实验一,三相桥式全控整流电路实验

合集下载

三相桥式全控整流电路实验报告

三相桥式全控整流电路实验报告

三相桥式全控整流电路实验报告一、实验目的本实验旨在通过搭建三相桥式全控整流电路,理解电力电子整流技术的基本原理,掌握三相桥式全控整流电路的工作过程,探究整流电路的输出特性,为进一步研究和应用电力电子技术打下基础。

二、实验原理三相桥式全控整流电路是一种常见的整流电路,其工作原理基于三相半波可控整流电路。

在该电路中,三相交流电通过6个晶闸管(或二极管)整流,将交流电转换为直流电。

6个晶闸管分为三组,每组两个,分别与三相交流电的每一相相连。

通过控制晶闸管的导通时刻,可以控制电流的流向和大小,从而实现整流的目的。

三、实验步骤1.搭建三相桥式全控整流电路。

使用电源、电阻、二极管、晶闸管等元器件搭建电路。

注意确保连接正确、安全可靠。

2.连接输入电源,调整输入电压,使输入电压在允许范围内。

3.触发晶闸管,控制其导通时刻。

可以使用脉冲信号发生器触发晶闸管,通过改变触发脉冲的相位来控制晶闸管的导通时刻。

4.观察并记录输出电压和电流的变化情况。

可以使用示波器等设备观察输出波形,并记录相关数据。

5.改变触发脉冲的相位,观察输出电压和电流的变化情况,并记录数据。

6.分析实验数据,探究整流电路的工作特性和输出特性。

四、实验结果与分析1.实验结果在实验过程中,我们观察到了整流电路的输出电压和电流的变化情况。

当触发脉冲的相位角增加时,输出电压和电流的平均值增加;当触发脉冲的相位角减小时,输出电压和电流的平均值减小。

实验结果表明,通过控制触发脉冲的相位角,可以有效地控制整流电路的输出电压和电流。

2.结果分析根据实验结果,我们可以得出以下结论:(1)三相桥式全控整流电路可以实现整流的功能,将交流电转换为直流电。

(2)通过控制触发脉冲的相位角,可以控制晶闸管的导通时刻,进而控制输出电压和电流的大小。

当触发脉冲的相位角增加时,晶闸管的导通时间增加,输出电压和电流的平均值增加;当触发脉冲的相位角减小时,晶闸管的导通时间减少,输出电压和电流的平均值减小。

三相桥式全控整流电路实验结论

三相桥式全控整流电路实验结论

三相桥式全控整流电路实验结论一、电路结构与工作原理三相桥式全控整流电路由三相交流电源、三相全控桥、负载电阻以及触发脉冲源等部分组成。

其工作原理基于三相全控桥的工作原理,通过控制触发脉冲的相位来控制整流输出的电压大小和方向。

二、触发脉冲与控制方式本实验采用脉冲变压器触发方式,通过调节触发脉冲的相位来控制整流输出的电压大小和方向。

控制方式采用移相控制方式,通过调节控制电压的大小和极性来控制触发脉冲的相位。

三、输出电压与负载特性实验结果表明,随着控制电压的增大,整流输出电压增大,当控制电压达到一定值时,整流输出电压达到最大值。

当负载电阻增大时,整流输出电压减小,当负载电阻达到无穷大时,整流输出电压达到最小值。

四、功率因数与谐波分析实验结果表明,采用三相桥式全控整流电路可以有效地提高功率因数,减小谐波对电网的影响。

但是,当整流输出电压增大时,谐波电流也会相应增大,因此需要对谐波进行抑制。

五、电路参数设计与优化为了提高三相桥式全控整流电路的性能,需要对电路参数进行设计与优化。

实验结果表明,触发脉冲的频率和移相角是影响整流输出电压大小和稳定性的关键因素。

因此,在参数设计时需要重点考虑这些因素。

同时,为了减小谐波对电网的影响,需要选择合适的滤波器参数。

六、实验结果对比与分析通过对不同控制方式下的实验结果进行对比与分析,可以发现采用移相控制方式可以有效提高整流输出电压的稳定性和调节速度。

同时,采用脉冲变压器触发方式可以有效减小整流输出电压的脉动和噪声。

七、电路性能评估与改进建议根据实验结果,可以对三相桥式全控整流电路的性能进行评估。

本实验中,采用了以下指标进行评估:整流输出电压的大小和稳定性、功率因数、谐波含量以及调节速度等。

通过对这些指标进行分析,可以发现该电路具有以下优点:可以实现对交流电源的整流作用;可以提高功率因数;可以实现对整流输出电压的快速调节等。

但是也存在一些不足之处,例如触发脉冲的脉动和噪声较大等问题。

三相桥式全控整流电路实验

三相桥式全控整流电路实验
三相桥式全控整流电路实验
ቤተ መጻሕፍቲ ባይዱ
三相全控桥整流电路电阻负载
A 三 相 电 源 输 出 VT1 VT3 VT5 V VT4 VT6 VT2 R
给 定
触发 电路
正 桥 功 放
一、实验目的
1、加深理解三相桥式全控整流及有源逆 变电路的工作原理。 2、了解KC系列集成触发器的调整方法 和各点的波形。
二、实验内容
1、观察并绘出锯齿波图形(幅值、宽度) 2、观察并绘出宽脉冲波形(幅值、宽度) 3、观察并绘出双窄脉冲波形(幅值、宽度) 4、观察并绘出同步信号波形(其中一相的幅值、宽度)
0
实验内容
用示波器观察α =30、60、90时的整流电压Ud和 晶闸管两端电压的波形,并画出α =30时的整流电 压Ud和晶闸管两端电压的波形,记录相应的Ud 数值 于下表:画出(1)电路的移相特性Ud =f(α)曲 线;(2)触发电路的传输特性α=f(Uct)曲线. α
U2 Ud(记录值) Ud / U2 Ud(计算值) 30o 60o 90o
三、实验报告
1、画出电路的移项特性Ud=f(α)。 2、画出触发电路的传输特性α=f(Uct)。 3、画出α=30时的整流电压Ud、和晶闸 管两端电压Uvt的波形。

三相桥式全控整流电路实验报告

三相桥式全控整流电路实验报告

三相桥式全控整流电路实验报告实验报告:三相桥式全控整流电路一、实验目的1.了解三相桥式全控整流电路的工作原理;2.掌握三相桥式全控整流电路的实际应用;3.熟悉实验中相关的仪器设备使用和操作;4.通过实验,加深对三相桥式全控整流电路的认识和理解。

二、实验原理1.三相交流电源通过三相桥式整流器,经过电感L1平滑滤波,然后由IGBT或晶闸管等元件构成的全控整流桥对交流电进行整流;2.控制信号通过控制电路产生,并通过触发电路以一定的脉冲方式送入IGBT或晶闸管触发端,从而实现对整流桥的控制。

三、实验所需器材和材料三相交流电源、电感、电容、IGBT或晶闸管、示波器、台式多功能电源等。

四、实验步骤及调试过程1.搭建三相桥式全控整流电路。

2.将三相交流电源连接到整流电路的输入端。

3.连接示波器,通过示波器观察输入和输出波形。

4.连接控制电路,根据实验要求对整流电路进行控制。

5.进行相应的实验数据采集和记录。

五、实验数据记录和分析1.实验中记录了输入电压、输出电压、输出电流等数据。

2.通过分析记录的数据,可以得出整流电路的性能指标,例如:输出电流的大小、纹波系数、效率等。

3.通过数据的分析可以得出实验结果。

六、实验结果分析1.通过数据分析得出输入输出电流的关系,验证了三相桥式全控整流电路的工作原理。

2.通过实验结果可以得出整流电路的性能指标,并对实验结果进行评价。

3.通过实验结果的分析可以对整流电路进行改进和优化。

七、实验结论八、实验中遇到的问题和解决方法1.连接电路时,需要注意电源的极性和电路的连接顺序,否则会导致电路不能正常工作。

解决方法是仔细查阅电路图和实验指导书,正确连接电路。

2.控制电路的参数设置不当,导致无法对整流电路进行控制。

解决方法是按照实验要求对控制电路进行参数调整,确保其能够正常工作。

3.示波器波形不清晰,无法正确观察到输入和输出波形。

解决方法是检查示波器和连接线路,确保其连接良好,并对示波器参数进行适当调整。

三相桥式全控整流实验报告

三相桥式全控整流实验报告

三相桥式全控整流实验报告三相桥式全控整流实验报告引言:在现代电力系统中,整流技术是一项重要的电力转换技术。

而三相桥式全控整流器作为一种常见的整流器结构,被广泛应用于工业和家庭电力系统中。

本次实验旨在通过搭建三相桥式全控整流实验电路,研究其工作原理和性能。

一、实验原理三相桥式全控整流器由六个可控硅器件组成,包括三个正向可控硅和三个反向可控硅。

其工作原理是通过控制可控硅的导通角来控制整流电流的大小和方向。

当可控硅导通角为0时,整流电流为零;当可控硅导通角为180度时,整流电流为最大值。

通过控制可控硅的导通角,可以实现对整流电流的精确控制。

二、实验步骤1. 搭建实验电路首先,我们按照实验电路图搭建三相桥式全控整流实验电路。

实验电路包括三相交流电源、三相桥式全控整流器、负载电阻和控制电路。

注意在搭建电路时,要确保电路连接正确,以避免电路短路或其他故障。

2. 接通电源接通电源之前,需要先检查电路连接是否正确,并确保所有开关处于关闭状态。

接通电源后,我们可以观察到整流器的运行状态。

3. 调节触发角通过控制电路,我们可以调节可控硅的触发角,从而控制整流电流的大小和方向。

在实验中,我们可以逐渐增加触发角,观察整流电流的变化情况。

同时,我们还可以改变负载电阻的大小,观察其对整流电流的影响。

4. 记录实验数据在实验过程中,我们需要记录整流电流、负载电压和触发角等数据。

这些数据可以用于后续的分析和比较。

三、实验结果通过实验,我们可以得到如下结果:1. 整流电流与触发角的关系当触发角为0度时,整流电流为零;当触发角为180度时,整流电流为最大值。

随着触发角的增加,整流电流逐渐增大,但增速逐渐减慢。

当触发角为90度时,整流电流为零。

2. 整流电流与负载电阻的关系当负载电阻增大时,整流电流减小;当负载电阻减小时,整流电流增大。

这是因为负载电阻的变化会影响整流电路的输出特性。

3. 整流电流与电源电压的关系整流电流与电源电压之间存在线性关系。

三相桥式全控整流电路实验报告.doc

三相桥式全控整流电路实验报告.doc

三相桥式全控整流电路实验报告.doc
实验目的:
1. 熟悉三相桥式全控整流电路的电气特性。

实验原理:
三相桥式全控整流电路是一种采用单相半波可控整流器结构组成的三相可控整流电路。

一般采用交-直-交的方式将三相电源的电能转换为直流电源供给负载使用。

该电路结构简单,可靠性高,输出电流稳定。

实验设备:
2. 示波器。

3. 多用表。

实验步骤:
1. 将三相交流电源接入实验箱的三相输入端,注意接线正确。

2. 打开实验箱电源开关,使电源工作。

3. 调整多用表测量输出电压和输出电流。

4. 通过改变触发角来改变输出电压的大小,记录不同触发角对输出电压和电流的影响。

5. 将示波器连接到电路中测量输出波形,观察波形随着触发角的变化而发生的变化。

实验结果:
观察实验箱测量仪器读数,当改变触发角时,输出电压大小也会相应改变。

输出电压
与触发角度是成反比关系的。

通过观察示波器显示的实验结果,可以看到,随着触发角的变化,输出波形也会随之
发生变化。

当触发角为0时,输出波形为直流电平;当触发角为90时,输出波形为正半波;当触发角为180度时,输出波形为负半波;当触发角为270度时,输出波形又变为正
半波。

三相桥式全控整流电路是一种常用的电力电子器件,其输出电压大小与触发角成反比
关系,输出波形则随触发角的变化而变化。

掌握该电路的工作原理,能够较好地开发利用
其电气特性。

三相桥式全控整流电路实验报告

三相桥式全控整流电路实验报告

实验编号实验报告书实验项目:三相桥式全控整流及实验所属课程: 电力电子技术基础课程代码:面向专业: 自动化学院(系): 物理与机电工程学院自动化系实验室: 电机与拖动代号: 4262012年10 月20 日一、实验目的:1.熟悉MCL-01, MCL-02组件。

2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。

3.了解集成触发器的调整方法及各点波形。

二、实验内容:1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。

三、实验主要仪器设备:1.MCL系列教学实验台主控制屏。

2.MCL—01组件。

3.MCL—02组件。

4.MEL-03可调电阻器。

5.MEL-02芯式变压器6.二踪示波器7.万用表三相桥式全控整流及有源逆变电路实验线路图及接线图四、实验示意图:五、实验有关原理及原始计算数据,所应用的公式:三相桥式全控整流电路的原理一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。

一般1、3、5为共阴极,2、4、6为共阳极。

(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。

(2)对触发脉冲的要求:1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60︒。

2)共阴极组VT1、VT3、VT5的脉冲依次差120︒,共阳极组VT4、VT6、VT2也依次差120︒。

3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180︒。

(3)Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。

(4)需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。

三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。

在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。

三相桥式全控整流电路仿真实验报告

三相桥式全控整流电路仿真实验报告

三相桥式全控整流电路仿真实验报告实验报告书实验项目:三相桥式全控整流及实验所属课程: 电力电子技术基础面向专业: 自动化学院(系): 物理与机电工程学院自动化系实验室: 电机与拖动代号: 4262012年 10 月 20 日一、实验目的:1.熟悉MCL-01, MCL-02组件。

2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。

3.了解集成触发器的调整方法及各点波形。

第 2 页二、实验内容:1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。

三、实验主要仪器设备:1.MCL系列教学实验台主控制屏。

2.MCL—01组件。

3.MCL—02组件。

4.MEL-03可调电阻器。

5.MEL-02芯式变压器6.二踪示波器7.万用表三相桥式全控整流及有源逆变电路实验线路图及接线图五、实验有关原理及原始计算数据,所应用的公式:三相桥式全控整流电路的原理一般变压器一次侧接成三角型,二次侧接成星型,晶闸管分共阴极和共阳极。

一般1、3、5为共阴极,2、4、6为共阳极。

(1)2管同时通形成供电回路,其中共阴极组和共阳极组各1,且不能为同1相器件。

(2)对触发脉冲的要求:1)按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60。

2)共阴极组VT1、VT3、VT5的脉冲依次差120,共阳极组VT4、VT6、VT2也依次差120。

3)同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。

(3)Ud一周期脉动6次,每次脉动的波形都一样,故该电路为6脉波整流电路。

(4)需保证同时导通的2个晶闸管均有脉冲,可采用两种方法:一种是宽脉冲触发一种是双脉冲触发(常用)(5)晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。

三相桥式全控整流电路实质上是三相半波共阴极组与共阳极组整流电路的串联。

在任何时刻都必须有两个晶闸管导通才能形成导电回路,其中一个晶闸管是共阴极组的,另一个晶闸管是共阳组的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一、三相桥式全控整流电路实验
一、实验目的
1.熟悉三相桥式全控整流电路的接线、器件和保护情况。

2.明确对触发脉冲的要求。

3.掌握电力电子电路调试的方法。

4.观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。

二、实验类型
本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。

三、实验仪器
1.MCL-III教学实验台主控制屏。

2.MCL—33组件及MCL35组件。

3.二踪示波器
4.万用表
5.电阻(灯箱)
四、实验原理
实验线路图见后面。

主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。

五、实验内容和要求
1.三相桥式全控整流电路
2.观察整流状态下,模拟电路故障现象时的波形。

实验方法:
1.按图接好主回路。

2.接好触发脉冲的控制回路。

将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。

打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。

(1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。

(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。

3.三相桥式全控整流电路
(1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使α在30o~90o范围内,用示波器观察记录α=30O、60O、90O时,整流电压u d=f(t),晶闸管两端电压u VT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。

i
α=0Oα=30O
α=60O
α=90O
(2)电路带阻感负载的情况下:在负载中串入700mH 的电感调节Uct (Ug ),使α在30o ~90o 范围内,用示波器观察记录α=30O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并用万用表记录相应的Ud 和交流输入电压U 2数值。

α=0O α=30O
u
α=90O
4.电路模拟故障现象观察。

在α=60O 时,断开某一晶闸管元件的触发脉冲开关,则该元件无触发脉冲即该支路不能导通,观察并记录此时的u d 波形。

u u u bc ca ab
u
ab
ⅡⅣⅥO ωt 1u
带电感负载
实验报告:
1.作出整流电路的输入—输出特性U d/U2=f(α)
2.画出三相桥式全控整流电路在电阻负载和阻感负载的情况下,α角为30O、60O、90O时的u d、u VT波形
电阻负载α角为30°时,Ud波形如上图。

其中Ud=132.7V,U2=109.0V
电阻负载,α角为30°时,Uvt1波形如上图。

电阻负载α角为60°时,Ud波形如上图。

其中Ud=81.4V,U2=110.4V
电阻负载,α角为60°时,Uvt1波形如上图。

电阻负载α角为90°时,Ud波形如上图。

其中Ud=35.68V,U2=111.0V
电阻负载,α角为60°时,Uvt1波形如上图。

阻感负载,α角为30°时,Ud波形如上图。

其中Ud=131.7V,U2=109.4V
阻感负载,α角为30°时,Uvt1波形如上图。

阻感负载,α角为60°时,Ud波形如上图。

Uvt1波形如上图。

其中Ud=110.9V,U2=78.6V
阻感负载,α角为90°时,Ud波形如上图。

其中Ud=14.65V,U2=111.4V
阻感负载,α角为90°时,Uvt1波形如上图。

_ 2.简单分析模拟故障现象(晶闸管)
电阻负载
电阻负载VT1故障电阻负载VT2故障
电阻负载VT3故障电阻负载VT4故障
电阻负载VT5故障电阻负载VT6故障
_
_阻感负载
阻感负载VT1故障阻感负载VT2故障
阻感负载VT3故障阻感负载VT4故障
阻感负载VT5故障阻感负载VT6故障
六、注意事项
1.实验时要先观测触发脉冲,确保触发脉冲大小及相位正确才能给主回路通电;
2.在改接线时要断开电源重新接线,改完后要进行检查才可送。

3.注意使用示波器时,各个旋钮的位置。

4.使用万用表时应注意测量直流量和交流量档位的选择。

七、思考题
1.能否用双踪示波器同时观察触发电路与整流电路的波形?。

相关文档
最新文档