人教版八年级上册数学 全册全套试卷检测(提高,Word版 含解析)

合集下载

人教版数学八年级上册 全册全套试卷(提升篇)(Word版 含解析)

人教版数学八年级上册 全册全套试卷(提升篇)(Word版 含解析)

人教版数学八年级上册 全册全套试卷(提升篇)(Word 版 含解

析)

一、八年级数学三角形填空题(难) 1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.

【答案】

20202α

【解析】

【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知

21211112222

a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】

解:∵∠ABC 与∠ACD 的平分线交于点A 1,

∴11118022

A ACD AC

B AB

C ∠=︒-∠-∠-∠ 1118018022

ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122

a A =∠=, 同理可得221122a A A ∠=

∠=, …

∴2020A ∠=

20202α. 故答案为:

2020

2α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.

2.如图,Rt △ABC 中,∠C=90°,∠BAC 的角平分线AE 与AC 的中线BD 交于点F ,P 为CE 中点,连结PF ,若CP=2,15BFP S ∆=,则AB 的长度为_______.

【答案】15

【解析】

【分析】

作辅助线EH AB ⊥交AB 于H ,再利用等量关系用△BFP 的面积来表示△BEA 的面积,利用三角形的面积公式来求解底边AB 的长度

人教版数学八年级上册 全册全套试卷试卷(word版含答案)

人教版数学八年级上册 全册全套试卷试卷(word版含答案)

人教版数学八年级上册 全册全套试卷试卷(word 版含答案)

一、八年级数学三角形填空题(难)

1.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.

【答案】4

【解析】

【分析】

连接111,,AC B A C B ,根据两个三角形等底同高可得

111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334

772401A B C A B C S S ∆∆===>2020,即可得出结论.

【详解】

解:连接111,,AC B A C B

∵111,,A B AB B C BC C A CA ===

根据等底同高可得:

111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S S

人教版八年级数学上册 全册全套试卷同步检测(Word版 含答案)

人教版八年级数学上册 全册全套试卷同步检测(Word版 含答案)

人教版八年级数学上册 全册全套试卷同步检测(Word 版 含答案)

一、八年级数学三角形填空题(难)

1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.

【答案】

20202α

【解析】

【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知

21211112222

a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】

解:∵∠ABC 与∠ACD 的平分线交于点A 1,

∴11118022

A ACD AC

B AB

C ∠=︒-∠-∠-∠ 1118018022

ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122

a A =∠=, 同理可得221122a A A ∠=

∠=, …

∴2020A ∠=

20202α. 故答案为:

2020

2α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.

2.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次

人教版八年级上册数学 全册全套试卷(提升篇)(Word版 含解析)

人教版八年级上册数学 全册全套试卷(提升篇)(Word版 含解析)

人教版八年级上册数学 全册全套试卷(提升篇)(Word 版 含解析) 一、八年级数学三角形填空题(难) 1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.

【答案】(

2m ) (1024

m ) 【解析】

【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.

【详解】

解:∵∠A 1=∠A 1CE-∠A 1BC=

12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=

224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:(

)2m ;()1024

m . 【点睛】

此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.

2.如图,Rt △ABC 中,∠C=90°,∠BAC 的角平分线AE 与AC 的中线BD 交于点F ,P 为CE 中点,连结PF ,若CP=2,15BFP S ∆=,则AB 的长度为_______.

【答案】15

【解析】

【分析】

作辅助线EH AB ⊥交AB 于H ,再利用等量关系用△BFP 的面积来表示△BEA 的面积,利用三角形的面积公式来求解底边AB 的长度

【详解】

八年级数学上册全册全套试卷试卷(word版含答案)

八年级数学上册全册全套试卷试卷(word版含答案)

八年级数学上册全册全套试卷试卷(word 版含答案)

一、八年级数学三角形填空题(难)

1.如图,Rt △ABC 中,∠C=90°,∠BAC 的角平分线AE 与AC 的中线BD 交于点F ,P 为CE 中点,连结PF ,若CP=2,15BFP S ∆=,则AB 的长度为_______.

【答案】15

【解析】

【分析】

作辅助线EH AB ⊥交AB 于H ,再利用等量关系用△BFP 的面积来表示△BEA 的面积,利用三角形的面积公式来求解底边AB 的长度

【详解】

作EH AB ⊥

∵AE 平分∠BAC

BAE CAE ∴∠=∠

EC EH ∴=

∵P 为CE 中点

4EC EH ==∴

∵D 为AC 中点,P 为CE 中点

=x =y PEF PCF CDF ADF S S S S ==△△△△∴设,

15x BEF S =-△∴

15+x+y BCD BDA S S ==△△∴

y=15+x+y-y=15+x BFA BDA S S =-△△∴

15x+15+x=30BEA BEF BFA S S S =+=-△△△∴

1=302

BEA S AB EH ⨯=△∵ =15AB ∴

【点睛】

本题考查了辅助线的运用以及三角形的中线平分三角形的面积,解题的关键在于如何利用

△BFP 的面积来表示△BEA 的面积

2.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.

【答案】2b-2a

【解析】

【分析】

【详解】

根据三角形的三边关系得:a ﹣b ﹣c <0,c +a ﹣b >0,

人教版八年级上册数学 全册全套试卷测试卷 (word版,含解析)

人教版八年级上册数学 全册全套试卷测试卷 (word版,含解析)

人教版八年级上册数学全册全套试卷测试卷(word版,含解析)

一、八年级数学三角形填空题(难)

1.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.

【答案】1980

【解析】

【详解】

解:设多边形的边数为n,多加的角度为α,则

(n-2)×180°=2005°-α,

当n=13时,α=25°,

此时(13-2)×180°=1980°,α=25°

故答案为1980.

2.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=_____.

【答案】115°.

【解析】

【分析】

根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出

∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.

【详解】

解;∵∠A=50°,

∴∠ABC+∠ACB=180°﹣50°=130°,

∵∠B和∠C的平分线交于点O,

∴∠OBC=1

2

∠ABC,∠OCB=

1

2

∠ACB,

∴∠OBC+∠OCB=1

2

×(∠ABC+∠ACB)=

1

2

×130°=65°,

∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,

故答案为:115°.

【点睛】

本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.

3.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.

【答案】12

【解析】

试题解析:根据题意,得

(n-2)•180-360=1260,

八年级上册数学 全册全套试卷(提升篇)(Word版 含解析)

八年级上册数学 全册全套试卷(提升篇)(Word版 含解析)

八年级上册数学全册全套试卷(提升篇)(Word版含解析)

一、八年级数学全等三角形解答题压轴题(难)

1.(1)问题背景:

如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明

△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;

(2)探索延伸:

如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,

且∠EAF=1

2

∠BAD,上述结论是否仍然成立,并说明理由;

(3)结论应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离.

(4)能力提高:

如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且

∠MAN=45°.若BM=1,CN=3,试求出MN的长.

【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN10.【解析】

试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得

人教版数学八年级上册 全册全套试卷同步检测(Word版 含答案)

人教版数学八年级上册 全册全套试卷同步检测(Word版 含答案)

人教版数学八年级上册全册全套试卷同步检测(Word版含答案)

一、八年级数学全等三角形解答题压轴题(难)

1.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.

(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;

(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.

【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或

3

2

(3)9s 【解析】

【分析】

(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出

∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;

(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.

(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.

【详解】

(1)当t=1时,AP=BQ=3,BP=AC=9,

人教版八年级上册数学 全册全套试卷同步检测(Word版 含答案)

人教版八年级上册数学 全册全套试卷同步检测(Word版 含答案)

人教版八年级上册数学全册全套试卷同步检测(Word版含答案)

一、八年级数学全等三角形解答题压轴题(难)

1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.

(1)求a,b的值;

(2)点P在直线AB的右侧;且∠APB=45°,

①若点P在x轴上(图1),则点P的坐标为;

②若△ABP为直角三角形,求P点的坐标.

【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】

【分析】

(1)利用非负数的性质解决问题即可.

(2)①根据等腰直角三角形的性质即可解决问题.

②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】

(1)∵a2+4a+4+b2﹣8b+16=0

∴(a+2)2+(b﹣4)2=0

∴a=﹣2,b=4.

(2)①如图1中,

∵∠APB=45°,∠POB=90°,

∴OP=OB=4,

∴P(4,0).

故答案为(4,0).

②∵a=﹣2,b=4

∴OA=2OB=4

又∵△ABP为直角三角形,∠APB=45°

∴只有两种情况,∠ABP=90°或∠BAP=90°

①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.

∴∠PCB=∠BOA=90°,

又∵∠APB=45°,

∴∠BAP=∠APB=45°,

∴BA=BP,

又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,

∴∠ABO=∠BPC,

八年级上册数学 全册全套试卷(提升篇)(Word版 含解析)

八年级上册数学 全册全套试卷(提升篇)(Word版 含解析)

八年级上册数学 全册全套试卷(提升篇)(Word 版 含解析)

一、八年级数学三角形填空题(难)

1.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .

【答案】135

【解析】

解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点

O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.

点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.

2.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_____cm 或_____cm .

【答案】22cm, 26cm

【解析】

【分析】

题目给出等腰三角形有两条边长为10cm 和6cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.

【详解】

(1)当腰是6cm 时,周长=6+6+10=22cm ;

(2)当腰长为10cm 时,周长=10+10+6=26cm ,

所以其周长是22cm 或26cm .

故答案为:22,26.

【点睛】

本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.

3.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.

【答案】30

【解析】

八年级数学上册全册全套试卷检测(提高,Word版 含解析)

八年级数学上册全册全套试卷检测(提高,Word版 含解析)

八年级数学上册全册全套试卷检测(提高,Word版含解析)

一、八年级数学三角形填空题(难)

1.直角三角形中,两锐角的角平分线所夹的锐角是_____度.

【答案】45

【解析】

【分析】

根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.

【详解】

如图所示

△ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F.

∵∠ACB=90°,

∴∠CAB+∠ABC=90°

∵AD,BE,分别是∠CAB和∠ABC的角平分线,

∴∠FAB+∠FBA=1

2∠CAB+1

2

∠ABC=45°.

故答案为45.

【点睛】

此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.

2.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则

∠1﹣∠2的度数是_____.

【答案】92°.

【解析】

【分析】

由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.

【详解】

由折叠的性质得:∠C'=∠C=46°,

根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠C',

则∠1=∠2+∠C+∠C'=∠2+2∠C=∠2+92°,

则∠1﹣∠2=92°.

故答案为:92°.

【点睛】

考查翻折变换(折叠问题),三角形内角和定理,熟练掌握折叠的性质是解题的关键.

3.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________.

【答案】5<a<11

【解析】

【分析】

根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a<8+3,再解即可.

数学八年级上册 全册全套试卷测试与练习(word解析版)

数学八年级上册 全册全套试卷测试与练习(word解析版)

数学八年级上册全册全套试卷测试与练习(word解析版)

一、八年级数学全等三角形解答题压轴题(难)

1.如图1,等腰△ABC中,AC=BC=42, ∠ACB=45˚,AO 是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.

(1) 求证:△ACD≌△BCE;

(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.

(3) 连接OE,直接写出线段OE的最小值.

【答案】(1)证明见解析;(2)PQ=6;(3)OE=422

-

【解析】

试题分析:()1根据SAS即可证得ACD BCE

≌;

()2首先过点C作CH BQ

⊥于H,由等腰三角形的性质,即可求得45

DAC

∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.

()3OE BQ

⊥时,OE取得最小值.

试题解析:()1证明:∵△ABC与△DCE是等腰三角形,

∴AC=BC,DC=EC,45

ACB DCE

∠=∠=,

45

ACD DCB ECB DCB

∴∠+∠=∠+∠=,

∴∠ACD=∠BCE;

在△ACD和△BCE中,

,

AC BC

ACD BCE

DC EC

=

∠=∠

⎪=

(SAS)

ACD BCE

∴≌;

()2首先过点C作CH BQ

⊥于H,

(2)过点C作CH⊥BQ于H,

∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45

DAC

∴∠=,

ACD BCE

≌,

45

PBC DAC

∴∠=∠=,

∴在Rt BHC中,

22

424

22

CH BC

人教版八年级数学上册 全册全套试卷试卷(word版含答案)

人教版八年级数学上册 全册全套试卷试卷(word版含答案)

人教版八年级数学上册 全册全套试卷试卷(word 版含答案)

一、八年级数学三角形填空题(难)

1.如图,ABC 中,点D 在AC 的延长线上,E 、F 分别在边AC 和AB 上,BFE ∠与BCD ∠的平分线相交于点P ,若ABC ∠=70°FEC ∠=80°,则P ∠=______.

【答案】85°

【解析】

【分析】

根据四边形内角和等于360°,在四边形FECB 中∠B +∠BFE +∠FEC +∠BCE =360°,结合角平分线的定义计算即可得∠1-∠2=15°;再在四边形EFPC 中求出∠1-∠2+∠P =110°即可解答.

【详解】

解:

∵∠BFE =2∠1,∠BCD =2∠2,

又∵∠BFE +∠ABC +∠FEC +∠BCE =360°,ABC ∠=70°,FEC ∠=80°,

∴2∠1+(180°-2∠2)+70°+80°=360°,

∴∠1-∠2=15°;

∵在四边形EFPC 中,∠PFE +∠FEC +∠P +∠PCE =360°,

∴∠1+80°+(180°-∠2)+∠P =360°,

∴∠1-∠2+∠P =100°,

∴∠P =85°,

故答案为:85°.

【点睛】

本题考查的是三角形内角和定理和四边形内角和定理的应用,掌握三角形内角和等于180°和四边形内角和等于360°是解题的关键.

2.已知三角形的两边的长分别为2cm 和8cm ,设第三边中线的长为x cm ,则x 的取值范围是_______

【答案】3<x <5

【解析】

延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.

八年级数学上册 全册全套试卷测试卷 (word版,含解析)

八年级数学上册 全册全套试卷测试卷 (word版,含解析)

八年级数学上册全册全套试卷测试卷(word版,含解析)

一、八年级数学三角形填空题(难)

1.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10

【解析】

【分析】

【详解】

解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.

故答案为:10 .

考点:多边形的内角和定理.

2.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.

【答案】22

【解析】

【分析】

底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.

【详解】

试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.

②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.

故填22.

【点睛】

本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.

3.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.

【答案】12

【解析】

试题解析:根据题意,得

(n-2)•180-360=1260,

解得:n=11.

那么这个多边形是十一边形.

考点:多边形内角与外角.

4.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________.

【答案】5<a<11

【解析】

【分析】

根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可

得8-3<a<8+3,再解即可.

【详解】

解:根据三角形的三边关系可得:8-3<a<8+3,

八年级上册数学 全册全套试卷检测(提高,Word版 含解析)

八年级上册数学 全册全套试卷检测(提高,Word版 含解析)

八年级上册数学 全册全套试卷检测(提高,Word 版 含解析)

一、八年级数学三角形填空题(难)

1.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.

【答案】78.

【解析】

【分析】

利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到

∠DBC=

12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12

∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.

【详解】

∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D

∴∠DBC=12∠ABC ,∠ACD=12

(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒,

∴∠D=12

∠A=30︒, ∵84BEH ︒∠=,

∴∠DEH=96︒,

∵EFD ∆与EFH ∆关于直线EF 对称,

∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,

∵∠DFG=∠D+∠DEG=78︒,

∴n=78.

故答案为:78.

【点睛】

此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12

∠A=30︒是解题的关键.

人教版数学八年级上册 全册全套试卷综合测试卷(word含答案)

人教版数学八年级上册 全册全套试卷综合测试卷(word含答案)

人教版数学八年级上册 全册全套试卷综合测试卷(word 含答案)

一、八年级数学三角形填空题(难)

1.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )

A .144°

B .84°

C .74°

D .54°

【答案】B

【解析】 正五边形的内角是∠ABC =()521805-⨯=108°,∵AB =BC ,∴∠CAB =36°,正六边形的内角是∠ABE =∠E =()621806

-⨯=120°,∵∠ADE +∠E +∠ABE +∠CAB =360°,∴∠ADE =360°–120°–120°–36°=84°,故选B .

2.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .

【答案】135

【解析】

解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点

O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.

点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.

3.如图,李明从A 点出发沿直线前进5米到达B 点后向左旋转的角度为α,再沿直线前进5米,到达点C 后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.

【答案】40︒.

【解析】

【分析】

根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学全册全套试卷检测(提高,Word版含解析)

一、八年级数学全等三角形解答题压轴题(难)

1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.

(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;

(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).

【答案】(1)过程见解析;(2)MN= NC﹣BM.

【解析】

【分析】

(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN

=60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到

MN=BM+NC.

(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.

【详解】

解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.

∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,

∴∠DBC=∠DCB=30°

∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,

在△MBD与△ECD中,

∵BD CD

MBD ECD BM CE

∴△MBD≌△ECD(SAS),

∴MD=DE,∠BDM=∠CDE

∵∠MDN =60°,∠BDC=120°,

∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°,

在△DMN与△DEN中,

∵MD DE

MDN EDN DN DN

∴△DMN≌△DEN(SAS),

∴MN=NE=CE+NC=BM+NC.

(2)如图②中,结论:MN=NC﹣BM.

理由:在CA上截取CE=BM.∵△ABC是正三角形,

∴∠ACB=∠ABC=60°,

又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,

∴∠MBD=∠DCE=90°,

在△BMD和△CED中

∵BM CE

MBD ECD BD CD

∴△BMD≌△CED(SAS),

∴DM= DE,∠BDM=∠CDE

∵∠MDN =60°,∠BDC=120°,

∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,

即:∠MDN =∠NDE=60°,

在△MDN和△EDN中

∵ND ND

EDN MDN ND ND

∴△MDN≌△EDN(SAS),

∴MN =NE=NC﹣CE=NC﹣BM.

【点睛】

此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.

2.(1)问题背景:

如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是延长FD到点G,使DG=BE,连结AG,先证明

△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;

(2)探索延伸:

如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,

且∠EAF=1

2

∠BAD,上述结论是否仍然成立,并说明理由;

(3)结论应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离.

(4)能力提高:

如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且

∠MAN=45°.若BM=1,CN=3,试求出MN的长.

【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN10.【解析】

试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得

EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作

∠CAD=∠BAM,截取AD=A M,连接CD,DN,证明△ACD≌△ABM,得到CD=BM,再证

MN=ND,则求出ND的长度,即可得到答案.

解:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;

(2)EF=BE+FD仍然成立.

证明:如答图1,延长FD到点G,使DG=BE,连接AG,

∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,

相关文档
最新文档