函数单调性与奇偶性经典例题透析

合集下载

函数单调性与奇偶性典型例题讲解

函数单调性与奇偶性典型例题讲解
又∵f(x)在 R 上递减, ∴x2-x+3x<3,∴x2+2x-3<0∴-3<x<1.
∴原不等式的解集为{x|-3<x<1 }.
变式:定义在 R 上的函数 y=f(x),f(0)≠0,当 x>0 时,f(x)>1, 且对任意的 a,b∈R,有 f(a+b)=f(a)·f(b).
(1)证明:f(0)=1; (2)证明:对任意的 x∈R,恒有 f(x)>0; (3)证明:f(x)是 R 上的增函数; (4)若 f(x)·f(2x-x2)>1,求 x 的取值范围.
设奇函数 f(x)的定义域为[-5,5].若当 x∈[0,5]时,f(x) 的图象如图 2-2-5 所示,则不等式 f(x)<0 的解集是 ________.
图 2-2-5
解:注意到奇函数的图象关于原点成中心对称,用对称的思 想方法画全函数 f(x)在[-5,5]上的图象(如图),数形结 合,得 f(x)<0 的解集为{x|-2<x<0 或 2<x≤5}.
变式:已知 f(x)是(-∞,0)∪(0,+∞)上的偶函数,且当 x >0 时,f(x)=x3+x+1,求 f(x)的解析式.
解:①当 x<0 时,-x>0,
∴f(-x)=(-x)3-x+1=-x3-x+1.
又∵f(x)为偶函数,∴f(-x)=f(x).
∴f(x)=-x3-x+1.
∴f(x)=x-3+x3x-+x1+,1,
已知 f(x)是定义在 R 上的不恒为 0 的函数,且对于任意的 x, y∈R,有 f(x·y)=xf(y)+yf(x). (1)求 f(0),f(1)的值; (2)判断函数 f(x)的奇偶性,并证明你的结论.
解:(1)在 f(xy)=xf(y)+yf(x)中, 令 x=y=0,得 f(0)=0+0=0,即 f(0)=0. 令 x=y=1,得 f(1)=1·f(1)+1·f(1), ∴f(1)=0;

函数单调性与奇偶性经典例题透析

函数单调性与奇偶性经典例题透析

函数单调性与奇偶性经典例题透析————————————————————————————————作者:————————————————————————————————日期:函数单调性与奇偶性经典例题透析(一)讲课人:张海青授课时间:2014年9月23日授课地点:教学楼二楼多媒体(二)授课对象:高三文科优生授课过程:类型一、函数的单调性的证明1.证明函数上的单调性.证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0则∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0∴上递减.总结升华:[1]证明函数单调性要求使用定义;[2]如何比较两个量的大小?(作差)[3]如何判断一个式子的符号?(对差适当变形)举一反三:【变式1】用定义证明函数上是减函数.思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径.总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).总结升华:[1]数形结合利用图象判断函数单调区间;[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数.函数单调性与奇偶性经典例题透析(二)讲课人:张海青授课时间:2014年10月8日授课地点:教学楼二楼多媒体(二)授课对象:高三文科优生授课过程:类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].思路点拨:(1)可应用函数的单调性;(2)数形结合.解:(1)2个单位,再上移2个单位得到,如图1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3(4)f(x)=|x+3|-|x-3| (5)(6)(7)思路点拨:根据函数的奇偶性的定义进行判断.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).举一反三:【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则= .8. f(x)是定义在R上的偶函数,且当x<0时,f(x)=x2-2x,求当x≥0时,f(x)的解析式,并画出函数图象.9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.。

高考复习-函数的单调性与奇偶性

高考复习-函数的单调性与奇偶性

函数的单调性与奇偶性知识集结知识元函数的单调性与奇偶性知识讲解1.奇偶性与单调性的综合【知识点的认识】对于奇偶函数综合,其实也并谈不上真正的综合,一般情况下也就是把它们并列在一起,所以说关键还是要掌握奇函数和偶函数各自的性质,在做题时能融会贯通,灵活运用.在重复一下它们的性质①奇函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f (﹣x)=﹣f(x),其图象特点是关于(0,0)对称.②偶函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),其图象特点是关于y轴对称.【解题方法点拨】参照奇偶函数的性质那一考点,有:①奇函数:如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内一般是用f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性一致,而偶函数的单调性相反例题:如果f(x)=为奇函数,那么a=.解:由题意可知,f(x)的定义域为R,由奇函数的性质可知,f(x)==﹣f(﹣x)⇒a=1【命题方向】奇偶性与单调性的综合.不管出什么样的题,能理解运用奇偶函数的性质是一个基本前提,另外做题的时候多多总结,一定要重视这一个知识点.例题精讲函数的单调性与奇偶性例1.下列函数为奇函数且值域为R的是()A.y=x+B.y=xD.y=ln(x+)C.y=例2.下列函数,既是偶函数,又在(-∞,0)上单调递增的是()A.f(x)=-(x-1)2B.C.f(x)=3|x|D.f(x)=cos x例3.已知函数f(x)和f(x+2)都是定义在R上的偶函数,当x∈[0,2]时,f(x)=2x,则=()A.2 B.D.C.当堂练习单选题练习1.已知是(-∞,+∞)上的减函数,那么a的取值范围是()A.B.C.(0,1)D.练习2.已知函数f(x)=(x2-2x)sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=()A.4 B.2 C.1 D.0练习3.已知函数f(x)=,若当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,不等式kx3x4+x12+x22≥k+11恒成立,则实数k的最小值为()A.B.2-C.D.-练习4.若函数f(x)=单调递增,则实数a的取值范围是()A.(,3)B.[,3)C.(1,3)D.(2,3)练习5.设奇函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式>0的解集是()A.(-2,0)∪(2,+∝)B.(-∝,-2)∪(0,2)C.(-2,0)∪(0,2)D.(-∝,-2)∪(2,+∝)填空题练习1.已知函数f(x)=那么不等式f(x)≥1的解集为_______________.练习2.函数的单调区间是_________________。

专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题07函数的性质——单调性、奇偶性、周期性函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上;②任意两个自变量1x ,2x 且12x x <;③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.(2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质.(3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数关于y 轴对称奇函数如果对于函数()f x 的定义域内任意一个x ,都有) ()(f x f x --=,那么函数()f x 就叫做奇函数关于原点对称判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).3.函数的对称性(1)若函数()y f x a =+为偶函数,则函数()y f x =关于x a =对称.(2)若函数()y f x a =+为奇函数,则函数()y f x =关于点(0)a ,对称.(3)若()()2f x f a x =-,则函数()f x 关于x a =对称.(4)若2(2)()f x f a x b -=+,则函数()f x 关于点()a b ,对称.4.函数的周期性(1)周期函数:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有(()f x T f x +=),那么就称函数()y f x =为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么称这个最小整数叫做()f x 的最小正周期.【方法技巧与总结】1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 为增函数,1()f x 为减函数;④若()0f x >且()f x 为减函数,1()f x 为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称;函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称.(3)若奇函数()y f x =在0x =处有意义,则有(0)0f =;偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()(01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =+或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.【题型归纳目录】题型一:函数的单调性及其应用题型二:复合函数单调性的判断题型三:利用函数单调性求函数最值题型四:利用函数单调性求参数的范围题型五:基本初等函数的单调性题型六:函数的奇偶性的判断与证明题型七:已知函数的奇偶性求参数题型八:已知函数的奇偶性求表达式、求值题型九:已知()f x =奇函数+M 题型十:函数的对称性与周期性题型十一:类周期函数题型十二:抽象函数的单调性、奇偶性、周期性题型十三:函数性质的综合【典例例题】题型一:函数的单调性及其应用例1.(2022·全国·高三专题练习)若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有()-()-f a f b a b>0成立,则必有()A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增例2.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且对任意两个不相等的实数a ,b 都有()()()0a b f a f b -->⎡⎤⎣⎦,则不等式()()315f x f x ->+的解集为().A .(),3-∞B .()3,+∞C .(),2-∞D .()2,+∞例3.(2022·全国·高三专题练习)()252f x x x =-的单调增区间为()A .1,5⎛⎫+∞ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,5⎛⎫-+∞ ⎪⎝⎭D .1,5⎛⎫-∞- ⎪⎝⎭例4.(2022·全国·高三专题练习)已知函数1()22xxf x =-.(1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x 的不等式2(log )(1)f x f <.例5.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.【方法技巧与总结】函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.题型二:复合函数单调性的判断例6.(2022·全国·高三专题练习(文))函数y =)A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-,例7.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是()A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-例8.(2022·全国·高三专题练习)函数2231()(2x x f x --=的单调递减区间是()A .(,)-∞+∞B .(,1)-∞C .(3,)+∞D .(1,)+∞【方法技巧与总结】讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数;2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:()u g x =()y f u =[()]y f g x =增增增增减减减增减减减增复合函数单调性可简记为“同增异减”,即内外函数的单性相同时递增;单性相异时递减.题型三:利用函数单调性求函数最值例9.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =()21x f x x =+;③()e e e ex xx x f x ---=+;④()11e x f x -=+.例10.(2022·全国·高三专题练习)定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-.(1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.例11.(2022·全国·高三专题练习)已知函数()(0)2axf x a x =≠-.(1)判断函数()f x 在区间()2,2-上的单调性,并用单调性的定义加以证明;(2)若()33f =,求[]1,1x ∈-时函数()f x 的值域.例12.(2022·山西运城·模拟预测(理))已知a b <,函数()f x 的定义域为I ,若存在[,]a b I ⊆,使得()f x 在[,]a b 上的值域为[,]a b ,我们就说()f x 是“类方函数”.下列四个函数中是“类方函数”的是()①()21f x x =-+;②2()f x x =;③()2f x =+;④1()2xf x ⎛⎫= ⎪⎝⎭.A .①②B .②④C .②③D .③④【方法技巧与总结】利用函数单调性求函数最值时应先判断函数的单调性,再求最值.常用到下面的结论:1.如果函数()y f x =在区间(]a b ,上是增函数,在区间[)b c ,上是减函数,则函数()()y f x x a c =∈,在x b =处有最大值()f b .2.如果函数()y f x =在区间(]a b ,上是减函数,在区间[)b c ,上是增函数,则函数()()y f x x a c =∈,在x b =处有最小值()f b .3.若函数()y f x =在[]a b ,上是严格单调函数,则函数()y f x =在[]a b ,上一定有最大、最小值.4.若函数()y f x =在区间[]a b ,上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a .5.若函数()y f x =在区间[]a b ,上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b .题型四:利用函数单调性求参数的范围例13.(2022·河南濮阳·一模(理))“1b ≤”是“函数()()22,0log 2,20bx x f x x b x +>⎧=⎨++-<≤⎩是在()2,-+∞上的单调函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例14.(2022·全国·江西科技学院附属中学高三阶段练习(理))已知函数()()e 4,0,2log 1,10,x m m x f x x x ⎧+>⎪=⎨-+-<≤⎪⎩若1x ∀,2x ∈R ,()()12120f x f x x x ->-,且()()2g x f x x =--仅有1个零点,则实数m 的取值范围为()A .11,4e ⎡⎫⎪⎢⎣⎭B .11,4e ⎡⎤⎢⎥⎣⎦C .1,1e ⎡⎫⎪⎢⎣⎭D .1,1e ⎛⎫ ⎪⎝⎭例15.(2022·浙江·高三学业考试)已知函数2()2f x x ax b =-+在区间(-∞,1]是减函数,则实数a 的取值范围是()A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]例16.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围()A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1例17.(2022·全国·高三专题练习)已知函数()f x =0a >且1a ≠)在区间[)1,3上单调递增,则实数a 的取值不可能是()A .13B .12C .23D .56例18.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a的范围是_______.例19.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈,则θ的取值范围是___________.例20.(2022·全国·高三专题练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【方法技巧与总结】若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解.1.若()a f x >在[]m n ,上恒成立()a f x ⇔>在[]m n ,上的最大值.2.若()a f x <在[]m n ,上恒成立()a f x ⇔<在[]m n ,上的最小值.题型五:基本初等函数的单调性例21.(2022·全国·高三阶段练习(文))下列函数在()1,3上单调递减的是()A .24y x x =-B .12x y -=C .y =D .cos 1y x =+例22.(2022·全国·高三专题练习)下列函数中,定义域是R 且为增函数的是A .xy e -=B .3y x =C .ln y x=D .y x=例23.(2022·全国·高三专题练习)已知()f x 是奇函数,且()()12120f x f x x x ->-对任意12,x x R ∈且12x x ≠都成立,设32a f ⎛⎫= ⎪⎝⎭,()3log 7b f =,()30.8c f =-,则()A .b a c <<B .c a b <<C .c b a<<D . a c b<<例24.(2022·山东·济南一中模拟预测)设函数()232xf x x ⎛⎫=+ ⎪⎝⎭,若()ln 3a f =,()5log 2b f =-,c f =(e 为自然对数的底数),则().A .a b c>>B .c b a>>C .c a b>>D .a c b>>【方法技巧与总结】1.比较函数值大小,应将自变量转化到同一个单调区间内,然后利用函数单调性解决.2.求复合函数单调区间的一般步骤为:①求函数定义域;②求简单函数单调区间;③求复合函数单调区间(同增异减).3.利用函数单调性求参数时,通常要把参数视为已知数,依据函数图像或单调性定义,确定函数单调区间,与已知单调区间比较,利用区间端点间关系求参数.同时注意函数定义域的限制,遇到分段函数注意分点左右端点函数值的大小关系.题型六:函数的奇偶性的判断与证明例25.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减例26.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x=--C .3y x x=--D .3=-+y x x例27.(2022·广东·二模)存在函数()f x 使得对于x R ∀∈都有()()f g x x =,则函数()g x 可能为()A .()sin g x x=B .()22g x x x=+C .()3g x x x=-D .()()x xg x e e-=+例28.(2022·全国·高三专题练习)判断下列函数的奇偶性:(1)f (x )(2)f (x )=(x +(3)f (x ).(4)f (x )=2221,0,21,0;x x x x x x ⎧-++>⎨+-<⎩例29.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在()0,+∞上的单调性.【方法技巧与总结】函数单调性与奇偶性结合时,注意函数单调性和奇偶性的定义,以及奇偶函数图像的对称性.题型七:已知函数的奇偶性求参数例30.(2022·北京海淀·二模)若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则()A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-例31.(2022·河南洛阳·三模(理))若函数()()322x xx a f x -=⋅-是偶函数,则=a ()A .-1B .0C .1D .±1例32.(2022·江苏南通·模拟预测)若函数()22x x af x a +=-为奇函数,则实数a 的值为()A .1B .2C .1-D .±1例33.(2022·江西·南昌十中模拟预测(理))已知函数()(1)1x mf x x e=++为偶函数,则m 的值为_________.例34.(2022·全国·高三阶段练习(理))已知函数()()22330x xa a a f x -+=-⋅≠为奇函数,则=a ______.例35.(2022·全国·高三阶段练习(文))已知函数()2221x xa b f x x -+⋅=+为偶函数,则=a ______.例36.(2022·陕西·西安中学模拟预测(文))已知函数)1()e ln e x xf x x ⎛⎫=- ⎪⎝⎭为R 上的偶函数,则实数=a ___________.【方法技巧与总结】利用函数的奇偶性的定义转化为()()f x f x -=±,建立方程,使问题得到解决,但是在解决选择题、填空题时还显得比较麻烦,为了使解题更快,可采用特殊值法求解.题型八:已知函数的奇偶性求表达式、求值例37.(2022·安徽省芜湖市教育局模拟预测(理))设()f x 为奇函数,且0x >时,()e ln xf x x =+,则()1f -=___________.例38.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为()A .3-B .3C .5-D .5例39.(2022·河北衡水·高三阶段练习)已知()f x 是定义在R 上的奇函数,且0x ≤时,()232f x x x m =-+,则()f x 在[]1,2上的最大值为()A .1B .8C .5-D .16-例40.(2022·江西·模拟预测(理))(),()f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25+=--x f x g x x x ,则下列说法错误的是()A .(0)1g =B .()g x 在[]0,1上单调递减C .(1101)-g x 关于直线1101=x 对称D .()g x 的最小值为1例41.(2022·山西吕梁·一模(文))已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()21x f x x =+-,则当0x <时,()f x =()A .21x x ---B .21x x -++C .121x ----D .121x --++例42.(2022·北京·高三专题练习)已知定义在R 上的奇函数()f x 满足()()2f x f x =+,且当()0,1x ∈时,()241xxf x =+.(1)求()1f 和()1f -的值;(2)求()f x 在[]1,1-上的解析式.例43.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式.【方法技巧与总结】抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的解析式.题型九:已知()f x =奇函数+M例44.(2022·重庆一中高三阶段练习)已知()34f x ax =++(a ,b 为实数),()3lg log 102022f =,则()lg lg3f =______.例45.(2022·河南·西平县高级中学模拟预测(理))已知函数()2sin 414x xf x x -=++,且()5f a =,则()f a -=()A .2B .3C .-2D .-3例46.(2022·福建省福州第一中学高二期末)若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为()A .4B .8C .12D .16例47.(2022·上海·高一专题练习)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫ ⎪⎝⎭D .416,33ππ⎛⎫ ⎪⎝⎭例48.(2022·河南·温县第一高级中学高三月考(理))若函数()()113e sin 1ex x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,则p q +的值为().A .2B .1C .6D .3例49.(2022·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为()A .2-B .0C .2D .4例50.(2022·广东潮阳·高一期末)函数()()22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.例51.(2022·安徽·合肥市第九中学高三月考(理))已知定义域为R 的函数2222020sin ()2x x e e x xf x x λλμ++=++有最大值和最小值,且最大值和最小值的和为6,则λ-μ=___.【方法技巧与总结】已知()f x =奇函数+M ,[,]x a a ∈-,则(1)()()2f x f x M -+=(2)max min ()()2f x f x M +=题型十:函数的对称性与周期性例52.(2022·天津三中二模)设函数()y f x =的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(,)a b 为函数()y f x =的对称中心,研究函数1()1tan(1)1f x x x x =+++--的对称中心,求13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()A .2022B .4043C .4044D .8086例53.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则()A .()f x 是偶函数B .()f x 的图象关于直线12x =对称C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称例54.(2022·全国·模拟预测)已知函数()f x 的定义域为R ,且()()()2220222f x f x f +=-+对任意x ∈R 恒成立,又函数()2021f x +的图象关于点()2021,0-对称,且()12022f =,则()2021f =()A .2021B .2021-C .2022D .2022-例55.(2022·新疆·三模(文))已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e x f x x =,则下面结论正确的是()A .()()()3ln 3e e f f f <<-B .()()()3e ln 3ef f f -<<C .()()()3e e ln 3f f f <-<D .()()()3ln 3e ef f f <-<例56.(2022·山东·肥城市教学研究中心模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f =则(45)f =()A .2021B .2021-C .2022D .2022-例57.(2022·广东茂名·模拟预测)已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为()A .4B .4-C .0D .6-例58.(2022·江西鹰潭·二模(文))已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=()A .2-B .4C .4-D .6例59.(2022·江苏·徐州市第七中学高三阶段练习)函数()()()222f x x x x ax b =+++满足:对x R ∀∈,都有()()11f x f x +=-,则函数()f x 的最小值为()A .-20B .-16C .-15D .0例60.(2022·黑龙江·哈尔滨三中三模(理))定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;②函数()1y f x =+的图象关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为()A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>例61.(2022·陕西·榆林市教育科学研究所模拟预测(理))已知函数()f x 满足()()f x f x -=--,且函数()f x 与()cos 2g x x x =≠-⎛⎫ ⎪⎝⎭的图象的交点为()11,x y ,()22,x y ,()33,x y ,()44,x y ,则()41i ii x y =+=∑()A .-4πB .-2πC .2πD .4π【方法技巧与总结】(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.题型十一:类周期函数例62.(2022·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A .[]2,3B .[]1,3C .[]1,4D .[]2,4例63.(2022·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18f x t t≥-恒成立,则实数t 的取值范围是()A .(](],10,3-∞- B.((,-∞ C .[)[)1,03,-+∞ D.))⎡+∞⎣ 例64.(2022山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为()A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤例65.(2022·湖北·高三月考)已知函数()11,022(2),2x x f x f x x ⎧--≤≤=⎨->⎩,其中R a ∈,给出以下关于函数()f x 的结论:①922f ⎛⎫= ⎪⎝⎭②当[]0,8x ∈时,函数()f x 值域为[]0,8③当4,15k ⎛⎤∈ ⎥⎝⎦时方程()f x kx =恰有四个实根④当[]0,8x ∈时,若()22xf x a +≤恒成立,则1a ≥-)A .1B .2C .3D .4【方法技巧与总结】1.类周期函数若()y f x =满足:()()f x m kf x +=或()()f x kf x m =-,则()y f x =横坐标每增加m 个单位,则函数值扩大k 倍.此函数称为周期为m 的类周期函数.xx类周期函数图象倍增函数图象2.倍增函数若函数()y f x =满足()()f mx kf x =或()(xf x kf m=,则()y f x =横坐标每扩大m 倍,则函数值扩大k倍.此函数称为倍增函数.注意当m k =时,构成一系列平行的分段函数,222311()[1)(1)[)()(1)[)(1)[)n n ng x x m g x m x m m f x g x m x m m g x m x m m --∈⎧⎪-+∈⎪⎪=-+∈⎨⎪⎪⎪-+∈⎩,,,,,,,,.题型十二:抽象函数的单调性、奇偶性、周期性例66.(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤--<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为()A .()3,1-B .()()3,11,1---C .()(),11,1-∞-- D .()(),31,-∞-⋃+∞例67.(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图象关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =-,12b f ⎛⎫=- ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为()A .c b a <<B .b a c <<C .b c a <<D .c a b<<例68.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1x f x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为()A .8B .7C .6D .5例69.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)求()()22f xg x -的值;(2)判断并证明函数()f x 的奇偶性.例70.(2022·上海·高三专题练习)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (1x y xy ++);②当x ∈(-1,0)时,有f (x )>0.求证:21111()()()()511312f f f f n n +++>++ .【方法技巧与总结】抽象函数的模特函数通常如下:(1)若()()()f x y f x f y +=+,则()(1)f x xf =(正比例函数)(2)若()()()f x y f x f y +=,则()[(1)]x f x f =(指数函数)(3)若()()()f xy f x f y =+,则()log b f x x =(对数函数)(4)若()()()f xy f x f y =,则()a f x x =(幂函数)(5)若()()()f x y f x f y m +=++,则()(1)f x xf m =-(一次函数)(6)对于抽象函数判断单调性要结合题目已知条件,在所给区间内比较大小,有时需要适当变形.题型十三:函数性质的综合例71.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x=---,则关于t 的不等式()()20f t f t +<的解集为()A .()2,1-B.(-C .()0,1D.(例72.(2022·安徽·六安市裕安区新安中学高三开学考试(文))已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增.若实数a 满足212(log )(lo )g )2(1f a f f a +≤,则a 的最小值是()A .32B .1C .12D .2例73.(2022·河南许昌·高三月考(理))已知函数31()224e e x xf x x x =-++-,其中e 是自然对数的底数,若()2(6)8f a f a -+>,则实数a 的取值范围是()A .(2,)+∞B .(3,2)-C .(,3)-∞-D .(,3)(2,)-∞-⋃+∞例74.(2022·河南·新蔡县第一高级中学高三月考(文))已知函数()3112e 33ex x f x x x =-+-+,其中e是自然对数的底数,若()2(23)6f a f a -+≥,则实数a 的取值范围是()A .(,3][1,)-∞-+∞ B .(,3]-∞-C .[1,)+∞D .[]3,1-例75.(2022·江苏·南京市中华中学高三月考)定义在R 上的函数()f x 满足()(2)f x f x -=,且当1x ≥时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为()A .1-B .23-C .13-D .13例76.(2022·内蒙古·赤峰二中高一月考(理))设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意[]2x a a ∈+,,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是()A.)+∞B.)+∞C .()1-∞,D.⎡⎣例77.(2022·湖南·岳阳一中一模)已知函数221e e ()312x x xf x --=++,若不等式2(4)(2)1f ax f ax -+≤对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]e,0-B .[]2,0-C .[]4,0-D .2e ,0⎡⎤-⎣⎦例78.(2022·全国·模拟预测)已知函数()2121xx f x -=+,若()()e 0x f f ax +<有解,则实数a 的取值范围为()A .()0,∞+B .(),e -∞-C .[]e,0-D .()(),e 0,-∞-⋃+∞例79.(2022·黑龙江·哈师大附中三模(理))已知函数()()1ln e 12x f x x =+-(e 为自然对数的底数),若()()21f a f a ≥-,则实数a 的取值范围是()A .1,3⎛⎤-∞ ⎥⎝⎦B .[1,+∞)C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦【方法技巧与总结】(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.【过关测试】一、单选题1.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x =--C .3y x x =--D .3=-+y x x2.(2022·河南·模拟预测(文))已知0x >,0y >,且2e e sin 2sin x y x y ->-,则()A .2x y<B .2x y>C .x y>D .x y<3.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为()A .()(),12,-∞-+∞B .()1,2-C .()(),21,-∞-+∞ D .()2,1-4.(2022·浙江浙江·高三阶段练习)已知定义在R 上的奇函数()f x 在0x >时满足32()(1)62f x x x =-++,且()()8f x m f x +≤在[]1,3x ∈有解,则实数m 的最大值为()A .23B .2C .53D .45.(2022·河北·石家庄二中高三开学考试)已知函数(()cos ln 4f x x x π=+⋅+在区间[5,5]-的最大值是M ,最小值是m ,则()f M m +的值等于()A .0B .10C .4πD .2π6.(2022·安徽·蒙城第一中学高三阶段练习(理))已知()f x 为奇函数,且当0x >时()211e xf x x-=+,则曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为()A .240x y ++=B .240x y -+=C .220x y -+=D .220x y ++=7.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭()A .-11B .-8C .3log 4D .38log 4-8.(2022·江西·南昌市实验中学一模(理))对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()2ln ,0,0x x f x mx mx x >⎧=⎨--≤⎩的图像恰好有2对“隐对称点”,则实数m 的取值范围是()A .10,e ⎛⎫ ⎪⎝⎭B .()0,1⋃(1,)+∞C .1,e ⎛⎫+∞ ⎪⎝⎭D .(1,)+∞二、多选题9.(2022·海南·模拟预测)下面关于函数23()2x f x x -=-的性质,说法正确的是()A .()f x 的定义域为(,2)(2,)-∞⋃+∞B .()f x 的值域为RC .()f x 在定义域上单调递减D .点(2,2)是()f x 图象的对称中心10.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是()A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点11.(2022·重庆巴蜀中学高三阶段练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是()A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-12.(2022·河北秦皇岛·二模)已知函数())lg f x x =,()212xg x =+,()()()F x f x g x =+,则()A .()f x 的图象关于()0,1对称B .()g x 的图象没有对称中心C .对任意的[](),0x a a a ∈->,()F x 的最大值与最小值之和为4D .若()3311F x x x -+-<-,则实数x 的取值范围是()(),13,-∞⋃+∞三、填空题13.(2022·山东临沂·二模)已知函数e ()1xmxf x x =+-是偶函数,则m =__________.14.(2022·湖北·房县第一中学模拟预测)已知函数()()ln 0f x x a a a =-+>在21,e ⎡⎤⎣⎦上的最小值为1,则a 的值为________.15.(2022·广东佛山·三模)已知函数()22x x f x a -=+⋅的图象关于原点对称,若3(21)2f x ->,则x 的取值范围为________.16.(2022·陕西宝鸡·二模(文))若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有()()0f x f x +-=;(2)对于定义域上的任意12,x x ,当12x x ≠,恒有()()12120f x f x x x -<-,则称函数f (x )为“理想函数”,下列①()1f x x=,②()=f x ,③()1212xxf x -=+,④22,0(),0x x f x x x ⎧-=⎨<⎩四个函数中,能被称为“理想函数”的有___________.(填出函数序号)四、解答题17.(2022·上海市市西中学高三阶段练习)设a ∈R ,函数2()21x x af x +=+;(1)求a 的值,使得f (x )为奇函数;(2)若3()2a f x +<对任意x ∈R 成立,求a 的取值范围.18.(2022·全国·高三专题练习)已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数;(3)解不等式()()10f x f x -+<.19.(2022·陕西·武功县普集高级中学高三阶段练习(理))设函数()()20,1,R x xf x ka a a a k -=->≠∈,()f x 是定义域为R 的奇函数(1)确定k 的值(2)若()13f =,判断并证明()f x 的单调性;(3)若3a =,使得()()()221f x f x λ≤+对一切[]2,1x ∈--恒成立,求出λ的范围.20.(2022·全国·高三专题练习)定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥;(3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.21.(2022·全国·高三专题练习)定义在R 上的函数()f x ,对任意12,x x R ∈,满足下列条件:①1212()()()2f x x f x f x +=+-②(2)4f =(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由.(2)证明:()()2g x f x =-为奇函数;22.(2022·上海·二模)对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数π()2cos 3f x x ⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”?并说明理由;(2)设1()423x x f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围;(3)若()22log 2,3()2,3x mx x f x x ⎧->⎪=⎨-<⎪⎩为其定义域上的“M 类函数”,求实数m 取值范围.。

函数单调性和奇偶性专题

函数单调性和奇偶性专题

函数单调性和奇偶性专题一.知识点精讲:一、单调性1.函数的单调性定义: 一、函数单调性的定义及性质 (1)定义对于给定区间I 上的函数()y f x =,如果对任意12,x x I ∈,当12x x <,都有()()12f x f x <,那么就称()y f x =在区间I 上是增函数;当12x x <,都有()()12f x f x >,那么就称()y f x =在区间I 上是减函数.与之相等价的定义:⑴()()12120f x f x x x ->-,〔或都有()()12120f x f x x x -<-〕则说()f x 在这个区间上是增函数(或减函数)。

其几何意义为:增(减)函数图象上的任意两点()()()()1122,,,x f x x f x 连线的斜率都大于(或小于)0。

(2)函数的单调区间如果函数()y f x =在某个区间上是增函数(或减函数),就说()f x 在这一区间上具有(严格的)单调性,这一区间叫做该函数的单调区间。

如函数是增函数则称区间为增区间,如函数为减函数则称区间为减区间。

单调性反映函数的局部性质。

一个函数()f x 在区间11,I I 上都是增函数,但它在区间22I I 上不一定是增函数。

(3)判断单调函数的方法:①定义法,其步骤为:①在该区间上任取12x x <,②作差()()12f x f x -、化积、定号; ②互为反函数的两个函数具有相同的单调性;③奇函数在对称的两个区间上具有相同的单调性,而偶函数在对称的两个区间上却有相反的单调性;④复合函数单调性的根据:设()()[][],,,,,y f u u g x x a b u m n ==∈∈都是单调函数,则()y f g x =⎡⎤⎣⎦在[],a b 上也是单调函数,其单调性是f 与g 单调性相同则()y f g x =⎡⎤⎣⎦是增函数,单调性相反则()y f g x =⎡⎤⎣⎦是减函数。

《函数的单调性和奇偶性》经典例题解析

《函数的单调性和奇偶性》经典例题解析

类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(-1,+∞);(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4∴f(2)=-2a+11≥-4+11=7 .举一反三:【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________.解:单调递减且值域(0,1],单调递增且值域为,由图象知,若有两个不同的实根,则实数k的取值范围是(0,1).类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-|x-3| (5)(6(7)解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:解:,又为奇函数,所以.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a-1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).答案:①③.11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a2°当-1≤a≤1时,如图2,g(a)=f(a)=-13°当a>1时,如图3,g(a)=f(1)=a2-2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2-1<0∴f(x1)-f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值. 解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.。

高中数学函数奇偶性知识点归纳考点分析配经典案例分析

高中数学函数奇偶性知识点归纳考点分析配经典案例分析

函数奇偶性知识点归纳考点分析及经典案例分析函数的奇偶性定义:1.偶函数:一般地,对于函数的定义域内的任意一个,都有,那么就叫做偶函数.2.奇函数:一般地,对于函数的定义域的任意一个,都有,那么就叫做奇函数.二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于原点对称;2、整体性:奇偶性是函数的整体性质,对定义域内任意一个都必须成立;3、可逆性:是偶函数;奇函数;4、等价性:;;5、奇函数的图像关于原点对称,偶函数的图像关于轴对称;6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

7、判断或证明函数是否具有奇偶性的根据是定义。

8、如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。

并且关于原点对称。

三、关于奇偶函数的图像特征一般地:奇函数的图像关于原点对称,反过来,如果一个函数的图像关于原点对称,那么这个函数是奇函数;即:f(x)为奇函数<=>f(x)的图像关于原点对称 点(x,y )→(-x,-y ) 偶函数的图像关于轴对称,反过来,如果一个函数的图像关于轴对称,那么这个函数是偶函数。

()f x x ()()f x f x -=()f x ()f x x ()()f x f x -=-()f x x )()(x f x f =-⇔)(x f )()(x f x f -=-⇔)(x f )()(x f x f =-⇔0)()(=--x f x f (||)()f x f x ⇔=)()(x f x f -=-⇔0)()(=+-x f x f y y y即: f(x)为偶函数<=>f(x)的图像关于Y 轴对称 点(x,y )→(-x,y ) 奇函数对称区间上的单调性相同(例:奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

)偶函数对称区间上的单调性相反(例:偶函数在某一区间上单调递增,则在它的对称区间上单调递减)。

浅谈用好单调性和奇偶性解决数学常规题

浅谈用好单调性和奇偶性解决数学常规题

172单调性和奇偶性是函数的两个重要基本性质,二者之间有着密切的联系:(1)奇函数在关于原点对称的区间上具有相同的单调性;(2)偶函数 在关于原点对称的区间上具有相反的单调性。

巧妙地运用单调性和奇偶性的联系,可以轻松解决比较函数值的大小、求函数的最值、解抽象函数不等式等诸多函数问题。

现就函数单调性与奇偶性的题型分类举例浅析如下。

1 比较大小利用函数的单调性比较几个函数值的大小是函数问题中的最常见的题型,用此法时先要将函数的自变量通过函数的其他性质如奇偶性、周期性等化到同一个单调区间内。

例1已知f(x)是定义在R上的偶函数,且f(x)在(0,+∞)上单调递增,则( )A.f(0)>f(log32)>f(-log23)B.f(log32)>f(0)>f(-log23)C.f(-log23)>f(log32)>f(0)D.f(-log23)>f(0)>f(log32)解析:∵log23>log22=1=log33>log32>0,且函数f(x)在(0,+∞)上单调递增,∴f(log23)>f(log32)>f(0),又函数f(x)为偶函数,∴f(log23)=f(-log23),∴f(-log23)>f(log32)>f(0).答案 C评注 比较两个函数值大小时,如果两个自变量的值不在同一单调区间上,则需要利用奇偶性来进行转化.2 求函数最值求函数的最值是函数内容必考的题型,这种题型对同学们有一定的难度。

用单调性求最值,首先要判断函数在所求区间上的单调性,尤其在求关于原点对称的对称区间上的单调性或最值时,可能要结合函数的奇偶性。

例2 若偶函数f(x)在区间[3,6]上是增函数且f(6)=9,则它在区间[-6,-3]上( )A.最小值是9 B.最小值是-9C.最大值是-9 D.最大值是9解析 因为f(x)是偶函数且在区间[3,6]上是增函数,所以f(x)在区间[-6,-3]上是减函数.因此,f(x)在区间[-6,-3]上最大值为f(-6)=f(6)=9.答案 D评注 应用单调性和奇偶性的联系求最值时,一定要注意奇函数在关于原点对称的区间上具有相同的单调性,偶函数在关于原点对称的区间上具有相反的单调性。

突破12 函数的单调性与奇偶性的综合应用(重难点突破)(解析版)

突破12 函数的单调性与奇偶性的综合应用(重难点突破)(解析版)

突破12 函数的单调性与奇偶性综合应用重难点突破一、考情分析二、经验分享1.函数单调性的判断或证明(1)判断函数的单调性常用定义法和图象法,而证明函数的单调性则应严格按照单调性的定义操作.利用定义法判断(或运用)函数的单调性的步骤为:(2)若判断复合函数的单调性,则需将函数解析式分解为一些简单的函数,然后判断外层函数和内层函数的单调性,外层函数和内层函数的单调性相同时,则复合函数单调递增;外层函数和内层函数的单调性相反时,则复合函数单调递减.可简记为“同增异减”,需要注意内层函数的值域在外层函数的定义域内.(3)函数单调性的常用结论:①若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数; ②若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 的单调性相反; ③函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反;④函数()()()0y f x f x =≥在公共定义域内与y =2.单调性的应用函数单调性的应用主要有:(1)由12,x x 的大小关系可以判断()1f x 与()2f x 的大小关系,也可以由()1f x 与()2f x 的大小关系判断出12,x x 的大小关系.比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质转化到同一个单调区间上进行比较.(2)利用函数的单调性,求函数的最大值和最小值.(3)利用函数的单调性,求参数的取值范围,此时应将参数视为已知数,依据函数的单调性,确定函数的单调区间,再与已知单调区间比较,即可求出参数的取值范围.若函数为分段函数,除注意各段的单调性外,还要注意衔接点.(4)利用函数的单调性解不等式.首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.3.求函数的最大(小)值求函数最大(小)值的常用方法有:(1)配方法,对于“二次函数类”的函数,一般通过配方法求最值;(2)图象法,对于图象较为容易画出来的函数,可借助图象直观求出最值;(3)单调性法,对于较复杂的函数,分析单调性(需给出证明)后,可依据单调性确定函数最值; (4)若函数存在最值,则最值一定是值域两端处的值,所以求函数的最大(小)值可利用求值域的方法. 注意:(1)无论用哪种方法求最值,都要考查“等号”是否成立.(2)函数的值域是一个集合,函数的最值是一个函数值,它是值域的一个元素,函数的值域一定存在,但函数并不一定有最大(小)值. 4.判断函数的奇偶性判断函数奇偶性的方法: (1)定义法:(2)图象法:(3)性质法:利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断. 判断()f x -与()f x 的关系时,也可以使用如下结论: 如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数; 如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 5.函数奇偶性的应用(1)利用奇偶性的定义求函数的值或参数的值,这是奇偶性定义的逆用,注意利用常见函数(如一次函数、反比例函数、二次函数)具有奇偶性的条件求解.(2)利用奇偶性求函数的解析式,已知函数奇偶性及其在某区间上的解析式,求该函数在整个定义域上的解析式的方法是:首先设出未知区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可.(3)利用奇偶性比较大小,通过奇函数在关于原点对称的两个区间上的单调性一致,偶函数在关于原点对称的两个区间上的单调性相反,把不在同一单调区间上的两个或多个自变量的函数值转化到同一单调区间上比较大小.三、题型分析例1、(2019秋•小店区校级期中)已知定义在R上的奇函数f(x)),当x>0时,f(x))=2x+3.(1)求f(x))的解析式;(2)若f(a)<7,求实数a的取值范围.【思路分析】(1)根据f(x)是定义在R上的奇函数,当x>0时,f(x)=2x+3.即可求解x<0的解析,可得结论;(2)根据f(x))的解析式,分类求解实数a的取值范围.【答案】解:(1)由题意,f(x)是定义在R上的奇函数,f(﹣x)=﹣f(x),f(0)=0.当x>0时,f(x)=2x+3.那么:当x<0,则﹣x>0,∴f(﹣x)=﹣2x+3.即﹣f(x)=﹣2x+3.∴f(x)=2x﹣3故f(x))的解析式为:;(2)由f(a)<7,当a>0时,可得2a+3<7,∴0<a<2.当a=0时,可得0<7成立.当a<0时,可得2a﹣3<7,∴a<0.综上可得实数a的取值范围是(﹣∞,2)【点睛】本题考查了函数解析式的求法,以及分段函数不等式的解法,属于基础题.【变式训练1】已知函数f(x)=x2(x≠0).(1)判断f(x)的奇偶性,并说明理由;(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性.【思路分析】(1)利用函数奇偶性的定义进行判断,要对a进行分类讨论.(2)由f(1)=2,确定a的值,然后利用单调性的定义进行判断和证明.【答案】解:(1)当a=0时,f(x)=x2,f(﹣x)=f(x),函数是偶函数.当a≠0时,f(x)=x2(x≠0,常数a∈R),取x=±1,得f(﹣1)+f(1)=2≠0;f(﹣1)﹣f(1)=﹣2a≠0,∴f(﹣1)≠﹣f(1),f(﹣1)≠f(1).∴函数f(x)既不是奇函数也不是偶函数.(2)若f(1)=2,即1+a=2,解得a=1,这时f(x)=x2.任取x1,x2∈[2,+∞),且x1<x2,则f(x1)﹣f(x2)()=(x1﹣x2)(x1+x2)=(x1﹣x2)[(x1+x2)],由于x1≥2,x2≥2,且x1<x2,∴x1﹣x2<0,x1+x2,所以f(x1)<f(x2),故f(x)在[2,+∞)上是单调递增函数.【点睛】本题主要考查函数奇偶性和单调性的应用,要熟练掌握函数奇偶性和单调性的应用.例2、(2019•铁岭模拟)设奇函数f(x)的定义域为[﹣5,5],若当x∈[0,5]时,f(x)的图象如图,则不等式f(x)≤0的解集为[﹣2,0]∪[2,5].【思路分析】根据奇函数关于原点对称的性质即可得到结论.【答案】解:由图象可知:当x>0时,f(x)≤0解得2≤x≤5,f(x)≥0解得0≤x≤2;当x<0时,﹣x>0,因为f(x)为奇函数,所以f(x)≤0,即﹣f(﹣x)≤0⇒f(﹣x)≥0⇒0≤﹣x≤2,解得﹣2≤x≤0.综上,不等式f(x)≤0的解集为{x|﹣2≤x≤0,或2≤x≤5}.故答案为:[﹣2,0]∪[2,5].【点睛】本题主要考查不等式的求解,根据奇函数的对称性是解决本题的关键.【变式训练1】(2019秋•清流县校级期中)已知奇函数f(x)在x≥0时的图象如图所示,则不等式xf(x)<0的解集(﹣2,﹣1)∪(1,2)..【思路分析】由f(x)是奇函数得函数图象关于原点对称,由xf(x)<0可得x与f(x)符号相反,根据奇函数的对称性可求得结果【答案】解:∵xf(x)<0①当x>0时,f(x)<0,结合函数的图象可得,1<x<2,(2)x<0时,f(x)>0,根据奇函数的图象关于原点对称可得,﹣2<x<﹣1,∴不等式xf(x)<0的解集为(﹣2,﹣1)∪(1,2).故答案为:(﹣2,﹣1)∪(1,2).【点睛】由函数的奇偶性得出整个图象,分类讨论的思想得出函数值的正负,数形结合得出自变量的范围.【变式训练2】对a,b∈R,记max{a,b}函数f(x)=max{|x+1|,|x﹣2|}(x∈R)的最小值是.【答案】解:由|x+1|≥|x﹣2|⇒(x+1)2≥(x﹣2)2⇒x,故f(x),其图象如右,则.故答案为:.【点睛】本题考查新定义函数的理解和解绝对值不等式等问题,属于中档题.在解答过程当中充分考查了同学们的创新思维,培养了良好的数学素养.【变式训练2】(2018•丰台区一模)函数y=f(x)是定义域为R的偶函数,当x≥0时,函数f(x)的图象是由一段抛物线和一条射线组成(如图所示).①当x∈[﹣1,1]时,y的取值范围是[1,2];②如果对任意x∈[a,b](b<0),都有y∈[﹣2,1],那么b的最大值是﹣2.【思路分析】①根据f(x)是偶函数,图象关于y轴对称,结合图象可得y的取值范围.②当x≥0时,设抛物线的方程为y=ax2+bx+c,求解解析式,根据f(x)是定义域为R的偶函数,可得x<0的解析式,令y=1,可得x对应的值,结合图象可得b的最大值.【答案】解:①根据f(x)是偶函数,图象关于y轴对称,当x∈[﹣1,1]时,值域为x∈[0,1]时相同,可得y的取值范围是[1,2].②当x≥0时,设抛物线的方程为f(x)=ax2+bx+c,图象过(0,1),(1,2),(3,﹣2),带入计算可得:a=﹣1,b=2,c=1,∴f(x)=﹣x2+2x+1,当x<0时,﹣x>0.∴f(﹣x)=﹣x2﹣2x+1即f(x)=﹣x2﹣2x+1.令y=1,可得1=﹣x2﹣2x+1.解得:x=﹣2.结合图象可得b的最大值为﹣2.故答案为:[1,2];﹣2.【点睛】本题主要考查函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系,偶函数的图象特征.属于基础题.例3、(2019春•嘉兴期末)已知函数f(x)=x2+ax+2.(Ⅰ)当a=3时,解不等式f(x)<0;(Ⅱ)当x∈[1,2]时,f(x)≥0恒成立,求a的取值范围.【思路分析】(Ⅰ)当a=3时,利用二次不等式求解解不等式f(x)<0即可;(Ⅱ)当x∈[1,2]时,f(x)≥0恒成立,推出a的表达式,利用函数的单调性求解表达式的最大值,即可得到a的取值范围.【答案】解:(Ⅰ)当a=3时,一元二次不等式x2+3x+2<0的解为﹣2<x<﹣1(Ⅱ)当x∈[1,2]时,x2+ax+2≥0恒成立,即恒成立,令因的最大值为故.【点睛】本题考查函数与方程的应用,考查转化思想以及函数的单调性的应用,考查计算能力.【变式训练1】(2019春•哈尔滨期中)已知函数f(x)=x2+2x+a.(1)当a=2时,求不等式f(x)>1的解集(2)若对于任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.【思路分析】(1)解一元二次不等式可得;(2)对于任意x∈[1,+∞),f(x)>0恒成立⇔﹣a<x2+2x=(x+1)2﹣1,然后转化为最小值可得.【答案】解:(1)a=2时,x2+2x+2>1⇒x2+2x+1>0⇒x≠﹣1,故不等式f(x)>1的解集为{x|x≠﹣1}(2)对于任意x∈[1,+∞),f(x)>0恒成立⇔﹣a<x2+2x=(x+1)2﹣1,∵x≥1,∴y=(x+1)﹣1为递增函数,∴x=1时,函数取得最小值3,∴﹣a<3,∴a>﹣3.【点睛】本题考查了函数恒成立问题,属中档题.【变式训练2】已知定义在[﹣2,2]上的偶函数f(x)满足:当x∈[0,2]时,.(1)求函数f(x)的解析式;(2)设函数g(x)=ax﹣2﹣a(a>0),若对于任意的x1,x2∈[﹣2,2],都有g(x1)<f(x2)成立,求实数a的取值范围.【思路分析】(1)根据题意,设x∈[﹣2,0],则﹣x∈[0,2],由函数的解析式可得f(﹣x)的解析式,进而利用函数奇偶性的性质分析可得f(x)的表达式,综合即可得答案;(2)根据题意,求出函数f(x)的最小值与g(x)的最大值,分析可得f(x)min>g(x)max,解即可得答案.【答案】解:(1)根据题意,设x∈[﹣2,0],则﹣x∈[0,2],从而,因为f(x)定义x∈[﹣2,2]在偶函数,所以因此,(2)因为对任意x1,x2∈[﹣2,2],都有g(x1)<f(x2)成立,所以g(x)max<f(x)min又因为f(x)是定义在[﹣2,2]上的偶函数.所以f(x)在区间[﹣2,0]和区间[0,2]上的值域相同.当x∈[﹣2,0]时,.设,则函数化为,则f(x)min=0又g(x)max=g(2)=a﹣2所以a﹣2<0即a<2,因此,a的取值范围为0<a<2.【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及函数的恒成立问题,注意将恒成立问题转化为函数的最值问题.例4、已知函数f(x)的定义域是{x|x≠0}的一切实数,对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f (x2),且当x>1时,f(x)<0,f(2)=﹣1.(1)求证:f(x)是偶函数;(2)求证:f(x)在(0,+∞)上是减函数;(3)解不等式f(x2﹣1)<2.【思路分析】(1)利用赋值法,结合函数奇偶性的定义进行证明即可.(2)利用单调性的定义,结合抽象函数之间的数值关系进行证明.(3)利用函数的单调性将不等式进行转化,解不等式即可.【答案】解:(1)由题意知,对定义域内的任意x1,x2都有f(x1•x2)=f(x1)+f(x2),令x1=1,x2=﹣1,代入上式得f(﹣1)=f(﹣1)+f(1),解得f(1)=0,令x1=﹣1,x2=﹣1,得,f(1)=f(﹣1)+f(﹣1)=0,解得f(﹣1)=0,令x1=﹣1,x2=x代入上式,∴f(﹣x)=f(﹣1•x)=f(﹣1)+f(x)=f(x),∴f(x)是偶函数.(2)y=f(x)在(0,+∞)上的单调递减.证明:设x1,x2是(0,+∞)任意两个变量,且x1<x2,设x2=tx1,(t>1),则f(x1)﹣f(x2)=f(x1)﹣f(tx1)=f(x1)﹣f(x1)﹣f(t)=﹣f(t)∵当x>1时,f(x)<0;∴f(t)<0,即f(x1)﹣f(x2)=﹣f(t)>0,∴f(x1)>f(x2),即y=f(x)在(0,+∞)上的单调递减.(3)∵f(2)=﹣1,∴令x1=2,x2,则f(2)=f(2)+f()=f(1)=0,则f()=﹣f(2)=﹣(﹣1)=1.f()=f()=f()+f()=2f()=2×1=2.则不等式f(x2﹣1)<2等价为不等式f(x2﹣1)<f(),∵f(x)在(0,+∞)上是减函数且函数f(x)是偶函数,∴x2﹣1或x2﹣1,即x2或x2,即x或x或x,即不等式的解集为{x|x或x或x}.【变式训练1】.设函数y=f(x)的定义域为R,并且满足f(x﹣y)=f(x)﹣f(y),且f(2)=1,当x >0时,f(x)>0.(1)求f(0)的值;(2)判断函数f(x)的单调性,并给出证明;(3)如果f(x)+f(x+2)<2,求x的取值范围.【思路分析】(1)令x=y=0,可得f(0﹣0)=f(0)﹣f(0),即可得出f(0).(2)任取x1,x2∈R,不妨设x1>x2,则x1﹣x2>0.根据当x>0时,f(x)>0.可得f(x1﹣x2)=f(x1)﹣f(x2)>0,∴即可得出单调性.(3)由f(x﹣y)=f(x)﹣f(y),可得f(x)=f(x﹣y)+f(y),可得2=f(2)+f(2)=f(4),于是f (x)+f(x+2)<2,转化为:f(x)+f(x+2)<f(4).即f(x+2)<f(4﹣x).再利用函数y=f(x)在定义域R上单调递增,即可得出.【答案】解:(1)令x=y=0,则f(0﹣0)=f(0)﹣f(0),∴f(0)=0.(2)函数y=f(x)在定义域R上单调递增,理由如下:任取x1,x2∈R,不妨设x1>x2,则x1﹣x2>0.∵当x>0时,f(x)>0.∴f(x1﹣x2)=f(x1)﹣f(x2)>0,∴f(x1)>f(x2),∴函数y=f(x)在定义域R上单调递增.(3)∵f(x﹣y)=f(x)﹣f(y).∴f(x)=f(x﹣y)+f(y),∴2=1+1=f(2)+f(2)=f(2)+f(4﹣2)=f(4),∵f(x)+f(x+2)<2,∴f(x)+f(x+2)<f(4).∴f(x+2)<f(4)﹣f(x)=f(4﹣x).∵函数y=f(x)在定义域R上单调递增,∴x+2<4﹣x,从而x<1.∴x的取值范围为{x|x<1}.四、迁移应用1.(2019春•桂林期末)已知偶函数f(x)在[0,+∞)上单调递减,f(2)=0,则满足不等式f(x)>0的实数x的取值范围是(﹣2,2).【思路分析】可以根据该函数在[0,+∞)上单调递减,f(2)=0,是偶函数,大体画出该函数图象的草图,结合图象可列出关于x的不等式.【答案】解:∵偶函数f(x)在[0,+∞)上单调递减,且f(2)=0,∴该函数在(﹣∞,0)上递增,且f(﹣2)=0,∴可画出该函数的图象的草图如下:可见,当﹣2<x<2时,f(x)>0.故答案为:(﹣2,2).【点睛】抽象函数的问题常采用数形结合的方法解决问题,本题作为填空题,采用数形结合思想来解,既快捷,有准确.2.已知函数f(x)是定义在(﹣3,3)上的偶函数,当﹣3<x≤0时,f(x)的函数图象如图所示,则不等式x•f(x)≥0的解集为{x|﹣1≤x≤0或1≤x<3}.【思路分析】结合函数的性质,函数的图象,对x≤0和x≥0进行讨论,分别求出不等式的解,最后求并集.【答案】解:当x≤0时,由不等式xf(x)≥0,可得f(x)≤0,则﹣1≤x≤0,∵函数f(x)是定义在(﹣3,3)上的偶函数,∴x≥0时,当0≤x≤1时,f(x)≤0,当1≤x<3时,f(x)≥0,∴当x≥0时,由不等式xf(x)≥0,可得f(x)≥0,则1≤x<3,∴不等式xf(x)≥0的解集为:{x|﹣1≤x≤0或1≤x<3}.故答案为:{x|﹣1≤x≤0或1≤x<3}.【点睛】本题主要考查函数的奇偶性及应用,考查运用分类法解决不等式的能力,本题属于中档题.3.如图所示,函数y=f(x)的图象由两条射线和三条线段组成,若∀x∈R,f(x)>f(x﹣1),则正实数a的取值范围为(0,).【思路分析】由已知中的函数图象可得f(4a)=a,f(﹣4a)=﹣a,若∀x∈R,f(x)>f(x﹣1),则,解不等式可得正实数a的取值范围.【答案】解:由已知可得:a>0,且f(4a)=a,f(﹣4a)=﹣a,若∀x∈R,f(x)>f(x﹣1),则,解得a,故正实数a的取值范围为:(0,),故答案为:(0,)【点睛】本题考查的知识点是函数的图象,其中根据已知分析出不等式组,是解答的关键.4.(2019春•香坊区校级期末)已知函数f(x)=2x2﹣kx+8.(1)若函数g(x)=f(x)+2x是偶函数,求k的值;(2)若函数y=f(x)在[﹣1,2]上,f(x)≥2恒成立,求k的取值范围.【思路分析】(1)利用函数的奇偶性,直接求解k的值即可.(2)利用函数恒成立,转化求解函数的最小值大于等于2,求解即可.【答案】解:(1)函数f(x)=2x2﹣kx+8.函数g(x)=2x2﹣kx+8+2x是偶函数,可得﹣k+2=0,解得k=2;(2)函数y=2x2﹣kx+8在[﹣1,2]上,f(x)≥2恒成立,函数是二次函数,对称轴为x,当,必有2+k+8≥2,解得k∈[﹣8,﹣4],当∈(﹣1,2]时,有:,解得k∈(﹣4,4],当∈(2,+∞)时,8﹣8k+8≥2,解得k,无解.综上所述,k的取值范围是:.【点睛】本题考查函数的奇偶性,二次函数的最值的求法和不等式恒成立问题的解法,考查转化思想和分类讨论的思想,考查运算能力,属于中档题.5.(2019春•顺德区期末)设二次函数f(x)=x2+mx.(Ⅰ)若对任意实数m∈[0,1],f(x)>0恒成立,求实数x的取值范围;(Ⅱ)若存在x0∈[﹣3,4],使得f(x0)≤﹣4成立,求实数m的取值范围.【思路分析】(I)m的范围已知,要求x的范围,所以要把m当成自变量,把x当成参数来考虑;(II)f(x)是开口向上的二次函数,性质比较清楚,所以直接讨论对称轴的位置即可.【答案】(I)由题意,xm+x2>0对于m∈[0,1]恒成立,令g(m)=xm+x2.i.当x<0时,g(m)在[0,1]上单调递减,所以只需要g(1)=x+x2>0,解得x∈(﹣∞,﹣1)∪(0,+∞);ii.当x=0时,g(m)=0,所以不成立;iii.当x>0时,g(m)在[0,1]上单调递增,所以只需要g(0)=x2>0,解得x≠0.综上x∈(﹣∞,﹣1)∪(0,+∞).(II)二次函数f(x)开口向上,对称轴为x.i.当m>6时,3,所以f(x)在区间[﹣3,4]上单调递增.存在x0∈[﹣3,4],使得f(x0)≤﹣4,只需要f(﹣3)=9﹣3m≤﹣4,解得m,又m>6,所以m>6;ii.当﹣8≤m≤6时,﹣34,所以f(x)在区间[﹣3,4]上得最小值为f().存在x0∈[﹣3,4],使得f(x0)≤﹣4,只需要f()4,解得m≤﹣4或m≥4,又﹣8≤m≤6,所以m∈[﹣8,﹣4]∪[4,6];iii.当m<﹣8时,4,所以f(x)在区间[﹣3,4]上单调递减.存在x0∈[﹣3,4],使得f(x0)≤﹣4,只需要f(4)=16+4m≤﹣4,解得m≤﹣5,又m<﹣8,所以m<﹣8.综上,m∈(﹣∞,﹣4]∪[4,+∞).【点睛】(I)一般来讲,已知范围得变量要作为自变量,要求范围得变量要作为参数;(II)分参也可以完成解答,比较两种方法,选用顺手的方法即可.6.(2019春•温州期末)设函数f(x)=mx2﹣2mx﹣3.(1)若m=l,解不等式f(x)>0:(2)若对一切实数x,f(x)<0恒成立,求实数m的取值范围.【思路分析】(1)将m=l,代入不等式f(x)>0,利用一元二次不等式求解即可;(2)若对一切实数x,f(x)<0恒成立,讨论含有m的不等式,求解不等式可得实数m的取值范围.【答案】解:函数f(x)=mx2﹣2mx﹣3.(1)若m=l,解不等式f(x)=x2﹣2x﹣3,f(x)>0:即:f(x)=x2﹣2x﹣3>0,即:(x﹣3)(x+1)>0,所以:此不等式的解集为:{x|x>3或x<﹣1};(2)对一切实数x,f(x)<0恒成立,讨论含有m的不等式,当m=0时,f(x)=﹣3<0,符合题意,当m≠0时,由题意:m<0,且4m2+12m<0,解得:﹣3<m<0,综上:﹣3<m≤0;故实数m的取值范围:{m|﹣3<m≤0}.【点睛】本题主要考查了函数恒成立问题的求解,一元二次不等式的解法,分类讨论及转化思想的应用,属于中档题.7.(2019秋•文昌校级期中)已知函数f(x)=|x﹣a|,g(x)=x2+2ax+1 (a为正常数),当x=0 时,函数f(x)=g(x).(1)求a的值;(2)求函数f(x)+g(x)的单调递增区间.【思路分析】(1)由题意可得f(0)=g(0),解方程可得a;(2)讨论当x≥1时,当x<1时,去掉绝对值,结合二次函数的单调性,即可得到所求增区间.【答案】解:(1)由题意,f(0 )=g(0 ),即|a|=1 又a>0,所以a=1;(2)f(x)+g(x)=|x﹣1|+x2+2x+1,当x≥1时,f(x)+g(x)=x2+3x,它在[1,+∞)上单调递增;当x<1时,f(x)+g(x)=x2+x+2,它在[,1 )上单调递增.则函数f(x)+g(x)的单调递增区间为[1,+∞)∪[,1 )=[,+∞).【点睛】本题考查函数的单调区间的求法,注意运用分类讨论思想方法,以及二次函数的单调性,考查运算能力,属于中档题.8.(2019春•龙凤区校级月考)已知二次函数f(x)的图象过点,且最小值为.(Ⅰ)求函数f(x)的解析式;(Ⅱ)函数g(x)=f(x)﹣x2﹣(1+2m)x+1(m∈R)在[2,+∞)上的最小值为﹣3,求实数m的值.【思路分析】(Ⅰ)根据题意,分析f(x)的对称轴,设,将点(0,1)代入其解析式,解可得a的值,即可得答案;(Ⅱ)根据题意,求出g(x)的解析式,分m≤2与m>2两种情况讨论,结合函数的最小值求出m的值,综合即可得答案.【答案】解:(Ⅰ)由题意得:二次函数f(x)的图象过点,则f(x)的对称轴为对称轴,设,又f(x)的图象过点(0,1),代入得,解得a=2,2x2+x+1,故f(x)=2x2+x+1;(Ⅱ)由已知g(x)=f(x)﹣x2﹣(1+2m)x+1=x2﹣2mx+2,对称轴为直线x=m,开口向上,分两种情况:①当m≤2时,函数g(x)在区间[2,+∞)单调递增,g(x)min=g(2)=6﹣4m=﹣3,得到,与m <2矛盾.②当m>2时,函数g(x)在区间[2,m)单调递减,在区间[m,+∞)单调递增,从而,得到或舍掉与m>2矛盾;综上所述:.【点睛】本题考查二次函数的性质,关键是求出该二次函数的解析式,属于基础题.9.(2019春•浉河区校级月考)已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)求函数f(x)(x∈R)的解析式;(2)若函数g(x)=f(x)﹣2ax+1(x∈[1,2]),求函数g(x)的最小值h(a)的表达式.【思路分析】(1)根据偶函数的性质进行转化求解即可.(2)求出g(x)的表达式,结合一元二次函数最值性质进行求解即可.【答案】解:(1)∵f(x)是偶函数,∴若x>0,则﹣x<0,则当﹣x<0时,f(﹣x)=x2﹣2x=f(x),即当x>0时,f(x)=x2﹣2x.即f(x).(2)当x∈[1,2]时,g(x)=f(x)﹣2ax+1=x2﹣2x﹣2ax+1=x2﹣(2+2a)x+1,对称轴为x=1+a,若1+a≤1,即a≤0时,g(x)在[1,2]上为增函数,则g(x)的最小值为h(a)=g(1)=﹣2a,若1+a≥2,即a≥1时,g(x)在[1,2]上为减函数,则g(x)的最小值为h(a)=g(2)=1﹣4a,若1<1+a<2,即0<a<1时,g(x)的最小值为h(a)=g(1+a)=﹣a2﹣2a,即h(a).【点睛】本题主要考查函数解析式的求解,结合偶函数的性质以及一元二次函数函数单调性的性质是解决本题的关键.10.(2019秋•沈阳期中)已知定义在R上的函数f(x),对任意a,b∈R,都有f(a+b)=f(a)+f(b),当x>0时,f(x)<0;(1)判断f(x)的奇偶性;(2)若f(﹣kx2)+f(kx﹣2)>0对任意的x∈R恒成立,求实数k的取值范围.【思路分析】(1)先计算f(0),再令b=﹣a得出f(a)=﹣f(a),结论得证;(2)判断f(x)的单调性,根据函数性质和单调性列出恒等式求出k的范围.【答案】解:(1)令a=b=0可得f(0)=2f(0),∴f(0)=0,令b=﹣a得f(0)=f(a)+f(﹣a)=0,∴f(a)=﹣f(﹣a),由a的任意选可知f(x)=﹣f(x)恒成立,∴函数f(x)在R上为奇函数.(2)设x1<x2,则f(x2)=f(x2﹣x1+x1)=f(x2﹣x1)+f(x1),∵x1<x2,∴x2﹣x1>0,∴f(x2﹣x1)<0,∴f(x2)﹣f(x1)=f(x2﹣x1)<0,∴f(x)是R上的减函数.∵f(﹣kx2)+f(kx﹣2)>0对任意的x∈R恒成立,∴f(﹣kx2+kx﹣2)>f(0)对任意的x∈R恒成立,∴﹣kx2+kx﹣2<0对任意的x∈R恒成立,当k=0时显然成立,当k≠0时,得,解得0<k<8,综上所述k的范围为[0,8]【点睛】本题考查了抽象函数的奇偶性与单调性判断,函数恒成立问题,属于中档题.。

函数奇偶性的知识点及例题解析

函数奇偶性的知识点及例题解析

函数的奇偶性知识点及例题解析一、知识要点:1、函数奇偶性的概念一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。

一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。

理解:(1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。

这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质;(2)定义域关于原点对称是函数具有奇偶性的必要条件。

2、按奇偶性分类,函数可分为四类:奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数.3、奇偶函数的图象:奇函数⇔图象关于原点成中心对称的函数,偶函数⇔图象关于y 轴对称的函数。

4、函数奇偶性的性质:①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。

②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。

③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。

奇函数f(x)在区间[a,b](0≤a<b)上单调递增(减),则f(x)在区间[-b,-a]上也是单调递增(减); 偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反,最值相同。

偶函数f(x)在区间[a,b](0≤a<b )上单调递增(减),则f(x)在区间[-b,-a]上单调递减(增) ④任意定义在R 上的函数f(x)都可以唯一地表示成一个奇函数与一个偶函数的和。

⑤若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数时,y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= f[g(x)]是偶函数。

复合函数的奇偶性特点是:“内偶则偶,内奇同外”.5、判断函数奇偶性的方法:⑴、定义法:对于函数()f x 的定义域内任意一个x ,都有()()x f x f =-〔或()()1=-x f x f 或()()0=--x f x f 〕⇔函数f (x )是偶函数;对于函数()f x 的定义域内任意一个x ,都有()()x f x f -=-〔或()()1-=-x f x f 或()()0=+-x f x f ⇔函数f (x )是奇函数;判断函数奇偶性的步骤:①、判断定义域是否关于原点对称;②、比较)(x f -与)(x f 的关系。

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解【典型例题】例1、(2023·广东·高三统考学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =;④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增.则上述所有正确结论的编号是________【答案】①③【解析】对于①令0x y ==,则()()()0000f f f +=+,解得()00f =,①正确;对于②令y x =−,则()()()00f f x f x =+−=,∴()()f x f x −=−,∴()f x 是R 上的奇函数,②错误;对于③令1x y ==,则()()()()211212f f f f =+==,∴()11f =,③正确;对于④设12x x >,则120x x −>,∴()()()12120f x x f x f x −=+−<,则()()()122f x f x f x <−−=,∴()f x 在R 上单调递减,④错误.故答案为:①③.例2、(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤−−<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1−B .()()3,11,1−−−C .()(),11,1−∞−− D .()(),31,−∞−⋃+∞ 【答案】B【解析】由()()121221()[]0f x f x x x x x −−<,得()()11221212()[]0x f x x f x x x x x −−<, 因为121200x x x x −>>,,所以()()11220x f x x f x −<,即()()1122x f x x f x <,设()()g x xf x =,则()g x 在()0,∞+上单调递减,而()()()()()1114222g x x f x f g +=++>==,则012x <+<,解得:11x −<<;因为()f x 为R 上的奇函数,所以()()()()g x xf x xf x g x −=−−==,则()g x 为R 上的偶函数,故()g x 在(,0)−∞上单调递增,()()()()11142g x x f x g +=++>=−,则210x −<+<,解得:31x −<<−;综上,原不等式的解集为(),111)3(,−−−.故选:B .例4、(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图像关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =−,12b f ⎛⎫=− ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<【答案】C【解析】 由函数()f x 的图像关于直线1x =对称可得()()31f f =−,结合奇函数的性质可知 ()3a f =−()()()311f f f =−=−−=,()()200c f f ===.由奇函数的性质结合()y f x =在[]0,1上单调递增可得()y f x =在[]1,1−上单调递增, 所以()()1012f f f ⎛⎫−<< ⎪⎝⎭, 所以b c a <<.故选:C例5、(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x −=,当01x ≤≤时,()1e 1x f x −=−,则方程()11f x x =−在区间[]3,5−上所有解的和为( ) A .8B .7C .6D .5【答案】A【解析】 解:因为函数()f x 满足()()2f x f x −=,所以函数()f x 的图像关于直线1x =对称, 又函数()f x 为偶函数,所以()()()2−==−f x f x f x ,所以函数()f x 是周期为2的函数, 又1()1g x x =−的图像也关于直线1x =对称, 作出函数()f x 与()g x 在区间[]3,5−上的图像,如图所示:由图可知,函数()f x 与()g x 的图像在区间[]3,5−上有8个交点,且关于直线1x =对称, 所以方程。

高考数学重难点分析:函数的单调性与奇偶性(题型战法)(解析版)

高考数学重难点分析:函数的单调性与奇偶性(题型战法)(解析版)

第二章 函数2.2.1函数的单调性与奇偶性(题型战法)知识梳理一 函数的单调性1. 单调性的定义一般地,设函数()f x 的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数;如果对于定义域I 内某个区间D 上的任意两个自变量12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数。

2.单调性的注意事项1. 函数的单调性要针对区间而言,因此它是函数的局部性质;对于连续函数,单调区间可闭可开,即“单调区间不在一点处纠结”;单调区间不能搞并集。

2. 若函数()f x 满足1212()[()()]0x x f x f x -->,则函数在该区间单调递增;若满足1212()[()()]0x x f x f x --<,则函数在该区间单调递减。

3. 函数单调性的判断方法主要有:(1) 定义法:在定义域内的某个区间D 上任取12,x x 并使得12x x <,通过作差比较1()f x 与2()f x 的大小来判断单调性。

(2) 性质法:若函数()f x 为增函数,()g x 为增函数,()h x 为减函数,()x ϕ为减函数,则有①()()f x g x +为增函数,②()()f x h x -为增函数, ③()()h x x ϕ+为减函数,④()()h x g x -为减函数。

(3) 图像法:对于含绝对值或者分段函数经常使用数形结合的思想,通过函数的图象来判断函数的单调性。

二 函数的奇偶性一.函数奇偶性的定义:(1)对于函数()f x 的定义域内任意一个x ,都有()()x f x f =- ⇔函数()f x 是偶函数; (2)对于函数()f x 的定义域内任意一个x ,都有()()x f x f -=- ⇔函数()f x 是奇函数。

函数单调性与奇偶性交相辉映.

函数单调性与奇偶性交相辉映.

函数单调性与奇偶性交相辉映单调性与奇偶性是函数两个重要性质,它们常常交汇在一起考查。

下面就涉及两个性质的综合问题分类解析如下。

一。

比较大小例1、已知函数f (x )是偶函数,且在区间[0,1]上是增函数,则)0(),1(),5.0(f f f -- 的大小关系是__________.分析:解决本题关键是利用奇偶性将其自变量的值全转换到区间[0,1]内,再利用单调性即可得解。

解:因为函数f (x )是偶函数,所以)1()1(),5.0()5.0(f f f f =-=-,又因为f (x )在区间[0,1]上是增函数,所以)1()5.0()0(f f f <<,因此).1()5.0()0(-<-<f f f点评:函数的单调性与奇偶性的综合应用是考查函数的重点,解决这类问题,也可以用数形结合迅速求解。

二。

解不等式例2、定义在(-2,2)上的函数f (x )是奇函数,并且在(-2,2)上是增函数,求 满足条件0)21()2(>-++m f m f 的实数m 的取值范围。

分析:解答这类问题的关键是先根据函数的定义域,求出使)21(),2(m f m f -+有意义的实数m 的取值范围。

解:因为函数f (x )的定义域是(-2,2),所以222<+<-m ……(1),2212<-<-m (2),又因为f (x )是奇函数,所以由)21()2(m f m f -->+, 得)12()2(->+m f m f ,因为f (x )在(-2,2)上是增函数,所以122->+m m …(3),由(1)(2)(3)组成不等式组⎪⎩⎪⎨⎧->+<-<-<+<-1222212222m m m m , 解得.021<<-m 故实数m 的取值范围是).0,21(- 点评:本题是考查函数的单调性与奇偶性的综合问题,根据定义域求出m 的取值范围以后再利用函数的奇偶性和单调性使问题得以解决。

专题18 函数单调性和奇偶性的综合应用(解析版)

专题18 函数单调性和奇偶性的综合应用(解析版)

专题17 函数单调性和奇偶性的综合应用1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|【答案】B【解析】∵y=x3在定义域R上是奇函数,∴A不对;y=-x2+1在定义域R上是偶函数,但在(0,+∞)上是减函数,故C不对;D中y=2-|x|=|x|虽是偶函数,但在(0,+∞)上是减函数,只有B对.2.f(x)=x2+|x|()A.是偶函数,在(-∞,+∞)上是增函数B.是偶函数,在(-∞,+∞)上是减函数C.不是偶函数,在(-∞,+∞)上是增函数D.是偶函数,且在(0,+∞)是增函数【答案】D3.已知函数f(x)=3x-(x≠0),则函数()A.是奇函数,且在(0,+∞)上是减函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是增函数D.是偶函数,且在(0,+∞)上是增函数【答案】C【解析】因为f(-x)=-3x+=-(3x-)=-f(x),又因为f(x)在(0,+∞)上是增函数,所以f(x)是奇函数,且在(0,+∞)上是增函数.4.定义在R上偶函数f(x)在[1,2]上是增函数,且具有性质f(1+x)=f(1-x),则函数f(x)()A.在[-1,0]上是增函数B.在[-1,-]上增函数,在(-,0]上是减函数C.在[1,0]上是减函数D.在[-1,-]上是减函数,在(-,0]上是增函数【答案】A【解析】因为f(1+x)=f(1-x),所以函数f(x)的图象关于直线x=1对称,又f(x)为偶函数,且在[1,2]上是增函数,所以f(x)在[-1,0]上是增函数.5.f(x)是定义在R上的增函数,则下列结论一定正确的是()A.f(x)+f(-x)是偶函数且是增函数B.f(x)+f(-x)是偶函数且是减函数C.f(x)-f(-x)是奇函数且是增函数D.f(x)-f(-x)是奇函数且是减函数【答案】C【解析】A错误.设f(x)=x,是增函数,但f(x)+f(-x)=x-x=0是常数函数;同理B错误;C正确.设g(x)=f(x)-f(-x),则g(-x)=f(-x)-f(x)=-[f(x)-f(-x)]=-g(x),函数g (x)是奇函数.任取x1,x2∈R,且x1<x2,则-x1>-x2,g(x1)=f(x1)-f(-x1),g(x2)=f(x2)-f(-x2),因为f(x)是定义在R上的增函数,所以f(x1)<f(x2),f(-x1)>f(-x2),即-f(-x1)<-f(-x2).所以f(x1)-f(-x1)<f(x2)-f(-x2),即g(x1)<g(x2).所以函数g(x)=f(x)-f(-x)是增函数;D错误.故选C.6.已知偶函数f(x)在区间[0,+∞)上的解析式为f(x)=x+1,下列大小关系正确的是()A.f(1)>f(2)B.f(1)>f(-2)C.f(-1)>f(-2)D.f(-1)<f(2)【答案】D【解析】∵当x≥0时,f(x)=x+1是增函数,∴f(1)<f(2),又∵f(x)为偶函数,∴f(1)=f(-1),f(2)=f(-2),∴D对.7.已知f(x)是偶函数,对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,则下列关系式中成立的是()A.f<f(-1)<f(2)B.f(-1)<f<f(2)C.f(2)<f(-1)<fD.f(2)<f<f(-1)【答案】B【解析】∵对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,∴函数f(x)在(-∞,-1]上单调递减,∴f(-2)>f>f(-1).又∵f(x)是偶函数,∴f(-2)=f(2).∴f(-1)<f<f(2).8.定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合.设a>b>0,给出下列不等式()①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是()A.①与④B.②与③C.①与③D.②与④【答案】C【解析】因为函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,所以函数g(x)在[0,+∞)上是增函数,在(-∞,0)上是减函数.a>b>0,f(a)>f(b),g(a)>g(b),所以f(a)+g(a)>f(b)+g(b);对于①:f(b)-f(-a)>g(a)-g(-b),即f(b)+f(a)>g(a)-g(b).正确;则②错误;对于③:f(a)-f(-b)>g(b)-g(-a),即f(a)+f(b)>g(b)-g(a).正确;则④错误.故选C.9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)·[f(x2)-f(x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)【答案】C【解析】由(x2-x1)[f(x2)-f(x1)]>0,得f(x)在x∈(-∞,0]上为增函数.又f(x)为偶函数,∴f(x)在x∈[0,+∞)上为减函数.又f(-n)=f(n)且0≤n-1<n<n+1,∴f(n+1)<f(n)<f(n-1),即f(n+1)<f(-n)<f(n-1).10.若函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,则x·f(x)<0的解集是()A.(-2,0)∪(0,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】A【解析】因为函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,所以可画出符合条件的奇函数f(x)的图象,如图所示.因为x·f(x)<0,所以或结合图象,得到答案为A.11.已知定义在R上的函数f(x)在(-∞,-2)上是减函数,若g(x)=f(x-2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)【答案】C【解析】g(x)=f(x-2)是把函数f(x)向右平移2个单位得到的,且g(2)=f(0),f(-4)=g(-2)=-g(2)=0,f(-2)=g(0)=0,所以函数f(x)的图象关于点(-2,0)对称,所以当x≤-4或x≥-2时xf(x)≤0成立.12.设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则x·f(x)<0的解集为()A.(-1,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)【答案】C【解析】因为函数f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,所以函数f(x)在(0,+∞)内也是减函数,且f(2)=0.则不等式x·f(x)<0可化为或解得x<-2或x>2.13.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调增区间为()A.(-∞,0]B.[0,+∞)C.(-∞,+∞)D.[1,+∞)【答案】A【解析】因为函数为偶函数,所以a+2=0,a=-2,即该函数为f(x)=-2x2+1,所以函数的单调增区间为(-∞,0].14.已知函数f(x)=x|x|-2x,则下列结论正确的是________.(填写序号)①f(x)是偶函数,递增区间是(0,+∞);②f(x)是偶函数,递减区间是(-∞,1);③f(x)是奇函数,递减区间是(-1,1);④f(x)是奇函数,递增区间是(-∞,0).【答案】③【解析】将函数f(x)=x|x|-2x去掉绝对值得f(x)=画出函数f(x)的图象,如图,观察图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(-1,1)上单调递减.15.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,设f=m,f=n,则m,n 的大小关系是________.【答案】m≥n【解析】因为a2+2a+=(a+1)2+≥,又f(x)在[0,+∞)上是减函数,所以f≤f=f.16.已知函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的单调递增区间是________.【答案】(-∞,0]【解析】∵f(x)为偶函数,∴图象关于y轴对称,即k=1,此时f(x)=-x2+3,其单调递增区间为(-∞,0].17.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.【答案】(1)因为函数f(x)的图象关于原点对称,所以f(x)为奇函数,则f(0)=0.设x<0,则-x>0,因为x>0时,f(x)=x2-2x+3.所以f(x)=-f(-x)=-(x2+2x+3)=-x2-2x-3.于是有f(x)=(2)先画出函数在y轴右侧的图象,再根据对称性画出y轴左侧的图象,如图.由图象可知函数f(x)的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1).18.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式. 【答案】∵f(x)是偶函数,g(x)是奇函数,∴f(-x)=f(x),g(-x)=-g(x),由f(x)+g(x)=2x+x2.①用-x代替x得f(-x)+g(-x)=-2x+(-x)2,∴f(x)-g(x)=-2x+x2,②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.19.已知函数f(x)=-x3+3x.求证:(1)函数f(x)是奇函数;(2)函数f(x)在区间(-1,1)上是增函数.【答案】(1)显然f(x)的定义域是R.设任意x∈R,因为f(-x)=-(-x)3+3(-x)=-(-x3+3x)=-f(x),所以函数f(x)是奇函数.(2)在区间(-1,1)上任取x1,x2,且x1<x2,则f(x2)-f(x1)=-(x2-x1)(+x2x1+)+3(x2-x1)=(x2-x1)(3--x2x1-).因为-1<x1<x2<1,所以x2-x1>0,(3--x2x1-)>0,所以f(x2)>f(x1).所以函数f(x)=-x3+3x在区间(-1,1)上是增函数.20.已知函数f(x)=ax++c(a,b,c是常数)是奇函数,且满足f(1)=,f(2)=. (1)求a,b,c的值;(2)试判断函数f(x)在区间上的单调性并证明.【答案】(1)∵f(x)为奇函数,∴f(-x)=-f(x),∴-ax-+c=-ax--c,∴c=0,∴f(x)=ax+.又∵f(1)=,f(2)=,∴∴a=2,b=.综上,a=2,b=,c=0.(2)由(1)可知f(x)=2x+.函数f(x)在区间上为减函数.证明如下:任取0<x1<x2<,则f(x1)-f(x2)=2x1+-2x2-=(x1-x2)=(x1-x2).∵0<x1<x2<,∴x1-x2<0,2x1x2>0,4x1x2-1<0.∴f(x1)-f(x2)>0,f(x1)>f(x2).∴f(x)在上为减函数.21.设定义域为R的函数f(x)=(1)在平面直角坐标系内作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);(2)若方程f(x)+2a=0有两个解,求出a的取值范围(只需简单说明,不需严格证明);(3)设定义为R的函数g(x)为奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式.【答案】(1)如图.单调增区间:[-1,0],[1,+∞),单调减区间(-∞,-1],[0,1].(2)在同一坐标系中同时作出y=f(x),y=-2a的图象,由图可知f(x)+2a=0有两个解,须-2a=0或-2a>1,即a=0或a<-.(3)当x<0时,-x>0,所以g(-x)=(-x)2-(-2x)+1=x2+2x+1,因为g(x)为奇函数,所以g(x)=-g(-x)=-x2-2x-1,且g(0)=0,所以g(x)=22.已知函数f(x)=ax+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.【答案】(1)定义域(-∞,0)∪(0,+∞),关于原点对称.当a=0时,f(x)=,满足对定义域上任意x,f(-x)=f(x),∴当a=0时,f(x)是偶函数;当a≠0时,f(1)=a+1,f(-1)=1-a,若f(x)为偶函数,则a+1=1-a,a=0矛盾;若f(x)为奇函数,则1-a=-(a+1),1=-1矛盾,∴当a≠0时,f(x)是非奇非偶函数.(2)任取x1>x2≥3,f(x1)-f(x2)=ax1+-ax2-=a(x1-x2)+=(x1-x2)(a-). ∵x1-x2>0,f(x)在[3,+∞)上为增函数,∴a>,即a>+在[3,+∞)上恒成立.∵x1>x2≥3,+<+=,∴a≥.。

函数奇偶性的知识点及例题解析

函数奇偶性的知识点及例题解析

函数的奇偶性知识点及例题解析一、知识要点:1、函数奇偶性的概念一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。

一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。

理解:(1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。

这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质;(2)定义域关于原点对称是函数具有奇偶性的必要条件。

2、按奇偶性分类,函数可分为四类:奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数.3、奇偶函数的图象:奇函数⇔图象关于原点成中心对称的函数,偶函数⇔图象关于y 轴对称的函数。

4、函数奇偶性的性质:①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。

②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。

③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。

奇函数f(x)在区间[a,b](0≤a<b)上单调递增(减),则f(x)在区间[-b,-a]上也是单调递增(减); 偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反,最值相同。

偶函数f(x)在区间[a,b](0≤a<b )上单调递增(减),则f(x)在区间[-b,-a]上单调递减(增) ④任意定义在R 上的函数f(x)都可以唯一地表示成一个奇函数与一个偶函数的和。

⑤若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数时,y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= f[g(x)]是偶函数。

复合函数的奇偶性特点是:“内偶则偶,内奇同外”.5、判断函数奇偶性的方法:⑴、定义法:对于函数()f x 的定义域内任意一个x ,都有()()x f x f =-〔或()()1=-x f x f 或()()0=--x f x f 〕⇔函数f (x )是偶函数;对于函数()f x 的定义域内任意一个x ,都有()()x f x f -=-〔或()()1-=-x f x f 或()()0=+-x f x f ⇔函数f (x )是奇函数;判断函数奇偶性的步骤:①、判断定义域是否关于原点对称;②、比较)(x f -与)(x f 的关系。

函数的奇偶性 - 高中数学讲义与经典例题解析版

函数的奇偶性 - 高中数学讲义与经典例题解析版

函数的奇偶性知识讲解一、函数奇偶性的定义1.奇函数:设函数()y f x =的定义域为D ,如果对于D 内的任意一个x ,都有x D -∈,且()()f x f x -=-,则这个函数叫做奇函数.2.偶函数:设函数()y f x =的定义域为D ,如果对于D 内的任意一个x ,都有x D -∈,且()()f x f x -=,则这个函数叫做偶函数.二、奇偶函数的图象特征1.函数()y f x =是偶函数⇔()y f x =的图象关于y 轴对称;2.函数()y f x =是奇函数⇔()y f x =的图象关于原点对称.三、判断函数奇偶性的方法1.定义法:首先判断其定义域是否关于原点中心对称.若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x -=-或()()f x f x -=是否为恒等式.定义的等价形式:()()0f x f x ±-=,()1()f x f x =±-.2.图象法3.性质法:设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;四、奇偶函数的性质1.函数具有奇偶性⇒其定义域关于原点对称;2.函数()y f x =是偶函数⇔()y f x =的图象关于y 轴对称;3.函数()y f x =是奇函数⇔()y f x =的图象关于原点对称.4.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.5.若奇函数()y f x =的定义域包含0,则(0)0f =.五、常见函数的奇偶性1.正比例函数(0)y kx k =≠是奇函数;2.反比例函数(0)k y k x=≠是奇函数;3.函数(00)y kx b k b =+≠≠,是非奇非偶函数;4.函数2(0)y ax c a =+≠是偶函数;5.常函数y c =是偶函数;6.对勾函数(0)k y x k x=+≠是奇函数;经典例题一.填空题(共12小题)1.给定四个函数:①y=x3+3;②y=1(x>0);③y=x3+1;④y=2+1.其中是奇函数的有①④(填序号).【解答】解::①函数的定义域为R,则f(﹣x)=﹣(x3+3)=﹣f(x),则函数f(x)是奇函数;②函数的定义域关于原点不对称,则函数f(x)为非奇非偶函数;③函数的定义域为R,f(0)=0+1=1≠0,则函数f(x)为非奇非偶函数;④函数的定义域为(﹣∞,0)∪(0,+∞),f(﹣x)=2+1−=﹣2+1=﹣f (x),则函数f(x)是奇函数,故答案为:①④2.f(x)是定义在R上的奇函数,当x<0时,f(x)=x2﹣3x,则当x>0时,f(x)=﹣x2﹣3x.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x),若x>0,则﹣x<0,∵x<0时,f(x)=x2﹣3x,∴当﹣x<0时,f(﹣x)=x2+3x=﹣f(x),∴f(x)=﹣x2﹣3x,故答案为:x2﹣3x,3.已知f(x)是R上偶函数,且在[0,+∞)上递减,比较o−34)与f(1+a+a2)的大小关系为f(1+a+a2)≤f(﹣34).【解答】解:根据题意,1+a+a2=(14+a+a2)+34=(a+12)2+34≥34,则又由f (x )在[0,+∞)上递减,则有f (1+a +a 2)≤f (34),又由f (x )是R 上偶函数,则有f (1+a +a 2)≤f (﹣34),故答案为:f (1+a +a 2)≤f (﹣34).4.已知f (x )是定义在(﹣1,1)上的奇函数,且在定义域上为增函数,若f (a ﹣2)<f (4﹣a 2),求a 2).【解答】解:因为f (x )是定义在(﹣1,1)上的奇函数,且在定义域上为增函数.所以f (a ﹣2)<f (4﹣a 2)等价于−1<−2<1−1<4−2<1−2<4−2,化简可得1<<33<2<5−3<<2解可得3<a <2.故答案为(3,2).5.设函数f (x )在R 上是偶函数,在区间(﹣∞,0)上递增,且f (2a 2+a +1)<f (2a 2﹣2a +3),则a 的取值范围=(23,+∞).【解答】解:根据题意,2a 2+a +1=2(a 2+12a +116)+78=2(a +12)2+78≥78,而2a 2﹣2a +3=2(a 2﹣a +14)+52=2(a ﹣12)2+52≥52;由f (x )在R 上是偶函数,在区间(﹣∞,0)上递增,可知f (x )在(0,+∞)上递减.若f (2a 2+a +1)<f (2a 2﹣2a +3),则2a 2+a +1>2a 2﹣2a +3,即3a ﹣2>0,解可得a >23,则a 的取值范围(23,+∞);故答案为:23,+∞).6.已知定义在R上的奇函数f(x)满足f(x)=x2+2x(x≥0),若f(3﹣a2)>f(2a﹣a2),则实数a的取值范围是a<32.【解答】解:∵函数f(x)=x2+2x(x≥0)是增函数,且f(0)=0,f(x)是奇函数∴f(x)是R上的增函数.由f(3﹣a2)>f(2a﹣a2),于是3﹣a2>2a﹣a2,因此,解得a<32.故答案为:a<32.7.若f(x)=ax3+bx+1﹣b是定义在区间[﹣4+a,a]的奇函数,则a+b= 3.【解答】解:∵f(x)=ax3+bx+1﹣b是定义在区间[﹣4+a,a]的奇函数,∴﹣4+a+a=0,f(0)=0.解得a=2,b=1.∴a+b=3.故答案为:3.8.若f(a+b)=f(a)•f(b)且f(1)=2.则o2)o1)+o3)o2)+…+o2012)o2011)=4022.【解答】解:令b=1.∴f(a+1)=f(a)f(1)or1)op=f(1)=2o2)o1)=2.o3)o2)=2. (2012)o2011)=2o2)o1)+o3)o2)+…+o2012)o2011)=2011×2=4022.答案:4022.9.已知函数f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(72)=3p+2q.【解答】解:由题意可知:f(6)=f(2)+f(3)=p+q∴f(18)=f(6)+f(3)=p+q+q=p+2q∴f(36)=f(18)+f(2)=p+2q+p=2p+2q∴f(72)=f(36)+f(2)=2p+2q+p=3p+2q故答案为:3p+2q.10.已知函数f(x)的定义域D=(0,+∞),且对于任意x1,x2∈D,均有f(x1•x2)=f(x1)+f(x2)﹣1,且当x>1时,f(x)>1(1)求f(1)的值;(2)求证:f(x)在(0,+∞)上是增函数;(3)若f(16)=3,解不等式f(3x+1)≤2.【解答】解:(1)令x1=x2=1,∴f(1)=f(1)+f(1)﹣1∴f(1)=1,(2):设令0<x1<x2,21>1,当x>1时,f(x)>1∴f(21)>1,∴f(21•x1)=f(x2)=f(21)+f(x1)﹣1>f(x1),∴f(x)在(0,+∞)上是增函数;(3)令x1=x2=4,∴f(16)=f(4)+f(4)﹣1=3∴f(4)=2,∴f(3x+1)≤2=f(4),∵f(x)在(0,+∞)上是增函数;∴3+1>03+1≤4,解得−13<x≤1,故不等式f(3x+1)≤2的解集为(−13,1].11.已知f(x)是定义域在(0,+∞)上的单调递增函数.且满足f(6)=1.f(x)﹣f(y)=f()(x>0,y>0).则不等式f(x+3)<f(12的解集是(0,−3+3172).【解答】解:∵f(x)﹣f(y)=f()(x>0,y>0),令x=36,y=6,得f(36)﹣f(6)=f(6)∴f(36)=2f(6)=2,∵f(x+3)<f(1)+2,∴f(x+3)﹣f(1)=f(x(x+3))<2=f(36),∵f(x)是定义域在(0,+∞)上的单调递增函数,+3>0>0o+3)<36∴0<x−3+3172故不等式f(x+3)<f(1)+2的解集是(0,−3+3172),故答案为:(0−3+3172),12.已知函数f(x),对任意实数x1,x2都有f(x1+x2)=f(x1)+f(x2),且当x>0时f(x)>0,f(2)=1.解不等式f(2x2﹣1)<2的解集为[﹣102,102].【解答】解:∵f(x1+x2)=f(x1)+f(x2),设x1=x2=0,可得f(0)=2f(0),解得f(0)=0,令x1+x2=0,可得f(0)=f(x1)+f(x2),即有f(﹣x)=﹣f(x),即f(x)为奇函数;令x1<x2,即有x2﹣x1>0,f(x2﹣x1)>0,即为f(x2)=f(x1+x2﹣x1)=f(x1)+f(x2﹣x1)>f(x1),即有f(x)在R上为增函数;令x1=x2=2,可得f(4)=2f(2),解得f(4)=2,∵不等式f(2x2﹣1)<2=f(4)∴2x2﹣1<4,102<x<102102,102].102,102].二.解答题(共6小题)13.设函数y=f(x)(x∈R)对任意实数均满足f(x+y)=f(x)+f(y),求证f(x)是奇函数.【解答】证明:定义域关于原点对称,令x=y=0,代入f(x+y)=f(x)+f(y)得f(0)=0,令y=﹣x得:f(0)=f(x)+f(﹣x)=0,∴f(﹣x)=﹣f(x),∴f(x)是奇函数.14.判断并证明下列函数的奇偶性.(Ⅰ)f(x)=|x|+12;(Ⅱ)f(x)=x2+2x;(Ⅲ)f(x)=x+1.【解答】解:(Ⅰ)可得x≠0f(﹣x)=|﹣x|+1(−p2=f(x),故函数为偶函数;(Ⅱ)函数的定义域为R,且f (x )=x 2+2x 的图象为抛物线,对称轴为x=﹣1,不关于y 轴对称,也不关于原点对称,故函数非奇非偶;(Ⅲ)可得x ≠0,f (﹣x )=﹣x ﹣1=﹣f (x ),故函数为奇函数.15.判断下列函数的奇偶性:(1)f (x )=3,x ∈R ;(2)f (x )=5x 4﹣4x 2+7,x ∈[﹣3,3];(3)f (x )=|2x ﹣1|﹣|2x +1|;(4)f (x )=1−2,>00,=02−1,<0.【解答】解:(1)由f (﹣x )=3=f (x ),x ∈R ,可得函数f (x )为偶函数;(2)f (﹣x )=5(﹣x )4﹣4(﹣x )2+7=5x 4﹣4x 2+7=f (x ),x ∈[﹣3,3],可得函数f (x )为偶函数;(3)定义域为R ,f (﹣x )=|﹣2x ﹣1|﹣|﹣2x +1|=|2x +1|﹣|2x ﹣1|=﹣f (x ),可得f (x )为奇函数;(4)f (x )=1−2,>00,=02−1,<0,定义域为R ,当x >0时,﹣x <0,可得f (﹣x )=(﹣x )2﹣1=x 2﹣1=﹣f (x ),当x=0可得f (0)=0;当x <0时,﹣x >0,可得f (﹣x )=1﹣(﹣x )2=1﹣x 2=﹣f (x ),即有f(﹣x)=﹣f(x),可得f(x)为奇函数.16.判断下列函数的奇偶性(1)f(x)=a(a∈R)(2)f(x)=(1+x)3﹣3(1+x2)+2(3)f(x)=o1−p,<0o1+p,>0.【解答】解:(1)由奇偶性定义当a=0时,f(x)=0既是奇函数又是偶函数,当a≠0时,f(x)=f(﹣x)=a,故是偶函数;(2)f(x)=(1+x)3﹣3(1+x2)+2=x3+3x,由于f(x)+f(﹣x)=x3+3x+(﹣x)3+3(﹣x)=0,故f(x)=(1+x)3﹣3(1+x2)+2是奇函数.(3)当x<0时,﹣x>0,f(﹣x)=﹣x(1﹣x)=﹣f(x);当x>0时,﹣x<0,f(﹣x)=﹣x(1+x)=﹣f(x);由上证知,在定义域上总有f(﹣x)=﹣f(x);故函数f(x)=o1−p,<0o1+p,>0是奇函数.17.已知函数op=B2+23r是奇函数,且o2)=53.(1)求实数a,b的值;(2)判断函数f(x)在(﹣∞,﹣1]上的单调性,并加以证明.【解答】解:(1)函数op=B2+23r是奇函数,且o2)=53,可得f(﹣x)=﹣f(x),B2+2−3r=﹣B2+23r,可得﹣3x+b=﹣3x﹣b,解得b=0;4r26=53,解得a=2;(2)函数f(x)=22+23在(﹣∞,﹣1]上单调递增;理由:设x1<x2≤﹣1,则f(x1)﹣f(x2)=23(x1+11)﹣23(x2+12)=23(x1﹣x2)(1﹣112),由x1<x2≤﹣1,可得x1﹣x2<0,x1x2>1,即有1﹣112>0,则f(x1)﹣f(x2)<0,即f(x1)<f(x2),则f(x)在(﹣∞,﹣1]上单调递增.18.已知f(x)=1+.(1)求f(x)+f(1)的值;(2)求f(1)+f(2)+…+f(7)+f(1)+f(12)+…+f(17)的值.【解答】解:(1)∵f(x)=1+.∴f(x)+f(1)=1++11+1=1++11+=1,(2)由(1)得:f(1)+f(2)+…+f(7)+f(1)+f(12)+…+f(17)=7.。

专题八 函数奇偶性与单调性的综合问题(解析版)

专题八 函数奇偶性与单调性的综合问题(解析版)

专题八 函数奇偶性与单调性的综合问题奇偶性与单调性的综合问题主要包括:奇偶性与单调性的判断,利用函数的奇偶性与单调性比较函数值的大小以及解不等式等.考点一 奇偶性与单调性的判断【方法总结】对于函数奇偶性与单调性的判断问题主要是应用奇偶性与单调性的定义及相关结论解决.当然对于选填题也可用特值法秒杀.【例题选讲】[例1](1)下列函数中,既是偶函数,又在(0,1)上单调递增的函数是( )A .y =|log 3x |B .y =x 3C .y =e |x |D .y =cos |x |答案 C 解析 对于A 选项,函数定义域是(0,+∞),故是非奇非偶函数,显然B 项中,y =x 3是奇函数.对于C 选项,函数的定义域是R ,是偶函数,且当x ∈(0,+∞)时,函数是增函数,故在(0,1)上单调递增,正确.对于D 选项,y =cos |x |在(0,1)上单调递减.(2)已知函数f (x )=x e|x |,则下列说法正确的是( ) A .函数f (x )是奇函数,且在(-∞,-1)上是减函数B .函数f (x )是奇函数,且在(-∞,-1)上是增函数C .函数f (x )是偶函数,且在(-∞,-1)上是减函数D .函数f (x )是偶函数,且在(-∞,-1)上是增函数答案 A 解析 由题意,函数f (x )=x e |x |,可得其定义域为R ,又由f (-x )=-x e|-x |=-x e |x |=-f (x ),即f (-x )=-f (x ),所以函数f (x )是奇函数,当x ∈(-∞,-1)时,f (x )=x e-x =x ·e x ,则f ′(x )=e x +x e x =(1+x )e x ,则f ′(x )<0,函数f (x )在(-∞,-1)上单调递减,故选A.(3) (2017·全国Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( )A .f (x )在(0,2)上单调递增B .f (x )在(0,2)上单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称答案 C 解析 f (x )的定义域为(0,2).f (x )=ln x +ln(2-x )=ln[x (2-x )]=ln(-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增,在(1,2)上单调递减.又y =ln u 在其定义域上单调递增,∴f (x )=ln(-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减.∴选项A ,B 错误;∵f (x )=ln x +ln(2-x )=f (2-x ),∴f (x )的图象关于直线x =1对称,∴选项C 正确;∵f (2-x )+f (x )=[ln(2-x )+ln x ]+[ln x +ln(2-x )]=2[ln x +ln(2-x )],不恒为0,∴f (x )的图象不关于点(1,0)对称,∴选项D 错误.故选C .(4)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( )A .m =1,且f (x )在(0,1)上是增函数B .m =1,且f (x )在(0,1)上是减函数C .m =-1,且f (x )在(0,1)上是增函数D .m =-1,且f (x )在(0,1)上是减函数答案 B 解析 因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,则(m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),因为当x ∈(0,1)时,y =1-x 2是减函数,故f (x )在(0,1)上是减函数.故选B .(5)(2019·北京)设函数f (x )=e x +a e -x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.答案 -1 (-∞,0] 解析 因为f (x )=e x +a e -x (a 为常数)的定义域为R ,所以f (0)=e 0+a e -0=1+a=0,所以a =-1.因为f (x )=e x +a e -x ,所以f ′(x )=e x -a e -x =e x -a e x .因为f (x )是R 上的增函数,所以f ′(x )≥0在R 上恒成立,即e x ≥a e x 在R 上恒成立,所以a ≤e 2x 在R 上恒成立.又e 2x >0,所以a ≤0,即a 的取值范围是(-∞,0].【对点训练】1.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )A .y =1xB .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12|x | 1.答案 B 解析 y =1x为奇函数;y =lg x 的定义域为(0,+∞),不具备奇偶性;y =⎝⎛⎭⎫12|x |在(0,+∞)上 为减函数;y =|x |-1在(0,+∞)上为增函数,且在定义域上为偶函数.2.下列函数中,既是奇函数又在(0,+∞)上单调递增的是( )A .y =e x +e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x2.答案 D 解析:选项A ,B 是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x 在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.故选D.3.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )3.答案 B 解析:选函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象.因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A ,C ,D ,故选B.4.已知f (x )=e x -e -x 2,则下列正确的是( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数4.答案 A 解析 定义域为R ,∵f (-x )=e -x -e x 2=-f (x ),∴f (x )是奇函数,∵e x 是R 上的增函数,- e -x 也是R 上的增函数,∴e x -e -x 2是R 上的增函数,故选A . 5.已知函数f (x )满足以下两个条件:①任意x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0;②对定义域内任意x 有f (x )+f (-x )=0,则符合条件的函数是( )A .f (x )=2xB .f (x )=1-|x |C .f (x )=-x 3D .f (x )=ln(x 2+3)5.答案 C 解析 由条件①可知,f (x )在(0,+∞)上单调递减,则可排除A 、D 选项,由条件②可知,f (x )为奇函数,则可排除B 选项,故选C .考点二 比较函数值的大小【方法总结】比较函数值大小的思路:比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.同时要充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.【例题选讲】[例2](1) (2019·全国Ⅰ)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )A .233231(log )(2)(2)4f f f -->>B .233231(log )(2)(2)4f f f -->> C .233231(2)(2)(log )4f f f -->> D .233231(2)(2)(log )4f f f -->> 答案 C 解析 根据函数f (x )为偶函数可知,f (log 314)=f (-log 34)=f (log 34),因为0<322-<232-<20<log 34,且函数f (x )在(0,+∞)单调递减,所以f (322-)>f (232-)>f (log 314).故选C . (2)已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞)时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1m,b =(ln m )2,c =ln m ,其中m >e ,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )答案 C 解析 根据已知条件知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),|a |=ln m >1,b =(ln m )2>|a |,0<c =12ln m <|a |,∴f (c )>f (a )>f (b ). (3)函数f (x )是定义在R 上的奇函数,对任意两个正数x 1,x 2(x 1<x 2),都有x 2f (x 1)>x 1f (x 2),记a =12f (2),b =f (1),c =-13f (-3),则a ,b ,c 之间的大小关系为( ) A .a >b >c B .b >a >c C .c >b >a D .a >c >b答案 B 解析 因为对任意两个正数x 1,x 2(x 1<x 2),都有x 2f (x 1)>x 1f (x 2),所以f (x 1)x 1>f (x 2)x 2,得函数g (x )=f (x )x 在(0,+∞)上是减函数,又c =-13f (-3)=13f (3),所以g (1)>g (2)>g (3),即b >a >c ,故选B . 【对点训练】6.已知f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上单调递增,则( )A .f (0)>f (log 32)>f (-log 23)B .f (log 32)>f (0)>f (-log 23)C .f (-log 23)>f (log 32)>f (0)D .f (-log 23)>f (0)>f (log 32)6.答案 C 解析 ∵log 23>log 22=1=log 33>log 32>0,且函数f (x )在(0,+∞)上单调递增,∴f (log 23)>f (log 32)>f (0),又函数f (x )为偶函数,∴f (log 23)=f (-log 23),∴f (-log 23)>f (log 32)>f (0).7.函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<5()2f <7()2fB .7()2f <f (1)<5()2fC .7()2f <5()2f <f (1)D .5()2f <f (1)<7()2f7.答案 B 解析 ∵函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,∴函数y =f (x )在[2,4]上单调递减,且在[0,4]上函数y =f (x )满足f (2-x )=f (2+x ),∴f (1)=f (3),7()2f <f (3)<5()2f ,即7()2f <f (1)<5()2f .8.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)8.答案 A 解析 ∵f (x )是偶函数∴f (-2)= f (2),又∵任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0, ∴f (x )在[0,+∞)上是减函数,又∵1<2<3∴f (1)>f (2)=f (-2)>f (3),故选A .9.(2017·全国Ⅰ)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a9.答案 C 解析 法一 易知g (x )=xf (x )在R 上为偶函数,∵奇函数f (x )在R 上是增函数,且f (0)=0.∴g (x )在(0,+∞)上是增函数.又3>log 25.1>2>20.8,且a =g (-log 25.1)=g (log 25.1),∴g (3)>g (log 25.1) >g (20.8),则c >a >b .法二 (特殊化)取f (x )=x ,则g (x )=x 2为偶函数且在(0,+∞)上单调递增,又3>log 25.1>20.8,从而可得c >a >b .10.已知函数y =f (x )是R 上的偶函数,对任意x 1,x 2∈(0,+∞),都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln1π,b =(lnπ)2,c =ln π,则( ) A .f (a )>f (b )>f (c ) B .f (b )>f (a )>f (c ) C .f (c )>f (a )>f (b ) D .f (c )>f (b )>f (a )10.答案 C 解析 由题意易知f (x )在(0,+∞)上是减函数,因为f (x )是R 上的偶函数,所以f (-x )=f (x )=f (|x |).又因为|a |=ln π>1,b =(ln π)2>|a |,0<c =ln π2<|a |,所以f (c )>f (|a |)>f (b ).又由题意知,f (a )=f (|a |).所以f (c )>f (a )>f (b ).11.已知函数f (x )=a x (a >0,a ≠1)的反函数的图象经过点⎝⎛⎭⎫22,12.若函数g (x )的定义域为R ,当x ∈[-2, 2]时,有g (x )=f (x ),且函数g (x +2)为偶函数,则下列结论正确的是( )A .g (π)<g (3)<g (2)B .g (π)<g (2)<g (3)C .g (2)<g (3)<g (π)D .g (2)<g (π)<g (3)11.答案 C 解析:因为函数f (x )的反函数的图象经过点⎝⎛⎭⎫22,12,所以函数f (x )的图象经过点⎝⎛⎭⎫12,22, 所以a 12=22,即a =12,函数f (x )在R 上单调递减.函数g (x +2)为偶函数,所以函数g (x )的图象关于直线x =2对称,又x ∈[-2,2]时,g (x )=f (x )且g (x )单调递减,所以x ∈[2,6]时,g (x )单调递增,根据对称性,可知在[-2,6]上距离对称轴x =2越远的自变量,对应的函数值越大,所以g (2)<g (3)<g (π).故选C.12.已知定义在R 上的函数f (x )满足下列三个条件:①对任意的x ∈R 都有f (x +2)=-f (x );②对任意的0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③f (x +2)的图象关于y 轴对称.则f (4.5),f (6.5),f (7)的大小关系是________.(用“<”连接)12.答案 f (4.5)<f (7)<f (6.5) 解析:由①可知,f (x )是一个周期为4的函数;由②可知,f (x )在[0,2]上是增函数;由③可知,f (x )的图象关于直线x =2对称.故f (4.5)=f (0.5),f (6.5)=f (2.5)=f (1.5),f (7)=f (3)=f (1),f (0.5)<f (1)<f (1.5),即,f (4.5)<f (7)<f (6.5).考点三 解不等式(抽象函数)【方法总结】含“f ”不等式的解法:首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.要注意奇偶性中结论8:奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性的应用.特别应用奇偶性中结论2:如果函数f (x )是偶函数,那么f (x )=f (|x |),可避免分类讨论.【例题选讲】[例3](1)(2017·全国Ⅰ)函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]答案 D 解析 ∵f (x )为奇函数,∴f (-x )=-f (x ).∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1).又f (x )在(-∞,+∞)上单调递减,∴-1≤x -2≤1,∴1≤x ≤3.(2)已知定义域为(-1,1)的奇函数f (x )是减函数,且f (a -3)+f (9-a 2)<0,则实数a 的取值范围是( )A .(22,3)B .(3,10)C .(22,4)D .(-2,3)答案 A 解析 由f (a -3)+f (9-a 2)<0得f (a -3)<-f (9-a 2).又由奇函数性质,得f (a -3)<f (a 2-9).因为f (x )是定义域为(-1,1)的减函数,所以⎩⎪⎨⎪⎧ -1<a -3<1,-1<a 2-9<1,a -3>a 2-9,解得22<a <3.(3)设f (x )为奇函数,且在(-∞,0)内是减函数,f (-2)=0,则xf (x )<0的解集为( )A .(-1,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)答案 C 解析 ∵f (x )为奇函数,且在(-∞,0)内是减函数,f (-2)=0,∴f (-2)=-f (2)=0,在(0,+∞)内是减函数.若xf (x )<0,则⎩⎪⎨⎪⎧ x >0,f (x )<0=f (2)或⎩⎪⎨⎪⎧x <0,f (x )>0=f (-2).根据f (x )在(-∞,0)内是减函数,在(0,+∞)内是减函数,解得:x ∈(-∞,-2)∪(2,+∞).故选.(4)已知函数y =f (x )是定义域为R 的偶函数,且f (x )在[0,+∞)上单调递增,则不等式f (2x -1)>f (x -2)的解集为________.答案 (-∞,-1)∪(1,+∞) 解析 ∵函数y =f (x )是定义域为R 的偶函数,∴f (2x -1)>f (x -2)可转化为f (|2x -1|)>f (|x -2|),又∵f (x )在[0,+∞)上单调递增,∴f (2x -1)>f (x -2)⇔|2x -1|>|x -2|,两边平方解得:x ∈(-∞,-1)∪(1,+∞) ,故f (2x -1)>f (x -2)的解集为x ∈(-∞,-1)∪(1,+∞).(5)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.答案 ⎝⎛⎭⎫12,32 解析 ∵f (2|a -1|)>f (-2)=f (2),又由已知可得f (x )在(0,+∞)上单调递减,∴2|a -1|<2=122,∴|a -1|<12,∴12<a <32. (6)若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调递增的.如果实数t 满足f (ln t )+f ⎝⎛⎭⎫ln 1t ≤2f (1),那么t 的取值范围是________.答案 ⎣⎡⎦⎤1e ,e 解析 由于函数f (x )是定义在R 上的偶函数,所以f (ln t )=f ⎝⎛⎭⎫ln 1t ,由f (ln t )+f ⎝⎛⎭⎫ln 1t ≤2f (1),得f (ln t )≤f (1).又函数f (x )在区间[0,+∞)上是单调递增的,所以|ln t |≤1,即-1≤ln t ≤1,故1e≤t ≤e . (7)已知定义在R 上的函数f (x )在[1,+∞)上单调递减,且f (x +1)是偶函数,不等式f (m +2)≥f (x -1)对任意的x ∈[-1,0]恒成立,则实数m 的取值范围是( )A .[-3,1]B .[-4,2]C .(-∞,-3]∪[1,+∞)D .(-∞,-4]∪[2,+∞) 答案 A 解析 因为f (x +1)是偶函数,所以f (-x +1)=f (x +1),所以f (x )的图象关于x =1对称,由f (m +2)≥f (x -1)得|(m +2)-1|≤|(x -1)-1|,即|m +1|≤|x -2|在x ∈[-1,0]恒成立,所以|m +1|≤|x -2|min ,所以|m +1|≤2,解得-3≤m ≤1.(8)已知函数y =f (x )的定义域为R ,f (x +1)为偶函数,且对∀x 1<x 2≤1,满足f (x 2)-f (x 1)x 2-x 1<0.若f (3)=1,则不等式f (log 2x )<1的解集为( )A .⎝⎛⎭⎫12,8B .(1,8)C .⎝⎛⎭⎫0,12∪(8,+∞) D .(-∞,1)∪(8,+∞) 答案 A 解析 因为对∀x 1<x 2≤1,满足f (x 2)-f (x 1)x 2-x 1<0,所以y =f (x )当x ∈(-∞,1]时,是单调递减函数,又因为f (x +1)为偶函数,所以函数y =f (x )的图象关于x =1对称,所以函数y =f (x )当x >1时,是增函数,又因为f (3)=1,所以有f (-1)=1,当log 2x ≤1时,即当0<x ≤2时,f (log 2x )<1⇒f (log 2x )<f (-1)⇒log 2x >-1⇒x >12,∴12<x ≤2,当log 2x >1时,即当x >2时,f (log 2x )<1⇒f (log 2x )<f (3)⇒log 2x <3⇒x <8,∴2<x <8,综上所述:不等式f (log 2x )<1的解集为⎝⎛⎭⎫12,8,故选A .(9)已知函数f (x )是定义在R 上的奇函数,若对于任意给定的不等实数x 1、x 2,不等式x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1)恒成立,则不等式f (1-x )<0的解集为( )A .(-∞,0)B .(0,+∞)C .(-∞,1)D .(1,+∞)答案 C 解析 由条件式得(x 1-x 2)[f (x 1)-f (x 2)]<0,∴x 1<x 2时,f (x 1)>f (x 2),x 1>x 2时,f (x 1)<f (x 2),∴f (x )为减函数,又f (x )为R 上的奇函数,∴f (0)=0,∴不等式f (1-x )<0化为f (1-x )<f (0),∴1-x >0,∴x <1,故选C .(10)定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,若f (2)=2,则不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞)答案 C 解析 由f (x 1)-f (x 2)x 1-x 2<1,可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,且是奇函数,F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2.故选C .【对点训练】13.已知定义在R 上的奇函数y =f (x )在(0,+∞)内单调递增,且f ⎝⎛⎭⎫12=0,则f (x )>0的解集为_______________. 13.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <0或x >12 解析 由奇函数y =f (x )在(0,+∞)内单调递增,且f ⎝⎛⎭⎫12=0,可知函数y=f (x )在(-∞,0)内单调递增,且f ⎝⎛⎭⎫-12=0.由f (x )>0,可得x >12或-12<x <0. 14.已知f (x )是定义在R 上的奇函数,且在[0,+∞)上单调递增.若实数m 满足f (log 3|m -1|)+f (-1)<0,则m 的取值范围是( )A .(-2,1)∪(1,4)B .(-2,1)C .(-2,4)D .(1,4)14.答案 A 解析 因为f (x )是定义在R 上的奇函数,且在[0,+∞)上单调递增,所以函数f (x )是R 上的增函数,由题得f (log 3|m -1|)+f (-1)<0,所以f (log 3|m -1|)<-f (-1)=f (1),所以log 3|m -1|<1=log 33,所以|m -1|<3,所以-3<m -1<3,所以-2<m <4,因为|m -1|>0,所以m ≠1,故m ∈(-2,1)∪(1,4).故选A .15.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为________. 15.答案 (-1,0)∪(0,1) 解析 ∵f (x )为奇函数,且在(0,+∞)上是增函数,f (1)=0,∴f (-1)=-f (1)=0,f (x )在(-∞,0)上也是增函数,f (x )-f (-x )x =2f (x )x <0,即⎩⎪⎨⎪⎧x >0,f (x )<0或⎩⎪⎨⎪⎧x <0,f (x )>0,根据f (x )在(-∞,0)和(0,+∞)上都是增函数,且f (-1)=f (1)=0,解得x ∈(-1,0)∪(0,1).16.已知函数f (x )是定义在R 上的奇函数,且在区间[0,+∞)上单调递增,若|f (ln x )-f (ln 1x )|2<f (1),则x 的 取值范围是( )A .(0,1e )B .(0,e)C .(1e,e) D .(e ,+∞) 16.答案 C 解析 因为函数f (x )是定义在R 上的奇函数,所以f (ln x )-f (ln 1x)=f (ln x )-f (-ln x )=f (ln x )+ f (ln x )=2f (ln x ),所以|f (ln x )-f (ln 1x )|2<f (1)等价于|f (ln x )|<f (1),又f (x )在区间[0,+∞)上单调递增,所以-1<ln x <1,解得1e<x <e . 17.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A .⎝⎛⎭⎫13,23B .⎣⎡⎭⎫13,23C .⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23 17.答案 A 解析 因为f (x )是偶函数,所以其图象关于y 轴对称,又f (x )在[0,+∞)上单调递增,f (2x-1)<f ⎝⎛⎭⎫13,所以|2x -1|<13,所以13<x <23. 18.已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A .(2,+∞)B .⎝⎛⎭⎫0,12∪(2,+∞)C .⎝⎛⎭⎫0,22∪(2,+∞) D .(2,+∞) 18.答案 B 解析 f (x )是R 上的偶函数,且在(-∞,0]上是减函数,所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12. 19.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围是________.19.答案 ⎣⎡⎭⎫-1,12 解析 因为f (x )是偶函数,所以f (-x )=f (x )=f (|x |).所以不等式f (1-m )<f (m )等价于f (|1-m |)<f (|m |).又当x ∈[0,2]时,f (x )是减函数.所以⎩⎪⎨⎪⎧ |1-m |>|m |,-2≤1-m ≤2,-2≤m ≤2,解得-1≤m <12. 20.设f (x )是定义在[-2b ,3+b ]上的偶函数,且在[-2b ,0]上为增函数,则f (x -1)≥f (3)的解集为( )A .[-3,3]B .[-2,4]C .[-1,5]D .[0,6]20.答案 B 解析 因为f (x )是定义在[-2b ,3+b ]上的偶函数,所以有-2b +3+b =0,解得b =3,由函数f (x )在[-6,0]上为增函数,得f (x )在(0,6]上为减函数.故f (x -1)≥f (3)⇒f (|x -1|)≥f (3)⇒|x -1|≤3,故-2≤x ≤4.21.已知函数y =f (x )是定义在R 上的偶函数,且在(-∞,0]上是增函数,若不等式f (a )≥f (x )对任意x ∈[1,2]恒成立,则实数a 的取值范围是( )A .(-∞,1]B .[-1,1]C .(-∞,2]D .[-2,2]21.答案 B 解析 因为函数f (x )为偶函数,且在(-∞,0]上是增函数,所以函数f (x )在[0,+∞)上是减函数,则不等式f (a )≥f (x )对任意x ∈[1,2]恒成立等价于f (a )≥f (x )max =f (1),所以|a |≤1,解得-1≤a ≤1,即实数a 的取值范围为[-1,1],故选B .22.已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,如果f (ax +1)≤f (x -2)在x ∈⎣⎡⎦⎤12,1上恒成立,那么实数a 的取值范围是( )A .[-2,1]B .[-5,0]C .[-5,1]D .[-2,0]22.答案 D 解析 因为f (x )是偶函数,且f (x )在[0,+∞)上是增函数,所以f (ax +1)≤f (x -2)在x ∈⎣⎡⎦⎤12,1上恒成立,即|ax +1|≤|x -2|,即x -2≤ax +1≤2-x .由ax +1≤2-x ,得ax ≤1-x ,a ≤1x -1,而1x-1在x =1时取得最小值0,故a ≤0.同理,由x -2≤ax +1,得a ≥-2,所以a 的取值范围是[-2,0].考点四 解不等式(具体函数)【方法总结】函数是给定的,但解析式比较复杂,一般不把自变量代入处理.而是先研究函数的单调性与奇偶性,然后把不等式转化为f (g (x ))>f (h (x ))的形式,根据函数的单调性去掉“f ”,转化为具体的不等式(组)去解决问题.要注意奇偶性中结论8:奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性的应用.特别应用奇偶性中结论2:如果函数f (x )是偶函数,那么f (x )=f (|x |),可避免分类讨论.【例题选讲】[例4](1)已知函数f (x )=sin x +x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.答案 -2<x <23解析 易知f (x )在R 上为单调递增函数,且f (x )为奇函数,故f (mx -2)+f (x )<0等价于f (mx -2)<-f (x )=f (-x ),则mx -2<-x ,即mx +x -2<0对所有m ∈[-2,2]恒成立,令h (m )=mx +x -2,m∈[-2,2],此时,只需⎩⎪⎨⎪⎧h (-2)<0,h (2)<0即可,解得-2<x <23. (2)若f (x )=e x -a e -x 为奇函数,则满足f (x -1)>1e 2-e 2的x 的取值范围是( ) A .(-2,+∞) B .(-1,+∞) C .(2,+∞) D .(3,+∞)答案 B 解析 由f (x )=e x -a e -x 为奇函数,得f (-x )=-f (x ),即e -x -a e x =a e -x -e x ,得a =1,所以f (x )=e x -e -x ,则f (x )在R 上单调递增,又f (x -1)>1e 2-e 2=f (-2),所以x -1>-2,解得x >-1,故选B . (3)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围为______________. 答案 ⎝⎛⎭⎫13,1 解析 由已知得函数f (x )为偶函数,所以f (x )=f (|x |),由f (x )>f (2x -1),可得f (|x |)>f (|2x-1|).当x >0时,f (x )=ln(1+x )-11+x 2,因为y =ln(1+x )与y =-11+x 2在(0,+∞)上都单调递增,所以函数f (x )在(0,+∞)上单调递增.由f (|x |)>f (|2x -1|),可得|x |>|2x -1|,两边平方可得x 2>(2x -1)2,整理得3x 2-4x +1<0,解得13<x <1.所以符合题意的x 的取值范围为⎝⎛⎭⎫13,1. (4)已知g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (2-x 2)>f (x ),则x 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)答案 C 解析 因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),因为函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,所以函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0ln (1+x ),x >0.函数f (x )的图象如下:可判断f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0.在(-∞,+∞)上单调递增.因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1.故选C .(5)已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.若函数f (x )在区间[-1,a -2]上单调递增,则实数a的取值范围是____________.答案 解(1,3]析 设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧ a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].【对点训练】23.已知函数f (x )=x 3+2x ,若f (1)+f (1log a3)>0(a >0且a ≠1),则实数a 的取值范围是____________.23.答案 (0,1)∪(3,+∞) 解析 因为函数f (x )=x 3+2x 是奇函数,且在R 上是增函数,f (1)+f (1log a3)>0,所以f (1log a 3)>-f (1)=f (-1),所以1log a 3>-1,所以⎩⎪⎨⎪⎧ 1a >1,0<a <3或⎩⎪⎨⎪⎧ 0<1a <1,3<a ,所以a ∈(0,1)∪(3,+∞).24.已知函数f (x )=12x -2x ,则满足f (x 2-5x )+f (6)>0的实数x 的取值范围是________. 24.答案 (2,3) 解析 根据题意,函数f (x )=12x -2x ,f (-x )=12-x -2-x =-⎝⎛⎭⎫12x -2x =-f (x ),即函数f (x ) 为奇函数,又由y =12x 在R 上为减函数,y =-2x 在R 上为减函数,则函数f (x )在R 上为减函数,则f (x 2-5x )+f (6)>0⇒f (x 2-5x )>-f (6)⇒f (x 2-5x )>f (-6)⇒x 2-5x <-6,解得2<x <3,即x 的取值范围为(2,3).25.已知定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2x -2x ,则f (x )x>0的解集为( ) A .(-1,0)∪(0,1) B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(0,1)D .(-∞,-1)∪(1,+∞)25.答案 D 解析 因为当x >0时,函数f (x )单调递增,又f (1)=0,所以f (x )=2x -2x>0的解集为(1,+ ∞),所以f (x )x >0在(0,+∞)上的解集为(1,+∞).因为f (x )是奇函数,所以f (x )x 是偶函数,则f (x )x>0在R 上的解集为(-∞,-1)∪(1,+∞).26.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x ≥0),2x -x 2(x <0),函数g (x )=|f (x )|-1,若g (2-a 2)>g (a ),则实数a 的取值范围是( ) A .(-2,1) B .(-∞,-2)∪(2,+∞)C .(-2,2)D .(-∞,-2)∪(-1,1)∪(2,+∞)26.答案 D 解析 由题可知,f (x )为单调递增的奇函数,则g (x )为偶函数,又g (2-a 2)>g (a ),因此|2-a 2|>|a |,即(2-a 2)2>a 2,利用换元法解得a 的取值范围是(-∞,-2)∪(-1,1)∪(2,+∞).故选D .。

高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。

满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数单调性与奇偶性经典例题透析(一)
讲课人:张海青
授课时间:2014年9月23日
授课地点:教学楼二楼多媒体(二)
授课对象:高三文科优生
授课过程:
类型一、函数的单调性的证明
1.证明函数上的单调性.
证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0

∵x1>0,x2>0,∴
∴上式<0,∴△y=f(x2)-f(x1)<0
∴上递减.
总结升华:
[1]证明函数单调性要求使用定义;
[2]如何比较两个量的大小?(作差)
[3]如何判断一个式子的符号?(对差适当变形)
举一反三:
【变式1】用定义证明函数上是减函数.
思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径.
总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.
类型二、求函数的单调区间
2. 判断下列函数的单调区间;
(1)y=x2-3|x|+2;(2)
解:(1)由图象对称性,画出草图
∴f(x)在上递减,在上递减,在上递增.
(2)
∴图象为
∴f(x)在上递增.
举一反三:
【变式1】求下列函数的单调区间:
(1)y=|x+1|;(2)(3).
总结升华:
[1]数形结合利用图象判断函数单调区间;
[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.
[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数.
函数单调性与奇偶性经典例题透析(二)
讲课人:张海青
授课时间:2014年10月8日
授课地点:教学楼二楼多媒体(二)
授课对象:高三文科优生
授课过程:
类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)
3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.
解:
又f(x)在(0,+∞)上是减函数,则.
4. 求下列函数值域:
(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);
(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].
思路点拨:(1)可应用函数的单调性;(2)数形结合.
解:(1)2个单位,再上移2个单位得到,如图
1)f(x)在[5,10]上单增,;
2);
(2)画出草图
1)y∈[f(1),f(-1)]即[2,6];
2).
举一反三:
【变式1】已知函数.
(1)判断函数f(x)的单调区间;
(2)当x∈[1,3]时,求函数f(x)的值域.
5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)
的取值范围.
类型四、判断函数的奇偶性
6. 判断下列函数的奇偶性:
(1)(2)
(3)f(x)=x2-4|x|+3(4)f(x)=|x+3|-|x-3| (5)
(6)(7)
思路点拨:根据函数的奇偶性的定义进行判断.
举一反三:
【变式1】判断下列函数的奇偶性:
(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;
(4).
举一反三:
【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.
类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)
7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).
举一反三:
【变式1】(2011 湖南文12)已知为奇函数,,则= .
8. f(x)是定义在R上的偶函数,且当x<0时,f(x)=x2-2x,求当x≥0时,f(x)的解析式,并画出函数图象.
9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.
类型六、综合问题
10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,
设a>b>0,给出下列不等式,其中成立的是_________.
①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).
11. 求下列函数的值域:
(1)(2)(3)
思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.
12. 已知函数f(x)=x2-2ax+a2-1.
(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;
(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.
13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.
15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.。

相关文档
最新文档