(完整版)高中数学新课标人教A版高中数学选修矩阵知识点总结,推荐文档

合集下载

新课标人教A版高中数学知识点总结

新课标人教A版高中数学知识点总结

高中数学必修1知识点总结第一章集合与函数概念【1.1.1】集合的含义与表示1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N*或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.+(3)集合与元素间的关系对象a与集合M的关系是a e M,或者a电M,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集•②含有无限个元素的集合叫做无限集•③不含有任何元素的集合叫做空集(0).【1.1.2】集合间的基本关系(7)已知集合A有>个元素,则它有n个子集,它有n一个真子集,它有个非空子集,它有非空真子集.【1.1.3】集合的基本运算8)交集、并集、补集交集AQB{x I x e A,且x e B}(1)AA=A⑵An0=0⑶AnB匸AAQB u B并集AUB{x I x e A,或x e B}补集{x I x e U,且x电A}(1)AUA=A(2)AU0=A(3)AUB-AAUB-Bi An(C A)=02Au(c A)=UU U(AA B)=(C A)U(B)UUU【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集I x I<a(a〉0){x I一a<x<a}I x I>a(a〉0)x I x<-a或x>a}I ax+b l<c,I ax+b I>c(c〉0)把ax+b看成一个整体,化成丨x I<a,I x I>a(a〉0)型不等式来求解(2)一元二次不等式的解法判别式A=b2一4acA>0A=0A<0二次函数y=ax2+bx+c(a〉0)的图象\\//I\11V1111I tIV °卜\yO一元二次方程ax2+bx+c=0(a〉0)的根x=-1,2(其匸bx=x=—122a无实根1±Jb2一4ac2ahx<x)112ax2+bx+c〉0(a〉0)的解集{x I x<x或x〉x}「b、{x I x丰一——}2aRax2+bx+c<0(a〉0)的解集{x I x<x<x}1200〖1.2〗函数及其表示1.2.1】函数的概念1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作/:A T B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.2)区间的概念及表示法①设a,b是两个实数,且a<b,满足a§x§b的实数x的集合叫做闭区间,记做[a,b];满足a<x<b的实数x的集合叫做开区间,记做(a,b);满足a§x<b,或a<x§b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x>a,x>a,x§b,x<b的实数x的集合分别记做[a,),(a,),(—g,b],(—g,b).注意:对于集合{兀1a<x<b}与区间(a,b),前者a可以大于或等于b,而后者必须a<b.3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y=tan x中,x丰k兀+—(k G Z).2⑥零(负)指数幕的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数/[g(x)]的定义域应由不等式a§g(x)§b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y二f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2+b(y)x+c(y)二0,则在a(y)丰0时,由于x,y为实数,故必须有'二b2(y)-4a(y)-c(y)>°,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.6)映射的概念①设A、B是两个集合,如果按照某种对应法则/,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则/)叫做集合A到B的映射,记作f:A T B.②给定一个集合A到集合B的映射,且aG A,bG B•如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值X 、x ,当x<x 时,都12•1••2有f(x)〉f(x),那么就说•••12•f(x)在这个区间上是减函数•yo(1)利用定义y=f(x)(2)利用已知函数的 f(x )N. 单调性1f (X )(3)利用函数图象(在f(x)某个区间图 xx x象下降为减)12(4)利用复合函数(2)打““”函数f (x )-x+x (a >0)的图象与性质(3) /(x )分别在(一a 厂、2]、W'a ,+8)上为增函数,分别在S ,°)、(0,2]上为减函数.q 石£最大(小)值定义V -24a\② 在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y 二f [g (x )],令u 二g (x ),若y 二f (u )为增,u 二g (x )为增,则y 二f [g (x )]为增;若y 二f (u )为减,u 二g (x )为减,则y 二f [g (x )]为增;若y 二f (u )为增,u 二g (x )为减,则y 二f [g (x )]为减;若y 二f (u )为减,u 二g (x )为增,则y 二f [g (x )]为减. ①一般地,设函数y 二f (x )的定义域为1,如果存在实数M满足:(1)对于任意的x e 1f (x )<M ;(2)存在x 0e1,使得f (x 0)-M•那么,我们称M是函数/(x )记作f (x )二M .max②一般地,设函数y 二f (x )的定义域为I ,如果存在实数m 满足:(1)对于任意的x e 1,都有f (x )=m ;(2) 存在x 0e1,使得f (x 0)-m .那么,我们称m 是函数/(x )的最小值,记作f (x )-m .00max【1.3.2】奇偶性(4)函数的奇偶性 ①定义及判定方法函数的性质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个X ,都有f(—x)=—f(x),那么函数f(x)叫做奇函数.-a-(a,f (aj)KT .(1) 利用定义(要先判断定义域是否关于原点对称)(2) 利用图象(图象关于原点对称)jy(-a.0K/(j)-xi-—(d>0),都有如果对于函数f (x)定义域内(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)h、°左移h个单位>y=f(x+h)y=f(x)m>y=f(x)+k ②伸缩变换y=f(x)°<吧1申>y=f(①x)®>i,缩y=f(x)°申申申>y=Af(x)A>1,伸③对称变换y=f(x)原点>y=-f(-x)y=f(x)直线y=<>y=f-1(x)去掉申轴左边图象保留y轴右边图象,并作其关于y轴对称图象>y=f(I x l)y=f(x)<保留x轴上方图象<将x 轴下方图象翻折上去②若函数f(x)为奇函数,且在x=0处有定义,则f(°)-°.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幕函数、三角函数等各种基本初等函数的图象.①平移变换(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具•要重视数形结合解题的思想方法.第二章基本初等函数(I)〖2.1〗指数函数【2.1.1】指数与指数幕的运算(1)根式的概念①如果x n=a,aGR,xGR,n>1,且nGN,那么x叫做a的n次方根.当n是奇数时,a的n次方根用+③根式的性质:(na)n=a;当n为奇数时,n an=a;当n为偶数时,(a>0)(a<0)符号n'a表示;当n是偶数时,正数a的正的n次方根用符号na表示,负的n次方根用符号一n a表示;0的n次方根是0;负数a 没有n次方根.②式子na叫做根式,这里n叫做根指数,a叫做被开方数.当n为奇数时,a为任意实数;当n为偶数时,a、0.2)分数指数幂的概念m①正数的正分数指数幕的意义是:a n二nam(a>0,n e N,且n>1).0的正分数指数幕等于o.+m1m f1②正数的负分数指数幕的意义是:a一n=(一)n=n:(—)m(a>0,n e N,且n>1).0的负分数指数幕没a¥a+有意义.注意口诀:底数取倒数,指数取相反数.3)分数指数幂的运算性质①a r-a s=a r+s(a>0,r,s e R)②(a r)s=a r(a>0,r,s e R)③(ab)r=a r b r(a>0,b>0,r e R)【2.1.2】指数函数及其性质4)指数函数函数名称指数函数定义函数y-a x(a>0j i a丰1)叫做指数函数a>10<a<1V八y-ax/\y-a x y图象丿\y-1(0,1)(0,1)—”鼻,O x0x定义域R值域(0,+如过定点图象过定点(0,1),即当x=0时,y二1.奇偶性非奇非偶单调性在R上是增函数在R上是减函数①加法:log M +log N 二log(MN )aaa③数乘:n log M =log M n (n e R )aa②减法:lo g M -lo g N 二lo gaaa N④a lo g a N =Nn⑤log M n=logM(b 丰0,n e R )ab a〖2.2〗对数函数【2.2.1】对数与对数运算1)对数的定义①若a x 二N (a >0,且a 丰1),则x 叫做以a 为底N 的对数,记作x 二log N ,其中a 叫做底数,N 叫做真数.a② 负数和零没有对数. ③ 对数式与指数式的互化:x=lo g N o ax =N (a >0,a丰1,N >0).a2)几个重要的对数恒等式log1=0,log a =1,log a b =b .aa a3)常用对数与自然对数常用对数:l g N ,即lo g N ;自然对数:l nN ,即lo g N (其中e =2.71828...).10e(4)对数的运算性质如果a >°,a丰1,M >0,N >0,那么log N⑥换底公式:log N —b (b >0,且b丰1)a log ab2.2.2】对数函数及其性质设函数y二f(x)的定义域为A,值域为C,从式子y二f(x)中解出x,得式子x(y).如果对于y在C中的任何一个值,通过式子x=(y),x在A中都有唯一确定的值和它对应,那么式子x=(y)表示x是y的函数,函数X=9(y)叫做函数y=f(x)的反函数,记作X=f T(y),习惯上改写成y=f T(X).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y=f(x)中反解出x=f T(y);③将x=f-1(y)改写成y=f-1(x),并注明反函数的定义域.8)反函数的性质①原函数y=f(x)与反函数y=f-1(x)的图象关于直线y=x对称.②函数y=f(x)的定义域、值域分别是其反函数y=f-1(x)的值域、定义域.③若P a b)在原函数y=f(x)的图象上,则P'(b,a)在反函数y=f-1(x)的图象上.④一般地,函数y=f(x)要有反函数则它必须为单调函数.〖2.3〗幂函数1)幂函数的定义一般地,函数y二x a叫做幕函数,其中x为自变量,a是常数.关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限②过定点:所有的幕函数在(°,+8)都有定义,并且图象都通过点(i,i).③单调性:如果0,则幕函数的图象过原点,并且在[°,+8)上为增函数•如果0,则幕函数的图象在(°,+8)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当a为奇数时,幕函数为奇函数,当a为偶数时,幕函数为偶函数.当a=-(其中p,q互质,p和q GZ),p若p为奇数q为奇数时,则y=x p是奇函数,若p为奇数q为偶数时,则y=x p是偶函数,若p为偶数q为奇数时, ■q则y=XP是非奇非偶函数.⑤图象特征:幕函数y二x a,xG(°,+8),当a>1时,若°<x<1,其图象在直线y=x下方,若x>1,其图象在直线y=x上方,当a<1时,若°<x<1,其图象在直线y=x上方,若x>1,其图象在直线y=x下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:f(x)二ax2+bx+c(a丰°)②顶点式:f(x)二a(x-h)2+k(a丰°)③两根式: f(x)二a(x—x1)(x—x2)(a丰°)(2)求二次函数解析式的方法b 需,顶点坐标是②当a >0时,抛物线开口向上, 函数在Z ,-冷上递减’在[--2a ,+Q 上递增’当x 一2a 时' 2a 4a M (x ,0)M (x ,0),MM 曰x -x I 二I a I ① 已知三个点坐标时,宜用一般式.② 已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③ 若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求f (x )更方便.3)二次函数图象的性质 ①二次函数/(x )二ax 2+bx +c (a 丰0)的图象是一条抛物线,对称轴方程为x 二一b4ac -b 22a'4a4ac -b 2bb 、min (X )=石;当。

新教材 人教A版高中数学必修第二册全册各章节知识点考点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册全册各章节知识点考点汇总及解题规律方法提炼

人教A 版必修第二册全册知识点汇总第六章 平面向量及其应用 (1)6.1 平面向量的概念 ...................................................................................................... 1 6.2 平面向量的运算 ........................................................................................................ 5 6.3 平面向量基本定理及坐标表示 .............................................................................. 22 6.4.平面向量的应用 ....................................................................................................... 37 第七章 复数 (51)7.1 复数的概念 .............................................................................................................. 51 7.2复数的四则运算 ....................................................................................................... 58 7.3* 复数的三角表示 .................................................................................................. 64 第八章 立体几何初步 .. (69)8.1 基本立体图形 ........................................................................................................ 69 8.2 立体图形的直观图 ................................................................................................ 80 8.3 简单几何体的表面积与体积 .................................................................................. 83 8.4 空间点、直线、平面之间的位置关系 .................................................................. 93 8.5 空间直线、平面的平行 ........................................................................................ 104 8.6 空间直线、平面的垂直 ........................................................................................ 114 第九章 统计 . (132)9.1 随机抽样 .............................................................................................................. 132 9.2 用样本估计总体 .................................................................................................. 138 9.3 统计案例 公司员工的肥胖情况调查分析 ...................................................... 145 第十章 概率 . (150)10.1 随机事件与概率 .................................................................................................. 150 10.2 事件的相互独立性 ............................................................................................ 161 10.3 频率与概率 .. (165)第六章 平面向量及其应用6.1 平面向量的概念1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|. (3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素. (2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b .■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.典型应用1 向量的相关概念给出下列命题:①若AB →=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB→|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a=b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 典型应用2 向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB→|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC→|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.用有向线段表示向量的步骤典型应用3共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA→=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些?(2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF→,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.[变问法]本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.6.2 平面向量的运算6.2.1 向量的加法运算1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a+b|,|a|,|b|之间的关系一般地,|a+b|≤|a|+|b|,当且仅当a,b方向相同时等号成立.3.向量加法的运算律典型应用1平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .【解】 法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA →=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点;②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 典型应用2平面向量的加法运算化简: (1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.【解】 (1)BC →+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简. 典型应用3向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?【解】 如图,设此人游泳的速度为OB →,水流的速度为OA →,以OA→,OB →为邻边作▱OACB ,则此人的实际速度为OA →+OB →=OC →. 由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题. (2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.6.2.2 向量的减法运算1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. ■名师点拨相反向量与相等向量一样,从“长度”和“方向”两方面进行定义,相反向量必为平行向量.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. ■名师点拨(1)减去一个向量相当于加上这个向量的相反向量.(2)在用三角形法则作向量减法时,只要记住“连接向量终点,箭头指向被减向量”即可.(3)对于任意两个向量a ,b ,都有||a |-|b ||≤|a +b |≤|a |+|b |. 典型应用1 向量的减法运算化简下列各式: (1)(AB→+MB →)+(-OB →-MO →); (2)AB→-AD →-DC →. 【解】 (1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB→=AB →. 法二:原式=AB→+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB→-(AD →+DC →)=AB →-AC →=CB →.向量减法运算的常用方法典型应用2向量的减法及其几何意义如图,已知向量a ,b ,c 不共线,求作向量a +b -c . 【解】 法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC→=c ,连接BC , 则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.典型应用3用已知向量表示其他向量如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.【解】 因为四边形ACDE 是平行四边形, 所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD→=BC →+CD →=b -a +c .用已知向量表示其他向量的三个关注点(1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)注意综合应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题.(3)注意在封闭图形中利用向量加法的多边形法则. 例如,在四边形ABCD 中,AB →+BC →+CD →+DA →=0.6.2.3 向量的数乘运算1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.■名师点拨λ是实数,a 是向量,它们的积λa 仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a ,λ-a 均没有意义.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . ■名师点拨若将定理中的条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa . 典型应用1 向量的线性运算(1)计算:①4(a +b )-3(a -b )-8a ; ②(5a -4b +c )-2(3a -2b +c ); ③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ).(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ). 【解】 (1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b=53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .向量线性运算的基本方法(1)类比方法:向量的数乘运算可类似于代数多项式的运算.例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)方程方法:向量也可以通过列方程来解,把所求向量当作未知数,利用代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.典型应用2向量共线定理及其应用已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.【解】 (1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线.(2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1.向量共线定理的应用(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行. (2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若AB→=λAC →,则AB →与AC →共线,又AB →与AC →有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法.典型应用3用已知向量表示其他向量如图,ABCD 是一个梯形,AB→∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________. 【解析】 因为AB →∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB → =-14e 1-e 2+12e 1=14e 1-e 2.【答案】 (1)e 2+12e 1 (2)14e 1-e 2[变条件]在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →, MN→=MC →+CB →+BN →, 所以2MN→=(MD →+MC →)+DA →+CB →+(AN →+BN →).又因为M ,N 分别是DC ,AB 的中点, 所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →,所以MN→=12(-AD →-BC →)=-12e 2-12e 1.用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.6.2.4 向量的数量积1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. ■名师点拨按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与AB →的夹角.作AD→=CA →,则∠BAD 才是向量CA →与AB →的夹角.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. ■名师点拨(1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.(2)两个向量的数量积记作a ·b ,千万不能写成a ×b 的形式. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM→=a ,ON →=b ,过点M作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .■名师点拨当θ=0时,OM 1→=|a |e ;当θ=π2时,OM 1→=0;当θ∈⎣⎢⎡⎭⎪⎫0,π2时,OM 1→与b方向相同;当θ∈⎝ ⎛⎦⎥⎤π2,π时,OM 1→与b 方向相反;当θ=π时,OM 1→=-|a |e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. ■名师点拨对于性质(2),可以用来解决有关垂直的问题,即若要证明某两个非零向量垂直,只需判定它们的数量积为0即可;若两个非零向量的数量积为0,则它们互相垂直.5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). ■名师点拨(1)向量的数量积不满足消去律;若a ,b ,c 均为非零向量,且a·c =b·c ,但得不到a =b .(2)(a·b )·c ≠a·(b·c ),因为a·b ,b·c 是数量积,是实数,不是向量,所以(a·b )·c 与向量c 共线,a·(b·c )与向量a 共线,因此,(a·b )·c =a·(b·c )在一般情况下不成立.(3)(a ±b )2=a 2±2a ·b +b 2. 典型应用1平面向量的数量积运算(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD→·BC →;②AB →·DA →.【解】 (1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192. (2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120° =4×3×⎝ ⎛⎭⎪⎫-12=-6.[变问法]若本例(2)的条件不变,求AC →·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC→·BD →=(AB →+AD →)·(AD →-AB →) =AD→2-AB →2=9-16=-7.向量数量积的求法(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法运算.典型应用2 向量模的有关计算(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( )A.3B.23 C.4 D.12(2)向量a,b满足|a|=1,|a-b|=32,a与b的夹角为60°,则|b|=()A.13 B.12C.15 D.14【解析】(1)|a+2b|=(a+2b)2=a2+4a·b+4b2=|a|2+4|a||b|cos 60°+4|b|2=4+4×2×1×12+4=2 3.(2)由题意得|a-b|2=|a|2+|b|2-2|a||b|·cos 60°=34,即1+|b|2-|b|=34,解得|b|=12.【答案】(1)B(2)B求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.典型应用3向量的夹角与垂直命题角度一:求两向量的夹角(1)已知|a|=6,|b|=4,(a+2b)·(a-3b)=-72,则a与b的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为______.【解析】(1)设a与b的夹角为θ,(a+2b)·(a-3b)=a·a-3a·b+2b·a-6b·b =|a|2-a·b-6|b|2=|a|2-|a||b|cos θ-6|b|2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12, 所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3. 【答案】 (1)π3 (2)π3 命题角度二:证明两向量垂直已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a+t b ).【证明】 因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值. 此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.【解析】(1)因为3a+2b与k a-b互相垂直,所以(3a+2b)·(k a-b)=0,所以3k a2+(2k-3)a·b-2b2=0.因为a⊥b,所以a·b=0,又|a|=2,|b|=3,所以12k-18=0,k=3 2.(2)由3a+λb+7c=0,可得7c=-(3a+λb),即49c2=9a2+λ2b2+6λa·b,而a,b,c为单位向量,则a2=b2=c2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.【答案】(1)B(2)-8或5求向量a与b夹角的思路(1)求向量a与b夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cos θ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.(2)在个别含有|a|,|b|与a·b的等量关系中,常利用消元思想计算cos θ的值.6.3 平面向量基本定理及坐标表示6.3.1平面向量基本定理平面向量基本定理(1)e 1,e 2是同一平面内的两个不共线的向量,{e 1,e 2}的选取不唯一,即一个平面可以有多个基底.(2)基底{e 1,e 2}确定后,实数λ1,λ2是唯一确定的. 典型应用1平面向量基本定理的理解设e 1,e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎨⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎨⎧1+2λ=0,2+λ=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底.③因为e 1-2e 2=-12(4e 2-2e 1), 所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎨⎧1-λ=0,1+λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③对基底的理解(1)两个向量能否作为一个基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以用这个基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则⎩⎨⎧x 1=x 2,y 1=y 2.[提醒] 一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.典型应用2用基底表示平面向量如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE与BF 交于点G ,若AB→=a ,AD →=b ,试用基底{a ,b }表示向量DE →,BF →.【解】 DE →=DA →+AB →+BE →=-AD→+AB →+12BC → =-AD→+AB →+12AD →=a -12b . BF→=BA →+AD →+DF →=-AB→+AD →+12AB →=b -12a .1.[变问法]本例条件不变,试用基底{a ,b }表示AG →.解:由平面几何知识知BG =23BF , 故AG→=AB →+BG →=AB →+23BF → =a +23⎝ ⎛⎭⎪⎫b -12a=a +23b -13a =23a +23b .2.[变条件]若将本例中的向量“AB →,AD →”换为“CE →,CF →”,即若CE →=a ,CF →=b ,试用基底{a ,b }表示向量DE→,BF →. 解:DE→=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF→=BC →+CF →=2EC →+CF → =-2CE→+CF →=-2a +b .用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.(2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解. 典型应用3平面向量基本定理的应用如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .【解】 设BM →=e 1,CN →=e 2, 则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨μ=35.所以AP →=45AM →,BP →=35BN →,所以AP ∶PM =4∶1,BP ∶PN =3∶2.1.[变问法]在本例条件下,若CM→=a ,CN →=b ,试用a ,b 表示CP →.解:由本例解析知BP ∶PN =3∶2,则NP →=25NB →, CP→=CN →+NP →=CN →+25NB →=b +25(CB →-CN →) =b +45a -25b =35b +45a .2.[变条件]若本例中的点N 为AC 的中点,其他条件不变,求AP ∶PM 与BP ∶PN .解:如图,设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-2e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-2λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(2λ+μ)e 2. 而BA →=BC →+CA →=2e 1+2e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,2λ+μ=2,解得⎩⎪⎨μ=23.所以AP →=23AM →,BP →=23BN →, 所以AP ∶PM =2,BP ∶PN =2.若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示 6.3.4 平面向量数乘运算的坐标表示第1课时 平面向量的分解及加、减、数乘运算的坐标表示1.平面向量坐标的相关概念■名师点拨(1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e 1和e 2互相垂直.(2)由向量坐标的定义知,两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b ⇔x 1=x 2且y 1=y 2,其中a =(x 1,y 1),b =(x 2,y 2).2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则 ①a +b =(x 1+x 2,y 1+y 2); ②a -b =(x 1-x 2,y 1-y 2); ③λa =(λx 1,λy 1).(2)一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标. ■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)已知向量AB →的起点A (x 1,y 1),终点B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). 典型应用1平面向量的坐标表示已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,(1)求向量OA→的坐标;(2)若B (3,-1),求BA→的坐标.【解】 (1)设点A (x ,y ),则x =|OA →|cos 60°=43cos 60°=23,y =|OA →|sin60°=43sin 60°=6,即A (23,6),所以OA→=(23,6). (2)BA→=(23,6)-(3,-1)=(3,7).求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置的坐标. (2)求一个向量的坐标时,可以首先求出这个向量的始点坐标和终点坐标,再运用终点坐标减去始点坐标得到该向量的坐标.典型应用2平面向量的坐标运算(1)已知向量a =(5,2),b =(-4,-3),若c 满足3a -2b +c =0,则c =( )A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3 CA →,CN →=2 CB →,求点M ,N 的坐标.【解】 (1)选A.因为a =(5,2),b =(-4,-3),且c 满足3a -2b +c =0,所以c =2b -3a =2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).(2)法一:因为A (-2,4),B (3,-1),C (-3,-4), 所以CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3). 因为CM→=3 CA →,CN →=2 CB →, 所以CM→=3(1,8)=(3,24),CN →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),所以CM →=(x 1+3,y 1+4)=(3,24), CN →=(x 2+3,y 2+4)=(12,6), 所以⎩⎨⎧x 1+3=3,y 1+4=24,⎩⎨⎧x 2+3=12,y 2+4=6.解得⎩⎨⎧x 1=0,y 1=20,⎩⎨⎧x 2=9,y 2=2. 所以M (0,20),N (9,2).法二:设O 为坐标原点,则由CM→=3 CA →,CN →=2 CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 所以OM→=3 OA →-2 OC →,ON →=2 OB →-OC →. 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2). 所以M (0,20),N (9,2).平面向量坐标(线性)运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则必须先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可类比数的运算进行. 典型应用3向量坐标运算的综合应用已知点O (0,0),A (1,2),B (4,5),及OP→=OA →+tAB →.(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)四边形OABP 能为平行四边形吗?若能,求出t 的值;若不能,请说明理由.【解】 (1)OP →=OA →+tAB →=(1,2)+t (3,3)=(1+3t ,2+3t ).若点P 在x 轴上,则2+3t =0,所以t =-23. 若点P 在y 轴上,则1+3t =0,所以t =-13. 若点P 在第二象限,则⎩⎨⎧1+3t <0,2+3t >0,所以-23<t <-13.(2)OA→=(1,2),PB →=(3-3t ,3-3t ).若四边形OABP 为平行四边形, 则OA →=PB →,所以⎩⎨⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能为平行四边形.[变问法]若保持本例条件不变,问t 为何值时,B 为线段AP 的中点? 解:由OP→=OA →+tAB →,得AP →=tAB →.所以当t =2时,AP→=2AB →,B 为线段AP 的中点.向量中含参数问题的求解策略(1)向量的坐标含有两个量:横坐标和纵坐标,如果纵坐标或横坐标是一个变量,则表示向量的点的坐标的位置会随之改变.(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.第2课时 两向量共线的充要条件及应用两向量共线的充要条件设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0.■名师点拨(1)两个向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有x 1y 2-x 2y 1=0⇔a ∥b .典型应用1 向量共线的判定(1)已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________.(2)已知A (-1,-1),B (1,3),C (2,5),判断AB →与AC →是否共线?如果共线,它们的方向相同还是相反?【解】 (1)3a -b =(0,-10),a +k b =(1+3k ,-2+4k ), 因为(3a -b )∥(a +k b ),所以0-(-10-30k )=0, 所以k =-13.故填-13.(2)因为AB→=(1-(-1),3-(-1))=(2,4),AC→=(2-(-1),5-(-1))=(3,6), 因为2×6-3×4=0,所以AB→∥AC →,所以AB →与AC →共线. 又AB→=23AC →,所以AB →与AC →的方向相同.[变问法]若本例(1)条件不变,判断向量(3a -b )与(a +k b )是反向还是同向? 解:由向量(3a -b )与(a +k b )共线,得k =-13, 所以3a -b =(3,-6)-(3,4)=(0,-10), a +k b =a -13b =(1,-2)-13(3,4)=⎝ ⎛⎭⎪⎫0,-103=13(0,-10), 所以向量(3a -b )与(a +k b )同向.向量共线的判定方法典型应用2 三点共线问题(1)已知OA→=(3,4),OB →=(7,12),OC →=(9,16),求证:点A ,B ,C 共线;(2)设向量OA →=(k ,12),OB →=(4,5),OC →=(10,k ),求当k 为何值时,A ,B ,C 三点共线.【解】 (1)证明:由题意知AB→=OB →-OA →=(4,8),AC →=OC →-OA →=(6,12),所以AC →=32AB →, 即AB→与AC →共线. 又因为AB→与AC →有公共点A ,所以点A ,B ,C 共线.(2)法一:因为A ,B ,C 三点共线,即AB →与AC →共线,所以存在实数λ(λ∈R ),使得AB→=λAC →.因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k ,-7)=λ(10-k ,k -12), 即⎩⎨⎧4-k =λ(10-k ),-7=λ(k -12),解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线. 法二:由已知得AB→与AC →共线,因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12),。

高中数学人教新课标最新版a

高中数学人教新课标最新版a

高中数学人教新课标最新版a
高中数学新课程标准(A版)是针对高中阶段学生数学学习的重要指导文件,它强调了数学学科的核心素养,包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等六个方面。

新课标旨在通过数学教学,培养学生的数学思维和解决问题的能力,同时注重数学知识与实际生活的联系。

在内容设置上,高中数学新课标(A版)涵盖了以下几个主要部分:
1. 必修课程:这是所有学生必须学习的数学基础内容,包括集合与简易逻辑、函数、数列、三角函数、平面向量、立体几何、解析几何、概率与统计等。

2. 选择性必修课程:这部分内容是为那些对数学有更高兴趣和需求的学生设计的,包括导数及其应用、积分及其应用、复数、矩阵与行列式、算法初步、统计与概率等。

3. 选修课程:这部分内容提供了更广泛的数学知识,学生可以根据自己的兴趣和未来发展方向选择学习,包括数学建模、数学史与数学文化、数学软件应用、高等数学初步等。

新课标还特别强调了以下几个教学建议:
- 情境教学:通过创设实际情境,让学生在解决问题的过程中学习数学,提高学生的应用能力和创新能力。

- 探究学习:鼓励学生通过自主探究和合作交流的方式,深入理解数学概念和原理。

- 信息技术的应用:利用现代信息技术,如计算机软件,辅助数学教
学和学习,提高教学效率和学生的学习兴趣。

- 评价方式的多样化:除了传统的笔试,还应包括口试、项目作业、实验报告等多种评价方式,全面评价学生的学习效果。

高中数学新课标(A版)的实施,旨在帮助学生建立扎实的数学基础,培养他们的数学思维和实践能力,为他们的终身学习和未来的职业生涯打下坚实的基础。

高中数学:-矩阵与变换-(新人教A选修-)PPT课件

高中数学:-矩阵与变换-(新人教A选修-)PPT课件

2 0
0
1
x y
2x
y
T:xyxy2yx
表示的几何变换为:纵坐标不变,横坐标变为原来的2倍.
8.二元一次方程组 ax by e 可以表示为
cx
dy f
系数矩阵
a
c
b x e
d
y
f
2021
9
2.2 几种常见的平面变换
1.恒等变换矩阵(单位矩阵)为E:
1
0
0
1
2.恒等变换是指对平面上任何一点(向量)或图形施以
s c io n s c s o is n x y x xs c io n s y yc so in s x y
2021
14
2.2 几种常见的平面变换
cos sin
sin
cos
0 1 0 1
1
0
,
-1
0
0 1x y 1 0y x
T:xyxyyx
2021
1 0
0 1 2
x y
x y 2
T
:
x y
x
y
x
y
2
1 0 2 0
0
2 , 0
1
2021
11
2.2 几种常见的平面变换
4.反射变换矩阵是指将平面图形变为关于定直线或定 点对称的平面图形的变换矩阵.
1 0x x
0
1y y
T:xyxyyx
1 0
10,10
矩阵
1
0
0
1
对应的变换,都把自己变为自己.
1 0 x x
x x x
0
1
y
y
T:yyy

人教A版新课标高中数学必修选修全部知识点归纳总结(精华版)

人教A版新课标高中数学必修选修全部知识点归纳总结(精华版)
选修课程有 4 个系列: 系列 1:由 2 个模块组成。 选修 1—1:常用逻辑用语、圆锥曲线与方程、
导数及其应用。 选修 1—2:统计案例、推理与证明、数系的扩
充与复数、框图 系列 2:由 3 个模块组成。 选修 2—1:常用逻辑用语、圆锥曲线与方程、
空间向量与立体几何。 选修 2—2:导数及其应用,推理与证明、数系
的扩充与复数 选修 2—3:计数原理、随机变量及其分布列,
统计案例。 系列 3:由 6 个专题组成。 选修 3—1:数学史选讲。 选修 3—2:信息安全与密码。 选修 3—3:球面上的几何。 选修 3—4:对称与群。 选修 3—5:欧拉公式与闭曲面分类。 选修 3—6:三等分角与数域扩充。 系列 4:由 10 个专题组成。 选修 4—1:几何证明选讲。 选修 4—2:矩阵与变换。
偶函数.偶函数图象关于 y 轴对称.
2、 一般地,如果对于函数 f x 的定义域内任意一个
x ,都有 f x f x,那么就称函数 f x 为
奇函数.奇函数图象关于原点对称. 知识链接:函数与导数
4、 如果集合 A 中含有 n 个元素,则集合 A 有 2n 个子 1、函数 y f (x) 在点 x0 处的导数的几何意义:
和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位
置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用 ⑼直线、平面、简单几何体:空间直线、直线 与平面、平面与平面、棱柱、 棱锥、球、空间向量 ⑽排列、组合和概率:排布列、期望、方差、 抽样、正态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算

2019新人教A版高中数学选择性必修一全册重点知识点归纳总结(复习必背)

2019新人教A版高中数学选择性必修一全册重点知识点归纳总结(复习必背)

2019新人教版高中数学选择性必修一全册重点知识点归纳总结(复习必背)第一章空间向量与立体几何一、知识要点1、空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2、空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+ ;BA OA OB a b =-=- ;()OP a R λλ=∈运算律:(1)加法交换律:a b b a +=+(2)加法结合律:)()(c b a c b a ++=++(3)数乘分配律:ba b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3、共线向量(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>ACAB λ=<=>OB y OA x OC +=(其中x +y =1)(4)与a 共线的单位向量为4、共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p与向量,a b 共面的条件是存在实数x ,y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>ACy AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5、空间向量基本定理:如果三个向量,,a b c不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

新课标人教版高中A版数学目录(超详细完美版)

新课标人教版高中A版数学目录(超详细完美版)

人教版高中数学A版目录新课标A版必修1•第一章集合与函数概念•第二章基本初等函数(Ⅰ)•第三章函数的应用•单元测试•综合专栏第一章集合与函数概念• 1.1集合• 1.2函数及其表示• 1.3函数的基本性质•实习作业•同步练习•单元测试•本章综合1.1集合• 1.1.1集合的含义与表示• 1.1.2集合间的基本关系• 1.1.3集合的基本运算•本节综合1.2函数及其表示• 1.2.1函数的概念• 1.2.2函数的表示法•本节综合1.3函数的基本性质• 1.3.1单调性与最大(小)值• 1.3.2奇偶性•本节综合实习作业同步练习单元测试本章综合第二章基本初等函数(Ⅰ)• 2.1指数函数• 2.2对数函数• 2.3幂函数•同步练习•单元测试•本章综合2.1指数函数• 2.1.1指数与指数幂的运算• 2.1.2指数函数及其性质•本节综合2.2对数函数• 2.2.1对数与对数运算• 2.2.2对数函数及其性质•本节综合2.3幂函数同步练习单元测试本章综合第三章函数的应用• 3.1函数与方程• 3.2函数模型及其应用•实习作业•同步练习•单元测试•本章综合3.1函数与方程• 3.1.1方程的根与函数的零点• 3.1.2用二分法求方程的近似解•本节综合3.2函数模型及其应用• 3.2.1几类不同增长的函数模型• 3.2.2函数模型的应用实例•本节综合实习作业同步练习单元测试本章综合单元测试综合专栏新课标A版必修2•第一章空间几何体•第二章点、直线、平面之间的位置关系•第三章直线与方程•第四章圆与方程•单元测试综合专栏第一章空间几何体• 1.1空间几何体的结构• 1.2空间几何体的三视图和直观图• 1.3空间几何体的表面积与体积•复习参考题•实习作业•同步练习•单元测试•本章综合•第二章点、直线、平面之间的位置关系• 2.1空间点、直线、平面之间的位置关系• 2.2直线、平面平行的判定及其性质• 2.3直线、平面垂直的判定及其性质•同步练习•单元测试•本章综合第三章直线与方程• 3.1直线的倾斜角与斜率• 3.2直线的方程• 3.3直线的交点坐标与距离公式•同步练习•单元测试•本章综合第四章圆与方程• 4.1圆的方程• 4.2直线、圆的位置关系• 4.3空间直角坐标系•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修3•第一章算法初步•第二章统计•第三章概率•单元测试•综合专栏第一章算法初步• 1.1算法与程序框图• 1.2基本算法语句• 1.3算法与案例•同步练习•单元测试•本章综合1.1算法与程序框图• 1.1.1算法的概念• 1.1.2程序框图和算法的逻辑结构•本节综合1.2基本算法语句• 1.2.1输入、输出、赋值语句• 1.2.2条件语句• 1.2.3循环语句•本节综合1.3算法与案例同步练习单元测试本章综合第二章统计• 2.1随机抽样• 2.2用样本估计总体• 2.3变量间的相关关系•实习作业•同步练习•单元测试•本章综合2.1随机抽样• 2.1.1简单随机抽样• 2.1.2系统抽样• 2.1.3分层抽样•本节综合2.2用样本估计总体• 2.2.1用样本的频率分布估计总体• 2.2.2用样本的数字特征估计总体•本节综合2.3变量间的相关关系• 2.3.1变量之间的相关关系• 2.3.2两个变量的线性相关•本节综合实习作业同步练习单元测试本章综合第三章概率• 3.1随机事件的概率• 3.2古典概型• 3.3几何概型•同步练习•单元测试•本章综合3.1随机事件的概率• 3.1.1随机事件的概率• 3.1.2概率的意义• 3.1.3概率的基本性质•本节综合3.2古典概型• 3.2.1古典概型• 3.2.2随机数的产生•本节综合3.3几何概型• 3.3.1几何概型• 3.3.2均匀随机数的产生•本节综合同步练习单元测试本章综合单元测试综合专栏新课标A版必修4•第一章三角函数•第二章平面向量•第三章三角恒等变换•单元测试•综合专栏第一章三角函数• 1.1任意角和弧度制• 1.2任意的三角函数• 1.3三角函数的诱导公式• 1.4三角函数的图象与性质• 1.5函数y=Asin(ωx+ψ)• 1.6三角函数模型的简单应用•同步练习•单元测试•本章综合第二章平面向量• 2.1平面向量的实际背景及基本概念• 2.2平面向量的线性运算• 2.3平面向量的基本定理及坐标表示• 2.4平面向量的数量积• 2.5平面向量应用举例•同步练习•单元测试•本章综合第三章三角恒等变换• 3.1两角和与差的正弦、余弦和正切公式• 3.2简单的三角恒等变换•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修5•第一章解三角形•第二章数列•第三章不等式•单元测试•综合专栏第一章解三角形• 1.1正弦定理和余弦定理• 1.2应用举例• 1.3实习作业•探究与发现解三角形的进一步讨论•同步练习•单元测试•本章综合第二章数列• 2.1数列的概念与简单表示法• 2.1等差数列• 2.3等差数列的前n项和• 2.4等比数列• 2.5等比数列的前n项和•同步练习•单元测试•本章综合第三章不等式• 3.1不等关系与不等式• 3.2一元二次不等式及其解法• 3.3二元一次不等式(组)与简单的线性• 3.4基本不等式:•同步练习•单元测试•本章综合单元测试综合专栏新课标A版选修一•新课标A版选修1-1•新课标A版选修1-2新课标A版选修1-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章导数及其应用•月考专栏•期中专栏•期末专栏•单元测试•综合专栏第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•单元测试•本章综合第二章圆锥曲线与方程• 2.1椭圆• 2.2双曲线• 2.3抛物线•同步练习•单元测试•本章综合第三章导数及其应用• 3.1变化率与导数• 3.2导数的计算• 3.3导数在研究函数中的应用• 3.4生活中的优化问题举例•同步练习•单元测试•本章综合月考专栏期中专栏期末专栏单元测试新课标A版选修1-2•第一章统计案例•第二章推理与证明•第三章数系的扩充与复数的引入•第四章框图•月考专栏•期中专栏•期末专栏•单元测试•本章综合点击这里展开-- 查看子节点索引目录,更精确地筛选资料!第一章统计案例• 1.1回归分析的基本思想及其初步应用• 1.2独立性检验的基本思想及其初步应用•实习作业•同步练习•综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明•同步练习•综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•综合第四章框图• 4.1流程图• 4.2结构图•同步练习•综合月考专栏期中专栏期末专栏单元测试本章综合新课标A版选修二•新课标人教A版选修2-1•新课标人教A版选修2-2•新课标人教A版选修2-3新课标人教A版选修2-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章空间向量与立体几何•单元测试•本册综合第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•本章综合第二章圆锥曲线与方程• 2.1曲线与方程• 2.2椭圆• 2.3双曲线• 2.4抛物线•同步练习•本章综合第三章空间向量与立体几何• 3.1空间向量及其运算• 3.2立体几何中的向量方法•同步练习•本章综合单元测试本册综合新课标人教A版选修2-2•第一章导数及其应用•第二章推理与证明•第三章数系的扩充与复数的引入•单元测试•本册综合第一章导数及其应用• 1.1变化率与导数• 1.2导数的计算• 1.3导数在研究函数中的应用• 1.4生活中的优化问题举例• 1.5定积分的概念• 1.6微积分基本定理• 1.7定积分的简单应用•同步练习•本章综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明• 2.3数学归纳法•同步练习•本章综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•本章综合单元测试本册综合新课标人教A版选修2-3•第一章计数原理•第二章随机变量及其分布•第三章统计案例•单元测试•本册综合第一章计数原理• 1.1分类加法计数原理与分步乘法计.• 1.2排列与组合• 1.3二项式定理•同步练习•本章综合第二章随机变量及其分布• 2.1离散型随机变量及其分布列• 2.2二项分布及其应用• 2.3离散型随机变量的均值与方差• 2.4正态分布•同步练习•本章综合第三章统计案例• 3.1回归分析的基本思想及其初步应用• 3.2独立性检验的基本思想及其初步•本章综合•同步练习单元测试本册综合新课标A版选修三•新课标A版选修3-1•新课标A版选修3-3•新课标A版选修3-4新课标A版选修3-1•第一讲早期的算术与几何•第二讲古希腊数学•第三讲中国古代数学瑰宝•第四讲平面解析几何的产生•第五讲微积分的诞生•第六讲近代数学两巨星•第七讲千古谜题•第八讲对无穷的深入思考•第九讲中国现代数学的开拓与发展•单元测试•本册综合第一讲早期的算术与几何•一古埃及的数学•二两河流域的数学•三丰富多彩的记数制度•同步练习•本章综合第二讲古希腊数学•一希腊数学的先行者•二毕达哥拉斯学派•三欧几里得与《原本》•四数学之神──阿基米德•同步练习•本章综合第三讲中国古代数学瑰宝•一《周髀算经》与赵爽弦图•二《九章算术》•三大衍求一术•四中国古代数学家•同步练习•本章综合第四讲平面解析几何的产生•一坐标思想的早期萌芽•二笛卡儿坐标系•三费马的解析几何思想•四解析几何的进一步发展•同步练习•本章综合第五讲微积分的诞生•一微积分产生的历史背景•二科学巨人牛顿的工作•三莱布尼茨的“微积分”•同步练习•本章综合第六讲近代数学两巨星•一分析的化身──欧拉•二数学王子──高斯•同步练习•本章综合第七讲千古谜题•一三次、四次方程求根公式的发现•二高次方程可解性问题的解决•三伽罗瓦与群论•四古希腊三大几何问题的解决•同步练习•本章综合第八讲对无穷的深入思考•一古代的无穷观念•二无穷集合论的创立•三集合论的进一步发展与完善•同步练习•本章综合第九讲中国现代数学的开拓与发展•一中国现代数学发展概观•二人民的数学家──华罗庚•三当代几何大师──陈省身•同步练习•本章综合单元测试本册综合新课标A版选修3-3•第一讲从欧氏几何看球面•第二讲球面上的距离和角•第三讲球面上的基本图形•第四讲球面三角形•第五讲球面三角形的全等•第六讲球面多边形与欧拉公式•第七讲球面三角形的边角关系•第八讲欧氏几何与非欧几何•单元测试•本册综合第一讲从欧氏几何看球面•一平面与球面的位置关系•二直线与球面的位置关系和球幂定理•三球面的对称性•同步练习•本章综合第二讲球面上的距离和角•一球面上的距离•二球面上的角•同步练习•本章综合第三讲球面上的基本图形•一极与赤道•二球面二角形•三球面三角形•同步练习•本章综合第四讲球面三角形•一球面三角形三边之间的关系•二、球面“等腰”三角形•三球面三角形的周长•四球面三角形的内角和•同步练习•本章综合第五讲球面三角形的全等•1.“边边边”(s.s.s)判定定理•2.“边角边”(s.a.s.)判定定理•3.“角边角”(a.s.a.)判定定理•4.“角角角”(a.a.a.)判定定理•同步练习•本章综合第六讲球面多边形与欧拉公式•一球面多边形及其内角和公式•二简单多面体的欧拉公式•三用球面多边形的内角和公式证明欧拉公式•同步练习•本章综合第七讲球面三角形的边角关系•一球面上的正弦定理和余弦定理•二用向量方法证明球面上的余弦定理•三从球面上的正弦定理看球面与平面•四球面上余弦定理的应用──求地球上两城市间的距离•同步练习•本章综合第八讲欧氏几何与非欧几何•一平面几何与球面几何的比较•二欧氏平行公理与非欧几何模型──庞加莱模型•三欧氏几何与非欧几何的意义•同步练习•本章综合单元测试本册综合新课标A版选修3-4•第一讲平面图形的对称群•第二讲代数学中的对称与抽象群的概念•第三讲对称与群的故事•综合专栏•单元测试第一讲平面图形的对称群•平面刚体运动•对称变换•平面图形的对称群•同步练习•本章综合第二讲代数学中的对称与抽象群的概念•n元对称群S•多项式的对称变换•抽象群的概念•同步练习•本章综合第三讲对称与群的故事•带饰和面饰•化学分子的对称群•晶体的分类•伽罗瓦理论•同步练习•本章综合综合专栏单元测试新课标A版选修四•新课标人教A版选修4-1•选修4-2•新课标A版选修4-4•新课标A版选修4-5新课标人教A版选修4-1•第一讲相似三角形的判定及有关性质•第二讲直线与圆的位置关系•第三讲圆锥曲线性质的探讨•单元测试•本册综合第一讲相似三角形的判定及有关性质•一平行线等分线段定理•二平行线分线段成比例定理•三相似三角形的判定及性质•四直角三角形的射影定理•同步练习•本章综合第二讲直线与圆的位置关系•一圆周角定理•二圆内接四边形的性质与判定定理•三圆的切线的性质及判定定理•四弦切角的性质•五与圆有关的比例线段•同步练习•本章综合第三讲圆锥曲线性质的探讨•一平行射影•二平面与圆柱面的截线•三平面与圆锥面的截线•同步练习•本章综合单元测试本册综合选修4-2•第一讲线性变换与二阶矩阵•第二讲变换的复合与二阶矩阵的乘法•第三讲逆变换与逆矩阵•第四讲变换的不变量与矩阵的特征向量•单元测试•本册综合第一讲线性变换与二阶矩阵•一线性变换与二阶矩阵•二二阶矩阵与平面向量的乘法•三线性变换的基本性质•同步练习•本章综合第二讲变换的复合与二阶矩阵的乘法•一复合变换与二阶短阵的乘法•二矩阵乘法的性质•同步练习•本章综合第三讲逆变换与逆矩阵•一逆变换与逆矩阵•二二阶行列式与逆矩阵•三逆矩阵与二元一次方程组•同步练习•本章综合第四讲变换的不变量与矩阵的特征向量•一变换的不变量---矩阵的特征向量•二特征向量的应用•同步练习•本章综合单元测试本册综合新课标A版选修4-4•第一章坐标系•第二章参数方程•单元测试•本册综合第一章坐标系• 1.1直角坐标系、平面上的伸缩变换• 1.2极坐标系• 1.3曲线的极坐标方程• 1.4圆的极坐标方程• 1.5柱坐标系与球坐标系•同步练习•本章综合第二章参数方程• 2.1曲线的参数方程• 2.2直线和圆的参数方程• 2.3圆锥曲线的参数方程• 2.4一些常见曲线的参数方程•同步练习•本章综合单元测试本册综合新课标A版选修4-5•第一讲不等式和绝对值不等式•第二讲讲明不等式的基本方法•第三讲柯西不等式与排序不等式•第四讲数学归纳法证明不等式•单元测试•本册综合第一讲不等式和绝对值不等式•一不等式•二绝对值不等式•单元测试•本章综合第二讲讲明不等式的基本方法•一比较法•二综合法与分析法•三反证法与放缩法•单元测试•本章综合第三讲柯西不等式与排序不等式•一二维形式的柯西不等式•二一般形式的柯西不等式•三排序不等式•单元测试•本章综合第四讲数学归纳法证明不等式•一数学归纳法•二用数学归纳法证明不等式•单元测试•本章综合单元测试本册综合。

矩阵知识知识点总结手写

矩阵知识知识点总结手写

矩阵知识知识点总结手写一、矩阵的基本概念1. 定义:矩阵是由m行n列的数按矩形排列所得到的数表。

一般用大写字母A、B、C...表示矩阵,元素用小写字母aij,bij,cij...表示。

2. 矩阵的阶:矩阵A中有m行n列,就称A是一个m×n(读作“m行n列”)的矩阵,m、n分别称为矩阵的行数和列数,记作A[m×n]。

3. 矩阵的元素:A[m×n]=[aij],其中i=1,2,…,m,j=1,2,…,n,称aij为矩阵A的第i行第j 列元素。

4. 矩阵的相等:两个矩阵A,B的阶都相同时,如果相应元素都相等,则称矩阵A,B相等,记作A=B。

5. 矩阵的转置:将矩阵A的行、列互换得到的矩阵称为矩阵A的转置矩阵,记作AT。

6. 方阵:行数等于列数的矩阵称为方阵。

7. 零矩阵:所有元素均为零的矩阵称为零矩阵,记作O。

8. 单位矩阵:主对角线上元素全为1,其它元素均为0的矩阵称为单位矩阵,记作E或In。

二、矩阵的运算1. 矩阵的加法:设A[m×n]=[aij],B[m×n]=[bij],则矩阵C=A+B的第i行第j列元素为:cij=aij+bij,即C[m×n]=[aij+bij]。

2. 矩阵的数乘:数k与矩阵A[m×n]相乘的结果记作kA,即kA[m×n]=[kaij]。

3. 矩阵的乘法:设A[m×n],B[n×p],那么它们的乘积C=A×B[m×p]的第i行第j列元素为:C[i][j]=a[i][1]×b[1][j]+a[i][2]×b[2][j]+…+a[i][n]×b[n][j]。

4. 矩阵的转置:若A[m×n],则A的转置矩阵是AT[n×m],其中a[i][j]=a[j][i]。

5. 矩阵的逆:若方阵A的行列式不为零,那么A存在逆矩阵A-1,使得A×A-1=A-1×A=I。

高中数学知识点总结(精华版)

高中数学知识点总结(精华版)

高中数学必修+选修知识点归纳新课标人教A版一、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集,21n-个真子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 知识链接:函数与导数1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.2、几种常见函数的导数①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a xx ln )('=; ⑥xx e e =')(;⑦a x x a ln 1)(log '=;⑧xx 1)(ln '=3、导数的运算法则 (1)'()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠. 4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.解题步骤:分层—层层求导—作积还原. 5、函数的极值 (1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。

高二数学:新人教a版选修4《矩阵与变换》课件

高二数学:新人教a版选修4《矩阵与变换》课件
1/2 0 0 1 2 0 0 1
2
0
0
1
1/2
0
0
1
17
逆变换与逆矩阵
反射变换之逆为反射变换
-1
0
-1
0
0

1
0
1
压伸变换之逆为压伸变换 旋转变换之逆为旋转变换 切边变换之逆为切变变换
18
两矩阵之积之逆的几何意义
0 1
–1
1
0
0
0 1/2
0
–1
1 0
1 0
0 2
19
线性方程组与变换

0 1
10
旋转变换
0 1 -1 0
0
-1
1
0
返回
11
投影变换
1 0 0 0
0 1 返回
0 1
12
矩阵变换是线性变换 1) A( ) A 也就是 2) A( ) A A
A( ) A A




13
矩阵表示的变换,把直线或者 变成直线,或者变成一个点
0 1 2
1
的特征向量为
0

0
1

矩阵只改变其特征向量的长度不改变其方向
21
特征值与特征向量的意义

矩阵
1 0
0
–1
的特征向量为
1 0

0 1
1 0
0 -1
x y
= x·
1 0
+(–y) ·
0 1
22
矩阵只改变其特征向量的长度不改变其方向
矩阵的特征向量是在变换下 “基本”不变的量

人教A版新课标高中数学

人教A版新课标高中数学

人教A版新课标高中数学人教A版新课标高中数学是依据中国教育部颁布的《普通高中数学课程标准(2017年版)》编写的教材,旨在培养学生的数学核心素养,包括数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等六个方面。

该教材分为必修和选修两部分,必修部分是所有学生必须学习的,而选修部分则根据学生的兴趣和未来发展方向进行选择。

必修部分包括以下内容:1. 集合与函数:介绍集合的概念、运算以及函数的定义、性质和图像,为后续学习打下基础。

2. 几何:包括平面几何和立体几何,重点培养学生的空间想象能力和几何直观。

3. 代数:涵盖多项式、方程和不等式等内容,强调代数运算和解法的掌握。

4. 概率与统计:介绍概率的基本概念、统计数据的收集与处理,以及概率统计在实际生活中的应用。

5. 数列与极限:探讨数列的性质、极限的概念以及无穷级数等,为高等数学的学习奠定基础。

选修部分则包括:1. 微积分初步:介绍导数、微分、积分等微积分的基本概念和运算,为学生提供更深入的数学工具。

2. 线性代数初步:包括矩阵、向量空间和线性变换等内容,培养学生的抽象思维能力。

3. 概率论与数理统计:在必修概率与统计的基础上,进一步探讨概率分布、期望值、方差等概念。

4. 离散数学:涉及图论、组合数学、逻辑与集合等,培养学生解决复杂问题的能力。

5. 几何与拓扑:探讨欧几里得几何、非欧几里得几何以及拓扑学的基础概念。

新课标强调数学知识的实际应用,鼓励学生通过实践活动和探究学习来理解和掌握数学知识。

同时,教材中融入了大量的信息技术工具,如计算机软件和在线资源,以辅助学生更好地学习数学。

通过这些内容的学习,学生不仅能够掌握数学知识,还能培养解决问题的能力和创新思维。

新课标人教A版高中数学选修4-4知识点

新课标人教A版高中数学选修4-4知识点

高中数学选修4­4坐标系与参数方程知识点总结第一讲一平面直角坐标系1.平面直角坐标系(1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系.(2)平面直角坐标系:①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系;②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向;③坐标轴水平的数轴叫做x 轴或横坐标轴,竖直的数轴叫做y 轴或纵坐标轴,x 轴或y 轴统称为坐标轴;④坐标原点:它们的公共原点称为直角坐标系的原点;⑤对应关系:平面直角坐标系上的点与有序实数对(x ,y )之间可以建立一一对应关系.(3)距离公式与中点坐标公式:设平面直角坐标系中,点P 1(x 1,y 1),P 2(x 2,y 2),线段P 1P 2的中点为P2.微信公众号:学设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系(1)定义:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向.(3)图示2.极坐标(1)极坐标的定义:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O 的极坐标是(0,θ),(θ∈R ),若点M 的极坐标是M (ρ,θ),则点M 的极坐标也可写成M (ρ,θ+2k π),(k ∈Z ).若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如图所示,把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且长度单位相同,设任意一点M 的直角坐标与极坐标分别为(x ,y ),(ρ,θ).(1)极坐标化直角坐标=ρcos θ,=ρsin θW.(2)直角坐标化极坐标2=x 2+y 2,θ=yx(x ≠0).三简单曲线的极坐标方程1.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程f (ρ,θ)=0,并且坐标适合方程f (ρ,θ)=0的点都在曲线C 上,那么方程f(ρ,θ)=0叫做曲线C 的极坐标方程.2.圆的极坐标方程(1)特殊情形如下表:微信公众号:学圆心位置极坐标方程图形圆心在极点(0,0)ρ=r (0≤θ<2π)圆心在点(r ,0)ρ=2r cos_θ(-π2≤θ<π2)圆心在点(r ,π2)ρ=2r sin_θ(0≤θ<π)圆心在点(r ,π)ρ=-2r cos_θ(π2≤θ<3π2)圆心在点(r ,3π2)ρ=-2r sin_θ(-π<θ≤0)(2)一般情形:设圆心C (ρ0,θ0),半径为r ,M (ρ,θ)为圆上任意一点,则|CM |=r ,∠COM =|θ-θ0|,根据余弦定理可得圆C 的极坐标方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0即)cos(2002022θθρρρρ--+=r 3.直线的极坐标方程00△OPM 中利用正弦定理可得直线l 的极坐标方程为ρsin(α-θ)=ρ0sin(α-θ0).微信公众号:学四柱坐标系与球坐标系简介(了解)1.柱坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面Oxy 上的极坐标,这时点P 的位置可用有序数组(ρ,θ,z )(z ∈R )表示.这样,我们建立了空间的点与有序数组(ρ,θ,z )之间的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z )叫做点P 的柱坐标,记作P (ρ,θ,z ),其中ρ≥0,0≤θ<2π,z ∈R .(2)空间点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )x =ρcos θy =ρsin θz =z2.球坐标系(1)定义:一般地,如图建立空间直角坐标系Oxyz .设P 是空间任意一点,连接OP ,记|OP |=r ,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ,这样点P 的位置就可以用有序数组(r ,φ,θ)表示,这样,空间的点与有序数组(r ,φ,θ)之间建立了一种对应关系.把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r ,φ,θ),叫做点P 的球坐标,记作P (r ,φ,θ),其中r ≥0,0≤φ≤π,0≤θ<2π.(2)空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间x=r sin φcos θy =r sin φsin θz =r cos φ.微信公众号:学第二讲:一曲线的参数方程1.参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t的函数:=f (t )=g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y=f (t )=g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.2.圆的参数方程1.圆心在坐标原点,半径为r 的圆的参数方程如图圆O 与x 轴正半轴交点M 0(r ,0).(1)设M (x ,y )为圆O 上任一点,以OM 为终边的角设为θ,则以θ为参数的圆O 的参数微信公众号:学其中参数θ的几何意义是OM 0绕O 点逆时针旋转到OM 的位置时转过的角度.(2)设动点M 在圆上从M 0点开始逆时针旋转作匀速圆周运动,角速度为ω,则OM 0经过时间t 转过的角θ=ωt ,则以t 为参数的圆O其中参数t 的物理意义是质点做匀速圆周运动的时间.2.圆心为C (a ,b ),半径为r 的圆的参数方程圆心为(a ,b ),半径为r 的圆的参数方程可以看成将圆心在原点,半径为r 的圆通过坐3.参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f (t ),其次将x =f (t )代入普通方程解出y =g (t )(4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.二圆锥曲线的参数方程1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b>0)φ是参数),规定参数φ的取值范围是[0,2π).(2)中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(3)中心在(h ,k )的椭圆普通方程为(x -h )2a 2+(y -k )2b 2=1,则其参数方程为φ是参数).2.双曲线的参数方程和抛物线的参数方程1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.微信公众号:学(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=12.抛物线的参数方程(1)抛物线y 2=2px(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.三直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线lt 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M =x 0+t cos α=y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)=x 0+at =y 0+bt(t 为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.四渐开线与摆线(了解)1.渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O 为原点,直线OA 为x 轴,建立如图所示的平面直角坐标系.设基圆的半径为r ,绳子外端M 的坐标为(x ,y )φ是参数).这就是圆的渐开线的参数方程.2.摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.微信公众号:学(2)半径为r 的圆所产生摆线的参数方程为φ是参数).微信公众号:学。

矩阵知识点总结大纲

矩阵知识点总结大纲

矩阵知识点总结大纲一、矩阵的基本概念1.1 矩阵的定义1.2 矩阵的元素1.3 矩阵的维数1.4 矩阵的转置1.5 矩阵的特殊矩阵二、矩阵运算2.1 矩阵的加法2.2 矩阵的数乘2.3 矩阵的乘法2.4 矩阵的转置2.5 矩阵的幂2.6 矩阵的逆2.7 矩阵的行列式2.8 矩阵的秩三、线性方程组与矩阵3.1 矩阵的行简化阶梯形式3.2 矩阵的列简化阶梯形式3.3 矩阵的增广矩阵3.4 矩阵的系数矩阵3.5 矩阵的齐次线性方程组3.6 矩阵的非齐次线性方程组四、矩阵的应用4.1 线性代数4.2 计算机图形学4.3 信号处理4.4 优化问题4.5 统计学4.6 量子力学五、矩阵分析5.1 矩阵的迹5.2 矩阵的本征值与本征向量5.3 矩阵的相似矩阵5.4 矩阵的对角化5.5 矩阵的奇异值分解5.6 矩阵的正交矩阵六、矩阵的特征6.1 矩阵的周期性6.2 矩阵的稀疏性6.3 矩阵的对称性6.4 矩阵的正定性6.5 矩阵的随机性七、矩阵的发展历程7.1 矩阵的起源7.2 矩阵的发展7.3 矩阵的应用八、矩阵的未来发展8.1 矩阵的应用领域拓展8.2 矩阵的理论深化8.3 矩阵的计算方法改进九、矩阵的教学与研究9.1 矩阵的教学模式9.2 矩阵的教学资源9.3 矩阵的研究方向十、矩阵的未来前景10.1 矩阵的应用前景10.2 矩阵的教学前景10.3 矩阵的研究前景十一、矩阵的总结与展望11.1 矩阵的总结11.2 矩阵的展望结语矩阵知识点总结一、矩阵的基本概念1.1 矩阵的定义矩阵是一个按照长方形排列的数表。

其中的元素可以是数字、符号或数学式。

矩阵是线性代数的基本概念,应用非常广泛,涉及几何学、概率论、微分方程以及物理学和工程学等各个学科。

1.2 矩阵的元素矩阵的元素是矩阵中的一个具体数值或符号。

1.3 矩阵的维数一个矩阵的维数是指矩阵的行数与列数。

如果一个矩阵有m行n列,则称其为m×n阶矩阵。

高中数学人教版教材讲解(选修4-2-矩阵与变换)

高中数学人教版教材讲解(选修4-2-矩阵与变换)

(3)在第二讲中,通过实例考察在直角坐 标系内连续施行两次线性变换的作用效果是 否能用一个线性变换表示,进而一般化,引 入线性变换的复合,介绍二阶矩阵的一种重 要运算——矩阵的乘法,并通过应用进一步 理解矩阵的乘法;类比实数乘法的运算律, 研究二阶矩阵乘法的运算律,证明矩阵的乘 法满足结合律,通过学生熟悉的某些二阶矩 阵所对应的线性变换对单位正方形区域的作 用结果,得到矩阵的乘法不满足交换律和分 配律.
(4)在第三讲中,类比实数的乘法运算中
的一条重要性质:“如果


”,分别把恒等变换和单位
矩阵作为数1类比对象,通过线性变换引进逆 矩阵,并通过线性变换和生活中的常识理解逆 矩阵的性质;引进二阶行列式,利用它研究逆 矩阵,解决如何判断二阶矩阵是否可逆以及如 何求可逆矩阵的逆矩阵的问题;本讲还从线性 变换的角度来认识解二元一次方程组的意义, 并利用逆矩阵求解系数矩阵可逆的二元一次方 程组.
无论在理解本专题的内容时,还是教学中, 都要把握好两个关键词:线性变换,二阶矩 阵。
一、课程标准中的内容与要求
1.理解二阶矩阵的概念 2.二阶矩阵与平面向量(列向量) 的乘法、平面图形的变换 (1)以变换的观点认识矩阵与向 量乘法的意义。 (2)证明矩阵变换把平面上的直 线变成直线,即证明矩阵变换是线性 变换:
题(人口迁移问题).
3.本讲的重点和难点
(1)本专题的重点是通过平面图形的变换引 入二阶矩阵,认识矩阵与向量乘法的意义, 讨论线性变换的基本性质、二阶矩阵的乘法 及性质、逆矩阵和矩阵的特征向量的概念与 性质等,并以变换的观点理解解线性方程组 的意义。 (2)矩阵的内容比较抽象,本专题的难点是 线性变换的基本性质、矩阵乘法的运算律 (这可能是学生第一次遇到不满足交换律、 消去律的运算)、矩阵的特征值与特征向量 的概念等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修矩阵知识点总结
1、五种特殊变换
旋转变换
⎢⎣⎡a a sin cos ⎥⎦⎤-a a cos sin ⎪⎩⎪⎨⎧+=-=a
y a x y a y a x x cos sin sin cos ''反射变换 关于X 轴对称 ⎢⎣⎡01⎥⎦⎤-10⎪⎩⎪⎨⎧-==y
y x x ''
关于Y 轴对称 ⎢⎣⎡-01⎥⎦⎤10⎪⎩⎪⎨⎧=-=y y x x '' 关于Y=X 对称 ⎢⎣⎡10⎥⎦⎤01⎪⎩⎪⎨⎧==y
y x x ''伸缩变换 纵轴伸缩 ⎢⎣⎡01⎥⎦⎤k 0⎪⎩⎪⎨⎧==ky
y x x '' 横轴伸缩
⎢⎣⎡0k ⎥⎦⎤10⎪⎩⎪⎨⎧==y y kx x '' 横纵均伸缩 ⎢⎣⎡01k ⎥⎦⎤20k ⎪⎩⎪⎨⎧==y
k y x k x 2'1'投影变换 关于X 轴正投影
⎢⎣⎡00⎥⎦⎤01⎪⎩⎪⎨⎧==0''y x x 关于Y 轴正投影 ⎢⎣⎡00⎥⎦⎤10⎪⎩⎪⎨⎧==y
y x ''0 关于AX+BY=0投影 ⎢⎢⎢⎢⎣⎡+-+22222B A AB B A B ⎥⎥⎥⎥⎦⎤++-22222B A A B A AB ⎪⎪⎩
⎪⎪⎨⎧+++-=+-+=y B A A x B A AB y y B A AB x B A B x 22222'22222'切变变换
沿X 轴平行方向移ky 个单位 ⎢⎣⎡01⎥⎦⎤1k ⎪⎩⎪⎨⎧=+=y y ky x x '' 沿Y 轴平行方向移kx 个单位 ⎢⎣⎡k 1⎥⎦⎤10⎪⎩⎪⎨⎧+==y
kx y x x ''2.矩阵的概念:形如、的矩形数字(或字母)阵列称为矩阵.2341⎛⎫ ⎪⎝⎭3m ⎛⎫ ⎪⎝⎭
通常用大写黑体的拉丁字母A 、B 、C…表示,或者用表示,其中i,j 分()ij a 别表示元素所在的行与列.同一横排中按原来次序排列的一行数(或字母)
ij a 叫做矩阵的行,同一竖排中按原来次序排列的一行数(或字母)叫做矩阵的列. 组成矩阵的每一个数(或字母)称为矩阵的元素。

所有元素均为0的矩阵称谓零矩阵。

3.相等的矩阵:对于两个矩阵A 、B 的行数、列数分别相等,且对应位置的元素也分别相等,A 和B 才相等,记做A=B 。

4.二阶矩阵与平面列向量的乘法
矩阵A= 与=相乘, =,
⎢⎣⎡c a ⎥⎦⎤d b →a ⎥⎦⎤⎢⎣⎡y x =→a A ⎢⎣⎡c a ⎥⎦⎤d b ⎥⎦⎤⎢⎣⎡y x ⎥⎦⎤⎢⎣
⎡++dy cx by ax = ====→
)(a A λ⎢⎣⎡c a ⎥⎦⎤d b ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡y x λ⎢⎣⎡c a ⎥⎦⎤d b ⎥⎦⎤⎢⎣⎡y x λλ⎥⎦⎤⎢⎣⎡++y d x c y b x a λλλλ⎥⎦⎤⎢⎣⎡++dy cx by ax λλλλ→a A λ
→→→→+=+b A a A b a A )(→
→→→+=+b A a A b a A 2121)(λλλλ5.复合变换
若向量先经过矩阵A 再经过矩阵B 变换后→
→=a AB a B A )()(a ⇔→
a BA
(矩阵相乘没有交换律))()(BC A C AB =BA AB ≠
若AC=AB 但 (没有消去律)l k l k A A A +=B C ≠ 若 为单位矩阵
kl l k A A =)(A AE A E ==222E 6.逆矩阵 (五种特殊变换,除了投影变换外其他都有逆矩阵)
定义:设A 是一个二阶矩阵,如果存在二阶矩阵B ,使得BA=AB=E 2,则称矩阵A 可逆,并称B 是A 的逆矩阵。

已知矩阵A= ,求逆矩阵⎢⎣⎡c a ⎥⎦
⎤d b 1-A 若 =则,detA 是二阶矩阵 的行列式,且==A A det c a d b 0≠-bc ad ⎢⎣⎡c a ⎥⎦
⎤d b
A 有逆矩阵= , 为单位矩阵 。

1-A ⎢⎢⎢⎢⎣
⎡-A c A d ⎥⎥⎥⎥⎦⎤-A a A b 21E AA =-⎢⎣⎡01⎥⎦⎤102E 逆矩阵的性质:
(1)不是每个变换都有逆变换,不是每个矩阵都有逆矩阵。

(2)若二阶矩阵A 可逆,则A 的逆矩阵唯一,记为.
1
A -(3)若二阶矩阵A 、
B 可逆,则AB 也可逆,且=.1(AB)--1-1A B 7.用逆矩阵求二元一次方程组
已知 A= 为二元一次方程组的系数矩阵
⎩⎨⎧=+=+f dy cx e by ax ⎢⎣⎡c a ⎥⎦
⎤d b 这二元一次方程组可写成 =⎢⎣⎡c a ⎥⎦⎤d b ⎥⎦⎤⎢⎣⎡y x ⎥⎦

⎢⎣⎡f e
=1-A ⎥⎦⎤⎢⎣⎡f e ⎥⎦⎤⎢⎣⎡y x 已知⎩⎨⎧=+=+0
0dy cx by ax (其中是不全为0的常数) 则此二元一次方程组有非0解的充要条件是 =0d c b a ,,,c a d
b 8.特征值与特征向量
设矩阵A = ,若存在实数及非零向量,使得A =,则称是矩阵A 的一个特征值,是⎢⎣⎡c a ⎥⎦
⎤d b λ→ξ→ξλ→ξλ→ξ矩阵A 属于特征值的一个特征向量。

λ特征值和特征向量的性质
(1)不是每个矩阵都有特征值与特征向量。

(2)属于矩阵不同特征值的特征向量不共线。

(3)设是矩阵A 属于特征值的一个特征向量,则对于任意的非零常数k ,k 也是矩阵A 属于特征→ξλ→
ξ值的一个特征向量。

λ特征值与特征向量的求法
已知A= = 求特征值、特征向量和⎢⎣⎡c a ⎥⎦⎤d b →a ⎥⎦⎤⎢⎣⎡f e λ→ξ→a A n 令 =0 解出=)(λf c a
--λd
b --λ21λλλλ==或
当 当 1λλ=2
λλ= ⎩⎨⎧=-+-=--0
)(011y d cx by x a λλ)(⎩⎨⎧=-+-=--0)(022y d cx by x a λλ)( ⎥⎦⎤⎢⎣⎡=∴→111y x ξ⎥⎦⎤⎢⎣⎡=∴→
222y x ξ是A 属于的一个 是A 属于的一个⎥⎦
⎤⎢⎣⎡=∴→111y x ξ1λλ=⎥⎦⎤⎢⎣⎡=∴→
222y x ξ2λλ= 特征向量
特征向量设 得→
→→+=2211ξξk k a ⎩⎨⎧=
=
21k k =∴→
a A n →

+222111ξλξλn n k k。

相关文档
最新文档