结构之后,需要计算每个电路元件的参数。
比如晶体管的放大系数、偏置电流,电容器的容值等。
这些参数的选择和计算需要根据具体的应用需求来确定,可以参考相关的电路设计手册或者仿真软件。
3.电路仿真在进行实际的电路设计之前,可以使用电路仿真软件进行仿真。
通过仿真,可以验证电路的性能和参数的正确性,发现问题并进行调整。
常用的电路仿真软件有Cadence SPICE、LTSpice等。
4.电路布局与PCB设计在完成电路的仿真之后,可以进行电路的布局和PCB设计。
在布局过程中,需要考虑电路的相互干扰、阻抗匹配等问题,以确保电路的可靠性和稳定性。
PCB设计需要绘制电路的电路板图,安排元件的布局和连接方式,并进行元件的焊接和布线。
5.电路调试与性能测试完成PCB设计之后,可以进行电路的调试和性能测试。
通过调试,可以检查电路的工作状态和性能是否符合设计要求。
可以使用示波器、信号发生器等测试设备对电路进行测试,得到电路的增益、频率响应等参数。
通过上述步骤,可以完成两级阻容耦合放大电路的设计和测试。
可以根据实际的应用需求和设备要求进行参数选择和调整,以获得满足要求的电路性能和工作效果。
两级阻容耦合放大电路

两级阻容耦合放大电路一、 实验目的(一) 学习两级阻容耦合放大电路静态工作点的调整方法。
(二) 学习两级阻容耦合放大电压放大倍数的测量方法。
(三)学习放大电路频率性的测量方法。
二、知识要点(一)多级放大器有三种耦合方式,即直接耦合、阻容耦合、变压器耦合。
本实验讨论阻容耦合。
(二)多级放大器的主要参数 1、电压放大倍数在多级放大器中,由于各级之间是串联起来的,后一级的输入电阻是前一级的负载,所以多级放大器的总电压放大倍数等于各级放大器倍数乘积,即vn v v v A •A =A A ••L L 21本实验讨论两极放大器。
注意:各级的放大倍数已考虑前后级的相互影响,两级阻容耦合放大器中1111-be 'L v r R β=A ×,2222-be 'L v r R β=A ×由于 212121'1i C i C i C L +r R r R =//r =R R ×,L C L C L C L +R R R R =//R =R R 222'2×222be2222r b be b b be i +R r R =//R =r r ×,22212221122B B B B B B b +R R R R =//R =R R ×通常由于 b be R r <<2及cT i R r <<2 ,所以有1111be be b i r //r =R r ≈,2222≈be be b i r //r =R r2221'1be i i C L r r //r =R R ≈≈所以,1'221221221-()-(be L be 'L be be v v v r R ββr R βr r βA =A A =•=•2、输入输出电阻两级放大器输入电阻就是第一级(输入级)的输入电阻,即1be111≈//R be b i i r r =R R >两级放大器输出电阻就是第二级(输出级)的输出电阻,即cn n =R =R R 00 即 2200c =R =R R3、频率响应特性放大器在低频或高频时,放大器的信号达不到预期的要求,而造成放大器低频或高频时的放大性能变差。
两级阻容耦合放大电路实验报告

两级阻容耦合放大电路实验报告两级阻容耦合放大电路实验报告引言:阻容耦合放大电路是一种常用的放大电路结构,广泛应用于各种电子设备中。
本实验旨在通过搭建两级阻容耦合放大电路并进行测量,研究其放大特性和频率响应。
实验步骤:1. 搭建电路:根据实验要求,搭建两级阻容耦合放大电路。
电路中包括两个放大器级别,其中第一个级别为共射放大器,第二个级别为共集放大器。
合理选择电阻和电容值,以满足放大要求。
2. 连接信号源:将信号源与电路输入端相连,确保信号源输出正常。
注意保持输入信号的幅度适中,避免过大或过小。
3. 测量电路参数:使用示波器测量电路的输入和输出信号波形,记录幅度和相位差。
同时,使用万用表测量电路中各个元器件的电压和电流值。
4. 测量频率响应:改变输入信号的频率,测量输出信号的幅度变化。
记录幅度变化的曲线,并分析其特性。
5. 分析结果:根据测量数据,计算电路的放大倍数、增益带宽积和输入输出阻抗等参数。
分析电路的性能和优缺点,并与理论值进行比较。
实验结果与分析:通过实验测量得到的数据,我们可以得出以下结论:1. 电路的放大倍数:根据输入和输出信号的幅度差异,计算得到电路的放大倍数。
比较两级放大器的放大倍数,可以发现第一级共射放大器具有较高的放大倍数,而第二级共集放大器则具有较低的放大倍数。
2. 增益带宽积:通过测量不同频率下的输出信号幅度,可以绘制出增益带宽积曲线。
增益带宽积是电路的重要性能指标,表示电路在不同频率下的放大能力。
实验结果显示,增益带宽积在一定范围内随着频率的增加而降低。
3. 输入输出阻抗:通过测量电路中各个元器件的电压和电流值,可以计算得到电路的输入输出阻抗。
输入阻抗表示电路对外部信号源的负载能力,输出阻抗表示电路对负载的驱动能力。
实验结果显示,两级阻容耦合放大电路具有较高的输入阻抗和较低的输出阻抗。
结论:通过本次实验,我们成功搭建了两级阻容耦合放大电路,并对其进行了详细的测量和分析。
实验结果表明,该电路具有较高的放大倍数、较低的输出阻抗和一定的增益带宽积。
两级阻容耦合放大及负反馈电路实验

两级阻容耦合放大及负反馈电路实验两级阻容耦合放大及电路试验_模拟试验与指导4.1.3 两级阻容耦合放大及负反馈电路试验1)试验目的(1)巩固学习放大器主要性能(工作点、放大倍数、输入输出)的测量办法。
(2)观看多级放大器的级间联系及互相影响。
(3)观看负反馈对放大器性能的影响,了解负反馈放大器性能的普通测试办法。
2)试验原理(1)开关A向左扳,开关B打开时,图4.1.3为两级RC阻容耦合放大电路的原理图。
图4.1.3 两极阻容耦合放大及负反馈电路(2)因为放大器级间是阻容耦合,每级的静态工作点互不影响,这易于电路静态工作点的计算和调节。
两级静态工作点的计算办法同试验4.1.1。
(3)对于沟通信号,在分析多级放大器时,要考虑各级之间的互相影响,以及放大器与信号源或负载之间的衔接问题。
例如:后级的输入电阻构成了前级的负载电阻,前级的输出电阻便构成了后级的信号源内阻。
此外,多级放大器在放大较低频率信号时,级间耦合电容会造成信号的衰减。
(4)两级放大器中频段的性能指标分析如下。
①放大器电压放大倍数为式中:——第一级的电压放大倍数R′L1——第一级的沟通等效负载,R′L1=Rc1∥Rb21∥Rb22∥[rbe2+(1+β2)Re3];——其次级的电压放大倍数,R′L——其次级的沟通等效负载,R′L=Rc2∥RL。
②放大器输入电阻为:ri=Rb11∥Rb12∥[rbe1+(1+β1)Ref]③放大器输出电阻为:ro≈Rc2(5)负反馈电路会对放大器的性能产生影响,反馈类型不同对放大器性能的影响也不同。
开关A向左扳,开关B闭合时,图4.1.3为级间带有电压串联负反馈的放大电路。
负反馈放大器电压放大倍数的基本方程式:式中:Au——基本放大器的电压放大倍数;Fu——反馈系数;Auf——放大器的闭环电压放大倍数。
电压串联负反馈对电路放大器的性能的影响:①当为深度反馈时,电压串联负反馈的电压放大倍数可近似表示为:Auf=1/Fu;②电压串联负反馈的输入电阻:iif=Ui/Ii=ri(1+AuFu);③电压串联负反馈的输出电阻:rof=Uo/Io=ro/(1+A′usFu);式中:A′us——负载RL开路时的源电压放大倍数。
模拟3-2 直接耦合放大电路

Ad
1 2
(Rc ∥ RL ) Rb rbe
Ri 2(Rb rbe ),Ro Rc
2、双端输入单端输出:共模信号作用下的分析
Ad
1 2
(Rc ∥ RL ) Rb rbe
增大Re是改善共模 抑制比的基本措施。
Ac
Rb
(Rc
rbe
∥ RL )
2(1 )Re
uo= uC1 - uC2= uC1- uC2 = 2uC1
差模电压放大倍数:
AC
uo ui1 ui 2
uo 2ui1
(很大,>1)
五、共模抑制比(CMRR)的定义
CMRR — Common Mode Rejection Ratio
K = Ad
CMR
Ac
K (dB) = 20 log Ad (分贝)
T1单边小信 号等效电路
ui1
Rb1
B1 C1
ib1 rbe1
RL
ib1 2
Rc1
uod1
E
1. 放大倍数
单边差模放大倍数:
Ad 1
uod 1 ui1
Ad1
ib1
Rc1
ib1 ( Rb1
//
RL 2
rbe1 )
Rc1
//
RL 2
Rb1 rbe1
uId uI1 uI 2
iB1 iB2 iC1 iC2 uC1 uC2 uO 2uC1
△iE1=-△ iE2,Re中电流不变,即Re 对差模信号无反馈作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两级直接耦合放大电路
多级放大电路中各级之间直接(或通过电阻)连接的方式,称为直接耦合。
直接耦合放大电路具有结构简单、便于集成化、能够放大变化十分缓慢的直流信号又能放大交流信号,所以在集成电路中获得了广泛的应用。
图1
图2
两级直接耦合放大电路如图1所示。
采用直接耦合,各级的静态工作点将相互影响。
如图中T1管的VCE1受到VBE2的限制,仅有0.7V 左右。
因此,第一级输出电压的幅值将很小。
为了保证第一级有合适的静态工作点,必须提高T2管的发射极电位,为此,可在T2的发射极接入电阻、二极管或稳压管等。
在直接耦合放大电路中,常用由NPN型和PNP型晶体管组成的直接耦合放大电路,如图2所示。
直接耦合放大电路还存在另一个突出问题,即零点漂移,其解决方法将在差分放大电路中进行讨论。