【北师大版】2017年八年级数学下册+1.3+线段的垂直平分线(第1课时)导学案(精品)

合集下载

1.3 线段的垂直平分线 课件(共42张PPT)数学北师大版八年级下册

1.3 线段的垂直平分线 课件(共42张PPT)数学北师大版八年级下册

感悟新知
知识点 2 线段垂直平分线的判定定理
知2-讲
1. 判定定理 到一条线段两个端点距离相等的点,在这条线 段的垂直平分线上 . 条件: 点到线段两个端点距离相等 . 结论: 点在线段的垂直平分线上 .
感悟新知
2. 几何语言 如图 1-3-3, ∵ AB=AC, ∴点 A 在线段 BC 的垂直平分线上 .
感悟新知
2. 几何语言 如图 1-3-1, ∵ AD ⊥ BC 于 D, BD=CD, ∴ AB=AC.
知1-讲
感悟新知
知1-讲
3. 线段垂直平分线的性质与角平分线的性质的联系与区别 联系: 两者都可以直接得到两条线段相等 . 区别: 前者指的是点到点的距离,后者指的是点到直线的 距离 .
感悟新知
知4-练
感悟新知
知4-练
(2)用尺规作 BC 边的垂直平分线.(不写作法,保留作 图痕迹)
解:如图所示, 直线MN即为所求.
性质 判定
线段的垂直 平分线
线段的垂 直平分线
三角形三条 边的垂直平 分线
∴线段 AD 所在的直线是线段 EF 的垂直平分线 .
感悟新知
知2-练
教你一招:判定线段垂直平分线的两种方法:一是定 义法,二是判定定理 . 一般习惯用定义法 进行判定,而利用判定定理判定一条直线 是线段的垂直平分线时,一定要证明直线 上有两点到线段两个端点的距离相等 .
感悟新知
知2-练
2-1.如图, AB=AD,BC=DC, 点 E 是 AC上一点 . 求证: (1) BE=DE;
感悟新知
解题秘方:利用线段的垂直平分线的性质将要求 的线段向已知条件转化 .
知1-练
解: ∵ DE 为 BC 的垂直平分线,∴ CD=BD. ∴ △ ACD 的周长 =AC+AD+CD=AC+AD+BD=AC+AB=8 cm. ∵ AB=5 cm,∴ AC=3 cm.

第一章三角形的证明1.3线段的垂直平分线第1课时线段垂直平分线的的性质与判定北师大版八年级数学下册

第一章三角形的证明1.3线段的垂直平分线第1课时线段垂直平分线的的性质与判定北师大版八年级数学下册

无数 种.
3. 下列说法:
① 若点 P、E 是线段 AB 的垂直平分线上两点,则 EA=
EB,PA=PB; ② 若 PA=PB,EA=EB,则直线 PE 垂直平分线段 AB; ③ 若 PA=PB,则点 P 必是线段 AB 的垂直平分线上的 点;
④ 若 EA=EB,则经过点 E 的直线垂直平分线段 AB. 其中正确的有 ①②③ (填序号).
A.三条角平分线的交点 B.三边垂直平分线的交点 C.三边高线的交点 D.没有这样的点
3. 在△ABC 中,AB 的中垂线与 AC 边所在直线相交所得的锐角为 50°,则∠A 的
度数为( C)
A. 50°
B. 40°
C. 40°或140°
D. 40°或50°
4. 已知:如图,在△ABC 中,边 AB、
P3,… 到点 A 与点 B 的距离之间的数量关系. P3
P1A _=___P1B
P2 P1
P2A __=__ P2B
A
B
P3A __=__ P3B
l
活动探究 将△ABC 沿直线 l 对折,由于 l
是线段 AB 的垂直平分线,因此点 A 与点 B 重合. 从而线段 PA 与线段 PB 重合,于是 PA = PB.
l
证明:∵ l⊥AB,
P
∴∠PCA =∠PCB.
又 AC = CB,PC = PC,
∴△PCA≌△PCB (SAS). A
C
B
∴ PA = PB.
微课——证明线段垂直平分线的性质
点击 视频 开始 播放 ←
总结归纳
线段垂直平分线的性质定理:
线段垂直平分线上的点到这条线段两个端点 的距离相等.
练习
AA′ 沿直线 l 折叠,则点 A 与点 A′ 重合,AD = A′D,

北师大版八年级数学下册 线段的垂直平分线---知识讲解(提高) 含答案解析

北师大版八年级数学下册 线段的垂直平分线---知识讲解(提高)  含答案解析

线段的垂直平分线---知识讲解(提高)责编:杜少波【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题.【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了. (2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1.如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20【思路点拨】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ ABC的周长.【答案】C;【解析】∵在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.【总结升华】此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.举一反三:【变式】阅读“作线段的垂直平分线”的作法,完成填空及证明.已知:线段AB ,要作线段AB 的垂直平分线.作法:(1)分别以A 、B 为圆心,大于 12AB 的同样长为半径作弧,两弧分别交于点C 、D ; (2)作直线CD .直线CD 即为所求作的线段AB 的垂直平分线.根据上述作法和图形,先填空,再证明.已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=___=___.求证:CD ⊥AB ,CD 平分AB .证明:【答案】已知:如图,连接AC 、BC 、AD 、BD ,AC=AD=BC=BD .求证:CD ⊥AB ,CD 平分AB . 证明:CD 与AB 交于点E .∵在△ACD 和△BCD 中,,AC BCAD BD CD CD=⎧⎪=⎨⎪=⎩∴△ACD ≌△BCD (SSS ).∴∠1=∠2.∵AC=BC ,∴△ACB 是等腰三角形.∴CE ⊥AB ,AE=BE .即 CD ⊥AB ,CD 平分AB .2.(2015秋•和县期中)如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC 的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.【思路点拨】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.【答案与解析】解:(1)∵l1是AB边的垂直平分线,∴DA=DB,∵l2是AC边的垂直平分线,∴EA=EC,BC=BD+DE+EC=DA+DE+EA=6cm;(2)∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=16cm,∴OA=0B=OC=5cm;(3)∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵DA=D B,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=60°.【总结升华】本题考查的是线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.举一反三:【变式】如图,在△ABC中,已知BC=7,AC=16,AB的垂直平分线交AB于点D,交AC于点E,求△BEC的周长.【答案】∵DE是AB的垂直平分线,∴BE=AE,∴BE+EC=AE+EC=AC.∴△BEC的周长=BE+EC+BC=AC+BC=23.要点二、线段的垂直平分线的逆定理3.(2016春•鄄城县期中)如图,在△ABC中,AD是高,在线段DC上取一点E,使DE=BD,已知AB+BD=DC.求证:E点在线段AC的垂直平分线上.【思路点拨】根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.【答案与解析】证明:∵AD是高,∴AD⊥BC,又∵BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又∵AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.【总结升华】本题考查了线段的垂直平分线的应用,掌握线段垂直平分线的性质和判定定理是解题的关键.类型三、线段的垂直平分线定理与逆定理的综合应用4.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.【思路点拨】应用:连接PA、PB,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②PA=PC,③PA=PB 三种情况,根据三角形的性质计算即可得解.【答案与解析】应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=33DB=36AB,与已知PD=12AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=12AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,2222534AC BC AB∴=-=-=①若PB=PC,设PA=x,则x2+32=(4-x)2,∴x=78,即PA=78,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或78.【总结升华】考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.举一反三:【变式】在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠BAC=110°,则∠EAG=________.【答案】40°;解:∠B=x,∠c=y,则,∠B+∠C=180°-∠BAC,即x+y=70°①,∵DE、GF分别是AB、AC的垂直平分线,∴BE=AE,AG=CG,∴∠BAE=∠B=x,∠CAG=∠C=y,∵∠BAE+∠EAG+∠GAC=∠BAC,∴x+y+∠EAG=110°②,联立①②得,∠EAG=110°-70°=40°.故答案为:40°.要点四、尺规作图5.如图,每个格的单位长度是1,△ABC的外心坐标是 (_____________).【思路点拨】可分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC 的外心,继而可求得答案.【答案与解析】分别作BC与AB的垂直平分线,两条垂直平分线交于点G,则点G即为△ABC的外心,∴△ABC的外心坐标是(-2,-1).故答案为:(-2,-1).【总结升华】考察尺规作图的能力和三角形的外心的定义.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(作图不写作法,但要求保留作图痕迹.)【答案】解:如图,点P就是要找的点.。

八年级数学下册 1.3 线段的垂直平分线 线段垂直平分线定理知识总结素材 (新版)北师大版

八年级数学下册 1.3 线段的垂直平分线 线段垂直平分线定理知识总结素材 (新版)北师大版

线段垂直平分线定理知识总结一、线段垂直平分线的性质定理文字语言 符号语言 图形语言线段垂直平分线上的点到这条线段两个端点的距离相等 因为点P 在线段AB 的垂直平分线上,所以PA=PBP OBA说明:1、这里的距离指的是点与点之间的距离,也就是两点之间线段的长度。

2、在使用该定理时必须保证两个前提条件:一是垂直于线段,二是平分这条线段。

例题、如下图,在△ABC 中,AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长。

分析:题中给出了线段垂直平分线这个条件,所以可以考虑运用其性质定理,从而得出AE=BE ,把BE 与AE 进行等量代换,再根据△BCE 的周长及AC 的长,可求出BC 的长。

解:因为ED 是线段AB 的垂直平分线, 所以BE=AE 。

因为△BCE 的周长等于50, 即BE +EC +BC=50, 所以AE +EC +BC=50。

又因为AE +EC=AC=27, 所以BC=50-27=23。

二、线段垂直平分线定理的逆定理文字语言 符号语言 图形语言到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

因为PA=PB ,所以点P 在线段AB 的垂直平分线上。

P OBA证明某一条直线是另一条线段的垂直平分线有两种方法:第一种:根据线段垂直平分线的定义,也就是经过线段的中点,并且垂直于这条线段的EDCBA直线,叫做这条线段的垂直平分线。

使用这种方法必须满足两个条件:一是垂直二是平分;第二种:可以证明有两个点都在线段的垂直平分线上,根据两点确定一条直线,就可以判断这两点所在的直线就是这条线段的垂直平分线。

例题1、如下图,P 为线段AB 外的一点,并且PA=PB 。

求证:点P 在线段AB 的垂直平分线上。

分析:要想说明某一点在线段的垂直平分线上,可以根据线段的垂直平分线的定义来进行判断。

证明:过点P 作PC ⊥AB ,垂足为点C 。

北师大版八下数学1.3《线段的垂直平分线》知识点精讲

北师大版八下数学1.3《线段的垂直平分线》知识点精讲

注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。

垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。

巧记方法:点到线段两端距离相等。

可以通过全等三角形证明。

垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。

2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。

得到两个交点(两交点交与线段的同侧)。

3、连接这两个交点。

原理:等腰三角形的高垂直平分底边。

方法之二:1、连接这两个交点。

原理:两点成一线。

等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。

)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。

)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。

)垂直平分线的判定①利用定义.②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.证明:∵∠C=90,°∠A=30°(已知),∴∠ABC=60°(Rt△的两个锐角互余)又∵BD平分∠ABC(已知)∴∠DBA=1/2∠ABC=30°=∠A∴BD=AD(等角对等边)∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例2.如图,已知:在△AB C中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。

北师大版八年级数学(下)第一章 线段的垂直平分线

北师大版八年级数学(下)第一章  线段的垂直平分线

1.3线段的垂直平分线一、知识点梳理1.线段垂直平分线性质定理:①线段垂直平分线垂直平分某条线段②线段垂直平分线上的点到这条线段的两个端点的距离相等2.线段垂直平分线判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上3.作图要求:掌握尺规作图做已知线段的垂直平分线4.三角形外心:三角形三条边垂直平分线的交点二、经典题型总结题型一:利用线段垂直平分线的性质求线段长题型二:利用三角形的垂直平分线的性质求角度题型三:利用线段垂直平分线解决与周长有关问题题型四:利用作线段垂直平分线解决实际问题题型五:线段垂直平分线的判定定理的应用三、解题技巧点睛1.若题目中出现“求一点到某几个点的距离相等”则可以想到运用垂直平分线的性质画出中垂线2.三角形外心也是三角形外接圆的圆心,锐角三角形的外心在三角形的内部,直角三角形的外心在三角形的斜边中点,钝角三角形的外心在三角形的外部3.求两条线短的最短距离,通常是想到过一个已知点做已知直线的对称点,连接对称点与另一个已知点的连线即为最短距离。

4.灵活运用垂直平分线逆定理解决题目四、易错点分析在运用线段垂直平分线计算周长的时候容易出现错误五、典型例题分析题型一:利用线段垂直平分线的性质求线段长例题:在△ABC中,AC=5,AB的垂直平分线DE交AB、AC于点E、D.(1)若△BCD的周长为8,求BC之长. (2)若BC=4,求△BCD的周长.题型二:利用三角形的垂直平分线的性质求角度例题:如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=___∘.题型三:利用线段垂直平分线解决与周长有关问题例题:如图,在直角中,∠BAC=90∘,AB=8 ,AC=6 ,DE 是AB 边的垂直平分线,垂足为D ,交BC 于点E ,连接AE ,则△ACE 的周长为________.题型四:利用作线段垂直平分线解决实际问题例题:如图,某城市规划局为了方便居民的生活,计划在三个住宅小区A,B,C 之间修建一个购物中心,试问:该购物中心应建于何处,才能使得它到三个小区的距离相等?题型五:线段垂直平分线的判定定理的应用如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D,求证:点D在AB的垂直平分线上.六、中考真题再现(2019.长沙.9题)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是A.20° B.30° C.45° D.60°(2019.江苏.15题)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD 平分∠ACB.若AD=2,BD=3,则AC的长.七、习题巩固训练1.如图所示,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线交AB于D,交AC于E,连接BE,则∠EBC的度数是()A.15°B.20°C.65°D.100°2.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.60°C.50°D.55°3.如图,在等腰中,,,的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则的度数是A. B. C. D.4.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是______.5.如图,线段AB的垂直平分线与BC的垂直平分线的交点P恰好在AC上,且AC=10cm,则B点到P点的距离为______.6.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=__________.7.如图,AD和EF分别是△ABC中BC与AB垂直平分线,且BE+CE=20cm,则AB=.8.如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF=.9.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD的度数为10.如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则的周长的最小值为______.11.如图,某校两个班的学生分别在C,D两处参加植树活动,现要在道路AO,OB的交叉区域内设一个茶水供应点M,使点M到两条路的距离相等,且MD=MC,这个茶水供应点应建在何处?12.如图所示,Rt△ABC中,∠C=90°,AC=4,BC=3.(1)根据要求用尺规作图:作斜边AB边上的高CD,垂足为D;(2)求CD的长.13.如图在△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE(垂足为D)交BC的延长线于点E,求线段CE的长.14.如图所示,∠BAC=∠ABD,AC=BD,点O是AD,BC的交点,E是AB的中点.求证:OE 是线段AB的垂直平分线.15.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F,若∠MFN=70°,求∠MCN的度数.16.两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)17.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).18.铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.19.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?20.已知:如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?21.如图,在△ABC中,∠ACB=90°,点D,E在AB上,且AF垂直平分CD,BG垂直平分CE(1)求∠ECD的度数;(2)若∠ACB为α,则∠ECD的度数能否用含α的式子来表示.22.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF ⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=6,BC=7,求△ABC的周长.23.如图,OE,OF分别是△ABC中AB,AC边的中垂线(即垂直平分线),∠OBC、∠OCB的平分线相交于点I,试判定OI与BC的位置关系,并给出证明.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.。

初中数学北师大版八年级下册第一章三角形的证明3.线段的垂直平分线 公开课比赛一等奖

初中数学北师大版八年级下册第一章三角形的证明3.线段的垂直平分线 公开课比赛一等奖

北师大版8年级下册第1章第3节线段的垂直平分线(1)教案一、教学目标:1.能够运用公理和所学过的定理证明线段的垂直平分线的性质定理和判定定理.2.能够利用尺规作已知线段的垂直平分线.3.经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.二、教学过程:<一>创设情境,引入新课师:(课件演示)如图,A、B表示两个仓库,要在一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?生:作线段AB的垂直平分线,码头应建在线段AB的垂直平分线与河岸边的交点上.师:语言非常准确.这节课我们就来研究线段的垂直平分线.(板书课题——线段的垂直平分线)师:刚才这位同学说码头应建在线段AB的垂直平分线与河岸边的交点上,谁能说出这样做的道理吗?生:线段垂直平分线上的点到这条线段的两个端点的距离相等.师:非常好,这是我们七年级时学过的一句话。

还记得当时我们是怎样得到的吗?生:不记得了.师:那我来帮大家回忆一下。

(教师通过演示折纸过程,验证线段垂直平分线的性质)师:七年级时我们用折纸的方法得到了“线段垂直平分线上的点到这条线段的两个端点的距离相等”.同学们知道这是不够的,还必须利用公理及已学过的定理、推论证明它.这节课我们一起用所学的公理、定理来证明线段的垂直平分线的性质定理.教师板书:定理线段垂直平分线上的点到线段两个端点的距离相等.<二>、自主探究,感受新知1.线段垂直平分线性质定理的证明师:现在就请同学们自己思考证明的思路和方法,并尝试写出证明过程.(学生画图,写出已知、求证. 证明方法和过程对于学生来说不是很困难的,可以找程度比较差的同学回答)生:口答已知、求证、证明.师:课件演示.已知:如图,直线MN ⊥AB ,垂足是C ,且AC =BC ,P 是MN 上的点.求证:PA =PB .N A PB CM证明:∵MN ⊥AB , ∴∠PCA =∠PCB =90°.∵AC =BC ,PC =PC , ∴△PCA ≌PCB(SAS).∴PA =PB (全等三角形的对应边相等).师:若直线MN 上还有一点Q ,根据线段垂直平分线性质定理,能得出什么结论?生:QA =QB.(教师在图形中找出几个不同位置的点P ,学生分别说出结论,就是为了让学生熟悉图形,能熟练应用垂直平分线性质定理找出相等的线段)师:从图形中,你还能找出哪些相等的线段、相等的角呢?生:∠ A =∠B ,∠CPA =∠CPB .(挖掘基本图形中其它的等量关系,使学生认识到学习知识不要局限于定理,为以后应用线段垂直平分线的性质定理进行证明、计算打下基础.)2.线段垂直平分线判定定理的证明师:你能写出上面这个定理的逆命题吗?生: 思考.师:这个命题不是“如果……那么……”的形式,要写出它的逆命题,可以先将原命题写成“如果……那么……”的形式,逆命题就容易写出.谁来分析一下原命题的条件和结论?生:原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点到线段两个端点的距离相等”. 师:有了这位同学的精彩分析,逆命题就很容易写出来.生:如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.师:谁能把它描述得更简捷?生:到线段两个端点的距离相等的点在这条线段的垂直平分线上.师:当我们写出逆命题时,就应想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明,这个命题是真还是假呢?生:真命题.师:要证明这一定理,先要写出已知、求证。

1.3 线段的垂直平分线第1课时 线段的垂直平分线的性质与判定 北师版数学八年级下册课件

1.3 线段的垂直平分线第1课时 线段的垂直平分线的性质与判定 北师版数学八年级下册课件

在数学中,光靠观察是不够的,还需要
理性的证明.
如何证明这 个结论呢?
线段垂直平分线的性质
已知:如图所示,直线MN⊥ AB,垂足是C,并且AC=BC,P是 MN上任一点.
求证:PA=PB.
M P
证明:∵ MN⊥ AB , ∴ ∠PCA= ∠PCB=90°.
A
C
B
又∵ AC=BC, PC=PC,
N
∴ △PCA≌ △PCB(SAS).
定理中说线段垂直平分线上的任一点到线 段两个端点的距离相等,但是在证明过程中, 只是随机选了一种情况来证明,这并不影响定 理的正确性,因为所选的点是任意的.
线段垂直平分线的判定
你还记得上节课学过的关于互逆命题和互逆定 理的知识吗?
逆命题定义:在两个命题中,如果一个命题的 条件和结论分别是另一个命题的结论和条件,那么 这两个命题称为互逆命题,其中一个命题称为另一 个命题的逆命题.
∴ PA=PB(全等三角形的对应边相等).
线段垂直平分线的性质
M
由证明过程可以看出,两组对应
P
线段分别相等,那么这个事实的几 何意义是什么?
A
三角形两条边对应相等意味 着线段垂直平分线上的点到线段 两个端点的距离相等.
C
B
N
线段垂直平分线的性质
线段垂直平分线的性质定理:线段垂直平 分线上的点到这条线段两个端点的距离相等.
古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政 治上的纠葛,被关进监狱,并被处以死刑.在监狱里,他思考改 圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活. 他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来 的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来 说,时间是不多了,因此他很自然地想到要有限次地使用尺规解 决问题.后来以理论形式具体明确这个规定的是欧几里德的《几 何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规 作图也一直被遵守并流传下来.

《线段的垂直平分线》教案 北师大版

《线段的垂直平分线》教案 北师大版

1.3 线段的垂直平分线 第1课时 线段的垂直平分线1.掌握线段垂直平分线的性质;(重点) 2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)一、情境导入如图所示,有一块三角形田地,AB =AC =10m ,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△BDC 的周长为17m ,你能帮测量人员计算BC 的长吗?二、合作探究 探究点一:线段的垂直平分线的性质定理【类型一】 应用线段垂直平分线的性质定理求线段的长如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长为35cm ,则BC 的长为()A .5cmB .10cmC .15cmD .17.5cm 解析:∵△DBC 的周长=BC +BD +CD =35cm ,又∵DE 垂直平分AB ,∴AD =BD ,故BC +AD +CD =35cm.∵AC =AD +DC =20,∴BC =35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【类型二】 线段垂直平分线的性质定理与全等三角形的综合运用如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD . 解析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB =BF 即可.证明:(1)∵AD ∥BC ,∴∠ADC =∠ECF .∵E 是CD 的中点,∴DE =EC .又∵∠AED =∠CEF ,∴△ADE ≌△FCE ,∴FC =AD .(2)∵△ADE ≌△FCE ,∴AE =EF ,AD =CF .∵BE ⊥AE ,∴BE 是线段AF 的垂直平分线,∴AB =BF =BC +CF .∵AD =CF ,∴AB =BC +AD .方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段的垂直平分线的判定定理如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的关系.解析:先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,易证AD 垂直平分EF .解:AD 垂直平分EF .理由如下:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠EAD =∠F AD ,∠AED =∠AFD .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF ,DE =DF ,∴直线AD 垂直平分线段EF .方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.。

北师大版八年级下册数学《线段的垂直平分线》三角形的证明说课教学课件复习

北师大版八年级下册数学《线段的垂直平分线》三角形的证明说课教学课件复习
三角形三条边的垂直平分线的性质:三角形三条边的垂直平分线 相交于一点,并且这一点到三个顶点的距离相等.
实践探究,交流新知
已知等腰三角形的底边和该边上的高,求作等腰三角形
(1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作 几个?所作出的三角形都全等吗? (2)已知等腰三角形的底边,你能用尺规作出等腰三角形吗?如果能,能作几 个?所作出的三角形都全等吗? (3)已知等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?如 果能,能作几个?
. 39°
3.如图,在△ABC中,∠BAC是钝角. (1)画出边BC上的中线AD; (2)画出边BC上的高AH.
第1题
第2题
第3题
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获? (1)三角形三条边的垂直平分线的性质 (2)尺规作线段的垂直平分线、等腰三角形
2.布置作业:
开放训练,体现应用
例1 (教材第22页例1)已知:如图,在△ABC中,AB=AC,O是△ABC内一点, 且OB=OC.求证:直线AO垂直平分线段BC.(解法不唯一)
证明:∵AB=AC, ∴点A为线段BC垂直平分线上的一点 ∵OB=OC, ∴点O为线段BC垂直平分线上的一点 ∴直线AO是线段BC的垂直平分线
课堂检测,巩固新知
解:(1)∵∠BAC=50°,AD平分∠BAC ∴∠EAD=1∠BAC=25°
2
∵DE⊥AB ∴∠AED=90° ∴∠EDA=90°-25°=65° (2)证明:∵DE⊥AB ∴∠AED=90°=∠ACB 又∵AD平分∠BAC ∴∠DAE=∠DAC 又∵AD=AD ∴△AED≌△ACD(AAS) ∴AE=AC ∵AD平分∠BAC ∴AD⊥CE,AD平分线段EC 即直线AD是线段CE的垂直平分线

八年级数学北师大版初二下册--第一单元 1.3《线段的垂直平分线(第一课时)》课件

八年级数学北师大版初二下册--第一单元 1.3《线段的垂直平分线(第一课时)》课件

∴△PCA≌△PCB(SAS) ;
∴PA=PB(全等三角形的对应边相等).
用心想一想,马到功成
你能写出上面这个定理的逆命题吗?它是真 命题吗?
如果有一个点到线段两个端点的距离相等, 那么这个点在这条线段的垂直平分线上.即到线 段两个端点的距离相等的点在这条线段的垂直平 分线上. 当我们写出逆命题时,就想到判断它的 真假.如果真,则需证明它;如果假,则需 用反例说明.
A
E D
B
补充练习:
已知:△ABC中,边AB、BC的垂直平分
线相交于点P.求证:点P在AC的垂直平分线
上.
课堂小结, 畅谈收获:
一、线段垂直平分线的性质定理. 二、线段垂直平分线的判定定理.
随堂练习 第1题 习题1.7 1、2、3
条直线).
你还有其他证 明方法吗?
加强应用
在Rt △AN与AB相交于点D,则∠BCD的度数 是多少? A
分析:由点D在线段AC的垂直平分线上,可以得到 DA=DC,即△DAC是等腰三角形,问题解决.
N
D
解: ∵点D在线段AC的垂直平分线上,
练一练
已知:如图,在 △ABC 中,AB = AC,O 是△ABC
内一点,且 OB = OC.
求证:直线 AO 垂直平分线段BC. 证明:∵ AB = AC, ∴ 点 A 在线段 BC 的垂直平分线上(到一条线段两 个端点距离相等的点,在这条线段的垂直平分线上). 同理,点 O 在线段 BC 的垂直平分线上. ∴ 直线 AO 是线段 BC 的垂直平分线(两点确定一
求证:P点在AB的垂直平分线上.
P
A
C
B
证法三:过P点作∠APB的角平分线交AB于点C. ∵AP=BP,∠APC=∠BPC,PC=PC, ∴△APC≌△BPC(SAS). ∴AC=BC,∠PCA=∠PCB

北师大版数学八年级下册1.3《线段的垂直平分线》教案

北师大版数学八年级下册1.3《线段的垂直平分线》教案

北师大版数学八年级下册1.3《线段的垂直平分线》教案一. 教材分析《线段的垂直平分线》是北师大版数学八年级下册第1章《几何图形及其性质》的第三节内容。

本节主要让学生掌握线段的垂直平分线的性质,并会运用这些性质解决实际问题。

教材通过引入线段的垂直平分线,引导学生探究其性质,从而培养学生的几何思维和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了线段的基本概念,如长度、中点等,并学习了直线的性质。

但学生对线段的垂直平分线可能较为陌生,因此需要通过实例让学生直观地感受和理解线段的垂直平分线的概念和性质。

三. 教学目标1.让学生理解线段的垂直平分线的概念,掌握其性质。

2.培养学生运用线段的垂直平分线解决实际问题的能力。

3.培养学生的几何思维和观察、操作、推理能力。

四. 教学重难点1.线段的垂直平分线的概念及其性质。

2.如何运用线段的垂直平分线解决实际问题。

五. 教学方法采用问题驱动法、实例教学法、合作学习法等,引导学生观察、操作、推理,从而让学生掌握线段的垂直平分线的性质,并能运用到实际问题中。

六. 教学准备1.教学PPT或黑板。

2.线段模型或实物。

3.练习题。

七. 教学过程导入(5分钟)教师通过一个实际问题引入本节内容:在一条线段上,如何找到一个点,使得该点到线段两端点的距离相等?引导学生思考并猜测这样的点可能在线段的某个特殊位置。

呈现(10分钟)教师展示线段的垂直平分线的定义和性质,引导学生观察、操作,并解释线段的垂直平分线的意义。

通过实例让学生直观地感受线段的垂直平分线的性质。

操练(10分钟)教师给出几个练习题,让学生独立完成。

题目包括判断题、选择题和应用题,旨在让学生巩固线段的垂直平分线的性质,并学会运用到实际问题中。

巩固(10分钟)学生分组讨论,分享各自解题的心得体会,互相提问,教师巡回指导。

教师选取部分学生的作业进行点评,指出其优点和不足,并给予针对性的指导。

拓展(10分钟)教师引导学生思考:线段的垂直平分线在实际生活中有哪些应用?让学生举例说明,并引导学生运用线段的垂直平分线解决实际问题。

北师大版八年级下册数学课件1.3线段的垂直平分线第1课时线段垂直平分线的性质与判定

北师大版八年级下册数学课件1.3线段的垂直平分线第1课时线段垂直平分线的性质与判定
∴∠EAC=∠C,∴∠FAC=∠EAC+∠FAE=∠EAC+19°=∠C+19°. 3 线段的垂直平分线
证明:∵GB=GC,AB=AC, 【点拨】如图所示,已知点P在线段AB外,且PA=PB.
【点拨】如图所示,已知点P在线段AB外,且PA=PB. ∴点B在线段AF的垂直平分线上.
又(2)∵点两D点在确AG定上一,条求直∴证线:,点DBG=D,C. 点A在BC的垂直平分线上.
探究培优
13.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点 N,交BC的延长线于点M. (1)若∠A=40°,求∠NMB的度数.
解:∵AB=AC,∠A=40°, ∴∠B=∠ACB=180°- 2 40°=70°. 又∵MN⊥AB, ∴∠NMB=90°-∠B=90°-70°=20°.
探究培优
(2)点D在AG上,求证:DB=DC.
A中作∠APB的平分线PC交AB于点C,只需再证明AC=BC 13.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M.
选项A中作∠APB的平分线PC交AB于点C,只需再证明AC=BC及PC⊥AB即可得到PC是线段AB的垂直平分线.故作法正确;
夯实基础
*4.如图,在△ABC中,∠B=32°,∠C=48°,AB 和AC的垂直平分线分别交BC于点D,E,且点D在 点E的左侧,BC=6 cm,则△ADE的周长是( D ) A.3 cm B.12 cm C.9 cm D.6 cm
【点拨】∵AB,AC的垂直平分线分别交BC于点 D,E,∴BD=AD,AE=EC,∴△ADE的周长 =AD+DE+AE=BD+DE+EC=BC=6 cm.
整合方法
(2)点D在AG上,求证:DB=DC. 解:∵AG垂直平分BC,点D在AG上, ∴DB=DC.

《线段的垂直平分线》第1课时示范公开课教案【八年级数学下册北师大版】

《线段的垂直平分线》第1课时示范公开课教案【八年级数学下册北师大版】

《线段的垂直平分线》教学设计第1课时一、教学目标1.证明线段垂直平分线的性质定理,探索并证明线段垂直平分线的判定定理,进一步发展推理能力.2.能运用线段垂直平分线的性质定理和判定定理解决问题.3.能用尺规做出已知线段的垂直平分线.4.经历探索、猜测、证明的过程,进一步体会证明的必要性,增强证明意识和能力.二、教学重难点重点:证明线段垂直平分线的性质定理,探索并证明线段垂直平分线的判定定理,进一步发展推理能力.难点:能运用线段垂直平分线的性质定理和判定定理解决问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:教师提出问题,引导学生思考回答.问题1:线段的垂直平分线具有什么特征?预设:垂直且平分一条线段的直线是这条线段的垂直平分线.如图,MN是线段AB的垂直平分线,交AB于点O,则MN⊥AB,且AO=OB.问题2:等腰三角形顶角平分线有哪些性质?预设:由等腰三角形三线合一的性质可得等腰三角形的顶角平分线垂直底边,并且平分底边.如图,在△ABC中,AB=AC,∠BAC 的平分线AD所在的直线即线段BC的垂直平分线.【合作探究】拿出准备好的纸,按照下图的样子进行对折,并比较对折之后的折痕EB和EB′,FB和FB′的关系.可以发现折痕EB=EB′,FB=FB′.我们曾经用上面折纸的办法得到:线段的垂直平分线上的点到这条线段两个端点的距离相等.你能证明这一结论吗?试一试.教师活动:引导学生回忆之前学习的轴对称图形中关于线段平分线的知识内容.并带领学生梳理证明思路,注意强调“要证明一个图形上每一点都具有某种性质,只需在图形上任取一点作代表”.让学生写出已知、求证,并自主证明,最后再进行总结.已知:如图,直线MN⊥AB,垂足是点C,且AC=BC,P是MN上的任意一点.求证:P A = PB.分析:要证明P A=PB,只需证明△PCA ≌△PCB.注意:如果点P与点C重合,那么结论显然成立,因此证明过程中的点P与点C不重合.证明:∵MN∵AB,∵ ∵PCA=∵PCB=90 °.∵ AC=BC,PC=PC,∵∵PCA∵∵PCB(SAS).∵ P A=PB(全等三角形的对应边相等).【归纳】线段垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.几何语言:如图,直线MN∵AB,垂足是点C,且AC=BC,P是MN上的点,则P A=PB.应用:经常用来证明两条线段相等.【想一想】你能写出上面这个定理的逆命题吗?它是真命题吗?如果是,请你证明它.教师活动:引导学生运用转化的思想,先找到原命题的条件和结论,把命题写成“如果……那么……”的形式,然后再写出它的逆命题,最后再对命题的形式进行整理.预设:逆命题:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.是真命题已知:如图,线段AB,P A=PB.求证:点P在线段AB的垂直平分线上.证明:∵过点P作直线MN∵AB,垂足为点C,则PC是∵P AB的高.∵ P A=PB,∵∵P AB是等腰三角形.∵ PC是∵P AB的中线(三线合一).∵ AC=BC.∵直线MN是线段AB的垂直平分线.∵点P在线段AB的垂直平分线上.【归纳】线段垂直平分线的判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上.几何语言:如图,线段AB,P A=PB,则点P在线段AB的垂直平分线上(即PC∵AB且AC=CB).应用:经常用来证明点在直线上或直线经过某一点.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,教师巡视,如遇到有困难的学生适当点拨,最终教师展示答题过程.例已知:如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC.求证:直线AO垂直平分线段BC.分析:由已知AB=AC,OB=OC,结合线段垂直平分线的判定定理,可以分别证出点A和点O为线段BC垂直平分线上的点,从而证出结论.证明:∵AB = AC,∴点A在线段BC的垂直平分线上(到线段两个端点距离相等的点在这条线段的垂直平分线上).同理,点O 在线段BC的垂直平分线上.∴直线AO是线段BC的垂直平分线(两点确定一条直线).教师活动:进一步提出思考,你还有其他的证明方法吗?方法2分析:可以用全等三角形证明:设AO交BC于点D,先依据基本事实SSS证明△ABO≌△ACO得到∠BAO=∠CAO,再证明△ABD≌△ACD,从而使问题得证.证明:延长AO交BC于点D,∵AB=AC,AO=AO,OB=OC,∴△ABO≌△ACO(SSS).∴∠BAO=∠CAO,∵AB=AC,AD=AD,∴△ABD≌△ACD(SAS).∴BD=CD,∠ADB=∠ADC=90°.即直线AO垂直平分线段BC.教师活动:引导学生对比两种证明方法,会发现使用垂直平分线的判定定理证明更加简便.【做一做】(1)用尺规做出线段AB的垂直平分线.教师活动:让学生回忆前面学习过的作图知识,尝试作图,引导学生先写出已知及求作,作法不做要求,做出正确图形即可.已知:线段AB,如图.求作:线段AB的垂直平分线.作法:1.分别以点A和B为圆心,以大于线段AB长度的一半为半径作弧,两弧交于点C和D.2. 作直线CD.则直线CD就是线段AB的垂直平分线.(1)请你就尺规作线段AB的垂直平分线方法的正确性给出证明,并与同伴进行交流. 预设:证明:∵AC=BC∴点C在线段AB的垂直平分线上(到线段两个端点距离相等的点在这条线段的垂直平分线上).同理,点D在线段AB的垂直平分线上.∴直线CD是线段AB的垂直平分线(两点确定一条直线).教师活动:进行总结说明,并提示CD 与线段AB的交点就是AB的中点,所以我们也用这种方法作线段的中点.2.如图,AC=AD,BC=BD,则有() A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.以上都不正确3.如图,在△ABC中,AC=5,AB的垂直平分线DE分别交AB,AC于点E,D.(1)若△BCD的周长为8,求BC的长;(2)若BC=4,求△BCD的周长.答案:1.7 602. A3.解:∵DE是AB的垂直平分线,∴AD=BD.∴BD+CD=AD+CD=AC=5.(1)∵△BCD的周长为8,∴BC=△BCD的周长-(BD+CD)=8-5=3.思维导图的形式呈现本节课的主要内容:。

八年级数学北师大版下册1.3.2线段的垂直平分线(三角形三边的垂直平分线与作图)2

八年级数学北师大版下册1.3.2线段的垂直平分线(三角形三边的垂直平分线与作图)2
A,B两点
2.做线段AB的垂直平分 线
检测(8分钟) 1.下列说法错误的是 (D)
(A)三角形三条边的垂直平分线必交于一点 (B)如果等腰三角形内一点到底边两端点的距离
相等,那么过这点与顶点的直线必垂直于底边 (C)平面上只存在一点到已知三角形三个顶点距
离相等 (D)三角形关于任一边上的垂直平分线成轴对称
4.已知一条直线和直线上(外)一点,如何 用尺规作图作该直线的垂线,能作几条?
过直线上一点作已知直线的垂线
m
作法:1.在直线l上截取 PA=PB
2.做线段AB的垂直平分 线,则直线m⊥l,且过
点P
过直线外一点作已知直线的垂线
作法:1.以P为圆心,以 大于点P到直线l的距离 为半径画弧,交直线l于
三角形三条边的垂直平分线是否交于一点?
A能D证为明∠B三AC角(的3形角)三若平条分边∠线的,垂MA直E=F平AF分N,请=判断7线0段°,求∠MCN的度数.
下列说法错误的是 ( ) 三角形三条边的垂直平分线是否交于一点? 相等,那么过这点与顶点的直线必垂直于底边 已知底边及其边上的高,能用尺 相等,那么过这点与顶点的直线必垂直于底边
上,那么这个三角形一定是( D )A.锐角三角形
B.钝角三角形C.等边三角形
D.直角三角形
5.在平面内,到三点A,B,C距离相等的点( D )
.只有一个
B.有两个 C.有三个或
三个以上
D.有一个或没有
6.如图,已知直线 MN 为△ABC 的边 BC 的垂直平分线.若 AB, AC 两边的垂直平分线相交于点 O,当顶点 A 的位置移动时,点 O 始
3. 已知在△ABC中,∠B=2∠C,AD⊥BC于点D, 求证:CD=AB+BD

北师大版数学八年级下册1.3《线段的垂直平分线》说课稿

北师大版数学八年级下册1.3《线段的垂直平分线》说课稿

北师大版数学八年级下册1.3《线段的垂直平分线》说课稿一. 教材分析北师大版数学八年级下册1.3《线段的垂直平分线》这一节主要介绍了线段的垂直平分线的性质和判定。

通过这一节的学习,学生能够理解线段的垂直平分线的概念,掌握其性质和判定方法,并能够运用到实际问题中。

二. 学情分析在八年级下册的学生已经有了一定的几何基础,他们已经学习了线段、射线、直线等基本概念,并对这些概念有了初步的理解。

但是,对于线段的垂直平分线这一概念,学生可能比较陌生,需要通过具体的实例和讲解来进行理解和掌握。

三. 说教学目标1.知识与技能:学生能够理解线段的垂直平分线的概念,掌握其性质和判定方法。

2.过程与方法:学生能够通过观察、实验、推理等方法来探索线段的垂直平分线的性质和判定方法。

3.情感态度与价值观:学生能够培养对数学的兴趣和好奇心,提高对几何图形的观察和思考能力。

四. 说教学重难点1.教学重点:线段的垂直平分线的性质和判定方法。

2.教学难点:线段的垂直平分线的判定方法的理解和运用。

五.说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、合作学习法等。

2.教学手段:利用多媒体课件、几何画板等辅助教学。

六. 说教学过程1.引入:通过一个实际问题,引出线段的垂直平分线的概念。

2.讲解:讲解线段的垂直平分线的性质和判定方法,结合具体的实例进行讲解。

3.探索:学生分组进行实验和探索,通过观察和推理来验证线段的垂直平分线的性质和判定方法。

4.总结:学生进行总结,教师进行点评和讲解。

5.练习:学生进行练习,教师进行指导和解答。

七. 说板书设计板书设计要清晰、简洁,能够突出线段的垂直平分线的性质和判定方法。

可以采用图示和的形式进行展示。

八. 说教学评价教学评价可以通过学生的课堂表现、作业完成情况、练习的正确率等方式进行。

同时,还要关注学生的思维过程和方法,以及对几何图形的观察和思考能力的培养。

九. 说教学反思在教学过程中,要注意观察学生的反应和学习情况,及时进行调整和讲解。

北师大版八年级数学下册《线段的垂直平分线》说课课件

北师大版八年级数学下册《线段的垂直平分线》说课课件

教学难点 是在认识定理内涵的基础上,通过证明来验证定理 的合理性,从而使对定理的认识从感性上升到理性, 能说出作图的根据,认识作图也是定理的直接应用, 理解证明“三线共点”的方法。
教法和学法
本课通过多媒体辅助手段,以学生自主探索为中心 组织课堂教学活动,以合适学生心理特征的情境问题为 依托,以情境的展开探索为发展途径,实现“问题情 境——规律——发展”这一过程。在整个教学过程中, 教师通过启示、引导,让学生自主探索、合作交流。体 现了教师是课堂的组织者、引导者、参与者。
实际应用 练习
想一想:
已知:如图,点A、B、C表示三个村庄,现在要建一个深水 井泵站,向三个村庄分别送水,为使三条输水管的长度相同, 水泵站应建在何处?说说你的理由。
A
B
C
练一练:
A
已知:如图,在△ABC中,AC的垂 直平分线分别交AB和BC于点D、E, E 且AD=BD, 求证:D在BC的垂直平分线上。
C
D B
作图应用
做一做1:
用尺规作线段的垂直平分线. 已知:如图,线段AB . 求作:线段AB的垂直平分线.
A
B
议一议:
(1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几 个?所作出的三角形都全等吗?

(2)已知等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?能
作几个?
做一做2:
在这一过程中学生通过自主学习和与老师的互动交 流,积极思考,积极发表自己的见解,切身感受学习数 学的快乐,突现学生的主体地位,培养学生的创新意识。
学情分析
知识掌握上,在七年级(下)第七章中已经了解了“线 段垂直平分线上的点到这条线段两个端点的距离相等”这一 结论,所以知识的过渡上不会有困难,只是对该结论的正确 性产生置疑。

北师大版八年级数学下册课件:线段的垂直平分线(1)

北师大版八年级数学下册课件:线段的垂直平分线(1)

解:∵DE 是 AB 边上的垂直平分线, ∴EA=EB,AD=1AB,
2
∵△BCE 的周长为 16 cm, ∴BC+CE+BE=BC+CE+EA=BC+AC=16 cm, ∵△ABC 的周长为 24 cm,∴BC+AC+AB=24 cm, ∴AB=24-16=8 cm, ∴AD=1AB=4 cm.
∴Rt△AED≌Rt△AFD(HL),∴AE=AF. 又∵DE=DF,∴AD 垂直平分 EF.
★11.如图,AB=AC,DB=DC,E是AD延长线上的一点,BE是否 与CE相等?试说明理由. 解:BE=CE.理由如下:连接BC, ∵AB=AC, ∴点A在线段BC的垂直平分线上. 同理,点D也在线段BC的垂直平分线上. ∵两点确定一条直线, ∴AD是线段BC的垂直平分线. ∵E是AD延长线上的点,∴BE=CE.
2
7.【例4】(北师8下P32、人教8上P93)如图,在△ABC中,AD是 ∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:AD垂直平分 EF. 证明:∵AD是∠BAC的平分线, DE⊥AB,DF⊥AC, ∴DE=DF, ∠AED=∠AFD=90°.
在 Rt△AED 和 Rt△AFD 中, AD=AD, DE=DF,
谢谢大家多提宝贵意见
如图,∵CA=CB,PC⊥AB,
几何 ∴ PA=PB.
语言
2.(北师8下P23改编)如图,在△ABC中,直线DE垂直平分线段 AB,垂足为E,交BC于点D,∠B=60°,∠C=50°,则∠CAD的 度数为 10° .
知识点三:线段垂直平分线的判定定理
内容
到一条线段两个端点距离 的垂直平分线上
相等
如图,∵ PA=PB , 几何 ∴点P在AB的垂直平分线上
语言
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的垂直平分线
第1课时线段的垂直平分线
学习目标:1.证明线段垂直平分线的性质定理和判定定理.(重难点)
2.经历探索、猜测、证明的过程,进一步发展学生的推理证明能力,丰富对几何图形的认识.
3.通过小组活动,学会与人合作,并能与他人交流思维的过程和结果.
合作探究
探究一:线段的垂直平分线的性质定理
性质定理:线段垂直平分线上的点到线段两个端点的距离相等.
已知:如右图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点.
求证:PA=PB.
证明:∵MN⊥AB,
∴∠PCA=∠PCB=90°
∵AC=BC,PC=PC,
∴△PCA≌△PCB(SAS) ;
∴PA=PB(全等三角形的对应边相等).
定理运用时的数学语言:∵

探究二:线段的垂直平分线的判定定理
你能写出上面这个定理的逆命题吗?它是真命题吗?
当我们写出逆命题时,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明。

例题:
已知:如图,在 △ABC 中,AB = AC ,O 是 △ABC 内一点,且 OB = OC.求证:直线 AO 垂直平分线段BC 。


证明:∵ AB = AC ,
∴ 点 A 在线段 BC
的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).
同理,点 O 在线段 BC 的垂直平分线上.
∴ 直线 AO 是线段 BC 的垂直平分线(两点确定一条直线).
学生是第一次证明一条直线是已知线段的垂直平分线,因此老师要引导学生理清证明的思路和方法并给出完整的证明过程。

三.当堂检测
1.如图,在△ABC 中,∠C = 90°,DE 是AB 的垂直平分线,则
(1)BD = ;
(2)若∠B = 40°,则∠BAC = °,∠DAB = °, ∠DAC = °。

(3)若AC= 4, BC = 5,则DA + DC = , △ACD 的周长为 。

E
D
A
B
C。

相关文档
最新文档