天津市和平区20152016学年度第一学期九年级数学期末

合集下载

2015~2016学年第一学期期末考试卷九年级数学试题附答案

2015~2016学年第一学期期末考试卷九年级数学试题附答案

2015〜2016学年第一学期期末考试卷九年级数学试题2016.1题号一二三总分1920212223242526得分注意事项:1 .本卷考试时间为100分钟,满分100分.2 .卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.得分|评卷人一、选择题(本大题共有10小题,每小题3分,共30分,在每小题所给出的四个 选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1 .下列方程是一元二次方程的是()A.x 2—6x+2B.2x 2-y+1=0C.5x 2=02 .抛物线y=2x 2如何平移可得到抛物线y=2(x —3)2—4()A.向左平移3个单位,再向上平移4个单位;B.向左平移3个单位,再向下平移4个单位;C.向右平移3个单位,再向上平移4个单位;D.向右平移3个单位,再向下平移4个单位3,用一个半径为30cm,面积为300n cm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A.5cmB.10cmC.20cmD.5cm4 .如果一组数据X I ,x 2,,,x n 的方差是5,则另一组数据X I +5,x 2+5,,,x n +5的方差是()B.10C.15D.205 .有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③的距离相等;④平分弦的直径垂直于弦.其中正确的有,,,,,,( A.1个B.2个C.3个D.4个6 .如图,直线CD 与线段AB 为直径的圆相切于点D,并交BA 的延长线于点C,且AB=6,AD=3,P 点在切线CD 上移动.当/APB 的度数最大时,则/ABP 的度数为,,,,,,,,,,,()D.4+x=2xA.90°B,60°C.45°D,30°7.关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是()A.k>-1B .k>-1C.kw08.在同一坐标系中,一次函数y=-mx+n 2与二次函数y=x 2+m 的图象可能是()B.工3二D.2点+工2AC 与。

天津市和平区2015-2016年中考数学综合训练题(二)

天津市和平区2015-2016年中考数学综合训练题(二)

天津市和平区2015-2016年九年级中考数学综合训练题 二1.下列运算:sin30°,0-2==ππ-,24.其中运算结果正确的个数为( ) A.4 B.3 C.2 D.12.顺次连接矩形ABCD 各边的中点,所得四边形必定是( )A.邻边不等的平行四边形B.矩形C.正方形D.菱形3.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图. 依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人;(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°;(3)表示“无所谓”的家长人数为40人;(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是110 . 其中正确的结论个数为( )A.4B.3C.2D.14.如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AM 的长为1.2km,则M ,C 两点间的距离为( ) A.0.5km B.0.6km C.0.9km D.1.2km5.已知不等式组⎩⎨⎧<>a x x 2的解集中共有5个整数,则a 的取值范围为( ) A.7<a ≤8 B.6<a ≤7 C.7≤a <8 D.7≤a ≤86.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )B.2C.217.如图,在直角∠O 的内部有一滑动杆AB.当端点A 沿直线AO 向下滑动时,端点B 会随之自动地沿直线OB 向左滑动.如果滑动杆从图中AB 处滑动到A'B'处,那么滑动杆的中点C 所经过的路径是( )A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分8.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x =-、2y x=的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变9.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成。

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016 学年第一学期期末教学质量监测九年级数学试题2016.1亲爱的考生:欢迎参加考试!请你认真审题,积极思考,仔细答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共 6 页,满分 150 分,考试时间 120 分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效. 3.答题前,请认真阅读答题纸上的《注意事项》 按规定答题. 4.本次考试不得使用计算器,请耐心解答.祝你成功!一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列函数的图象是双曲线的是( ▲ )A . y = 2 x - 1B . y =1C . y = xD . y = x 2x2.下列事件是随机事件的是( ▲ )A .火车开到月球上;B .抛出的石子会下落;C .明天临海会下雨;D .早晨的太阳从东方升起.3.二次函数 y =x 2+4x -5 的图象的对称轴为( ▲ )A .x =4B .x =﹣4C .x =2D .x =﹣24.如图,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A =50°,∠C =60°,则∠DOE =( ▲ )A .70°B .110°C .120°D .130°C B ′ CC ′E F OBD(第 4 题)A B(第 5 题)A△5.如图,把 ABC 绕着点 A 顺时针方向旋转 34°,得到△AB ′C ′,点 C 刚好落在边 B ′C ′上.则∠C ′=( ▲ )A .56°B .62°C .68°D .73°6.将抛物线 y =3x 2 先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ▲ )A .y =3(x +1)2+1B .y =3(x +1)2-1C .y =3(x -1)2+1D .y =3(x -1)2-17.小洋用一张半径为 24 cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计), 如果做成的圆锥形小丑帽子的底面半径为 10 cm ,那么这张扇形纸板的面积是( ▲ )A .120 π cm 2B .240 π cm 2C .260 π cm 2D .480 π cm 224 cmy A nA 4 A 3 A 2 A 1…B nB 4C 3C 2B 3B 2C 1B 1O(第 10 题)x4 (1 + k )2 = 1 B . k + k 2 = 1 4 4 (1 + k )2 = 1(x - 1)2 = ( 2 ) ,所以 x8.用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的 k 倍(0<k <1).已知一个钉子受击 3 次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的 4 7,设铁钉的长度为 1,那么符合这一事实的方程是( ▲ )A .4 4 7 7 74 4 4 C . + k + k 2 = 1 D . + 7 7 7 7 79.利用平方根去根号可以构造一个整系数方程.例如: x =2 + 1 时,移项得 x - 1 = 2 ,两边平方得22 - 2 x + 1 = 2 ,即 x 2 - 2 x - 1 = 0 .仿照上述构造方法,当 x =6 - 1 2时,可以构造出一个整系数方程是( ▲ )A . 4 x 2 + 4 x + 5 = 0B . 4 x 2 + 4 x - 5 = 0C . x 2 + x + 1 = 0D . x 2 + x - 1 = 010.如图,在 y 轴正半轴上依次截取 OA 1=A 1A 2=A 2A 3=…=A n-1A n (n 为正整数),过 A 1,A 2,A 3,…,A n 分别作 x 轴的平行线,与反比例函数 y =2 x(x >0)交于点 B 1,B 2,B 3,…,B n ,如图所示的 Rt △B 1C 1B 2,△Rt B 2C 2B 3,△Rt B 3C 3B 4,…,△Rt B n-1C n-1B n 面积分别记为 S 1,S 2,S 3,…,S n-1,则 S 1+S 2+S 3+…+S n-1=( ▲ )A .1B .2C .1﹣1 1D .2﹣n n二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)11.点 A (1,19)与点 B 关于原点中心对称,则点 B 的坐标为▲ .12.如果反比例函数 y = m - 3x的图象在 x <0 的范围内,y 随 x 的增大而减小,那么 m 的取值范围是 ▲13.如图,点 O 是正五边形 ABCDE 的中心,则∠BAO 的度数为▲ .AyD CPBOEH GAOBC D(第 13 题)A E O FB x(第 15 题) (第 16 题)14.一个盒子中装有大小、形状一模一样的白色弹珠和黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是13.如果盒子中白色弹珠有4颗,则盒中有黑色弹珠▲颗.15.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为▲.2-1-c-n-j-y16.如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=▲秒时,点P与点C中心对称,且对称中心在直径AB上.三、解答题(本大题共8小题,第17题10分,第18题7分,第19题8分,第20题9分,第21题10分,第22题10分,第23题12分,第24题14分,共80分)17.解方程:(1)4x2-20=0;(2)x2+3x-1=0.18.动手画一画,请把下图补成以A为对称中心的中心对称图形.A19.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.D CB EOA20.已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)x=0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.同时从袋中各随机摸出 1 个球,并计算摸出的这 2 个小球上数字之和,记录后都将小球放回袋中搅匀,进行重21.一只不透明的袋子中装有 4 个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x .甲、乙两人每次..复试验.实验数据如下表:摸球总次数“和为 8”出现的频数102 2010 3013 6024 9030 12037 18058 24082 330110 450150“和为 8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为 8”的频率将稳定在它的概率附近.估计出现“和为 8” 的概率是▲;(2)当 x =7 时,请用列表法或树状图法计算“和为 8”的概率;并判断 x =7 是否可能.22.如图是一种新型娱乐设施的示意图,x 轴所在位置记为地面,平台 AB ∥x 轴,OA =6 米,AB =2 米, BC 是反比例函数 y = k x的图象的一部分,CD 是二次函数 y =﹣x 2+mx +n 图象的一部分,连接点 C 为抛物线的顶点,且 C点到地面的距离为 2 米, D 点是娱乐设施与地面的一个接触点.(1)试求 k ,m ,n 的值;(2)试求点 B 与点 D 的水平距离.yA BCOD x23.如图 1,正方形 ABCD 与正方形 AEFG 的边 AB ,AE (AB <AE )在一条直线上,正方形 AEFG 以点 A 为旋转中心逆时针旋转,设旋转角为 α.在旋转过程中,两个正方形只有点 A 重合,其它顶点均不重合,连接 BE ,DG .(1)当正方形 AEFG 旋转至如图 2 所示的位置时,求证:BE =DG ;(2)如图 3,如果 α=45°,AB =2,AE =3 2 .①求 BE 的长;②求点 A 到 BE 的距离;(3)当点 C 落在直线 BE 上时,连接 FC ,直接写出∠FCD 的度数.GGADGADB CBCFABDCFE(图 1)FE(图 2)E(图 3)24.定义:把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.如图,抛物线 y =x 2-2x -3 与 x 轴交于点 A ,B ,与 y 轴交于点 D ,以 AB 为直径,在 x 轴上方作半圆交 y 轴于点 C ,半圆的圆心记为 M ,此时这个半圆与这条抛物线 x 轴下方部分组成的图形就称为“蛋圆”.(1)直接写出点 A ,B ,C 的坐标及“蛋圆”弦 CD 的长;A▲ ,B ▲ ,C ▲ , CD = ▲ ;(2)如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.①求经过点 C 的“蛋圆”切线的解析式;②求经过点 D 的“蛋圆”切线的解析式;(3)由(2)求得过点 D 的“蛋圆”切线与 x 轴交点记为 E ,点 F 是“蛋圆”上一动点,试问是否存在 S △CDE =△S CDF ,若存在请求出点 F 的坐标;若不存在,请说明理由;(4)点 P 是“蛋圆”外一点,且满足∠BPC =60°,当 BP 最大时,请直接写出点 P 的坐标.yC yCAO M B x A O M B xDD(备用图)9数学参考答案2016.1一、选择题(每小题4分,共40分)题号答案1B2C3D4B5D6A7B8C9B10C二、填空题(每小题 5 分,共 30 分)11.(﹣1,﹣19)12.m >3 13.54° 14.815. 2 5 - 216. 4914 22 32或 或 或9 9三、解答题(共 80 分)17.(10 分,每小题 5 分)(1)4x 2-20=0;(2)x 2+3x -1=0.4x 2=20a =1,b =3,c =﹣1x 2=5△=32-4×1×(﹣1)=13x = ± 5x =- 3 ± 13 218.(7 分)略(图形基本形状差不多就给分)19.(8 分)(1)∵AB 是⊙O 的直径∴∠C =90°∵OD ⊥BC∴∠OEB =∠C =90°∴OD ∥AC………4 分(2)令⊙O 的半径为 r ,根据垂径定理可得:r 2=42+(r -3)2,解得:r = 25 25,所以⊙O 的直径为 . ………8 分6 320.(9 分)(△1) =[2(k -1)]2-4(k 2-1)=﹣8k +8∵方程有两个不相等的实数根,∴﹣8k +8>0,解得:k <1.………4 分(2)把 x =0 代入方程得:k 2-1=0,解得:k =±1∵k <1 ∴k=﹣1 ∴x=0 可能是方程的一个根∴原方程为:x 2-4x =0 解得:x 1=0,x 2=4 ∴方程的另一个根为 4.………9 分21.(10 分)(1)13(或者 0.33) ………3 分(2)列表略,可得:P 和为 8= 2 1 1= ≠ ,所以 x 的值不可以取 7.………10 分12 6 322.(10 分)(1)把 B (2,6)代入 y =k 12,可得 y = . x x把 y =2 代入 y =12x, 可得 x =6,即 C 点坐标为(6,2).23.(12 分)(1)由题意可得: ⎨∠BAE = ∠DAG = a ⎪ A B = AD ⎩ y = x 2 - 2x - 3得: x 2-(2 +k)x =∵二次函数 y =﹣x 2+mx +n 的顶点为 C ,∴y =﹣(x -6)2+2,∴y =﹣x 2+12x -34. AE∴k =12,m =12,n =﹣34.………6 分C(2)把 y =0 代入 y =﹣(x -6)2+2,解得:x 1=6+ 2 ,x 2=6- 2 .点 B 与点 D 的距离为 6+ 2 -2=4+ 2 .………10 分ODB⎧ A E = AG ⎪⎩∴△ABE ≌△ADG (SAS )G∴BE =DG………4 分(2)①作 BN ⊥AE 于点 NANDF在△ABN 中可求得 AN =BN = 2 .在△BEN 中可求得 BE = 10 .………7 分MBCE(图 3)②作 AM ⊥BE 于点 M .S △ABE = 1 1⨯ AE ⨯ BN = ⨯ 3 2 ⨯ 2 =32 2又∵S △ABE = 1 1⨯ BE ⨯ AM = ⨯ 10 ⨯ AM2 21 3∴ ⨯ 10 ⨯ AM =3 ∴AM = 2 510即点 A 到 BE 的距离 3 510 .………10 分(3)∠FCD 的度数为 45°或 135°.………12 分(注:可以构造三垂直的基本图形求两个角度,也可用四点共圆求两个角度)24.(14 分)(1)A (﹣1,0),B (3,0),C (0,3 ),CD = 3+ 3………4 分(2)①如图 1,NC ⊥CM ,可求得 N (﹣3,0)yCN E A O M B x3∴经过点 C 的“蛋圆”切线的解析式为: y =x + 3 …7 分 3A②过点 D 的“蛋圆”切线的解析式为:y =kx -3D⎧ y = kx - 3 由 ⎨ ∵直线与抛物线只有一个交点,∴k =﹣2,(图 1) yCF 1∴经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3 .………10 分A EO M Q B x(3)如图 2∵经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3ADF 2,),F 2(, -).………12 分∴E 点坐标为( -∵S △CDE =S △CDF3 2,0),∴F 点的横坐标为 3 2,在 △Rt MQF 1 中可求得 F 1Q = 15 2,把 x = 3 15 代入 y =x 2-2x -3,可求得 y = - .2 4∴F 1( 3 2 2 2 4(4)如图 3,考虑到∠BPC =60°保持不变,因此点 P 在一圆弧上运动.yP此圆是以 K 为圆心(K 在 BC 的垂直 平分线上,且∠BKC =120°),BK 为半径. 当 BP 为直径时,BP 最大.在 △Rt PCR 中可求得 PR =1,RC = 3 . RC KA OM B x所以点 P 的坐标为(1,2 3 ).………14 分AD(图 3)。

2015—2016学年第一学期九年级期末考试数学试卷附答案

2015—2016学年第一学期九年级期末考试数学试卷附答案

2015一如16学年第一学期九年级期末考试数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.—2、0、2、-3这四个数中最小数的是1]A.2B.0C.—2D.—32.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学计数法表示为【】A.30.1父108B,3.01父108C,3.01父109D.0.301^10103.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是【】A.x—6=*B,x—6=4C,x+6=4D,x+6=M4.设a=2j3—1,a在两个相邻整数之间,则这两个整数是1]A.1和2B.2和3C.3和4D.4和55.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与/I互余的角有几个A.2个B.3个C.4个D.5个第5题图第7题图第8题图6.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是1】A.99.60,99.60B,99.60,99.70C.99.60,98.80D,99.70,99.607.如图为抛物线y=ax2+bx+c的图像,A、RC为抛物线与坐标轴的交点,且OAOG1,则下列关系中正确的是1]A.ac<0B.a—b=1C.a+b=—1D.b>2a8.如图,过DABCM对角线BD上一点M分别作平行四边形两边的平行线EF与GH那么图中的口AEMGJ面积&与口HCFM勺面积S2的大小关系是【】A.s1s2B.S1:二S2C.S1=S2D.2s l=颔9.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的1]A.6B.8C.10D.12为E,设DP=x,AE=y,则能反映y与X之间函数关系的大致图象是第10题图10.如图,在矩形ABCD43,AB=3,BC=4,点P在BC边上运动,连结DP过点A作AHDP垂足A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(_3)2的平方根是。

天津市和平区九年级(上)期末数学试卷

天津市和平区九年级(上)期末数学试卷

九年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列标志中,可以看作是中心对称图形的是()A. B. C. D.2.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A. 1B. 67C. 12D. 03.如图,在△ABC中,DE∥BC,ADDB=12,则下列结论中正确的是()A. AEAC=12B. DEBC=12C. △ADE的周长△ABC的周长=13D. △ADE的面积△ABC的面积=134.将抛物线y=-5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A. y=−5(x+1)2−1B. y=−5(x−1)2−1C. y=−5(x+1)2+3D. y=−5(x−1)2+35.已知反比例函数y=kx的图象经过点A(2,-3),B(x,y),当1<x<3时,y的取值范围是()A. −32<y<−23B. −6<y<−2C. 2<y<6D. −32<y<−96.如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到CD,则点C的坐标为()A. (2,1)B. (2,0)C. (3,3)D. (3,1)7.在二次函数y=-x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A. x<1B. x>1C. x<−1D. x>−18.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A. ∠ABP=∠CB.∠APB=∠ABCC. APAB=ABACD. ABBP=ACCB9.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,BE,CE,若∠CBD=32°,则∠BEC的大小为()A. 64∘B. 120∘C. 122∘D. 128∘10.若点(x1,y1)、(x2,y2)、(x3,y3)都是反比例函数y=−a2−1x的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A. y1<y3<y2B. y2<y3<y1C. y3<y2<y1D. y1<y2<y311.当a≤x≤a+1时,函数y=x2-2x+1的最小值为4,则a的值为()A. −2B. 4C. 4或3D. −2或312.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(-1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②-1≤a≤−23;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)13.如图,点A,B,C是⊙O上的三点,∠B=75°,则∠AOC的大小为______度.14.已知y是x的反比例函数,并且当x=2时y=6,求当x=4时y=______.15.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则DEEF的值为______.16.一个透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同,摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,则两次摸出的球恰好颜色不同的概率是______.17.如图,点P是⊙O外一点,PT切⊙O于点T,PB交⊙O于A,B两点,连接OT,则PT与OT的位置关系是______,PA+PB______2PT(填“>”、“<”或“=”号)18.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A1B1C).(Ⅰ)如图①,当AB∥CB1时,旋转角θ=______(度);(Ⅱ)如图②,取AC的中点E,A1B1的中点P,连接EP,已知AC=a,当θ=______(度)时,EP的长度最大,最大值为______.三、解答题(本大题共7小题,共66.0分)19.已知关于x的方程x2+ax-2=0的一个根为1,求a的值及该方程的另一根.20.已知四边形ABCD内接于⊙O,BC=CD,连接AC,BD.(I)如图①,若∠CBD=36°,求∠BAD的大小;(Ⅱ)如图②,若点E在对角线AC上,且EC=BC,∠EBD=24°,求∠ABE的大小.21.如图,AB是⊙O的直径,C是⊙O上一点,∠ACD=∠B,AD⊥CD.(1)求证:CD是⊙O的切线;(2)若AD=1,OA=2,求AC的值.22.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8000kg,2009年平均每公顷产9680kg,求该村水稻每公顷产量的年平均增长率.解题方案:设该村水稻每公顷产量的年平均增长率为x.(1)用含x的代数式表示:①2008年种的水稻平均每公顷的产量为______;②2009年种的水稻平均每公顷的产量为______;(2)根据题意,列出相应方程______;(3)解这个方程,得______;(4)检验:______;(5)答:该村水稻每公顷产量的年平均增长率为______%.23.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合,如图所示,以水平方向为x轴,喷水池中心为原点建立平面直角坐标系.(Ⅰ)求水柱所在抛物线(第一象限部分)的函数表达式;(Ⅱ)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?24.已知,四边形ABCD是边长为32的正方形,点E在边AB上,矩形AEFG的边AE=72,∠GAF=30°.(1)如图①,求AF的长;(2)如图②,将矩形AEFG绕点A顺时针旋转α(0°<α<90°),得到矩形AMNH,点C恰好在AN上.①求α的大小;②求DN的长;(3)若将矩形AEFG绕点A顺时针旋转30°,得到矩形ARTZ,此时,点B在矩形ARTZ的内部、外部、还是边上?(直接写出答案即可).25.已知,抛物线y=mx2+(1-2m)x+1-3m(m是常数).(Ⅰ)当m=1时,求该抛物线与x轴的公共点的坐标;(Ⅱ)抛物线与x轴相交于不同的两点A,B.①求m的取值范围;②无论m取何值,该抛物线都经过非坐标轴上的定点P,当14<m≤8时,求△PAB面积的最大值,并求出相对应的m的值.答案和解析1.【答案】D【解析】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选:D.根据中心对称图形的定义,结合选项所给图形进行判断即可.本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2.【答案】C【解析】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是,故选:C.根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),可得答案.本题考查了概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).3.【答案】C【解析】解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选:C.由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.【答案】A【解析】解:将抛物线y=-5x2+1向左平移1个单位长度,得到y=-5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=-5(x+1)2-1.故选:A.直接利用二次函数图象与几何变换的性质分别平移得出答案.此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.5.【答案】B【解析】解:把(-2,3)代入y=,得k=-2×3=6,所以反比例函数解析式为y=-.当x=1时,y=-=-6;当x=3时,y=-=-2;所以当2<x<3时,函数值y的取值范围为-6<y<-2.故选:B.先把(2,-3)代入y=中求出k得到反比例函数解析式为y=-,再分别计算出自变量为2和3对应的反比例函数值,然后根据反比例函数的性质求解.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.【答案】A【解析】解:由题意得,△ODC∽△OBA,相似比是,∴=,又∵OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.7.【答案】A【解析】解:∵a=-1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选:A.抛物线y=-x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.本题考查了二次函数y=ax2+bx+c(a≠0)的性质:当a<0,抛物线开口向下,对称轴为直线x=-,在对称轴左边,y随x的增大而增大.8.【答案】D【解析】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.分别利用相似三角形的判定方法判断得出即可.此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.9.【答案】C【解析】解:在⊙O中,∵∠CBD=32°,∵∠CAD=32°,∵点E是△ABC的内心,∴∠BAC=64°,∴∠EBC+∠ECB=(180°-64°)÷2=58°,∴∠BEC=180°-58°=122°.故选:C.根据圆周角定理可求∠CAD=32°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.本题考查了三角形的内切圆与内心,圆周角定理,三角形内角和定理,关键是得到∠EBC+∠ECB的度数.10.【答案】B【解析】解:∵-a2-1<0,∴反比例函数图象位于二、四象限,如图在每个象限内,y随x的增大而增大,∵x1<0<x2<x3,∴y2<y3<y1.故选:B.首先确定反比例函数的系数与0的大小关系,然后根据题意画出图形,再根据其增减性解答即可.本题考查了由反比例函数图象的性质判断函数图象上点的函数值的大小,同学们要灵活掌握.11.【答案】D【解析】解:当y=4时,有x2-2x+1=4,解得:x1=-1,x2=4.∵当a≤x≤a+1时,函数有最小值4,∴a=3或a+1=-1,∴a=3或a=-2,故选:D.利用二次函数图象上点的坐标特征找出当y=4时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=4时x的值是解题的关键.12.【答案】C【解析】解:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),∴-=1,∴b=-2a,∴4a+2b=0,结论①错误;②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),∴a-b+c=3a+c=0,∴a=-.又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),∴2≤c≤3,∴-1≤a≤-,结论②正确;③∵a<0,顶点坐标为(1,n),∴n=a+b+c,且n≥ax2+bx+c,∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),∴抛物线y=ax2+bx+c与直线y=n只有一个交点,又∵a<0,∴抛物线开口向下,∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.故选:C.①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.综上,此题得解.本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.13.【答案】150【解析】解:∵=,∴∠AOC=2∠B=150°,故答案为150.根据根据圆周角定理即可解决问题.本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.14.【答案】3【解析】解:设函数解析式为:y=,把x=2,y=6代入,得k=12,∴y=.把x=4代入y=中:y=,解得:y=3.故答案为:3.首先设出函数解析式,再利用待定系数法把x=2,y=6代入解析式求得k的值,得到函数解析式后,再根据解析式和x的值,求得y的值.此题主要考查了利用待定系数法求函数的解析式,此为近几年中考的热点问题,同学们要熟练掌握.15.【答案】35【解析】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴=;故答案为:.求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.16.【答案】49【解析】解:画树状图得:∵共有9种等可能的结果,两次摸出的球恰好颜色不同的有4种情况,∴两次摸出的球恰好颜色不同的概率是:.故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球恰好颜色不同的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.【答案】PT⊥OT>【解析】解:∵点P是⊙O外一点,PT切⊙O于点T,∴OT⊥PT.∵PT2=PA•PB,又∵(PB-PA)2>0,∴(PB+PA)2>4PA•PB,∴PT2<()2,∴PA+PB>2PT.故答案为PT⊥OT,>.利用切线的性质,切割线定理,完全平方公式即可解决问题.本题考查了切线的性质,切割线定理,完全平方公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.18.【答案】30 120 3a2【解析】解:(Ⅰ)∵AB∥CB1,∠ABC=30°,∴∠BCB1=∠ABC=30°,∴旋转角为∠BCB1=30°;(Ⅱ)∵P为A1B1的中点,∴CP=A1P,∵∠ABC=30°,∴∠B1=∠B=30°,∴∠A1=90°-∠B1=90°-30°=60°,∴△A1CP是等边三角形,∴∠A1CP=60°,根据三角形的三边关系,CE+CP>EP,∴当点E、C、P三点共线时EP最大,最大为EP=CE+CP,此时,旋转角为180°-∠A1CP=180°-60°=120°,∵AC=a,点E为AC的中点,∴EP=a+a=.故答案为:30;120,.(Ⅰ)根据两直线平行,内错角相等可得∠BCB1=∠ABC,然后根据对应边BC 和B1C的夹角为旋转角解答;(Ⅱ)连接CP,根据直角三角形斜边上的中线等于斜边的一半可得CP=A1P,然后求出△A1CP是等边三角形,根据等边三角形的性质可得∠A1CP=60°,然后根据三角形的任意两边之和大于第三边可得CE+CP>EP,从而判断出当点E、C、P三点共线时EP最大,然后根据平角等于180°进行计算即可得解.本题考查了旋转的性质,等边三角形的判定与性质,三角形的任意两边之和大于第三边的性质,熟练掌握旋转的性质,并判断出点E、C、P三点共线时EP最大是解题的关键.19.【答案】解:把x=1代入x2+ax-2=0,得12+a-2=0,解得a=1.根据根与系数的关系得到方程的另一根为:−21=-2.综上所述,a的值为1,该方程的另一根是-2.【解析】把x=1代入已知方程得到关于a的新方程,通过解新方程来求a的值;利用根与系数的关系来求方程的另一根.本题考查了根与系数的关系和一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.20.【答案】解:(Ⅰ)∵BC=CD,∴BC=CD,∴∠DBC=∠BAC=∠CAD,∵∠CBD=36°,∴∠BAC=∠CAD=36°,∴∠BAD=36°+36°=72°.(Ⅱ)∵CB=CE,∴∠CBE=∠CEB,∴∠DBE+∠CBD=∠BAE+∠ABE,∵∠CBD=∠BAC,∴∠ABE=∠DBE=24°.【解析】(I)由BC=CD,推出=,可得∠DBC=∠BAC=∠CAD,由此即可解决问题.(Ⅱ)想办法证明∠ABE=∠EBD即可解决问题.本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】(1)证明:连接OC,如图所示:∵AB是⊙O直径,∴∠ACB=90°,∵OB=OC,∴∠B=∠BCO,又∵∠ACD=∠B,∴∠OCD=∠OCA+∠ACD=∠OCA+∠BCO=∠ACB=90°,即OC⊥CD,∴CD是⊙O的切线;(2)解:∵AD⊥CD,∴∠ADC=∠ACB=90°,又∵∠ACD=∠B,∴△ACB∽△ADC,∴AC2=AD•AB=1×4=4,∴AC=2.【解析】(1)连接OC,由圆周角定理得出∠ACB=90°,由等腰三角形的性质得出∠B=∠BCO,证出∠OCD=∠OCA+∠BCO=∠ACB=90°,即可得出结论;(2)证明△ACB∽△ADC,得出AC2=AD•AB,即可得出结果.本题考查了切线的判定、等腰三角形的性质、相似三角形的判定与性质;熟练掌握切线的判定,证明三角形相似是解决问题(2)的关键.22.【答案】8000(1+x)8000(1+x)28000(1+x)2=9680 x1=0.1,x2=-2.1 x1=0.1,x2=-2.1都是原方程的根,但x2=-2.1不符合题意,所以只取x=0.1 10【解析】解:(1)①8000(1+x);②8000(1+x)(1+x)=8000(1+x)2;(2)8000(1+x)2=9680;(4分)(3)x1=0.1,x2=-2.1;(4)x1=0.1,x2=-2.1都是原方程的根,但x2=-2.1不符合题意,所以只取x=0.1;(5)10.(8分)解此类题时,先将所求问题设为x,根据增长后的产值=增长前的产值(1+增长率),即可用含x的代数式表示,再求解,判断所求的解是否符合题意,舍去不合题意的解.解此类题时,先将所求问题设为x,然后用含x的代数式表示,再求解,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.23.【答案】解:(Ⅰ)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x-3)2+5(a≠0),将(8,0)代入y=a(x-3)2+5,得:25a+5=0,解得:a=-15,∴水柱所在抛物线(第一象限部分)的函数表达式为y=-15(x-3)2+5(0<x<8).(Ⅱ)当y=1.8时,有-15(x-3)2+5=1.8,解得:x1=-1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.【解析】(Ⅰ)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(Ⅱ)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论.本题考查了二次函数的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值.24.【答案】解:(1)∵四边形AEFG是矩形,∴∠AEF=90°,AE=FG,∵AE=72,∴GF=72,∵∠GAF=30°,∴AF=2FG=7.(2)①如图2中,∵四边形ABCD是正方形,∴∠DAC=45°∴α=∠DAC-∠HAN=45°-30°=15°.②如图2中,作NK⊥DC交DC的延长线于K.∵AC=2AB=6,AN=7,∴CN=1,在Rt△CNK中,∵∠NCK=∠DCA=45°,∴CK=NK=22,∴DN=DC+CK=32+22=722,在Rt△DNK中,DN=KN2+DK2=(722)2+(22)2=5.(3)如图③中,设MN交直线AB于点J,作JQ⊥AN于Q.由题意可知:AN=7,∠JAN=∠N=30°,∴JA=JN,∵JQ⊥AN,∴AQ=QN=72,∴AJ=AQcos30∘=733,∵AB=32,∴AJ<AB,∴点B在△ANM外.【解析】(1)在Rt△AFG中,解直角三角形求出AF即可;(2)①根据α=∠DAC-∠HAN计算即可;②如图2中,作NK⊥DC 交DC的延长线于K.在Rt△DKN中,求出KN,DK,再利用勾股定理即可解决问题;(3)如图③中,设MN交直线AB于点J,作JQ⊥AN于Q.求出AJ的长与AB 比较即可判断;本题考查矩形的性质,正方形的性质,勾股定理,旋转变换等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【答案】解:(Ⅰ)把m=1,y=0代入抛物线可得x2-x-2=0,解得x1=-1,x2=2,故该抛物线与x轴的公共点的坐标为(-1,0)或(2,0);(Ⅱ)①当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1-2m)x+1-3m与x轴相交于不同的两点A、B,∴△=(1-2m)2-4×m×(1-3m)=(1-4m)2>0,∴1-4m≠0,∴m≠14,∴m的取值范围为m≠0且m≠14;②|AB|=|x A-x B|=b2−4ac|a|=(1−2m)2−4m(1−3m)|m|=1−4m+4m2−4m+12m2m2=(1−4m)2m2=|1−4mm|=|1m-4|,∵14<m≤8,∴18≤1m<4,∴-318≤1m-4<0,∴0<|1m-4|≤318,∴|AB|最大时,|1m|=318,解得:m=8,或m=863(舍去),∴当m=8时,|AB|有最大值318,此时△ABP的面积最大,没有最小值,则面积最大为:12|AB|y P=12×318×4=314.【解析】(Ⅰ)把m=1,y=0代入抛物线,解方程求出x的值,进一步得到该抛物线与x 轴的公共点的坐标;(Ⅱ)①根据题意得出△=(1-2m)2-4×m×(1-3m)=(1-4m)2>0,得出1-4m≠0,解不等式即可;②由|AB|=|x A-x B|得出|AB|=|-4|,由已知条件得出≤<4,得出0<|-4|≤,因此|AB|最大时,||=,解方程得出m=8,或m=(舍去),即可得出结果.本题是二次函数综合题目,考查了二次函数与一元二次方程的关系,根的判别式以及最值问题等知识,本题难度较大.。

天津市和平区2015-2016学年度第一学期九年级数学期末

天津市和平区2015-2016学年度第一学期九年级数学期末

和平区2015-2016学年度第一学期九年级数学学科期末质量调查试卷温馨提示:本试卷分为第Ⅰ卷〔选择题〕、第Ⅱ卷〔非选择题〕两部分.第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页.试卷满分120分.考试时间100分钟. 祝你考试顺利!第Ⅰ卷注意事项: 1.每题选出答案后,用2B 铅笔把“答题卡〞上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点. 2.本卷共12题,共36分.一、选择题〔本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的〕 1.一元二次方程220x x -=的根是〔A 〕10x =,22x = 〔B 〕11x =,22x = 〔C 〕11x =,22x =- 〔D 〕10x =,22x =-2.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、 大小、质地等完全相同.小明通过多次摸球试验后发现其中摸到红色、黑色球的频 率稳定在5%和15%,则口袋中白色球的个数很可能是 〔A 〕3个 〔B 〕4个 〔C 〕10个 〔D 〕16个 3.下列说法错误的是〔A 〕二次函数23y x =,当x >0时,y 随x 的增大而增大 〔B 〕二次函数26y x =-,当0x =时,y 有最大值,最大值为0〔C 〕抛物线2y ax =〔0a ≠〕,a 越大,抛物线的开口越小;a 越小,抛物线的开口 越大〔D 〕不论a 是正数还是负数,抛物线2y ax =〔0a ≠〕的顶点一定是坐标原点4.下列命题中,是真命题的为〔A 〕锐角三角形都相似 〔B 〕直角三角形都相似 〔C 〕等腰三角形都相似 〔D 〕等边三角形都相似5.某公司10月份的利润为320万元,要使12月份的利润达到500万元,则平均每月 增长的百分率是〔A 〕 30%〔B 〕25%〔C 〕 20%〔D 〕15%6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个, 红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是〔A 〕18〔B 〕16〔C 〕14〔D 〕127.圆锥的底面半径为10cm .它的侧面展开图扇形的半径为30cm ,则这个扇形圆心角的 度数是〔A 〕60° 〔B 〕90° 〔C 〕120° 〔D 〕150° 8.在平面直角坐标系中,以点〔2,3〕为圆心,2为半径的圆 〔A 〕与x 轴相离、与y 轴相切 〔B 〕与x 轴、y 轴都相离 〔C 〕与x 轴相切、与y 轴相离 〔D 〕与x 轴、y 轴都相切9.若二次函数2y x bx =+的图象的对称轴是经过点〔2,0〕且平行于y 轴的直线,则关 于x 的方程25x bx +=的解为〔A 〕120,4x x == 〔B 〕121,5x x == 〔C 〕121,5x x ==- 〔D 〕121,5x x =-=10.如图,AC 是矩形ABCD 的对角线,E 是边BC 延长线上的一点,AE 与CD 相交于点F ,则图中的相似三角形共有 〔A 〕2对 〔B 〕3对 〔C 〕4对 〔D 〕5对11.将△ACE 绕点C 旋转一定的角度后使点A 落在点B 处,点E 落在点D 处,且点B ,C ,E 在同一直线上.AC ,BD 交于点F .CD ,AE 交于点G .AE ,BD 交于点H .连接AB ,DE .则下列结论错误的是〔A 〕DHE ACB ∠=∠ 〔B 〕△ABH ∽△GDH 〔C 〕△DHG ∽△ECG 〔D 〕△ABC ∽△DEC12.抛物线2y ax bx c =++〔a ,b ,c 为常数,且0a ≠〕经过点〔-1,0〕和〔m ,0〕,且1<m <2,当x <-1时,y 随着x 的增大而减小. 下列结论: ①0ab >;②若点A 〔-3,1y 〕,点B 〔3,2y 〕都在抛物线上,则1y <2y ; ③(1)0a m b -+=;④若c ≤-1,则244b ac a -≤. 其中正确结论的个数是〔A 〕1 〔B 〕2 〔C 〕3 〔D 〕4ABCDEFGHA B C D EF第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡〞上(作图可用2B 铅笔). 2.本卷共13题,共84分.二、填空题〔本大题共6小题,每小题3分,共18分〕 13.二次函数21y x =+的最小值是.14.已知正六边形的半径是2,则这个正六边形的边长是.15.如图,点D 是等边三角形ABC 内一点,如果△ABD 绕点A 逆时针旋转后能与△ACE 重合,那么旋转角的大小=度.16.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率 是.17.如图,点M ,N 分别是等边三角形ABC 中AB ,AC 边上的点,点A 关于MN 的对称点落在BC 边上的点D 处,若32=DC BD ,则ANAM的值 =____________.AB CD MNABCDE18.定义:长宽比为n∶1〔n为正整数〕的矩形称为n矩形.下面,我们通过折叠的方式折出一个2矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.可以证明四边形BCEF为2矩形.〔Ⅰ〕在图①中,ADFG的值为;〔Ⅱ〕已知四边形BCEF为2矩形,仿照上述操作,得到四边形BCMN,如图②,可以证明四边形BCMN为n矩形,则n的值是.三、解答题〔本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程〕19.〔本小题8分〕已知y是x的反比例函数,并且当2x=时,6y=.〔Ⅰ〕求y关于x的函数解析式;〔Ⅱ〕当4x=时,y的值为;该函数的图象位于第象限,在图象的每一支上,y随x的增大而.〔Ⅰ〕解方程22125x x -+=;〔Ⅱ〕利用判别式判断方程2231028x x x +=+的根的情况. 21.〔本小题10分〕已知,AG 是⊙O 的切线,切点为A ,AB 是⊙O 的弦,过点B 作BC ∥AG 交⊙O 于点C ,连接AO 并延长交BC 于点M .〔Ⅰ〕如图①,若10BC =,求BM 的长;〔Ⅱ〕如图②,连接AC ,过点C 作CD ∥AB 交AG 于点D .AM 的延长线交过点C 的直线于点P ,且BCP ACD ∠=∠.求证:PC 是⊙O 的切线.22.〔本小题10分〕如图,AB 是⊙O 的直径,点D 是⊙O 上一点,点C 是AD 的中点,连接AC ,BD .AD ,BC 交于点Q .〔Ⅰ〕若DAB ∠=40°,求CAD ∠的大小; 〔Ⅱ〕若10CA =,16CB =,求CQ 的长.图① 图②如图是河上一座拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m ,拱桥的跨度为10m ,桥洞与水面的最大距离是5m ,桥洞两侧壁上各有一盏距离水面4m 的景观灯.求两盏景观灯之间的水平距离.24.〔本小题10分〕已知,△ABC 中,AB AC =,点E 是边AC 上一点,过点E 作EF ∥BC 交AB 于点F .〔Ⅰ〕如图①,求证AE AF =;〔Ⅱ〕如图②,将△AEF 绕点A 逆时针旋转α〔0°<α<144°〕得到△AE F ''.连接CE ',BF '.①若6BF '=,求CE '的长;②若EBC BAC ∠=∠=36°,在图②的旋转过程中,当CE '∥AB 时,直接写出旋转角α的大小.AB CEFE 'F '图① 图②A B C E F已知抛物线22y x x=+-.〔Ⅰ〕求该抛物线与x轴的交点坐标;〔Ⅱ〕将抛物线22y x x=+-沿y轴向上平移,平移后与直线2y x=+的一个交点为点P,与y轴相交于点Q,当PQ∥x轴时,求抛物线平移了几个单位;〔Ⅲ〕将抛物线22y x x=+-在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象在x轴上方的部分组成一个“W〞形状的新图象,若直线12y x b=+与该新图象恰好有三个公共点,求b的值.和平区2015-2016学年度第一学期九年级 数学学科期末质量调查试卷参考答案一、选择题〔本大题共12小题,每小题3分,共36分〕1.A 2.D 3.C 4.D 5.B 6.B 7.C 8.A 9.D 10.C 11.B 12.B 二、填空题〔本大题共6小题,每小题3分,共18分〕13.114.215. 6016.13 17.7818.〔Ⅱ〕3三、解答题〔本大题共7小题,共66分〕 19.〔本小题8分〕解:〔Ⅰ〕设这个反比例函数的解析式为ky x=, …………………………………2分 因为当2x =时,6y =, 所以有62k =. 解得12k =.…………………………………4分 因此这个反比例函数的解析式为12y x=.…………………………………5分 〔Ⅱ〕3 …………………………………6分 一、三 …………………………………7分 减小…………………………………8分 20.〔本小题8分〕解:〔Ⅰ〕2(1)25x -=.…………………………………1分15x -=±.…………………………………2分16x =,24x =-.…………………………………4分〔Ⅱ〕方程化为28100x x-+=.…………………………………1分1a=,8b=-,10c=.…………………………………2分224(8)4110b ac∆=-=--⨯⨯24=>0.…………………………………3分方程有两个不等的实数根.…………………………………4分21.〔本小题10分〕解:〔Ⅰ〕∵AG是⊙O的切线,切点为A,∴GA OA⊥,∴GAM∠=90°.…………………………………2分∵BC∥AG,∴BMA GAM∠=∠=90°.∴OM BC⊥.…………………………………3分∴BM MC=.…………………………………4分∵10BC=,∴152BM BC==.…………………………………5分〔Ⅱ〕连接OC,…………………………………6分由〔Ⅰ〕得OM BC⊥,∴OP平分BC.∴MAB MAC∠=∠.∴2BAC MAC∠=∠.又2MOC MAC∠=∠,∴MOC BAC∠=∠.…………………………………7分∵AB∥CD,∴BAC ACD∠=∠.…………………………………8分∴MOC ACD∠=∠.又BCP ACD ∠=∠,∴MOC BCP ∠=∠.…………………………………9分 ∵OM BC ⊥, ∴OMC ∠=90°.∴MOC OCM ∠+∠=90°, ∴BCP OCM ∠+∠=90°. 即PCO ∠=90°. ∴PC OC ⊥.∴PC 是⊙O 的切线.…………………………………10分 22.〔本小题10分〕解:〔Ⅰ〕∵AB 是⊙O 的直径,∴90D ∠=°. ……………………………………2分 ∵DAB ∠=40°,∴DBA ∠=90°-DAB ∠=90°-40°=50°.……………………………………3分 ∵C 是AD 的中点,∴1122CBA CBD DBA ∠=∠=∠=⨯50°=25°.……………………………………4分∴CAD CBD ∠=∠=25°.……………………………………5分 〔Ⅱ〕∵C 是AD 的中点,∴CAQ CBA ∠=∠.……………………………………6分 ∵ACQ BCA ∠=∠.……………………………………7分∴△CAQ ∽△CBA . ……………………………………8分 ∴CA CQCB CA=. ∴2CA CQ CB =.∵10CA =,16CB =,∴21025164CQ ==.……………………………………10分 23.〔本小题10分〕解:以抛物线的顶点为原点,以抛物线的对称轴为y 轴,建立直角坐标系. 设这条抛物线表示的二次函数为2y ax =, ……………………………………2分 由抛物线经过点〔5,-4〕,可得245a -=⨯ ,解得 425a =-. …………………………………4分 ∴这段抛物线表示的二次函数为2425y x =-〔-5≤x ≤5〕………………5分由已知得,两盏景观灯的纵坐标都是-1, ……………………………………6分∴24125x -=-,……………………………………7分 解得152x =,252x =-. ……………………………………9分∴ 两盏景观灯之间的水平距离是5m . ……………………………………10分 24.〔本小题10分〕解:〔Ⅰ〕∵EF ∥BC , ∴AF AEAB AC=.…………………………………2分 ∵AB AC =,∴AE AF =.…………………………………3分 〔Ⅱ〕①∵△AE F ''由△AEF 旋转得到, ∴△AE F ''≌△AEF . ∴AE AE '=,AF AF '=. 由〔Ⅰ〕得AE AF =,∴AE AF ''=.…………………………………4分又CAE BAF ''∠=∠=α,…………………………………5分AC AB =,…………………………………6分∴△CAE '≌△BAF '.…………………………………7分 ∴CE BF ''=. ∵6BF '=,∴6CE '=.…………………………………8分 ②36°或72°.…………………………………10分 25.〔本小题10分〕解:〔Ⅰ〕令0y =,即220x x +-=.…………………………………1分 解得11x =,22x =-.…………………………………2分∴该抛物线与x 轴的交点坐标为〔-2,0〕,〔1,0〕.……………………………3分〔Ⅱ〕如图,抛物线22y x x =+-的对称轴是直线12x =-,………………………4分设抛物线向上平移后,点Q 的坐标为〔0,n 〕, 当PQ ∥x 轴时,点P 与点Q 关于抛物线的对称轴对称. ∴点P 的坐标为〔-1,n 〕.…………………………………5分 ∵点P 〔-1,n 〕在直线2y x =+上,∴12n =-+,即1n =抛物线22y x x =+-位.∴当PQ ∥x〔Ⅲ〕如图,当直线12y x b =+过点A 〔-2,0〕时,直线与新图象恰好有三个公共点.把A 〔-2,0〕,代入12y x b =+,得1b =.…………………………………8分抛物线22y x x =+-沿x 轴翻折后抛物线的解析式为22y x x =--+. 当直线12y x b =+与22y x x =--+有惟一公共点时,直线与新图象恰好有三个公共点.由21,22,y x b y x x ⎧=+⎪⎨⎪=--+⎩得23202x x b ++-= 当23()4(2)02b ∆=--=,即4116b =时,直线与新图象恰好有三个公共点.综上所述,1b =或4116b =.………………………………10分12345o 12345xy1234512345A。

天津市和平区2015-2016年九年级中考数学综合训练题 一

天津市和平区2015-2016年九年级中考数学综合训练题 一

天津市和平区2015-2016年九年级中考数学综合训练题 一1.已知三角形两边的长是3和4,第三边的长是方程035122=+-x x 的根,则该三角形的周长是( )A.14B.12C.12或14D.以上都不对2.在四边形ABCD 中,∠A=∠B=∠C ,点E 在边AB 上,∠AED=60°,则一定有( )A.∠ADE=20°B.∠ADE=30°C.∠ADE= 1 2∠ADCD.∠ADE= 1 3∠ADC 3.如图,□ABCD 中,点E 是边A D 的中点,EC 交对角线BD 于点F,则EF:FC 等于( )A.3:2B.3:1C.1:1D.1:24.如图,矩形ABCD 中,AB=8,BC=4,点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长( ) A.2 5 B.3 5 C.5 D.65.若一元二次方程x 2- 2x - m = 0无实数根,则一次函数y = (m+1)x + m - 1的图像不经过第( )象限。

A .四B .三C .二D .一 6.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,折叠后,点B 恰好与点O 重合,若BC=3。

则折痕CE 的长为( ) A.32 B.323 C.3 D.67.如图为二次函数y=ax 2 +bx+c (a ≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0.其中正确的个数为( )A .1B .2C .3D .48.若实数a 、b 、c 满足a+b+c=0,且a <b <c,则函数y=cx+a 的图象可能是( )9.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y=ax 2+(b-1)x+c 的图象可能是( )10.与4+5最接近的整数是11.不等式组⎪⎩⎪⎨⎧<->+x x x 4103160103的最小整数解是 . 12.已知12-=x ,则分式⎪⎭⎫ ⎝⎛-+-÷-+2824222x x x x x x = . 13.如图,点A 、B 、C 在半径为9的⊙O 上,AB ⌒的长为π2,则∠ACB 的大小是 .14.如图,在□ABCD 中,AD=2,AB=4,∠A=300,以点A 为圆心,AD 的长为半径画弧交AB 于点E,连接CE,则阴影部分的面积是_________(结果保留π).15.如图,正方形ABCD 的边长为4,E 为BC 上的一点,BE=1,F 为AB 上的一点,AF=2,P 为AC 上一个动点,则PF+PE 的最小值为 .16.如图,E 是边长为1的正方形ABCD 的对角线BD 上的一点,且BE=BA,P 是CE 上任意一点,PQ ⊥BC 于点Q,PR ⊥BE 于点R.则(1)DE= ;(2)PQ +PR= .17.已知实数a 、b 、c 满足a +b=ab =c ,有下列结论:①若c ≠0,则 1 a + 1 b=1;②若a=3,则b +c=9; ③若a=b=c ,则abc=0;④若a 、b 、c 中只有两个数相等,则a+b+c=8.18.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).19.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图。

天津市和平区2015-2016年中考数学综合训练题(四)

天津市和平区2015-2016年中考数学综合训练题(四)

天津市和平区2015-2016年九年级中考数学综合训练题 四1.如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+12.过矩形ABCD 的对角线AC 的中点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE 、CF ,若AB =3,∠DCF =300,则EF 的长为( )A.2B.3C.23D.3 3.一次函数3-+-=a x y (a 为常数)与反比例函数xy 4-=的图象交于A 、B 两点,当A 、B 两点关于原点对称时a 的值是( )A. 0B. -3C. 3D. 4 4.分解因式:=+-121232x x .5.若b a <+<26,且a 、b 是两个连续的整数,则=ba .6.在平面直角坐标系中,点A 、B 的坐标分别是(m,3)、(3m-1,3).若线段AB 与直线y=2x+1相交,则m 的取值范围为__________.7.如图,线段AB 是⊙O 的直径,点C 在圆上,∠AOC=80°,点P 是线段AB 延长线上的一动点,连接PC ,则∠APC 的度数是 度(写出一个即可).8.在□ABCD 中,点O 是对角线AC 、BD 的交点,AC 垂直于BC,且AB=10cm,AD=8cm ,则OB=________cm . 9.如图,在△ABC 中,∠BAC=460,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D,则∠CAD 的度数为10.如图,从一个建筑物的A 处测得对面楼BC 的顶部B 的仰角为32°,底部C 的俯角为45°,观测点与楼的水平距离AD 为31cm ,则楼BC 的高度约为_______m(结果取整数)。

(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)11.如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为 .12.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x= .13.一个不透明的口袋中装有4个分别标有数字-1,-2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y. (1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P (x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.14.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?15.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:(1)已知y 与x 满足一次函数关系,根据上表,求出y 与x 之间的关系式(不写出自变量x 的取值范围); (2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w 与x 之间的关系式,并求出每件商品销售价定为多少元时利润最大?16.如图,在平面坐标系中,∠AOB=900,AB ∥x 轴,OB=2,双曲线y=xk经过点B.将△AOB 绕点B 逆时针旋转,使点O 的对应点D 落在X 轴的正半轴上.若AB 的对应线段CB 恰好经过点O. (1)点B 的坐标和双曲线的解析式。

人教版2015-2016学年上学期九年级数学期末联考试卷及答案

人教版2015-2016学年上学期九年级数学期末联考试卷及答案

2015-2016学年上学期十五所中学期末联考九年级数学试卷考试时间:120分钟满分:120分一、选一选(本大题共10小题,每小题3分,共30分)1.二次函数y=(x﹣1)2﹣2的顶点坐标是()A. (﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)2.判断一元二次方程x2﹣2x+1=0的根的情况是( )A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是( )A.(x﹣4)2=19 B.(x﹣2)2=7 C.(x+2)2=7 D.(x+4)2=194.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是( )A.100(1+x)=121 B.100(1﹣x)=121C.100(1﹣x)2 =121 D.100(1+x)2 =1215.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.6.已知:点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数3y x=﹣图象上的三点,且x 1<0<x 2<x 3则y 1、y 2、y 3的大小关系是( ) A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 3<y 1D .无法确定7.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊( ) A .200只B .400只C .800只D .1000只8.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为( )A .34π B .32π C .34 D .329. 如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于( )A. 120°B. 140°C. 150°D. 160°第9题图 第10题图10.如图,在平行四边形ABCD 中,点E 是边AD 的中点,连接EC 交对角线BD 于点F ,则:DEF BCF S S V V 等于( ) A. 1:2 B .1:4C .1:9D .4:9二、填一填(本大题共8个小题,每小题3分,共24分)11.已知反比例函数(k 是常数,且0k ≠)的图象在第二、四象限,请写出一个符合条件的反比例函数表达式 .12.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 (结果保留π). 13.方程x 2﹣3x =0的根为 . 直于x 轴,14.如图,A 是反比例函数(0)ky x x=>图象上的一点,AB 垂垂足为B ,AC 垂直于y 轴,垂足为C ,若矩形ABOC 的面积为7,则k 的值为 .15.已知x=﹣1是关于x 的一元二次方程220x mx --=的一个解,则m 的值是______. 16.布袋中装有2个白球,4个黑球,它们除颜色外其余均相同,则随机从袋中摸出 一个球是白球的概率是__________.17.已知Rt △ABC 的两直角边的长分别为6cm 和8cm ,则它的外接圆的半径为 cm . 18.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB )的高度为 米.三、解答题(本题共7个大题,共66分)19. (本题8分)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式;(2)连接OA,求△AOC的面积.20.(本题8分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为;(3)在(2)中的旋转过程中,线段OA扫过的图形的面积为.21.(本题10分)已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.22.(本题8分)在一个不透明的盒子中,装有三张卡片,卡片上分别标有数字“1”,“2”和“3”,它们除了数字不同外,其余都相同.(1)随机地从盒中抽出一张卡片,则抽出数字为“2”的卡片的概率是多少?(2)若第一次从这三张卡片中随机抽取一张,设记下的数字为x,此卡片不放回盒中,第二次再从余下的两张卡片中随机抽取一张,设记下的数字为y,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出x+y<4的概率.23.(本题10分) 某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现;当销售单价为25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w (元)与销售单价x (元)之间的函数关系式;(2)当销售单价为多少时,该文具每天的销售利润最大?最大利润是多少?24.(本题10分)如图,⊙O 中,弦AB 、CD 相交于AB 的中点E ,连接AD 并延长至点F ,使DF=AD ,连接BC 、BF . (1)求证:△CBE ∽△AFB ; (2)当85=FB BE 时,求ADCB的值.25.(本题12分)已知二次函数22y x 2mx m 1=-+-.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PC+PD最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由。

天津市和平区2015-2016学年度第一学期九年级数学期中(完整资料).doc

天津市和平区2015-2016学年度第一学期九年级数学期中(完整资料).doc

【最新整理,下载后即可编辑】和平区2015-2016学年度第一学期九年级数学学科期中质量调查试卷本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第7页.试卷满分120分.考试时间100分钟.祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,是中心对称图形但不是轴对称图形的是(A)(B)(C)(D)2.方程23214x x+=-的两个根的和为(A)43(B)13(C)23-(D)43-3.下列方程有实数根的是(A)210x x-+=(B)210x x++=(C)(1)(2)0x x-+=(D)2(1)10x-+=4.一元二次方程210x x--=的两个实数根中较大的根是(A)1+(B(C(D5.把抛物线2y x=向上平移3个单位,再向右平移1个单位,则平移后抛物线的解析式为(A)2(3)1y x=++(B)2(3)1y x=+-(C)2(1)3y x=-+(D)2(1)3y x=++6.如图,⊙O的直径AB为10cm,弦AC为6cm,则BC=(A)6cm(B )8cm (C )10cm (D)7.如图,⊙O 中,AB AC =,C ∠=75°,则A ∠=(A )15° (B )20° (C )25° (D )30°8.如图,已知点E 是O 上的点,B 、C 分别是劣弧AD 的三等分点,BOC ∠=46°,则AED ∠=(A )46°(B )68° (C )69° (D )70°9.已知抛物线2y ax bx c =++(0a ≠)与x 轴交于A ,B 两点,若点A 的坐标为(-2,0),抛物线的对称轴为直线2x =,则线段AB 的长为 (A )2 (B )4 (C )6 (D )810.如图,在Rt △AOB 中,O ∠=90°,ABO ∠=30°,以点A 为旋转中心,把△ABO顺时针旋转得△ACD ,当旋转后满足BC ∥OA 时,旋转角的大小为(A )75° (B )60° (C )45° (D )30° 11.二次函数2y ax bx=+的图象如图所示,若一元二次方程20ax bx m ++=有实数根,则m 的取值范围是 (A )m ≤3 (B )m ≥ 3 (C )m ≤-3 (D )m ≥-312.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且BCD AO其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”. 下列说法: ①方程2280xx --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则m n =-或14m n =-;③若方程2axbx c ++=是倍根方程,且相异两点(2)M t s +,,N(4t -,s )都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为2. 其中,正确说法的个数是(A )0 (B )1 (C )2 (D )3第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔).2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分) 13.时钟的时针在不停地旋转,从上午6时到上午9时,时针旋转的旋转角是 度.14.请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式,y =__________.15.参加一次足球联赛的每两队之间都进行两次比赛,共要比赛30场,共有 个队参加比赛.16.如图,⊙A 中,弦6DE =,BAC EAD ∠+∠=180°,则点A 到弦BC的距离等于 .17.已知抛物线2(2)9y x k x =-++的顶点在坐标轴上,则k 的值为 .18.在边长为2的菱形ABCD 中,A ∠=60°,M 是AD 边的中点,若线段MA 绕点M 旋转得线段MA ',(Ⅰ)如图①,当线段MA 绕点M 逆时针旋转60°时.线段AA '的长= .(Ⅱ)如图②,连接A C',则A C'长度的最小值是 .三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程) 19.(本小题8分)(Ⅰ)如图①,画出△ABC 绕点O 逆时针旋转90°后的△111A B C ;(Ⅱ)如图②,画出△ABC 绕点O 旋转180°后的△111A B C .图① 图②A 'ABCD M'ABCDM图① 图②20.(本小题8分)已知关于x的一元二次方程220x ax+-=,(Ⅰ)若该方程的一个根为1,求a的值及该方程的另一根;(Ⅱ)求证:不论a取何实数,该方程都有两个不相等的实数根.21.(本小题10分)已知,AB是⊙O的直径,弦CD AB⊥于点E,(Ⅰ)如图①,若16CD=,4BE=,求⊙O的直径;(Ⅱ)如图②,连接DO并延长交⊙O于点M,连接MB,若M D∠=∠22.(本小题10分)图①图②要对一块长60 m、宽40 m的矩形荒地ABCD(BC>AB)进行绿化和硬化.设计方案如图所示,矩形L,M,N为三块绿地,其余为硬化路面,L,M,N三块绿地周围的硬化路面宽都相等,并使三块绿地面积的和为矩形,M,N三块绿地周围的硬化路面的宽.23.(本小题10分)某果园有100棵枇杷树,每棵平均产量为60千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵树接受的阳光就会减少.根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.5千克.增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?24.(本小题10分)已知,AB是⊙O的直径,C、D是⊙O上的两点,且AC CD,连接BC ,BD .(Ⅰ)如图①,若CBD ∠=20°,求A ∠的大小;(Ⅱ)如图②,连接OC ,若OC BD =,求证四边形OCDB 是菱形;(Ⅲ)如图③,4AB =,1AC =,求BD 的长(直接写出结果即可).25.(本小题10分)在平面直角坐标系xOy中,抛物线22y x mx n =++经过点A(0,2-),B (3,4). (Ⅰ)求抛物线的解析式、对称轴和顶点;(Ⅱ)设点B 关于原点的对称点为C ,记抛物线在A ,B 之BBB图① 图② 图③间的部分为图象G(包含A,B两点).①点D是抛物线对称轴上一动点,若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围;②点E是图象G上一动点,动点E与点B,点C构成无数个三角形,在这些三角形中存在一个面积最大的三角形,求出这个三角形的面积,并求出此时点E的坐标.和平区2015-2016学年度第一学期九年级 数学学科期中质量调查试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.A 2.D 3.C 4.B 5.C 6.B 7.D 8.C 9.D 10.B 11.A 12.C 二、填空题(本大题共6小题,每小题3分,共18分)13.9014.21x +(答案不惟一.设抛物线的解析式为2y ax bx c=++(0a ≠),所写解析式满足a >0,1c =即可). 15.6 16.3 17.4,8-,2-18.(Ⅰ)11三、解答题(本大题共7小题,共66分) 19.(本小题8分)解: (Ⅰ) (Ⅱ)…………………………………8分 20.(本小题8分)解:(Ⅰ)将1x =代入方程220x ax +-=, 得120a +-=.…………………………………1分解得1a=.…………………………………2分方程为220x x+-=.…………………………………3分(1)(2)0x x-+=,10x-=或20x+=.∴11x=,22x=-.∴该方程另一根为-2.…………………………………5分(Ⅱ)证明:2241(2)80a a∆=-⨯⨯-=+>,…………………………………7分∴不论a取何实数,该方程都有两个不相等的实数根.………………………………8分21.(本小题10分)解:(Ⅰ)连接OD,…………………………………1分∵直径AB CD⊥,16CD=,∴==.……………8CE DE……………………2分设⊙O的半径为x,∵4BE=,∴4=-.OE x在Rt△OED中,222=+,OD OE DE∴222=-+.………………x x(4)8…………………3分解得x=.………………10…………………4分∴⊙O的直径是20. …………………………………5分(Ⅱ)∵12M BOD ∠=∠,M D ∠=∠, …………………………………7分∴12D BOD ∠=∠.…………………………………8分 ∵CD AB ⊥, ∴D BOD ∠+∠=90°…………………………………9分 ∴D ∠=30°.………………………………10分 22.(本小题10分) 解:设L,M,N三块绿地周围的硬化路面的宽为x m ,……………………1分根据题意,得1(604)2(402)6040x x --=⨯⨯. (5)分整理,得2351500x x -+=. 解这个方程,得12530x x ==,. ………………………………8分230x =不符合题意,舍去.只取5x =.答:L,M,N三块绿地周围的硬化路面宽为 5m . ……………………………10分 23.(本小题10分) 解:设增种x棵枇杷树,投产后果园的总产量为y千克, ………………………1分 根据题意,得(100)(600.5)y x x =+-. ………………………………4分 即20.5106000y x x =-++.………………………………6分其中0≤x ≤ 120, 将上式化为21(10)60502y x =--+.………………………………8分 因为12a =-<0,所以当10x =时,y 最大,最大值为6050.所以增种10棵枇杷树,投产后可以使果园枇杷的总产量最多,最多总产量是6050千克.………………………………10分 24.(本小题10分) 解:(Ⅰ)∵AC CD =, ∴AC CD =.………………………………1分 ∴ABC CBD ∠=∠. ∵CBD ∠=20°, ∴∠=20°.…………ABC……………………2分∵AB是⊙O的直径,∴∠=90°.…………ACB……………………3分∴∠=70°.…………A……………………4分(Ⅱ)∵OB OC=,∴∠=∠.……………OCB ABC…………………5分由(Ⅰ)知,ABC CBD∠=∠.∴OCB CBD∠=∠.∴OC∥BD.………………………………6分∵OC BD =,∴四边形OCDB 是平行四边形. ………………………………7分 ∵OC OB =,∴□OCDB 是菱形. ………………………………8分(Ⅲ)72 ………………………………10分25.(本小题10分)解:(Ⅰ)∵抛物线22y x mx n =++经过点A (0,2-),B (3,4), ∴将两点坐标代入得2,183 4.n m n =-⎧⎨++=⎩ 解这个方程组得,4,2.m n =-⎧⎨=-⎩∴抛物线的解析式为2242y x x =-- ………………………………3分22(1)4x =--.对称轴为直线1x =. ………………………………4分顶点为(1,-4). ………………………………5分(Ⅱ)①如图,由题意可知C(―3,―4). ………………………………6分 由2242y x x =--的最小值为-4,可知D 点纵坐标的最小值为-4.最大值为直线BC 与对称轴交点的纵坐标.易得直线BC 的解析式为43y x =. 当1x =时,43y =. 综上知-4≤t ≤43. ………………………………8分②如图,过点E 作x 轴的垂线交BC 与点F ,EF 把△EBC 分成两个△BEF 和△CEF .设这两个三角形的EF 边上的高分别为1h 、2h . 设E 点坐标为(x ,2242x x --),则F 点的坐标为(x ,43x ). 24(242)3EF x x x =--- 216223x x =-++. 121122EBC BEF CEF S S S EF h EF h ∆∆∆=+=+121()2EF h h =+ []22116(22)3(3)616623x x x x =-++--=-++(0≤x <3) ∵-6<0,∴当1642(6)3x =-=⨯-时, △EBC 的面积最大,最大面积为24(6)616504(6)3⨯-⨯-=⨯-. 此时点E 的坐标为(43,349-). ………………………………10分EF。

2015-2016学年第一学期期末考试九年级数学附答案

2015-2016学年第一学期期末考试九年级数学附答案
14.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为每平方米7800元,设该楼盘这两年房价平均降低率为x,根据题意可列方程为▲.
15.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为▲.
16.某数学兴趣小组研究二次函数y=mx2-2mx+1(m≠0)的图像时发现:无论m如何变化,该图像总经过两个定点(0,1)和(▲,▲).
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(8分)(1)解方程:3x(x-2)=x-2(2)x2-4x-1=0
18.(6分)如图,利用标杆BE测量建筑物的高度,如果标杆BE长1.2m,测得AB=1.6m,BC=8.4m,楼高CD是多少?
25.(8分)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).
26.(10分)如图①,A、B、C、D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
2015-2016学年第一学期期末考试九年级数学
(满分:120分考试时间:120分钟)
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.方程x(x+2) =0的解是(▲)
A.-2
B.0,-2
C.0,2
D.无实数根
2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是(▲)

2015-2016学年度第一学期期末考试九年级数学试题附答案

2015-2016学年度第一学期期末考试九年级数学试题附答案

2015-2016学年度第一学期期末考试九年级数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共4页,满分为84分.本试题共6页,满分为120分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x 2﹣9=0的解是( )A . x=3B . x=﹣3C . x 1=3,x 2=﹣3D . x 1=9,x 2=﹣9 2.如图,下列几何体的左视图不是矩形的是( )3.下列函数中,图象经过点(2,﹣3)的反比例函数关系式是 ( )A.3y x =- B.2y x = C.6y x = D.6y x=-4.如图,四边形ABCD 内接于⊙O ,已知∠A BC =35°,则∠AOC 的大小是( ) A.80° B.70° C. 60° D.50°5.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B .22C .32D .336.下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .一组对边相等,另一组对边平形的四边形是平行四边形C .对角线相等的四边形是矩形D .对角线互相垂直平分且相等的四边形是正方形7.三角形两边长分别为3和6,第三边是方程x 2-13x+36=0的根,则三角形的周长为( ) A .13 B .15 C .18 D .13或188.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C .AP AB AB AC = D .AB ACBP CB=9. 二次函数y= -x 2+2x+4的最大值为( )A .3B .4C .5D .610.经过某十字路口的汽车,可能直行,也可能左转或者右转。

2016-2017年天津市和平区初三上学期期末数学试卷及答案

2016-2017年天津市和平区初三上学期期末数学试卷及答案

2016-2017学年天津市和平区初三上学期期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.(3分)两地的实际距离是2000m,在地图上量得这两地的距离为2cm,这幅地图的比例尺是()A.1:1000000 B.1:100000 C.1:2000 D.1:10003.(3分)如图,将△AOB绕点O逆时针方向旋转45°后得到△A′OB′,若∠AOB=10°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°4.(3分)对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象的开口向下 B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=﹣15.(3分)将抛物线y=x2﹣2x+2先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(﹣2,3)B.(﹣1,4)C.(3,4) D.(4,3)6.(3分)一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A.B.C.D.7.(3分)若一个正六边形的周长为24,则该正六边形的边心距为()A.2 B.4 C.3 D.128.(3分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B 的对应点D的坐标为()A.(3,3) B.(1,4) C.(3,1) D.(4,1)9.(3分)如图,△ABC内接于⊙O,AD是∠BAC的平分线,交BC于点M,交⊙O于点D.则图中相似三角形共有()A.2对 B.4对 C.6对 D.8对10.(3分)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为,CD=4,则弦AC的长为()A.2 B.3 C.4 D.211.(3分)如图,点A1、A2、B1、B2、C1、C2分别为△ABC的边BC、CA、AB的三等分点,若△ABC的周长为I,则六边形A1A2B1B2C1C2的周长为()A.2I B.I C.I D.I12.(3分)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)抛物线y=ax2+bx+3经过点(2,4),则代数式4a+2b的值为.14.(3分)如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为.15.(3分)如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=.16.(3分)一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数比白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是,则从袋中摸出一个球是白球的概率是.17.(3分)如图,点D、E、F分别在正三角形ABC的三边上,且△DEF也是正三角形,若△ABC的边长为a,△DEF的边长为b.则△AEF的内切圆半径为.18.(3分)已知△ABC,△EFG均是边长为4的等边三角形,点D是边BC、EF 的中点.(Ⅰ)如图①,这两个等边三角形的高为;(Ⅱ)如图②,直线AG,FC相交于点M,当△EFG绕点D旋转时,线段BM长的最小值是.三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程.19.(8分)(1)解方程(x﹣2)(x﹣3)=0;(2)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,求m的值取值范围.20.(8分)已知四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OC、OA、AC.(1)如图①,求∠OCA的度数;(2)如图②,连接OB、OB与AC相交于点E,若∠COB=90°,OC=2,求BC 的长和阴影部分的面积.21.(10分)已知,AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P.(1)如图①,若∠COB=2∠PCB,求证:直线PC是⊙O的切线;(2)如图②,若点M是AB的中点,CM交AB于点N,MN•MC=36,求BM的值.22.(10分)如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的宽各为多少米,设与墙平行的一边长为x米.(1)填空:(用含x的代数式表示)另一边长为米;(2)列出方程,并求出问题的解.23.(10分)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)根据题意,填空:①顶点C的坐标为;②B点的坐标为;(2)求抛物线的解析式;(3)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当点C到水面的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?24.(10分)在△ABC中,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线时,求∠CC1A1的度数;(2)已知AB=6,BC=8,①如图2,连接AA1,CC1,若△CBC1的面积为16,求△ABA1的面积;②如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应是点P1,直接写出线段EP1长度的最大值.25.(10分)将直角边长为6的等腰直角△AOC放在平面直角坐标系中,点O为坐标原点,点C、A分别在x轴,y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)若点P(t,t)在抛物线上,则称点P为抛物线的不动点,将(1)中的抛物线进行平移,平移后,该抛物线只有一个不动点,且顶点在直线y=2x﹣上,求此时抛物线的解析式.2016-2017学年天津市和平区初三上学期期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大【解答】解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D选项正确;故选:D.2.(3分)两地的实际距离是2000m,在地图上量得这两地的距离为2cm,这幅地图的比例尺是()A.1:1000000 B.1:100000 C.1:2000 D.1:1000【解答】解:2000m=200000cm,所以这幅地图的比例尺为2:200000=1:100000.故选:B.3.(3分)如图,将△AOB绕点O逆时针方向旋转45°后得到△A′OB′,若∠AOB=10°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=10°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣10°=35°,故选:C.4.(3分)对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象的开口向下 B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=﹣1【解答】解:二次函数y=2(x+1)(x﹣3)可化为y=2(x﹣1)2﹣8的形式,A、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x>1时,y随x的增大而增大,故本选项错误;C、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x<1时,y随x的增大而减小,故本选项正确;D、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误.故选:C.5.(3分)将抛物线y=x2﹣2x+2先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(﹣2,3)B.(﹣1,4)C.(3,4) D.(4,3)【解答】解:∵y=x2﹣2x+2=(x﹣1)2+1,∴先向右平移3个单位长度,再向上平移2个单位长度后抛物线解析式为y=(x ﹣4)2+3,∴顶点坐标为(4,3),故选:D.6.(3分)一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A.B.C.D.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球所标数字之和为6的有:(1,5),(3,3),(5,1),∴两次摸出的球所标数字之和为6的概率是:=.故选:C.7.(3分)若一个正六边形的周长为24,则该正六边形的边心距为()A.2 B.4 C.3 D.12【解答】解:连接OA,作OM⊥AB,得到∠AOM=30°,∵圆内接正六边形ABCDEF的周长为24,∴AB=4,则AM=2,因而OM=OA•cos30°=2.正六边形的边心距是2.故选:A.8.(3分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B 的对应点D的坐标为()A.(3,3) B.(1,4) C.(3,1) D.(4,1)【解答】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点D的横坐标和纵坐标都变为B点的一半,∴点D的坐标为:(4,1).故选:D.9.(3分)如图,△ABC内接于⊙O,AD是∠BAC的平分线,交BC于点M,交⊙O于点D.则图中相似三角形共有()A.2对 B.4对 C.6对 D.8对【解答】解:∵AD是∠BAC的平分线,∴∠BAD=∠CAD,BD=CD,∴∠BAD=∠CAD=∠DBC=∠DCB,又∵∠BDA=∠MDB,∠CDA=∠MDC∴△ABD∽△BDM;△ADC∽△CDM;∵∠CAD=∠CBD,∠AMC=∠BMD,∴△AMC∽△BMD,∵∠BAD=∠MCD,∠AMB=∠CMD,∴△ABM∽△CDM,∵∠ABC=∠ADC,∠BAD=∠DAC,∴△ABM∽△ADC,∵∠ACB=∠ADB,∠BAD=∠CAD,∴△ACM∽△ADB,∴共有六对相似三角形,故选:C.10.(3分)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为,CD=4,则弦AC的长为()A.2 B.3 C.4 D.2【解答】解:连接AO并延长,交CD于点E,连接OC,∵直线AB与⊙O相切于点A,∴EA⊥AB,∵CD∥AB,∠CEA=90°,∴AE⊥CD,∴CE=CD=×4=2,∵在Rt△OCE中,OE==,∴AE=OA+OE=4,∴在Rt△ACE中,AC==2.故选:A.11.(3分)如图,点A1、A2、B1、B2、C1、C2分别为△ABC的边BC、CA、AB的三等分点,若△ABC的周长为I,则六边形A1A2B1B2C1C2的周长为()A.2I B.I C.I D.I【解答】解:∵点A1、A2,B1、B2,C1、C2分别是△ABC的边BC、CA、AB的三等分点,∴△ABC∽△AC1B2,△ABC∽△C2BA1,△ABC∽△B1A2C,∴C1B2:BC=1:3,C2A1:AC=1:3,B1A2:AB=1:3,∴六边形A1A2B1B2C1C2的周长=(AB+BC+CA),∵△ABC的周长为I,∴六边形A1A2B1B2C1C2的周长=I.故选:B.12.(3分)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3【解答】解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)抛物线y=ax2+bx+3经过点(2,4),则代数式4a+2b的值为1.【解答】解:∵抛物线y=ax2+bx+3经过点(2,4),∴4a+2b+3=4,∴4a+2b=1,故答案为1.14.(3分)如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为2.【解答】解:∵△ABC沿DE折叠,使点A落在点A′处,∴∠DEA=∠DEA′=90°,AE=A′E,∴△ACB∽△AED,又A′为CE的中点,∴=,即=,∴ED=2.故答案为:2.15.(3分)如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=25°.【解答】解:连接OB,∵PA、PB是⊙O的切线,A、B为切点,∴∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠P﹣∠PAO﹣∠PBO=130°,∵OA=OB,∴∠BAC=25°.16.(3分)一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数比白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是,则从袋中摸出一个球是白球的概率是.【解答】解:根据题意得:红球的个数为:100×=30,设白球有x个,则黄球有(2x﹣5)个,根据题意得x+2x﹣5=100﹣30,解得x=25.所以摸出一个球是白球的概率P==,故答案为:.17.(3分)如图,点D、E、F分别在正三角形ABC的三边上,且△DEF也是正三角形,若△ABC的边长为a,△DEF的边长为b.则△AEF的内切圆半径为.【解答】解:如图,由于△ABC,△DEF都为正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,∴∠1+∠2=∠2+∠3=120°,∠1=∠3;在△AEF和△CFD中,,∴△AEF≌△CFD(AAS);同理可证:△AEF≌△CFD≌△BDE;∴BE=AF,即AE+AF=AE+BE=a.设M是△AEF的内心,MH⊥AE于H,则AH=(AE+AF﹣EF)=(a﹣b);∵MA平分∠BAC,∴∠HAM=30°;∴HM=AH•tan30°=(a﹣b)•=(a﹣b).故答案为:(a﹣b).18.(3分)已知△ABC,△EFG均是边长为4的等边三角形,点D是边BC、EF 的中点.(Ⅰ)如图①,这两个等边三角形的高为2;(Ⅱ)如图②,直线AG,FC相交于点M,当△EFG绕点D旋转时,线段BM长的最小值是2﹣2.【解答】解:(Ⅰ)如图①中,连接AD,∵△ABC是等边三角形,BD=CD,∴AD⊥BC,在Rt△ABD中,∵AB=4,BD=2,∴AD===2,故答案为2.(Ⅱ)如图①中,连接AE、EC、CG.∵DE=DF=DC,∴△EFC是直角三角形,∴∠ECF=90°,∵∠ADC=∠EDG=90°,∴∠ADE=∠GDC,在△ADE和△GDC中,,∴△ADE≌△GDC,∴AE=CG,∠DAE=∠DGC,∵DA=DG,∴∠DAG=∠DGA,∴∠GAE=∠AGC,∵AG=GA,∴△AGE≌△GAC,∴∠GAK=∠AGK,∴KA=KG,∵AC=EG,∴EK=KC,∴∠KEC=∠KCE,∵∠AKG=∠EKC,∴∠KAG=∠KCE,∴EC∥AG,∴∠AMF=∠ECF=90°,∴点M在以AC为直径的圆上运动,如图②中,当点M运动到BM⊥AC时,BM最短,∵OB=2,AO=OM=OC=2,∴BM的最小值为2﹣2.故答案为2﹣2.三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程.19.(8分)(1)解方程(x﹣2)(x﹣3)=0;(2)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,求m的值取值范围.【解答】解:(1)∵(x﹣2)(x﹣3)=0∴x﹣2=0或x﹣3=0,解得:x1=2,x2=3.(2)∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4m=4﹣4m>0,解得:m<1.∴m的值取值范围为m<1.20.(8分)已知四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OC、OA、AC.(1)如图①,求∠OCA的度数;(2)如图②,连接OB、OB与AC相交于点E,若∠COB=90°,OC=2,求BC的长和阴影部分的面积.【解答】解:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠ABC +∠D=180°,∵∠ABC=2∠D ,∴∠D +2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°,∵OA=OC ,∴∠OAC=∠OCA=30°;(2)∵∠COB=90°,在Rt △OCE 中,OC=2,∴OE=OC•tan ∠OCE=2•tan30°=2×=2,(设OE=x ,则EC=2x ,∴(2x )2=x 2+(2)2,解得x=2)∴S △OEC =OE•OC=×2×2=2, ∴S 扇形OBC ==3π,∴S 阴影=S 扇形OBC ﹣S △OEC =3π﹣2.21.(10分)已知,AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P.(1)如图①,若∠COB=2∠PCB,求证:直线PC是⊙O的切线;(2)如图②,若点M是AB的中点,CM交AB于点N,MN•MC=36,求BM的值.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO.∴∠COB=2∠ACO.又∵∠COB=2∠PCB,∴∠ACO=∠PCB.∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°,即OC⊥CP.∵OC是⊙O的半径,∴PC是⊙O的切线.(2)解:连接MA、MB.(如图)∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM.∵∠AMC=∠AMN,∴△AMC∽△NMA.∴.∴AM2=MC•MN.∵MC•MN=36,∴AM=6,∴BM=AM=6.22.(10分)如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的宽各为多少米,设与墙平行的一边长为x米.(1)填空:(用含x的代数式表示)另一边长为米;(2)列出方程,并求出问题的解.【解答】解:(1)设与墙平行的一边长为x米,另一边长为米,故答案是:;(2)设平行于墙的一边为x米,则另一边长为米,根据题意得:x•=180,整理得出:x2﹣40x+360=0,解得:x1=20+2,x2=20﹣2,由于墙长25米,而20+2>25,∴x1=20+2,不合题意舍去,∵0<20﹣2<25,∴x2=20﹣2,符合题意,此时=10+,答:此时鸡场靠墙的一边长(20﹣2)米,宽是(10+)米.23.(10分)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)根据题意,填空:①顶点C的坐标为(0,11);②B点的坐标为(8,8);(2)求抛物线的解析式;(3)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当点C到水面的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?【解答】解:(1)由题意OC=11,OD=8,BD=AE=8,∴C(0,11),B(8,8),故答案为(0,11)和(8,8).(2)∵点C到ED的距离是11米,∴OC=11,设抛物线的解析式为y=ax2+11,由题意得B(8,8),∴64a+11=8,解得a=﹣,∴y=﹣x2+11;(3)水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至少为11﹣5=6(米),∴6=﹣(t﹣19)2+8,∴(t﹣19)2=256,∴t﹣19=±16,解得t1=35,t2=3,∴35﹣3=32(小时).答:需32小时禁止船只通行.24.(10分)在△ABC中,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线时,求∠CC1A1的度数;(2)已知AB=6,BC=8,①如图2,连接AA1,CC1,若△CBC1的面积为16,求△ABA1的面积;②如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应是点P1,直接写出线段EP1长度的最大值.【解答】解:(1)依题意得:△A1C1B≌△ACB,∴BC1=BC,∠A1C1B=∠C=30°,∴∠BC1C=∠C=30°,∴∠CC1A1=60°;(2)如图2所示:由(1)知:△A1C1B≌△ACB,∴A1B=AB,BC1=BC,∠A1BC1=∠ABC,∴∠1=∠2,==,∴△A1BA∽△C1BC,∴=()2,∵△CBC1的面积为16,∴△ABA1的面积=9(3)线段EP1长度的最大值为11,理由如下:如图3所示:当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=8+3=11.即线段EP1长度的最大值为11.25.(10分)将直角边长为6的等腰直角△AOC放在平面直角坐标系中,点O为坐标原点,点C、A分别在x轴,y轴的正半轴上,一条抛物线经过点A、C及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)若点P(t,t)在抛物线上,则称点P为抛物线的不动点,将(1)中的抛物线进行平移,平移后,该抛物线只有一个不动点,且顶点在直线y=2x﹣上,求此时抛物线的解析式.【解答】解:(1)∵B(﹣3,0),C(6,0),设抛物线为y=a(x+3)(x﹣6),过A(0,6)∴6=a(0+3)(0﹣6),解得a=﹣,∴y=﹣(x+3)(x﹣6),即y=﹣x2+x+6;(2)设P(m,0),如图,∵PE∥AB,∴△PCE∽△BCA,∴,,∴S△PCE=,∴S=S△APC ﹣S△PCE=﹣m2+m+6,=﹣(m﹣)2+,∴当m=时,S有最大值为;∴P(,0);(3)设平移后的抛物线的顶点为G(h,k),∴抛物线解析式为y=﹣(x﹣h)2+k,由抛物线的不动点的定义,得,t=﹣(t﹣h)2+k,即:t2+(3﹣2h)t+h2﹣3k=0,∵平移后,抛物线只有一个不动点,∴此方程有两个相等的实数根,∴△=(3﹣2h)2﹣4(h2﹣3k)=0,∴h﹣k=①,∵顶点在直线y=2x﹣上,∴k=2k﹣②,∴联立①②得,h=1,k=,∴抛物线的解析式为y=﹣(x﹣1)2+=﹣x2+x﹣,。

初中数学九年级试卷真题及答案人教版 天津市和平区期末试卷真题含答案

初中数学九年级试卷真题及答案人教版 天津市和平区期末试卷真题含答案

天津市和平区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,可以看作是中心对称图形的是()A.B.C.D.2.下列命题中,是真命题的是()A.直角三角形都相似B.等腰三角形都相似C.矩形都相似D.正方形都相似3.二次函数y=ax2+bx+c图象上部分点的坐标如下表所示,则该函数图象的顶点坐标为()x…﹣1012…y…0343…A.(﹣1,0)B.(0,3)C.(1,4)D.(2,3)4.如图,一个油桶靠在直立的墙边,量得WY=0.5m,并且XY⊥WY,则这个油桶的底面半径是()A.0.25m B.0.5m C.0.75m D.1m5.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是()A.B.C.D.6.如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是边AC上一点,AE=5,ED⊥AB,垂足为点D,则AD的长是()A.16B.C.6D.47.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 8.如图,在▱OABC中,∠A=60°,将▱OABC绕点O逆时针旋转得到▱OA′B'C′,且∠A'OC=90°,设旋转角为α(0°<α<90°),则α的大小为()A.30°B.45°C.60°D.75°9.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>010.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加()A.1m B.2m C.3m D.6m11.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°12.如图,抛物线y=ax2+bx+c的顶点坐标为(1,﹣4a),点A(4,y1)是该抛物线上一点,若点B(x2,y2)是该抛物线上任意一点,有下列结论:①4a﹣2b+c>0;②抛物线y=ax2+bx+c与x轴交于点(﹣1,0),(3,0);③若y2>y1,则x2>4;④若0≤x2≤4,则﹣3a≤y2≤5a.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是.14.已知正六边形的半径是3,则这个正六边形的边长是.15.如图,在△ABC中,点D,E在AC边上,且AE=ED=DC.点F,M在AB边上,且FE∥MD∥BC,延长FD交BC的延长线于点N,则的值=.16.已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为度.17.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1,x2,且x1<1<x2,则c的取值范围是.18.已知正方形ABCD的边长为6,O是BC边的中点.(1)如图①,连接AO,则AO的长为;(2)如图②,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,则线段OF长的最小值为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.已知2是方程x2﹣c=0的一个根,求常数c的值及该方程的另一根.20.已知,⊙O中,=,D是⊙O上的点,OC⊥BD.(1)如图①,求证=;(2)如图②,连接AB,BC,CD,DA,若∠A=70°,求∠BCD,∠ADB的大小.21.已知⊙O的直径AB=4,C为⊙O上一点,AC=2.(1)如图①,点P是上一点,求∠APC的大小;(2)如图②,过点C作⊙O的切线MC,过点B作BD⊥MC于点D,BD与⊙O交于点E,求∠DCE的大小及CD的长.22.一个直角三角形的两条直角边的和是7cm,面积是6cm2,求两条直角边的长.23.如图,已知矩形ABCD的周长为36cm,矩形绕它的一条边CD旋转形成一个圆柱.设矩形的一边AB的长为xcm(x>0),旋转形成的圆柱的侧面积为Scm2.(1)用含x的式子表示:矩形的另一边BC的长为cm,旋转形成的圆柱的底面圆的周长为cm;(2)求S关于x的函数解析式及自变量x的取值范围;(3)求当x取何值时,矩形旋转形成的圆柱的侧面积最大;(4)若矩形旋转形成的圆柱的侧面积等于18πcm2,则矩形的长是cm,宽是cm.24.在△ABC中,∠ACB=90°,CA=CB=2,点P是边AB的中点,连接CP.(1)如图①,∠B的大小=(度),AB的长=,CP的长=;(2)延长BC至点O,使OC=2BC,将△ABC绕点O逆时针旋转α(0°<α<180°)得到△A'B'C',点A,B,C,P的对应点分别为A',B',C',P'.①图②,当α=30°时,求点C′到直线OB的距离及点C'到直线AB的距离;②当C′P'与△ABC的一条边平行时,求点P'到直线AC的距离(直接写出结果即可).25.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB ∥x轴,∠ABC=135°,且AB=4.(1)当m=1时,求抛物线的顶点坐标;(2)求点C到直线AB的距离(用含a的式子表示);(3)若点C到直线AB的距离为1,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案与试题解析一.选择题1.B 2.D 3.C 4. B 5.A 6.D 7.A 8.A 9.C 10.B 11.D 12.C二.填空题13..14.3.15..16.16017.c<﹣2.18.33﹣2.三.解答题19.解:将x=2代入x2﹣c=0,得:4﹣c=0,解得c=4,所以方程为x2﹣4=0,则x2=4,∴x1=2,x2=﹣2.所以c=4,另一个根为x=﹣2.20.(1)证明:∵OC⊥BD,OC过O,∴=,∵=,∴=;(2)解:∵四边形ABD是圆内接四边形,∴∠A+∠BCD=180°,∵∠A=70°,∴∠BCD=110°,∵=,∴∠CBD=∠CDB=(180°﹣∠BCD)=35°,∵=,∴∠ADB=∠CDB=35°.21.解:(1)连接OC,∵AB为⊙O的直径,AB=2AC,∴OA=OC=AC,∴△AOC是等边三角形,∴∠AOC=60°,∴∠APC=AOC=30°;(2)连接OE,OC,∵MC是⊙O的切线,∴MC⊥OC,∵BD⊥MC,∴∠MCO=∠CDB=90°,∴BD∥OC,∴∠B=∠AOC=60°,∵OB=OE,∴△EOB是等边三角形,∴∠EOB=60°,∴∠COE=180°﹣∠EOB﹣∠AOC=60°,∵OC=OE,∴△OCE是等边三角形,∴CE=OC=2,∠EOC=60°,∴∠DCE=90°﹣∠ECO=30°,在Rt△COE中,CE=2,∴DE=CE=1,∴CD===.22.解:设其中一条直角边的长为xcm,则另一条直角边的长为(7﹣x)cm,依题意得:x(7﹣x)=6,整理得:x2﹣7x+12=0,解得:x1=3,x2=4.当x=3时,7﹣x=4;当x=4时,7﹣x=3.答:两条直角边的长分别为3cm,4cm.23.解:(1)BC=(36﹣2x)=(18﹣x)cm,旋转形成的圆柱的底面圆的周长为2π(18﹣x)cm.故答案为:(18﹣x),2π(18﹣x).(2)S=2π(18﹣x)•x=﹣2πx2+36πx(0<x<18).(3)∵S=﹣2πx2+36πx=﹣2π(x﹣9)2+162π,又∵﹣2π<0,∴x=9时,S有最大值.(4)由题意:﹣2πx2+36πx=18π,∴x2﹣18x+9=0,解得x=9+6或9﹣6(舍弃),∴矩形的长是(9+6)cm,宽是(9﹣6)cm.故答案为:(9+6),(9﹣6).24.解:(1)在△ABC中,∠ACB=90°,CA=CB=2,∴∠B=∠A=45°,∵sin B==,∴AB=2,∵点P是边AB的中点,∴CP==,故答案为45,2,.(2)①过点C′作C′D⊥OB,垂足为点D,过点C′作C′E⊥AB,交BA的延长线于点E,连接AC′,∵将△ABC绕点O逆时针旋转a得到△A′B′C′,∴OC′=OC=2BC=2×2=4,在R△OC′D中,∠O=30°,∴C′D=OC′=×4=2,∴点C′到直线OB的距离为2,OD===2;∵C′D⊥OB,∠ACB=90°,∴∠C′DB=∠ACB=90°,∴AC∥C′D,∵C′D=2,AC=2,C′D=AC,∴四边形C′DCA是平行四边形,∴C′A=DC=OC﹣OD=4﹣2,C′A∥DC,∴∠EAC'=∠B=45°,∠EC′A=90°﹣∠EAC′=90°﹣45°=45°,∴∠EAC′=∠EC′A∴C′E=AE,在Rt△AC′E中,∵C′E2+AE2=C′A2,∴C′E2=,∴C′E=C′A=(4﹣2)=2﹣.∴点C′到直线AB的距离为2﹣;②如图③﹣1中,当P′C′∥AC时,延长P′C′交OB于H.∵P′H∥AC,∴∠OHC′=∠ACO=90°,∵∠OC′H=∠B′C′P′=45°,∴OH=OC′•cos45°=2,∴CH=OC﹣OH=4﹣2.∴点P'到直线AC的距离为4﹣2.如图③﹣2中,如图当P′C′∥AB时,过点P′作P′H⊥OB交BO的延长线于H,交A′C′于T.由题意四边形OHTC′是矩形,OH=C′T=1,∴CH=OC+OH=1+4=5,∴点P'到直线AC的距离为5.如图③﹣3中,当P′C′∥BC时,延长B′A′交BO于H,可得OH=OB′•cos45°=3,∴CH=3+4,∴点P'到直线AC的距离为4+3.综上所述,点P'到直线AC的距离为4﹣2或4+3或5.25.解:(1)当m=1时,抛物线的解析式为y=ax2﹣2ax+a﹣3,∵y=ax2﹣2ax+a﹣3=a(x﹣1)2﹣3,∴顶点坐标为(1,﹣3);(2)如图,过点C作CD⊥AB,交AB的延长线于D,∵∠ABC=135°,∴∠CBD=45°,∵CD⊥AD,∴∠DBC=∠DCB=45°,∴BD=CD,∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴顶点坐标为(m,2m﹣5),∵AB=4,∴点B的横坐标为m+2,∵点B在抛物线y=a(x﹣m)2+2m﹣5上,∴y=a(m+2﹣m)2+2m﹣5=4a+2m﹣5,∴点B(m+2,4a+2m﹣5),设点C到直线AB的距离为d,∴BD=CD=d,∴点C(m+2+d,4a+2m﹣5﹣d),∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣d=,a(m+2+d﹣m)2+2m﹣5,整理得:ad2+4ad+d=0,∵d≠0,∴d=﹣,∴点C到直线AB的距离为﹣;(3)∵点C到直线AB的距离为1,∴﹣=1,∴a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.。

2015-2016学年天津市和平区九年级上期末数学试卷及答案

2015-2016学年天津市和平区九年级上期末数学试卷及答案
A. B. C. D.
7.圆锥的地面半径为 10cm.它的展开图扇形半径为 30cm,则这个扇形圆心角的度数是 () A.60° B.90° C.120° D.150° 8.在平面直角坐标系中,以点(2,3)为圆心,2 为半径的圆必定( ) A.与 x 轴相离,与 y 轴相切 B.与 x 轴,y 轴都相离 C.与 x 轴相切,与 y 轴相离 D.与 x 轴,y 轴都相切 9.若二次函数 y=x2+bx 的图象的对称轴是经过点(2,0)且平行于 y 轴的直线,则关于 x 的方程 x + 的解为( ) A.x1=0,2 bxx2==45 B.x1=1,x2=5 C.x1=1,x2=Ⅰ 5 D.1x =Ⅰ 1,2 x =5 10.如图,AC 是矩形 ABCD 的对角线,E 是边 BC 延长线上一点,AE 与 CD 相交于 F, 则图中的相似三角形共有( )
(2)求两盏景观灯之间的水平距离.
24.已知,△ABC 中,AB=AC,点 E 是边 AC 上一点,过点 E 作 EF∥BC 交 AB 于点 F (1)如图①,求证:AE=AF; (2)如图②,将△AEF 绕点 A 逆时针旋转 α(0°<α<144°)得到△AE′F′.连接 CE′BF′. ①若 BF′=6,求 CE′的长; ②若∠EBC=∠BAC=36°,在图②的旋转过 程中,当 CE′∥AB 时,直接写出旋转角 α 的 大小.
25.已知抛物线 y=x2+xⅠ 2 (1)求抛物线与 x 轴的交点坐标; (2)将抛物线 y=x + 沿 y 轴向上平移,平移后与直线 y=x+2 的一个交点为点P ,与y 轴相交于点 Q,当 P2Qx∥Ⅰx 2轴时,求抛物线平移了几个单位; (3)将抛物线 y=x + 在 x 轴下方的部分沿 x 轴翻折到 x 轴上方,图象的起步部分保持

2015-2016学年天津市五区县九年级上期末数学试卷

2015-2016学年天津市五区县九年级上期末数学试卷

2015-2016学年天津市五区县九年级(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把每小题的答案填在下表中。

1.下列说法中,正确的是()A.买一张电影票,座位号一定是奇数B.投掷一枚均匀的硬币,正面一定朝上C.从1、2、3、4、5这五个数字中任意取一个数,取得奇数的可能性大D.三条任意长的线段可以组成一个三角形2.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.半径为5的圆的一条弦长不可能是()A.3 B.5 C.10D.12 4.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.1 B.0 C.﹣1D.2 5.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣1C.与x轴有两个交点D.顶点坐标是(1,2)6.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O 的位置关系是()A.P在圆内 B.P在圆上C.P 在圆外 D.无法确定7.“天津市明天降水概率是10%”,对此消息下列说法正确的是()A.天津市明天将有10%的地区降水B.天津市明天将有10%的时间降水C.天津市明天降水的可能性较小D.天津市明天肯定不降水8.边长为a的正六边形的内切圆的半径为()A.2a B.a C.D.9.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0C.k<1 D.k<1且k≠010.如图是一个圆形的街心花园,A、B、C是圆周上的三个娱乐点,且A、B、C三等分圆周,街心花园内除了沿圆周的一条主要道路外还有经过圆心的三条道路,一天早晨,有甲、乙两位晨练者同时从A点出发,其中甲沿着圆走回原处A,乙沿着也走回原处,假设它们行走的速度相同,则下列结论正确的是()A.甲先回到A B.乙先回到A C.同时回到AD.无法确定11.学校组织足球比赛,赛制为单循环形式(2015秋•天津期末)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),下列结论:①b2>4ac;②ax2+bx+c≥﹣6;③若点(﹣2,m),(﹣5,n)在抛物线上,则m>n;④关于x 的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,其中正确的有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在题中横线上。

2015-2016学年第一学期期末考试九年级考数学试题

2015-2016学年第一学期期末考试九年级考数学试题

2015—2016学年度第一学期期末考试九年级数学试卷温馨提示:1. 本试卷共8页,三大题,24小题,满分120分;考试时间120分钟.2. 答题前,请先将密封线内的项目填写清楚、完整.3. 答题时,请认真审题,看清要求,沉着自信,冷静解答. 祝你成功!一、精心选一选,相信自己的判断!每小题给出的4个选项中,有且只有1个是符合题意的,请你将所选选项的字母代号写在该题后的括号内.(本大题共8小题,每小题3分,满分24分)1.下列四个图案是我国古代房屋的窗格图案,蕴含着对称之美,其中是中心对称图形但不是轴对称图形的是【B】A B C D2.已知方程x2-4x=-4,下列结论正确的是【C】A. 方程有两个不相等的实数根B. 方程的两根之和为-4C. 方程的两根之积为4 D . 方程只有一个实数根为23.一个不透明的盒子中装有3个红球,2个黑球和1个白球,它们除颜色外其他都相同,从中任意摸出1个球,则下列说法正确的是【D】A. 摸到的一定是红球B. 摸到的不可能是白球C. 摸到三种颜色球的可能性一样大D. 摸到的是黑球的可能性占134.将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的顶点坐标是【A】A. (-2,-3)B.(-2,3)C.(2,-3) D . (-2,-3)5.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y =6x的图象上,则y1、y2、y3的大小关系是【D】A. y3<y1<y2B.y1<y2<y3C.y2<y1<y3 D . y3<y2<y1总分题号得分一二三1-8 9-16 17 18 19 20 21 22 23 24 评卷人得分6.如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条 直角边分别与坐标轴重合,P 为斜边的中点,现将三角板绕点O 顺时针旋转120°后点P 的对应点的坐标是【 】 A . (3 ,-1) B . (1,-3 ) C . (23 ,-2) D . (2,-23 ) 7.如图, AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线, A 为切点,连接BC 并延长交AE 于点D . 若∠AOC =70°, 则∠ADB 的度数为【 C 】A .35°B .45°C .55°D .65°8.已知抛物线y =-16 x 2 + 32 x +6与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D ,则线段CD 与线段AD 的大小关系是【 】A. CD =ADB. CD <ADC. CD >ADD. 无法确定 二、细心填一填(本大题共8小题,每小题3分,满分24分.请将答案填写在答题卷相应题号的横线上)9.方程x2+x =0的解为 .10.函数y = x 2-4 x +3当-2≤x ≤2时,y 随x 的增大而 .(填“增大”或“减小”) 11.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为 .12.某中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位 同学代表学校参加赤壁市教育局组织的“三爱教育”演讲比赛, 则恰好选派一男一女两位同学参赛的概率是 . 13.如图,将正六边形ABCDEF 放在平面直角坐标系xOy 中,中心与坐标原点重合,若1,0),则点C 的坐标为 .14.如图,某小区有一块长为18m ,宽为6m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60m 2,两块绿地之间及周边留有宽度相等的人行通道.则人行通道的宽度应为 m .15.如图,在Rt △ABC 中,∠ABC =90°,AB =BC = 2 .将△ABC 绕点C 逆时针旋转60°得到△MNC ,连接BM ,则BM 的长为 .(第7题)(第6题)AN B(第15题)MC(第13题) (第14题) (第11题) 评卷人 得 分16.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(-1,0则下列结论:①ab c >0;②b 2-4ac =0; ③a >2; ④4a -2b +c >0.其中正确结论是 .(把正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤.请把解题过程写在答题卷相应题号的位置)17.(本题满分6分)如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为A (3,2),B (3,5),C (1,2).(1)将△ABC 绕着点A 顺时针旋转一定的角度得到△AB 1C 1,点C 1在AB 上,试写出旋转角的度数和点B 1的坐标;(2)在图上画出△ABC 关于坐标原点O 对称的△A 2B 2C 2 ,并说明将△A 2B 2C 2经过怎样的图形变换可以得到△AB 1C 1(旋转变换要指出旋转方向和旋转角的度数,平移变换要指出平移方向和平移单位长度).(第17题)(第16题) 评卷人 得 分18.(本题满分8分)我市2013年投入教育经费2500万元,2015年投入教育经费3025万元. (1)求2013到2015年我市投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年我市将投入教育经费多少万元?19. (本题满分8分)已知:如图,在平面直角坐标系xOy 中,正比例函数y = 43 x 的图象经过点A ,点A的纵坐标为4,反比例函数y = mx 的图象也经过点A ,第一象限内的点B 在这个反比例函数的图象上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC = AB .(1)求m 的值;(2)求直线AB 的表达式.(第19题)评卷人 得 分20. (本题满分9分)四件同型号的产品中,有1件不合格品和3件合格品.(1)从这四件产品中随机抽取1件进行检测,求抽到的是不合格品的概率; (2)从这四件产品中随机抽取2件进行检测,用列表法或画树状图法求抽到的都是合格品的概率;(3)在这四件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次反复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?21. (本题满分9分)如图,AB 是半圆⊙O 的直径, CD ⊥AB 于点C ,交半圆于点E ,F 是半圆上另一点且∠AEF =135°,DF ∥AB .(1)求证:DF 是是半圆⊙O 的切线; (2)如果OC =CE ,BF =22 ,求DE 的长.(第21题)评卷人得 分22.(本题满分10分)已知:关于x的一元二次方程x2-(m+2)x+m+1=0.(1)求证:方程有两个实数根;(2)若方程两根互为相反数,求m的值;(3)设m<0,且方程的两个实数根分别为x1,x2(其中x1<x2),若y是关于m的函数,且y = 4x2x1-1,求这个函数的解析式.评卷人得分23.(本题满分10分)阅读理解:如图1,半径为R ,圆心角为n °的扇形面积是S 扇形= n πR 2360 . 而由弧长公式l = n πR180 得,S 扇形= n πR 2360 = 12 · n πR 180 ·R = 12 lR . 通过观察,我们发现S 扇形= 12 lR 类似于S 三角形 =12 ×底×高. 请用此公式计算半径为20,弧长为40π3的扇形的面积.类比探究:类比扇形,我们来探究扇环(如图2,两个同心圆围成的圆环被扇形截得的一部分叫做扇环)的面积公式.设扇环的面积为S 扇环,AB 的长为l 1,CD 的长为l 2,线段AD 的长为h (即两个同心圆半径R 与r 的差).类比S 梯形= 12 ×(上底+下底)×高,用含l 1,l 2,h 的代数式表示S 扇环的计算公式,并证明. 拓展应用:用一段长为40m 的篱笆围成一个如图2所示的扇环形花园,线段AD 的长h 的长为多 少时,花园的面积最大,最大面积是多少?(第23题)图1图2评卷人得 分24. (本题满分12分)如图,经过点C (0,-4)的抛物线y =ax 2+bx +c (a ≠0)与x 轴相交于A (-2,0),B 两点,且抛物线关于直线x =2对称. (1)填空:线段OB 的长为 ; (2)求抛物线的函数表达式;(3)连接AC ,E 是抛物线上一动点,过点E 作AC 的平行线交x 轴于点F . 是否存在这样的点E ,使得以点A ,C ,E ,F 为顶点所组成的四边形是平行 四边形,若存在,求出满足条件的点E 的坐标;若不存在,请说明理由.(第24题) (第24题备用图)评卷人 得 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和平区2015-2016学年度第一学期九年级数学学科期末质量调查试卷温馨提示:本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页.试卷满分120分.考试时间100分钟. 祝你考试顺利!第Ⅰ卷注意事项: 1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点. 2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.一元二次方程220x x -=的根是(A )10x =,22x = (B )11x =,22x = (C )11x =,22x =- (D )10x =,22x =-2.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、 大小、质地等完全相同.小明通过多次摸球试验后发现其中摸到红色、黑色球的频 率稳定在5%和15%,则口袋中白色球的个数很可能是 (A )3个 (B )4个 (C )10个 (D )16个 3.下列说法错误的是(A )二次函数23y x =,当x >0时,y 随x 的增大而增大 (B )二次函数26y x =-,当0x =时,y 有最大值,最大值为0(C )抛物线2y ax =(0a ≠),a 越大,抛物线的开口越小;a 越小,抛物线的开口 越大(D )不论a 是正数还是负数,抛物线2y ax =(0a ≠)的顶点一定是坐标原点4.下列命题中,是真命题的为(A )锐角三角形都相似 (B )直角三角形都相似 (C )等腰三角形都相似 (D )等边三角形都相似5.某公司10月份的利润为320万元,要使12月份的利润达到500万元,则平均每月 增长的百分率是(A ) 30% (B )25% (C ) 20 % (D )15%6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个, 红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是 (A )18 (B )16 (C ) 14 (D )127.圆锥的底面半径为10cm .它的侧面展开图扇形的半径为30cm ,则这个扇形圆心角的 度数是(A )60° (B )90° (C )120° (D )150° 8.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆 (A )与x 轴相离、与y 轴相切 (B )与x 轴、y 轴都相离 (C )与x 轴相切、与y 轴相离 (D )与x 轴、y 轴都相切9.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关 于x 的方程25x bx +=的解为(A )120,4x x == (B )121,5x x == (C )121,5x x ==- (D )121,5x x =-=10.如图,AC 是矩形ABCD 的对角线,E 是边BC 延长线上的一点,AE 与CD 相交于点F ,则图中的相似三角形共有 (A )2对 (B )3对 (C )4对 (D )5对11.将△ACE 绕点C 旋转一定的角度后使点A 落在点B 处,点E 落在点D 处,且点B ,C ,E 在同一直线上.AC ,BD 交于点F .CD ,AE 交于点G .AE ,BD 交于点H .连接AB ,DE .则下列结论错误的是(A )DHE ACB ∠=∠ (B )△ABH ∽△GDH (C )△DHG ∽△ECG (D )△ABC ∽△DEC12.抛物线2y ax bx c =++(a ,b ,c 为常数,且0a ≠)经过点(-1,0)和(m ,0),且1<m <2,当x <-1时,y 随着x 的增大而减小. 下列结论: ①0a b +>;②若点A (-3,1y ),点B (3,2y )都在抛物线上,则1y <2y ; ③(1)0a m b -+=;④若c ≤-1,则244b ac a -≤. 其中正确结论的个数是(A )1 (B )2 (C )3 (D )4ABCDEFGHA B C D EF第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔). 2.本卷共13题,共84分.二、填空题(本大题共6小题,每小题3分,共18分) 13.二次函数21y x =+的最小值是 .14.已知正六边形的半径是2,则这个正六边形的边长是 .15.如图,点D 是等边三角形ABC 内一点,如果△ABD 绕点A 逆时针旋转后能与△ACE 重合,那么旋转角的大小= 度.16.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率 是 .17.如图,点M ,N 分别是等边三角形ABC 中AB ,AC 边上的点,点A 关于MN 的对称点落在BC 边上的点D 处,若32=DC BD ,则ANAM的值 =____________.AB CD MNABCDE18.定义:长宽比为n∶1(n为正整数)的矩形称为n矩形.下面,我们通过折叠的方式折出一个2矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.可以证明四边形BCEF为2矩形.(Ⅰ)在图①中,ADFG的值为;(Ⅱ)已知四边形BCEF为2矩形,仿照上述操作,得到四边形BCMN,如图②,可以证明四边形BCMN为n矩形,则n的值是.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(本小题8分)已知y是x的反比例函数,并且当2x=时,6y=.(Ⅰ)求y关于x的函数解析式;(Ⅱ)当4x=时,y的值为;该函数的图象位于第象限,在图象的每一支上,y随x的增大而.(Ⅰ)解方程 22125x x -+=;(Ⅱ)利用判别式判断方程2231028x x x +=+的根的情况. 21.(本小题10分)已知,AG 是⊙O 的切线,切点为A ,AB 是⊙O 的弦,过点B 作BC ∥AG 交⊙O 于点C ,连接AO 并延长交BC 于点M .(Ⅰ)如图①,若10BC =,求BM 的长;(Ⅱ)如图②,连接AC ,过点C 作CD ∥AB 交AG 于点D .AM 的延长线交过点C 的直线于点P ,且BCP ACD ∠=∠.求证:PC 是⊙O 的切线.22.(本小题10分)如图,AB 是⊙O 的直径,点D 是⊙O 上一点,点C 是»AD 的中点,连接AC ,BD .AD ,BC 交于点Q .(Ⅰ)若DAB ∠=40°,求CAD ∠的大小; (Ⅱ)若10CA =,16CB =,求CQ 的长.图① 图②如图是河上一座拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m ,拱桥的跨度为10m ,桥洞与水面的最大距离是5m ,桥洞两侧壁上各有一盏距离水面4m 的景观灯.求两盏景观灯之间的水平距离.24.(本小题10分)已知,△ABC 中,AB AC =,点E 是边AC 上一点,过点E 作EF ∥BC 交AB 于点F .(Ⅰ)如图①,求证AE AF =;(Ⅱ)如图②,将△AEF 绕点A 逆时针旋转α(0°<α<144°)得到△AE F ''.连接CE ',BF '.①若6BF '=,求CE '的长;②若EBC BAC ∠=∠=36°,在图②的旋转过程中,当CE '∥AB 时,直接写出旋转角α的大小.AEFE 'F '图① 图②A B C E F已知抛物线22y x x=+-.(Ⅰ)求该抛物线与x轴的交点坐标;(Ⅱ)将抛物线22y x x=+-沿y轴向上平移,平移后与直线2y x=+的一个交点为点P,与y轴相交于点Q,当PQ∥x轴时,求抛物线平移了几个单位;(Ⅲ)将抛物线22y x x=+-在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象在x轴上方的部分组成一个“W”形状的新图象,若直线12y x b=+与该新图象恰好有三个公共点,求b的值.和平区2015-2016学年度第一学期九年级 数学学科期末质量调查试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.A 2.D 3.C 4.D 5.B 6.B 7.C 8.A 9.D 10.C 11.B 12.B 二、填空题(本大题共6小题,每小题3分,共18分)13.1 14.2 15. 6016.13 17.78 18.(Ⅱ)3三、解答题(本大题共7小题,共66分) 19.(本小题8分)解:(Ⅰ)设这个反比例函数的解析式为ky x=, …………………………………2分 因为当2x =时,6y =, 所以有62k =. 解得12k =. …………………………………4分 因此这个反比例函数的解析式为12y x=. …………………………………5分 (Ⅱ)3 …………………………………6分 一、三 …………………………………7分 减小 …………………………………8分 20.(本小题8分)解:(Ⅰ)2(1)25x -=. …………………………………1分15x -=±. …………………………………2分16x =,24x =-. …………………………………4分(Ⅱ)方程化为28100x x-+=.…………………………………1分1a=,8b=-,10c=.…………………………………2分224(8)4110b ac∆=-=--⨯⨯24=>0.…………………………………3分方程有两个不等的实数根.…………………………………4分21.(本小题10分)解:(Ⅰ)∵AG是⊙O的切线,切点为A,∴GA OA⊥,∴GAM∠=90°.…………………………………2分∵BC∥AG,∴BMA GAM∠=∠=90°.∴OM BC⊥.…………………………………3分∴BM MC=.…………………………………4分∵10BC=,∴152BM BC==.…………………………………5分(Ⅱ)连接OC,…………………………………6分由(Ⅰ)得OM BC⊥,∴OP平分»BC.∴MAB MAC∠=∠.∴2BAC MAC∠=∠.又2MOC MAC∠=∠,∴MOC BAC∠=∠.…………………………………7分∵AB∥CD,∴BAC ACD∠=∠.…………………………………8分∴MOC ACD∠=∠.又BCP ACD ∠=∠,∴MOC BCP ∠=∠. …………………………………9分 ∵OM BC ⊥, ∴OMC ∠=90°.∴MOC OCM ∠+∠=90°, ∴BCP OCM ∠+∠=90°. 即PCO ∠=90°. ∴PC OC ⊥.∴PC 是⊙O 的切线. …………………………………10分 22.(本小题10分)解:(Ⅰ)∵AB 是⊙O 的直径,∴90D ∠=°. ……………………………………2分 ∵DAB ∠=40°,∴DBA ∠=90°-DAB ∠=90°-40°=50°. ……………………………………3分 ∵C 是»AD 的中点,∴1122CBA CBD DBA ∠=∠=∠=⨯50°=25°. ……………………………………4分∴CAD CBD ∠=∠=25°. ……………………………………5分 (Ⅱ)∵C 是»AD 的中点,∴CAQ CBA ∠=∠. ……………………………………6分 ∵ACQ BCA ∠=∠. ……………………………………7分 ∴△CAQ ∽△CBA . ……………………………………8分 ∴CA CQCB CA=. ∴2CA CQ CB =.∵10CA =,16CB =,∴21025164CQ ==. ……………………………………10分 23.(本小题10分)解:以抛物线的顶点为原点,以抛物线的对称轴为y 轴,建立直角坐标系. 设这条抛物线表示的二次函数为2y ax =, ……………………………………2分 由抛物线经过点(5,-4),可得245a -=⨯ ,解得 425a =-. …………………………………4分 ∴这段抛物线表示的二次函数为2425y x =-(-5≤x ≤5) ………………5分 由已知得,两盏景观灯的纵坐标都是-1, ……………………………………6分∴24125x -=-, ……………………………………7分 解得152x =,252x =-. ……………………………………9分∴ 两盏景观灯之间的水平距离是5m . ……………………………………10分 24.(本小题10分)解:(Ⅰ)∵EF ∥BC , ∴AF AEAB AC=. …………………………………2分 ∵AB AC =,∴AE AF =. …………………………………3分 (Ⅱ)①∵△AE F ''由△AEF 旋转得到, ∴△AE F ''≌△AEF .∴AE AE '=,AF AF '=. 由(Ⅰ)得AE AF =,∴AE AF ''=. …………………………………4分 又CAE BAF ''∠=∠=α, …………………………………5分AC AB =, …………………………………6分∴△CAE '≌△BAF '. …………………………………7分 ∴CE BF ''=. ∵6BF '=,∴6CE '=. …………………………………8分 ②36°或72°. …………………………………10分 25.(本小题10分)解:(Ⅰ)令0y =,即220x x +-=. …………………………………1分 解得11x =,22x =-. …………………………………2分 ∴该抛物线与x 轴的交点坐标为(-2,0),(1,0). ……………………………3分(Ⅱ)如图,抛物线22y x x =+-的对称轴是直线12x =-,………………………4分设抛物线向上平移后,点Q 的坐标为(0,n ), 当PQ ∥x 轴时,点P 与点Q 关于抛物线的对称轴对称.∴点P 的坐标为(-1,n ). …………………………………5分 ∵点P (-1,n )在直线2y x =+上,∴12n =-+,即1n =分 抛物线22y x x =+-位.∴当PQ ∥x 分(Ⅲ)如图,当直线12y x b =+过点A (-2,0)时,直线与新图象恰好有三个公共点.把A (-2,0),代入12y x b =+,得1b =. …………………………………8分抛物线22y x x =+-沿x 当直线12y x b =+与22y x x =--+有惟一公共点时,直线与新图象恰好有三个公共点.由21,22,y x b y x x ⎧=+⎪⎨⎪=--+⎩得23202x x b ++-= 当23()4(2)02b ∆=--=,即4116b =时,直线与新图象恰好有三个公共点.综上所述,1b =或4116b =. ………………………………10分12345o 12345xy123451234A。

相关文档
最新文档