2018-2019学年最新苏科版数学八年级上册2.4《线段、角的轴对称》同步练习-精品试卷
苏科版八年级数学上册《2.4线段、角的轴对称性》同步练习含答案解析
2.4 线段、角的轴对称性一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC2.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确3.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°4.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80° B.60° C.50° D.40°5.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.116.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.若BC=2,AC=4,则BD=()A.B.2 C.D.37.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点8.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是()A.14 B.13 C.12 D.119.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.BD平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点10.如图,在△ABC 中,AB=AC ,∠A=120°,BC=6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为( )A .4cmB .3cmC .2cmD .1cm11.如图,在△ABC 中,AB=AC ,∠A=40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数为( )A .70°B .80°C .40°D .30°12.如图,在△ABC 中,AC=4cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是7cm ,则BC 的长为( )A .1cmB .2cmC .3cmD .4cm13.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是()A.4 B.4 C.8 D.814.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°二、填空题15.点P在线段AB的垂直平分线上,PA=7,则PB=______.16.等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则∠EBC的度数为______.17.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=______°.18.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=______°.19.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=______.20.已知点P在线段AB的垂直平分线上,PA=6,则PB=______.21.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为______cm.22.如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为______.23.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为______.2.4 线段、角的轴对称性参考答案与试题解析一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.2.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】线段垂直平分线的性质;圆的认识;作图—基本作图.【分析】根据甲乙两人作图的作法即可证出结论.【解答】解:甲:如图1,∵MN是AB的垂直平分线,∴AP=BP,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC,∴甲正确;乙:如图2,∵AB=BP,∴∠BAP=∠APB,∵∠APC=∠BAP+∠B,∴∠APC≠2∠ABC,∴乙错误;故选C.【点评】本题考查了线段的垂直平分线的性质,三角形外角的性质,正确的理解题意是解题的关键.3.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°【考点】线段垂直平分线的性质.【分析】根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:A.【点评】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.4.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80° B.60° C.50° D.40°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【解答】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选D.【点评】本题主要考查了等腰三角形的性质,三角形的内角和定理,线段垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等和等边对等角是解答此题的关键.5.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.11【考点】线段垂直平分线的性质.【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【解答】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点评】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.6.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.若BC=2,AC=4,则BD=()A.B.2 C.D.3【考点】线段垂直平分线的性质;勾股定理.【分析】设BD=x,先根据线段垂直平分线的性质可得BD=AD=x,则CD=4﹣x,然后在△BCD中根据勾股定理列出关于x的方程,解方程即可求得BD的长.【解答】解:设BD=x,∵AB垂直平分线交AC于D,∴BD=AD=x,∵AC=4,∴CD=AC﹣AD=4﹣x,在△BCD中,根据勾股定理得x2=22+(4﹣x)2,解得x=.故选C.【点评】本题考查了线段垂直平分线的性质:线段垂直平分线上任意一点,到线段两端点的距离相等,同时考查了勾股定理.7.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点【考点】线段垂直平分线的性质.【专题】应用题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A.【点评】此题考查了三角形的外心的概念和性质.熟知三角形三边垂直平分线的交点到三个顶点的距离相等,是解题的关键.8.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是()A.14 B.13 C.12 D.11【考点】线段垂直平分线的性质.【专题】计算题.【分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选D.【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.9.如图,在△ABC 中,∠A=36°,AB=AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD ,下列结论错误的是( )A .∠C=2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点【考点】线段垂直平分线的性质;等腰三角形的性质;黄金分割.【分析】求出∠C 的度数即可判断A ;求出∠ABC 和∠ABD 的度数,求出∠DBC 的度数,即可判断B ;根据三角形面积即可判断C ;求出△DBC ∽△CAB ,得出BC 2=BC •AC ,求出AD=BC ,即可判断D .【解答】解:A 、∵∠A =36°,AB=AC ,∴∠C=∠ABC=72°,∴∠C=2∠A ,正确,B 、∵DO 是AB 垂直平分线,∴AD=BD ,∴∠A=∠ABD=36°,∴∠DBC=72°﹣36°=36°=∠ABD ,∴BD是∠ABC的角平分线,正确,C,根据已知不能推出△BCD的面积和△BOD面积相等,错误,D、∵∠C=∠C,∠DBC=∠A=36°,∴△DBC∽△CAB,∴=,∴BC2=CD•AC,∵∠C=72°,∠DBC=36°,∴∠BDC=72°=∠C,∴BC=BD,∵AD=BD,∴AD=BC,∴AD2=CD•AC,即点D是AC的黄金分割点,正确,故选C.【点评】本题考查了相似三角形的性质和判定,等腰三角形性质,黄金分割点,线段垂直平分线性质的应用,主要考查学生的推理能力.10.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm【考点】线段垂直平分线的性质;等边三角形的判定与性质.【专题】压轴题.【分析】连接AM、AN、过A作AD⊥BC于D,求出AB、AC值,求出BE、CF值,求出BM、CN值,代入MN=BC﹣BM﹣CN求出即可.【解答】解:连接AM、AN、过A作AD⊥BC于D,∵在△ABC中,AB=AC,∠A=120°,BC=6cm,∴∠B=∠C=30°,BD=CD=3cm,∴AB==2cm=AC,∵AB的垂直平分线EM,∴BE=AB=cm同理CF=cm,∴BM==2cm,同理CN=2cm,∴MN=BC﹣BM﹣CN=2cm,故选C.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,含30度角的直角三角形性质,解直角三角形等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力.11.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70° B.80° C.40° D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】几何图形问题.【分析】由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.12.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm【考点】线段垂直平分线的性质.【分析】首先根据MN是线段AB的垂直平分线,可得AN=BN,然后根据△BCN的周长是7cm,以及AN+NC=AC,求出BC的长为多少即可.【解答】解:∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7cm,∴BN+NC+BC=7(cm),∴AN+NC+BC=7(cm),∵AN+NC=AC,∴AC+BC=7(cm),又∵AC=4cm,∴BC=7﹣4=3(cm).故选:C.【点评】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.13.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是()A.4 B.4 C.8 D.8【考点】线段垂直平分线的性质;含30度角的直角三角形;勾股定理.【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:如图,∵在Rt△ABC中,∠ACB=60°,∴∠A=30°.∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=2,∴CD=AD=4,∴AB=2+4=6,在△BCD中,由勾股定理得:CB=2,在△ABC中,由勾股定理得:AC==4,故选:B.【点评】本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.14.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°【考点】线段垂直平分线的性质.【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.二、填空题15.点P在线段AB的垂直平分线上,PA=7,则PB= 7 .【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得出PA=PB,代入即可求出答案.【解答】解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.【点评】本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.16.等腰△ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则∠EBC的度数为36°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先根据等腰三角形的性质可得∠A的度数,再根据线段垂直平分线的性质可得AE=BE,进而可得∠ABE=∠A=36°,然后可计算出∠EBC的度数.【解答】解:∵等腰△ABC的底角为72°,∴∠A=180°﹣72°×2=36°,∵AB的垂直平分线DE交AC于点E,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°.故答案为:36°.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握等边对等角.17.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= 15 °.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.18.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A= 87 °.【考点】线段垂直平分线的性质.【分析】根据DE垂直平分BC,求证∠DBE=∠C,再利用角平分线的性质和三角形内角和定理,即可求得∠A的度数.【解答】解:∵在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,∴∠DBE=∠ABC=(180°﹣31°﹣∠A)=(149°﹣∠A),∵DE垂直平分BC,∴BD=DC,∴∠DBE=∠C,∴∠DBE=∠ABC=(149°﹣∠A)=∠C=31°,∴∠A=87°.故答案为:87.【点评】此题本题考查的知识点为线段垂直平分线的性质,关键是根据角平分线的性质,三角形内角和定理等知识点进行分析.19.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .【考点】线段垂直平分线的性质;解直角三角形.【分析】根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC.【解答】解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.【点评】本题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.20.已知点P在线段AB的垂直平分线上,PA=6,则PB= 6 .【考点】线段垂直平分线的性质.【分析】直接根据线段垂直平分线的性质进行解答即可.【解答】解:∵点P在线段AB的垂直平分线上,PA=6,∴PB=PA=6.故答案为:6.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.21.如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为 6 cm.【考点】线段垂直平分线的性质.【专题】数形结合.【分析】根据中垂线的性质,可得DC=DB,继而可确定△ABD的周长.【解答】解:∵l垂直平分BC,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm.故答案为:6.【点评】本题考查了线段垂直平分线的性质,注意掌握线段垂直平分线上任意一点,到线段两端点的距离相等.22.如图,△ABC中,∠A=40°,AB的垂直平分线MN交AC于点D,∠DBC=30°,若AB=m,BC=n,则△DBC的周长为m+n .【考点】线段垂直平分线的性质;三角形内角和定理;等腰三角形的性质.【分析】根据线段垂直平分线性质得出AD=BD,推出∠A=∠ABD=40°,求出∠ABC=∠C,推出AC=AB=m,求出△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC,代入求出即可.【解答】解:∵AB的垂直平分线MN交AC于点D,∠A=40°,∴AD=BD,∴∠A=∠ABD=40°,∵∠DBC=30°,∴∠ABC=40°+30°=70°,∠C=180°﹣40°﹣40°﹣30°=70°,∴∠ABC=∠C,∴AC=AB=m,∴△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC=m+n,故答案为:m+n.【点评】本题考查了三角形内角和定理,线段垂直平分线性质,等腰三角形的性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.23.如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为8 .【考点】线段垂直平分线的性质;平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质,得知AO=OC,由于OE⊥AC,根据线段垂直平分线的性质,可知AE=EC,则△CDE的周长为CD与AD之和,即可得解.【解答】解:根据平行四边形的性质,∴AO=OC,∵OE⊥AC,∴OE为AC的垂直平分线,∴AE=EC,∴△CDE的周长为:CD+AD=5+3=8,故答案为:8.【点评】本题考查了平行四边形的性质以及线段垂直平分线的性质,熟记各性质与定理是解题的关键.。
2.4线段、角的轴对称性(第2课时线段垂直平分线的判定)(教学课件)-八年级数学上册(苏科版)
正方形, A , B 是方格纸中的两个格点(即正方形的顶点).在这张5×5的
方格纸中,找出格点 C ,使△ ABC 为等腰三角形,则满足条件的格点 C
有(
C )
A. 3个
B. 5个
C. 6个
D. 8个
分层练习-基础
4. 如图,点 D 在△ ABC 的边 BC 上,如果 DB = DA ,那么点 D 在线
两个工厂到货场C的距离相等,试在下图中作出点C.
解:连接AB,作线段AB的垂直平分线交直线a于点C.
如下图, 点C即为所求.
B
A
a
概念归纳
方法点拨
尺规作图时要注意虚实线,即辅助性的线用虚线,
所要画的线用实线,同时要注意保留作图痕迹.
随堂练
1.已知:如图,AB=AC,DB=DC,点E在AD上.求证:EB=EC.
=,
∴点D在线段EF的垂直平分线上.
∵ AE=AF,
∴点A在线段EF的垂直平分线上.
∴线段AD所在的直线是线段EF的
垂直平分线.
注意:不可以只证明一个点
在直线上,就说过该点的直
线是线段的垂直平分线.
概念归纳
特别提醒
证明一个点在一条线段的垂直平分线上,还可以
利用线段垂直平分线的定义进行推理,思路有两种:
(1)分别以点A、B为圆心,大于 AB的长为
半径画弧,两弧相交于点C、D;
(2)过C、D两点作直线,
直线CD就是线段AB的垂直平分线,如右图所示
概念归纳
易错警示
作线段AB的垂直平分线时,必须以大于
AB的长为半径画弧,否则所画的弧就不能相
苏科版八年级数学上册线段、角的轴对称性课件
合作探究
2.4 线段、角的轴对称性(1)
线段是轴对称图形,线段的垂直平 分线是它的对称轴.
合作探究
2.4 线段、角的轴对称性(1)
活动二: 如图,直线l垂直平分AB,在直线l上任
取一点P,连结PA与PB,PA,PB相等吗?你有
哪些方法证明?
l
P
A
o
B
合作探究
2.4 线段、角的轴对称性(1)
线段垂直平分线的性质
2.如图,已知∠AOB内有一点P,分别作出点 P关于OA、OB的对称点M、N,连接MN且MN交OA 、OB于C、D,MN=8cm,求△PCD的周长.
M
A
C
P
O
DB
N
整合提升
变式1:如图,已知,∠AOB内有一点P,求作 △的P周Q长R最,小使.Q在OAP′上,RA在OB上,且使△PQR
Q P ●
O
R
反馈训练
2.4 线段、角的轴对称性(1)
3.如图,四边形ABCD中,AC垂直平分BD, 垂足为E,下列结论不一定成立的是( )
A.AB=AD C.AB=BD
B.AC平分∠BCD D.△BEC≌△DEC
反馈训练
4.如图,△ ABC中,已知AC=27,AB的 垂直平分线DE交AB,AC于E,D,△BCD周长 为50,求BC的长.
B
P″
课堂小结
说说你本节课你有什么收获?
1.线段的轴对称性; 2.线段的垂直平分线; 3.利用线段的垂直平分线的 性质解决实际问题.
反馈训练
2.4 线段、角的轴对称性(1)
1.利用网格线画线段PQ的垂直平分线.
M
P
Q
N
反馈训练
2.4 线段、角的轴对称性(1)
苏科版数学八年级上册2.4《线段 角的轴对称》教学设计3
苏科版数学八年级上册2.4《线段角的轴对称》教学设计3一. 教材分析《苏科版数学八年级上册2.4《线段角的轴对称》》这一节主要讲述轴对称的性质,包括线段和角的轴对称性质。
学生通过前面的学习已经了解了轴对称的概念,本节内容将进一步引导学生深入理解轴对称的性质,为后续的学习打下基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对轴对称的概念有一定的了解。
但是,对于轴对称性质的理解还较为肤浅,需要通过实例和操作来进一步深化理解。
三. 教学目标1.理解线段和角的轴对称性质。
2.能够运用轴对称性质解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.重点:轴对称的性质。
2.难点:运用轴对称性质解决实际问题。
五. 教学方法采用讲授法、案例分析法、问题驱动法等多种教学方法,引导学生通过观察、思考、操作、交流等活动,掌握轴对称的性质。
六. 教学准备1.准备相关的案例和图片。
2.准备练习题和思考题。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、建筑等,引导学生回顾轴对称的概念,激发学生的学习兴趣。
2.呈现(10分钟)呈现线段和角的轴对称性质,引导学生观察、思考,并通过讲解来阐述轴对称的性质。
3.操练(10分钟)让学生通过实际的操作来验证轴对称的性质,如折叠、测量等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生解决一些与轴对称有关的问题,巩固对轴对称性质的理解。
5.拓展(10分钟)通过一些拓展问题,引导学生深入理解轴对称的性质,提高学生的空间想象能力和逻辑思维能力。
6.小结(5分钟)对本节课的内容进行小结,强调轴对称的性质,引导学生形成知识体系。
7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。
8.板书(5分钟)板书本节课的主要内容,方便学生复习。
本节课通过多种教学方法,引导学生深入理解轴对称的性质,取得了较好的教学效果。
苏科版数学八年级上册2.4《线段 角的轴对称性》教学设计1
苏科版数学八年级上册2.4《线段角的轴对称性》教学设计1一. 教材分析《苏科版数学八年级上册2.4《线段角的轴对称性》》这一节主要介绍了线段和角的轴对称性质。
通过这一节的学习,学生可以了解线段和角的轴对称性质,并学会如何运用这些性质解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在学习这一节之前,已经学习了平面几何的基本概念,如点、线、角等,并掌握了一定的几何证明方法。
然而,对于轴对称性质的理解和运用,部分学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导,帮助学生理解和掌握轴对称性质。
三. 教学目标1.了解线段和角的轴对称性质,并能熟练运用这些性质解决实际问题。
2.培养学生的空间想象能力和逻辑思维能力。
3.提高学生解决几何问题的能力,培养学生的数学素养。
四. 教学重难点1.线段和角的轴对称性质的理解和运用。
2.轴对称性质在几何证明中的应用。
五. 教学方法1.采用直观演示法,通过实物和几何模型,让学生直观地感受轴对称性质。
2.运用讲解法,引导学生理解轴对称性质的内涵,并学会如何运用这些性质解决实际问题。
3.采用案例分析法,分析轴对称性质在几何证明中的应用,提高学生解决问题的能力。
4.运用练习法,巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备相关的几何模型和实物,如线段、角等。
2.准备PPT,展示相关的例题和练习题。
3.准备黑板,用于板书解题过程和几何证明。
七. 教学过程1.导入(5分钟)教师通过实物和几何模型,引导学生观察和思考轴对称性质。
例如,拿出一个矩形和一个圆形,让学生观察它们的轴对称性质。
2.呈现(10分钟)教师通过PPT呈现线段和角的轴对称性质的定义和定理,并用几何模型进行解释。
同时,给出一些例题,让学生初步了解轴对称性质的应用。
3.操练(10分钟)学生独立完成PPT上的练习题,巩固对轴对称性质的理解。
苏科版数学八年级上册2.4《线段 角的轴对称性》教学设计2
苏科版数学八年级上册2.4《线段角的轴对称性》教学设计2一. 教材分析《苏科版数学八年级上册2.4《线段角的轴对称性》》这一节主要让学生理解线段和角的轴对称性质,学会运用轴对称性质解决实际问题。
教材通过丰富的实例,引导学生探究线段和角的轴对称性质,培养学生的动手操作能力和抽象思维能力。
二. 学情分析学生在七年级已经学习了轴对称的概念,对轴对称有了初步的认识。
但是,对于线段和角的轴对称性质,他们可能还比较陌生。
因此,在教学过程中,需要通过大量的实例和动手操作,让学生加深对线段和角的轴对称性质的理解。
三. 教学目标1.理解线段和角的轴对称性质。
2.学会运用轴对称性质解决实际问题。
3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.线段和角的轴对称性质的理解和运用。
2.如何引导学生发现和总结轴对称性质。
五. 教学方法1.实例教学:通过丰富的实例,让学生直观地感受线段和角的轴对称性质。
2.动手操作:让学生亲自动手操作,发现和总结线段和角的轴对称性质。
3.小组讨论:让学生分组讨论,培养学生的合作意识和沟通能力。
六. 教学准备1.准备相关的实例和图片。
2.准备一些线段和角的模型。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一些生活中的实例,如剪纸、折叠等,引导学生回顾轴对称的概念。
然后,提出本节课的主要学习内容:线段和角的轴对称性质。
2.呈现(10分钟)呈现一些线段和角的轴对称的实例,让学生直观地感受线段和角的轴对称性质。
同时,引导学生发现和总结线段和角的轴对称性质。
3.操练(10分钟)让学生分组讨论,每组选择一个线段或角,找出它的轴对称线,并动手操作验证。
然后,各组汇报自己的发现,全班交流。
4.巩固(10分钟)出示一些练习题,让学生运用轴对称性质解决问题。
同时,引导学生总结解题思路和方法。
5.拓展(10分钟)出示一些相关的实际问题,让学生运用轴对称性质解决问题。
如:设计一个轴对称的图案、计算线段的长度等。
八年级数学苏科版上册 第二单元《2.4线段、角的轴对称性》教学设计 教案
2.4 线段、角的轴对称性【教材分析】本节是苏科版教材八年级上册内容,学生在理解线段轴对称性的基础上,掌握线段垂直平分线的性质,并能灵活运用进行说理,为今后学习分析复杂的图形做好铺垫,发展学生的空间观念和想象力。
【学情分析】在前面的学习中学生已经认识了轴对称,学习了轴对称的概念,加强了对图形的理解和认识,初步探索并掌握线段的垂直平分线的性质,为接下来的学习奠定了基础。
【教学目标分析】1、知识与技能:理解线段的轴对称性,认识线段的对称轴;理解并掌握线段垂直平分线的性质。
2、过程与方法:经历探索线段的轴对称性的过程,进一步体验轴对称的性质,发展空间观念。
3、情感、态度与价值观:通过学生动手、动脑、探究、讨论的过程培养学生的动手能力和探索精神,使学生在学习的过程中掌握知识,感受数学的魅力。
【教学重点难点分析】重点:掌握线段的垂直平分线的性质难点:线段的垂直平分线的性质的运用及说理【教法指导】鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,本节课采用层层推进的提问启发学生深入思考,主动探究,主动获取知识。
同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。
通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
【学法指导】本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、归纳的思想方法。
让学生在动手操作中学到知识。
提高学生利用已学知识去主动获取新知识的能力。
因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
第1 页共3 页【教学过程】一、自主探究阅读教材P51~P52内容,回答下列问题:1.线段的轴对称性线段_______(填“是”或“不是”)轴对称图形,它的对称轴是_______________________.2.垂直平分线的性质①线段垂直平分线上的点到线段两端的距离_______.②如图,直线l垂直AB,垂足为点O,AO=BO,点P在直线MN 上,连接PA、PB,根据垂直平分线的性质填空:∵OP⊥AB,AC=BC,∴P是线段AB垂直平分线上一点,∴_______(线段垂直平分线上的点到线段两端的距离相等).二、合作交流例1 如图,在△ABC中,边AB的垂直平分线交AC于点D,连接BD。
最新苏科版八年级数学上册 线段、角的轴对称性同步练习(含解析)
线段、角的轴对称性一.选择题(共10小题)1.(2022•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC 的长为()A.2+B.+C.2+D.3 2.(2022•梧州)如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12 B.13 C.14 D.15 3.(2022•张家界)如图,在△ABC中,∠C=90°,AC=8,DC=AD,BD平分∠ABC,则点D到AB的距离等于()A.4 B.3 C.2 D.1 4.(2022•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD 平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24 B.30 C.36 D.42 5.(2022•南充)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.17 6.(2018•梧州)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.6 7.(2018•大庆)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.(2018•黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°9.(2022•宜春二模)如图,在△ABC中,AB=8,AC=6,O为△ABC角平分线的交点,若△ABO的面积为20,则△ACO的面积为()A.12 B.15 C.16 D.18 10.(2022•苏州模拟)如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连结CF和DE,若∠A=70°.∠DCF=50°,BC=8,则DE的长()A.4 B.C.D.二.填空题(共6小题)11.(2022•永州)已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE 交OB于点F,如图所示.若DE=2,则DF=.12.(2018•毕节市)如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是.13.(2018•南充)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=度.14.(2018•德州)如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.15.(2017•常州)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是.16.(2022•滨州二模)如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点连接CF.若∠A=60°,∠ABD =24°,则∠ACF的度数为.三.解答题(共4小题)17.(2022•滨州一模)如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.18.(2022•淮阴区一模)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.19.(2018•石景山区二模)如图,在四边形ABCD中,∠A=45°,CD=BC,DE是AB边的垂直平分线,连接CE.(1)求证:∠DEC=∠BEC;(2)若AB=8,BC=,求CE的长.20.(2022春•滨州期末)如图,在△ABC中,AB=AC,作AB边的垂直平分线交直线BC于M,交AB于点N.(1)如图(1),若∠A=40°,则∠NMB=度;(2)如图(2),若∠A=70°,则∠NMB=度;(3)如图(3),若∠A=120,则∠NMB=度;(4)由(1)(2)(3)问,你能发现∠NMB与∠A有什么关系?写出猜想,并证明.答案与解析一.选择题(共10小题)1.(2022•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC 的长为()A.2+B.+C.2+D.3【分析】过点D作DF⊥AC于F如图所示,根据角平分线的性质得到DE=DF=1,解直角三角形即可得到结论.【解答】解:过点D作DF⊥AC于F如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2,故选:A.【点评】本题考查了角平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.2.(2022•梧州)如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12 B.13 C.14 D.15【分析】直接利用线段垂直平分线的性质得出AE=BE,进而得出答案.【解答】解:∵DE是△ABC的边AB的垂直平分线,∴AE=BE,∵AC=8,BC=5,∴△BEC的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故选:B.【点评】此题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.3.(2022•张家界)如图,在△ABC中,∠C=90°,AC=8,DC=AD,BD平分∠ABC,则点D到AB的距离等于()A.4 B.3 C.2 D.1【分析】过点D作DE⊥AB于E,求出CD,再根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,过点D作DE⊥AB于E,∵AC=8,DC=AD,∴CD=8×=2,∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2.故选:C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.4.(2022•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD 平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24 B.30 C.36 D.42【分析】过D作DH⊥AB交BA的延长线于H,根据角平分线的性质得到DH=CD=4,根据三角形的面积公式即可得到结论.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=AB•DH+BC•CD=×6×4+×9×4=30,故选:B.【点评】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.5.(2022•南充)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.17【分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.6.(2018•梧州)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.6【分析】根据角的平分线上的点到角的两边的距离相等即可得.【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,故选:D.【点评】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等.7.(2018•大庆)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=∠DAB,计算即可.【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选:B.【点评】本题考查的是角平分线的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.(2018•黄冈)如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.(2022•宜春二模)如图,在△ABC中,AB=8,AC=6,O为△ABC角平分线的交点,若△ABO的面积为20,则△ACO的面积为()A.12 B.15 C.16 D.18【分析】由角平分线的性质可得,点O到AB,BC,AC的距离相等,则△AOB、△BOC、△AOC面积的比实际为AB,BC,AC三边的比.【解答】解:∵点O是三条角平分线的交点,∴点O到AB,AC的距离相等,∴△AOB、△AOC面积的比=AB:AC=8:6=4:3.∵△ABO的面积为20,∴△ACO的面积为15.故选:B.【点评】此题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.10.(2022•苏州模拟)如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连结CF和DE,若∠A=70°.∠DCF=50°,BC=8,则DE的长()A.4 B.C.D.【分析】利用角平分线的定义得到∠ABD=∠CBD,利用线段垂直平分线的性质得到FB=FC,BE=CE,则∠FBC=∠FCB,设∠FCB =x,则∠ABC=2x,利用三角形内角和得到2x+x+50°+70°=180°,解得x=20°,接着计算出∠BDC=90°,然后根据斜边上的中线性质得到DE的长.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵BC的中垂线交BC于点E,∴FB=FC,BE=CE,∴∠FBC=∠FCB,设∠FCB=x,则∠ABC=2x,∵∠ABC+∠ACB+∠A=90°,∴2x+x+50°+70°=180°,解得x=20°,∴∠DCB=70°,∠DBC=20°,∴∠BDC=90°,而DE为斜边BC的中线,∴DE=BC=×8=4.故选:A.【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.也考查了直角三角形斜边上的中线性质.二.填空题(共6小题)11.(2022•永州)已知∠AOB=60°,OC是∠AOB的平分线,点D 为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE 交OB于点F,如图所示.若DE=2,则DF= 4 .【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【解答】解:过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为:4.【点评】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.12.(2018•毕节市)如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是16 .【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,从而得到△BCE的周长=AC+BC,然后代入数据计算即可求解.【解答】解:∵DE是AB的垂直平分线,∴AE=BE,∵AC=10,BC=6,∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=10+6=16.故答案为:16【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,证明出三角形的周长等于AC与BC的和是解题的关键.13.(2018•南充)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=24 度.【分析】根据线段的垂直平分线的性质得到EA=EC,得到∠EAC =∠C,根据角平分线的定义、三角形内角和定理计算即可.【解答】解:∵DE是AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∴∠FAC=∠EAC+19°,∵AF平分∠BAC,∴∠FAB=∠EAC+19°,∵∠B+∠BAC+∠C=180°,∴70°+2(∠C+19°)+∠C=180°,解得,∠C=24°,故答案为:24.【点评】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.(2018•德州)如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为 3 .【分析】过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等可得CF=CM,进而可得答案.【解答】解:过C作CF⊥AO,∵OC为∠AOB的平分线,CM⊥OB,∴CM=CF,∵OC=5,OM=4,∴CM=3,∴CF=3,故答案为:3.【点评】此题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.15.(2017•常州)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是15 .【分析】根据线段的垂直平分线的性质得到DB=DC,根据三角形的周长公式计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=15,故答案为:15.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.(2022•滨州二模)如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点连接CF.若∠A=60°,∠ABD =24°,则∠ACF的度数为48°.【分析】先利用角平分线的定义得到∠ABD=∠CBD=24°,再根据三角形内角和计算出∠ACB=72°,接着根据线段垂直平分线的性质得FB=FC,则∠FCB=∠FBC=24°,然后计算∠ACB﹣∠FCB即可.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD=24°,∴∠ABC=48°,∴∠ACB=180°﹣∠ABC﹣∠A=180°﹣48°﹣60°=72°,∵EF垂直平分BC,∴FB=FC,∴∠FCB=∠FBC=24°,∴∠ACF=∠ACB﹣∠FCB=72°﹣24°=48°.故答案为48°.【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等;三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.三.解答题(共4小题)17.(2022•滨州一模)如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.【分析】连接BD,根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:连接BD,∵E为AB的中点,DE⊥AB于点E,∴AD=BD,∴∠DBA=∠A,∵∠A=66°,∴∠DBA=66°,∵∠ABC=90°,∴∠DBC=∠ABC﹣∠ABD=24°∵AD=BC,∴BD=BC,∴∠C=∠BDC,∴∠C==78°.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.(2022•淮阴区一模)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ABC 及∠ACB的度数,再根据线段垂直平分线的性质求出∠ABD的度数即可进行解答.【解答】解:∵AB=AC,∴∠ABC=∠ACB==70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.19.(2018•石景山区二模)如图,在四边形ABCD中,∠A=45°,CD=BC,DE是AB边的垂直平分线,连接CE.(1)求证:∠DEC=∠BEC;(2)若AB=8,BC=,求CE的长.【分析】(1)根据线段垂直平分线的性质得到DE⊥AB,AE=EB =4,得到DE=AE=EB,根据全等三角形的性质即可得到结论;(2)过点C作CH⊥AB于点H,根据等腰直角三角形的性质得到CH=EH,设EH=x,则BH=4﹣x,根据勾股定理即可得到结论.【解答】(1)证明:∵DE是AB边的垂直平分线,∴DE⊥AB,AE=EB=4,∵∠A=45°,∴DE=AE=EB,又∵DC=CB,CE=CE,∴△EDC≌△EBC(SSS).∴∠DEC=∠BEC=45°;(2)解:过点C作CH⊥AB于点H,∵∠BEC=45°,∴CH=EH,设EH=x,则BH=4﹣x,在Rt△CHB中,CH2+BH2=BC2,即x2+(4﹣x)2=10,解之,x1=3,x2=1(不合题意,舍),即EH=3.∴CE=EH=3.【点评】本题考查了线段的垂直平分线的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.20.(2022春•滨州期末)如图,在△ABC中,AB=AC,作AB边的垂直平分线交直线BC于M,交AB于点N.(1)如图(1),若∠A=40°,则∠NMB=20 度;(2)如图(2),若∠A=70°,则∠NMB=35 度;(3)如图(3),若∠A=120,则∠NMB=60 度;(4)由(1)(2)(3)问,你能发现∠NMB与∠A有什么关系?写出猜想,并证明.【分析】(1)利用等腰三角形的性质求出∠B,再利用三角形内角和定理解决问题即可.(2)(3)(4)方法类似.【解答】解:(1)如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB=(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(3)结论:∠NMB=∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB=(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°﹣∠A)=∠A.【点评】本题考查线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
2.4 线段、角的轴对称性(1)(同步教学设计)-初中数学八年级上册苏科版
2.4 线段、角的轴对称性(1)(同步教学设计)一、教学目标1.了解什么是轴对称以及轴对称的性质;2.掌握线段、角的轴对称的判定方法;3.能够使用轴对称对线段、角进行构造。
二、教学重点1.线段、角的轴对称的判定方法;2.对称中心的确定;3.构造轴对称线段、角。
三、教学难点1.对称中心的确定;2.处理轴对称时的误差。
四、教学内容及方法1.教学内容:本次教学主要涉及线段、角的轴对称的概念、性质及判定方法,以及如何使用轴对称进行构造。
2.教学方法:本课程采用情境教学的方式进行,先引入一个实际问题,让学生自己尝试解决,引导学生发现轴对称的概念及性质;再对其进行讲解和拓展。
在讲解轴对称的基本概念后,通过示例演示线段和角的轴对称的判定及构造方法,最后进行练习和巩固。
五、教学过程1.导入环节通过一个情境来引出轴对称的概念及性质。
比如,画一只左脚,如何画一个与之对称的右脚?2.概念讲解1)轴对称的概念2)轴对称的性质(对称点到轴的距离相等)3)对称中心的确定3.判定方法1)判定线段是否有轴对称的方法2)判定角是否有轴对称的方法4.构造方法1)已知线段如何构造其轴对称的线段2)已知角如何构造其轴对称的角5.练习1)练习线段的轴对称的构造2)练习角的轴对称的构造3)综合练习六、教学评价1.教学效果评价通过学生的实际操作、互动性小组讨论的方式等,对学生对轴对称的理解、掌握情况进行评价。
2.学生评价通过学生的回答、讨论、提出问题等方式,对学生对本节课程的理解程度以及教学效果进行评价。
七、教学资源1.课件(PPT或PDF格式);2.活动卡片;3.教材;4.相关视频。
八、教学反思本节课程主要通过情景引入方式来引导学生发现轴对称的基本概念及性质,再通过示例演示及练习加深学生对轴对称的理解和应用。
但是,教学中也存在一些问题需要反思和改进:1.教师的表述需要更加简洁明了,避免学生失去学习兴趣;2.练习的难度逐渐升级,但是要注意掌握度的平衡,不能让学生失去信心;3.教学方式如果能够结合实际生活中的问题,更能引起学生的兴趣和注意力。
苏科版八年级数学上册 第二章轴对称图形 2.4线段、角的轴对称性(1)教案
苏科版八年级数学上册第二章轴对称图形 2.4线段、角的轴对称性(1)教案2.4 线段、角的轴对称性(1)教学目标:1、经历探索线段的轴对称性的过程,进一步体验轴对称的特征,发展空间观念;2、探索并掌握线段的垂直平分线的性质;3、了解线段的垂直平分线是具有特殊性质的点的集合;4、在“操作――探究――归纳――说理”的过程中学会有条理地思考和表达,提高演绎推理能力。
教学重点:探索并掌握线段的垂直平分线的性质。
教学难点:线段的垂直平分线是具有特殊性质的点的集合。
教学方法:探索交流、讲练结合教学过程:一、创设情境:问题:线段是轴对称图形吗?为什么?(从轴对称的定义出发,让学生说明线段是轴三、例题教学:例1:线段的垂直平分线外的点,到这条线段两端的距离会相等吗?为什么?这是一道文字描述的几何说理题,对大多数同学来说容易理解,但不容易叙述,因此要做一定的分析,引导学生展开讨论:⑴你能读懂题目吗?题中已知哪些条件?要说明怎样一个结论?⑵题中的已知条件和要说明的结论能画出图形来表示吗?⑶根据图形你能说明道理吗?已知:直线l 是线段AB 的垂直平分线,点P 在直线l 外,说明:线段PA 、PB 会相等吗?(注意引导学生用几何语言说理)解:线段的垂直平分线外的点,到这条线段两端的距离不会相等。
(先回答问题)说明理由如下:点P 在线段的垂直平分线l 外,连接PA 、PB , 设PA 交l 于点Q ,连接QB 。
l Q A B P l A B P∵点Q在线段AB的垂直平分线上,∴QA = QB.(线段的垂直平分线上的点到线段两端的距离相等)∴PA = PQ + QA = PQ + QB (等式性质).∵PQ + QB > PB (三角形的两边之和大于第三边) ,∴PA = PQ + QA> PB.四、探索活动二:活动二用圆规找点问题1:已知线段AB, 你能用圆规找出一点Q,使AQ = BQ吗?说出你的方法并画出图形(保留作图痕迹),你还能再找出符合上述条件的点M吗?(学生回答)问题2:观察点Q、M,与直线l有什么关系?符合上述条件的点你能找出多少个?它们在哪里?(学生议一议再回答)结论:到线段两端距离相等的点,在这条线段的垂直平分线上。
2.4线段、角的轴对称性(1)说课稿-苏科版八年级数学上册
2.4 线段、角的轴对称性(1)说课稿-苏科版八年级数学上册一、教材分析本节课是苏科版八年级数学上册中的第2.4节,主要介绍线段和角的轴对称性。
通过本节课的学习,学生将掌握线段和角的轴对称定义、判断和绘制轴对称图形的方法。
在前面的学习中,学生已经学习了线段和角的基本概念和性质,理解了线段和角的度量和运算方法。
通过本节课的学习,可以进一步加深对线段和角的理解,并通过绘制轴对称图形的练习,提高学生的问题解决能力和几何思维能力。
二、教学目标知识与技能目标:1.理解线段的轴对称定义及其性质;2.理解角的轴对称定义及其性质;3.掌握判断线段和角是否具有轴对称的方法;4.能够根据已知条件绘制具有轴对称性的图形。
过程与方法目标:1.注重观察和思考,培养学生的几何思维和推理能力;2.引导学生通过实例分析和讨论,理解轴对称性的概念和特点;3.鼓励学生进行合作学习和探究,培养团队合作意识和解决问题的能力。
情感态度与价值观目标:1.培养学生的观察力和细致心思,培养学生对几何学习的兴趣和热情;2.培养学生的合作精神和团队意识,鼓励学生互帮互助,共同进步。
三、教学重点与难点教学重点:1.线段的轴对称性及其判断方法;2.角的轴对称性及其判断方法;3.绘制具有轴对称性的图形。
教学难点:1.引导学生理解轴对称的概念和特点;2.培养学生观察和分析问题的能力。
四、教学过程与方法引入新知:1.利用实例引入轴对称的概念,例如一把剪刀、一个图形等,让学生观察并发现其中的特点;2.引导学生分析并总结轴对称的特点,例如镜面对称;3.引入线段和角的轴对称性的概念,让学生讨论并理解。
讲解与练习:1.通过示例和图形,讲解线段的轴对称性,并引导学生掌握判断线段是否具有轴对称性的方法;2.通过示例和图形,讲解角的轴对称性,并引导学生掌握判断角是否具有轴对称性的方法;3.组织学生进行练习,巩固判断线段和角是否具有轴对称性的能力。
拓展与应用:1.引导学生思考如何绘制具有轴对称性的图形;2.组织学生进行绘制图形的练习,培养他们的几何思维和创造力;3.引导学生分析和讨论绘制图形的方法和策略。
2.4线段、角的轴对称性(第1课时)(同步课件)八年级数学上册同步精品课堂(苏科版)
∵∠BAC=∠BAD+∠CAE+∠DAE
∴∠DAE=∠BAC-(∠BAD+∠CAE)=2α-180°
思维拓展
在△ABC中,∠BAC=α,边AB的垂直平分线交BC于点D,边AC的垂直平
分线交BC于点E,连接AD,AE,则∠DAE的度数为______________.
P
● 2
●
●
A●
●
P3
O
●
B(A)
新知归纳
线段的垂直平分线的性质定理:
线段的垂直平分线上的点到线段两端的距离相等.
符号语言:
l
∵点P在线段AB的垂直平分线上,
●
A●
∴ PA=PB
(线段的垂直平分线上的点到线段两端的距离相等).
用途:
相等的线段
P
●
O
B
操作与思考
思考4 线段的垂直平分线外的点,到这条线段两端的距离相等吗?
B
理由: 在l上另取一点P,连接PA、PB、PA'.
由作图可知,l是AA'的垂直平分线,
A
∴ AP=A'P,AM=A'M,
l
M
A'
∴ AM+BM=A'M+BM=A'B,
P
AP+BP=A'P+BP,
由“两点之间线段最短”可得:
A'B<A'P+BP.
即AM+BM最短.
课堂小结
线
段
垂
直
平
分
线
的
性
质
内容
苏科版数学八年级上册线段、角的轴对称性课件
H
D
C
F PE A
BG
M
P
F
怎样找三角形内到三角形 B 三边距离相等的点?
C E
课堂反馈
1.如图,在△ABC中,∠C = 90°,AD平分∠BAC,且
CD = 5,则点D到AB的距离为
.
2.到三角形的三个顶点距离相等的点是( )
A.三条角平分线的交点 B.三条中线的交点
C.三条高的交点
D.三条边的垂直平分线的交点
小结要点:
,(
在角的平分线上的点到这 个角的两边的距离相等。
)
(×)
B
F D
A
E
C
∵ AD平分∠BAC, DC⊥AC,DB⊥AB (已知)
∴ DB = DC ,( 在角的平分线上的点到这个 )
角的两边的距离相等。
√
B
A
不必再证全等
D
三个必须全写,缺
C
一不可。
我们已经知道: 线段的垂直平分线性质定理——线段的垂直平 分线上的点到线段两端的距离相等;
QE⊥OB,且QD=QE,点Q在∠AOB的角平分线
上吗?为什么?
D
A
O
Q
E
B
通过上述研究,你得到了什么结论?
角平分线的判定定理
1.文字语言:角的内部到角两边距离相等的点在角的平
分线上.
A
2.基本图形:
D C
P
O
3.符号语言: E
B
∵PD=PE , PD⊥OA,PE⊥OB
∴ 点P在∠AOB 的平分线上
定理应用所具备的条件:
(1)角的平分线; (2)点在该平分线上;
O (3)垂直距离。
定理的作用: 证明线段相等。
最新苏科初中数学八年级上《2.4 线段、角的轴对称性》word教案 (2)
2.4 线段、角的轴对称性(2)教材:义务教育教科书·数学(八年级上册)相等,那么这个点在这条线段的垂直平分线上吗?如图2-21(1),若点Q在线段AB上,且QA=QB,则Q是线段AB的中点,则点Q在线段AB的垂直平分线上.如图2-21(2),若点Q是线段AB外任意一点,且QA=QB,那么点Q在线段AB的垂直平分线上吗?为什么?通过上述探索,你得到了什么结论?教师利用几何画板验证线段垂直平分线是到线段两端距离相等的点的集合.3.学生证明逆定理.(1)过点Q作QM AB于点M,利用HL证明三角形全等,继而得到QM垂直平分AB.(2)过点Q作∠AQB的角平分线交AB于点M,利用SAS证明三角形全等,继而得到QM垂直平分AB.(3)过点Q作AB边上的中线交AB于点M,利用SSS证明三角形全等,继而得到QM垂直平分AB.4.学生讨论、归纳得到线段垂直平分线性质定理的逆定理,线段垂直平分线是到线段两端距离相等的点的集合.殊情形的直接呈现,到“点Q是线段AB外任意一点”一般情形的研究,渗透数学中“特殊——一般”的研究方法,同时图2-21(1)也是为图2-21(2)作好铺垫,引导学生思考添加辅助线解决问题.两个步骤兼顾了“任意性”和“完备性”,让学生感受线段垂直平分线上点的共性,几何画板的一般性图形验证,客观的得到了其是一类点的集合.实践探索三你能运用实践探索二得到的结论,用尺规画出任一条线段的垂直平分线吗?如果能,说说你作图的依据.课本上用尺规作线段的垂直平分线时,为什1.学生尝试操作、小组交流;2.小组代表汇报画法,并说明作图依据;3.自学课本,与你的画法进行对比,判断谁的画法更好?4.说明作法中“两弧的交点”“半径要从实践探索二出发,引导学生利用圆规的等距性找到确定线段垂直平分线的两点,强调“两交点”及“半径”,确保作图成功.延伸作图以及图形观察一方面_B _A。
2.4 线段、角的轴对称性 第1课时 苏科版数学八年级上册课件
2 . 4 线段、角的轴对称性 练习
1. 利用网格画线段 PQ 的垂直平分线 :
l
解:如图所示.
2 . 4 线段、角的轴对称性 2. 如图,要在公路旁设一个公共汽车站,车站应设在什
么地方,才能使 A、B 两村到车站的距离相等?
2 . 4 线段、角的轴对称性
解:如图所示,连接 AB,作线段 AB 的垂直平分线l, 直线l交公路于点 C,则点C就是汽车站的位置,此时 A, B 两村到车站的距离相等.
证明一个点在一条线段的垂直平分线上,还可以利 用线段垂直平分线的定义进行推理,思路有两种:
一是作垂直,证平分; 二是取中点,证垂直.
2 . 4 线段、角的轴对称性
例1 已知:如图2-22,在三△ABC中,AB、AC 的垂直 平分线 l1、l2 相交于点 O.
求证:点 O 在 BC 的垂直平分线上. 证明:连接 OA、OB、OC. ∵点O在AB 的垂直平分线l1 上, ∴ OA=OB
2 . 4 线段、角的轴对称性 于是,我们得到如下定理:
线段垂直平分线上的点到线段两端的距 离相等.
2 . 4 线段、角的轴对称性 几何语言
如图, ∵点A 在线段BC 的垂直平分线上, ∴ AB=AC.
2 . 4 线段、角的轴对称性 易错提醒
线段有两条对称轴,线段的垂直平分线是 它的对称轴,线段自身所在的直线也是它的 对称轴.
A. 2
B. 4
(C )
C. 6
D. 8
2 . 4 线段、角的轴对称性
方法点拨
利用线段垂直平分线的性质进行线段间的转化,是 一种常用的解题方法. 本题中解题的关键是利用线段垂 直平分线的性质将BC 的长转化为线段 AE+EC 的长,即可求解.
八年级数学上册第二章轴对称图形:线段角的轴对称性1同步ppt课件新版苏科版
M
定理
P
线段垂直平分线上的点到线段两端的
距离相等.
A
逆定理
到一条线段两个端点距离相等的点,在这
条线段的垂直平分线上.
课堂小结
C
N
B
所以AB长8 cm,AC长6 cm.
如图,在△ABC中,∠A=40°,∠B=90°,线段AC的垂直
平分线MN与AB交于点D,与AC交于点E,求∠BCD的度数
解:在△ABC中,∵∠B=90°,∠A=40°,
∴∠ACB=50°.
∵MN是线段AC的垂直平分线,
∴DC=DA.
∴∠DCA=∠A=40°.
∴∠BCD=∠ACB-∠DCA=50°-40°=10°.
∴∠PCA=∠PCB=90°.
∵AC=BC,PC=PC,
A
C
∴△PCA≌△PCB(SAS).
∴PA=PB(全等三角形的对应边相等).
N
B
性质定理:线段垂直平分线上的点到
线段两端的距离相等.
P
∵P在线段AB的垂直平分线上,
∴PA=PB.
两条线段相等的根据之一.
∟
温馨提示:这个结论是经常用来证明
A
B
你能写出下面这个定理的逆命题吗?
分线分别交BC、AC于点F、G.若△ADF的周长为20 cm,求线
段BC的长.
解:因为DE是AB的垂直平分线,FG是AC的垂直平分
线,
所以BD=AD,FC=FA.
因为△ADF的周长为20 cm,所以AD+DF+FA=20 cm,
所以BC=BD+DF+FC=AD+DF+FA=20 cm.
已知:如图,AB比AC长2 cm,BC的垂直平分线交AB于点D,
2.4+线段、角的轴对称性+同步练+++2023-2024学年苏科版八年级数学上册+
2.4线段、角的轴对称性一.选择题1.如图,在△ABC中,AB的垂直平分线交AB于点E,交BC于点D,若△ABC的周长为19cm,AE=3cm,则△ACD的周长为()A.22cm B.19cm C.13cm D.7cm2.如图,在△ABC中,BC的垂直平分线交AC,BC于点D,E.若△ABC的周长为30,BE=5,则△ABD 的周长为()A.10B.15C.20D.253.如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,若∠BAC=100°,则∠EAG的度数是()A.10°B.20°C.30°D.40°4.如图,在△ABC中,DE是AC的垂直平分线,AE=3,△ABD的周长为13,△ABC的周长为()A.16B.13C.19D.105.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE =10°,则∠C的度数为()A.30°B.40°C.50°D.60°6.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为()A.B.C.D.27.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.48.如图,在△ABC中,∠BAC=80°,边AB的垂直平分线交AB于点D,交BC于点E,边AC的垂直平分线交AC于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.35°B.30°C.25°D.20°二.填空题1.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是.2.已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC的数量关系是:∠BOC=.3.如图,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分线,DE⊥AB,垂足为E,若△ABC和△ADE 的周长分别为30和6,则BC的长为.4.如图,在四边形ABCD中,AC平分∠DAB,AD=5,AB=6,若△ACD的面积为10,则△ABC的面积为.5.已知:如图,D是BC上一点,AD平分∠BAC,AB=3,AC=2,若S△ABD=a,则S△ADC=.(用a的代数式表示)6.如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF=.二.解答题1.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.(1)求∠P AD的度数;(2)求证:P是线段CD的中点.2.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,求AC长.3.如图,Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,求证:BE垂直平分CD.4.如图,△ABC中,∠BAC=105°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)如果BC=8,求△DAF的周长.5.如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线于E,EF⊥AB,交AB于F,EG⊥AC,交AC的延长线于G,试问:BF与CG的大小如何?证明你的结论.6.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段、角的轴对称性
一、核心价值题:
1.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D 到AB 的距离为__________.
2.如图,△ABC 中,∠C=900,DE 是AB 的垂直平分线,且∠BAD :∠CAD
=4:1,则∠B 第1题第2题第3.如图,分别作出点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2,分别交OA 、OB 于点M 、N ,若P 1P 2=5cm ,则△PMN 的周长为_____;若∠AOB=40°,
则∠P 1OP 2=_ _.
4.如图,在△ABC 中,边AB 的垂直平分线交BC 于点E ,边AC 的垂直平分线交BC 于点D.
(1)若BC =8,求△ADE 的周长.
(2)若∠BAC=100°,求∠EAD.
5.已知:∠AOB,点M 、N.
求作:点P,使点P 在∠AOB 的平分线上,且PM=PN. (要求:用尺规作图,保留作图痕迹,不写作法)
二、知识与技能演练题:
6.如图过△ABC 的边AC 的垂直平分线MN 上的点M 作△ABC
另外两边AB、BC所在的直线的垂线,垂足分别为D、E,AD=CE,作射线BM.
求证:BM平分∠ABC。