四川省成都市七中育才学校八年级数学下学期第10周周测试题 北师大版

合集下载

成都七中实验学校八年级_数学期末复习试卷(北师大)

成都七中实验学校八年级_数学期末复习试卷(北师大)

考室班级考号姓名_________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆成都七中实验学校八年级下数学期末复习测试题本试卷分为A卷和B卷,A卷满分100分,B卷满分50分,全卷总A卷(100分)1.观察下列各式:①2a+b和a+b;②)(5bam-和ba+-;③)(3ba+和ba--;④22yx-和22yx+;其中有公因式的是( )A.①②B.②③C.③④D·①④2.当的是(A B C D3.下列分式运算,结果正确的是()A.B.C.D4.解关于xm的值等于()A.2-B.3-C.1 D.5-5.2009年成都市大约有50000名学生参加高考,为了考查他们的数学成绩考试情况,平卷人抽去了2000名学生的数学成绩进行统计,那么下列四个判断正确的是()A.每名学生的数学成绩是个体B.50000名学生是总体C.2000名考生是总体的一个样本D.上述调查是普查6.某班某同学要测量学校升旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5m,影长是1m,旗杆的影长是8m,则旗杆的高度是()A.12m B.11m C.10mD.9m7.如图1△ABC与△ADE相似的是()A.B.∠B=∠ADE C.D.∠C=(1)(2) (3)8.如图2,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD)A B C D9(其中0≠+db)的值等于()A10.如图(3),在△ABC中,∠ACB=90,∠B=30,AC=1,过点C作ABCD⊥1与1D,过1D作ABDD⊥21于2D,过2D作ABDD⊥32于3D,这样继续作下去,线段1+n n D D 的长度(n为正整数)等于( )ABCD二、填空题:(每小题4分,共20分)1112x =_______时,分式无意义;当x =_________时,分13.如果点P 是线段AB 的黄金分割点,且AP>PB ,则下列命题,①PB AP AB ⋅=2②AB AP BP ⋅=2,③AP 2=PB·AB ,④AP PB AB AP ::=,其中正确的是14.某学校准备从甲、乙、丙三位同学中选拔一人参加全市射击比赛,他们=1.8,方差分别是,3.12=甲s ,6.22=乙s 0.32=丙s ,那么根据以上提供的信息,你认为应该推荐参加全市射击比赛的同学是 。

初二下数学《第10周周测》试卷

初二下数学《第10周周测》试卷

成都七中育才学校2019届八下数学第十周周测出题人:陶远辉 审题人:汪梦瑶班级: 姓名: 学号:A 卷(100分)一、选择题:(每小题3分,共30分) 1. 把23x x c +-分解因式得23(1)(2)x x c x x +-=++,则c 的值是( )A .2B .3C .3-D .2-2. 若分式2242x x x ---的值为零,则x 的值为( )A .2或2-B .2C .2-D .43. 下列命题正确的是( ) A .平行四边形是轴对称图形 B .对角线互相垂直的四边形是菱形 C .菱形的对角线相等 D .矩形的对角线相等。

4. 如果关于x 的方程2337x m x +-=+的解为不大于2的非负数,那么m 的取值范围是( )A .7m ≥或5m ≤B .5,6,7m =C .无解D .57x ≤≤ 5. 菱形的周长为8cm ,高1cm ,则该菱形两邻角的度数之比为( ) A .3:1 B .4:1 C .5:1 D .6:1 6. 将多项式2()10()25x y y x ---+因式分解的结果是( )A .2(5)x y --B .2(5)x y -+ C .2(5)x y ++D .2(5)x y +-7.如图,在四边形ABCD 中,E 是BC 的中点,连结DE 并延长,交AB 的延长线于点F ,AB BF =。

添加一个条件,使四边形ABCD 是平行四边形,你认为下面四个条件中可选择的是( )A .AD BC =B .CD BF =C .A C ∠=∠D .F CDE ∠=∠ 8.如图,已知:矩形ABCD 中,CE BD ⊥于E ,:3:1DCE ECB ∠∠=,则ACE ∠=( )A .30B .45C .60D .40 9.对于非零的两个实数a 、b ,规定11a b b a⊗=-,若1(1)2x ⊗+=,则x 的值为( ) A .32 B .23C .23-D .32-10.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达。

四川省成都八年级数学下学期期末考试试题(含解析)北师大版

四川省成都八年级数学下学期期末考试试题(含解析)北师大版

四川省成都七中育才学校2014-2015学年八年级数学下学期期末考试试题一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,是中心对称但不一定是轴对称图形的是()A.等边三角形B.矩形 C.菱形 D.平行四边形2.使分式有意义的x的取值范围是()A.x≥B.x≤C.x>D.x≠3.一元二次方程x2﹣4x﹣1=0配方后正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x﹣4)2=1 D.(x﹣4)2=54.在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标为()A.(﹣2,3)B.(﹣3,2)C.(2,﹣3)D.(3,﹣2)5.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是正方形D.两条对角线相等且互相垂直平分的四边形一定是正方形6.如图,△ABC中,AB=AC,AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,对于结论:①DE=DF;②BD=CD;③AD上任一点到AB、AC的距离相等;④AD上任一点到B、C的距离相等.其中正确的是()A.仅①②B.仅③④C.仅①②③ D.①②③④7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5C.a≥1且a≠5D.a≠58.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是()A.6 B.8 C.18 D.279.甲、乙两人同时从A地出发,骑自行车行30千米到B地,甲比乙每小时少走3千米,结果乙先到40分钟.若设乙每小时走x千米,则可列方程()A.B.﹣=C.﹣=D.﹣=10.用边长相等的下列两种正多边形,不能进行平面镶嵌的是()A.等边三角形和正六边形 B.正方形和正八边形C.正五边形和正十边形D.正六边形和正十二边形二、填空题11.当x= 时,分式的值为0.12.若实数a满足a2﹣2a﹣1=0,则2a2﹣4a+5= .13.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.14.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是cm2.15.如图,▱ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为.三、解答题:16.解方程:﹣1.17.解方程:(2x+3)2=3(2x+3)18.先化简,再求值:,其中.四、解答题19.如图,方格纸中的最小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C坐标为(0,﹣1)①画出△ABC向上平移3个单位后得到的△A1B1C1;②画出△ABC绕点C顺时针旋转90°后得到的△A2B2C2;③画出△ABC关于点C中心对称后得到的△A3B3C3.20.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?21.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.22.矩形ABCD中,M是BC的中点,DE⊥AM,E是垂足.(1)求证:△ABM∽△DEA;(2)求证:DC•AE=DE•MC;(3)若AB=4,BC=6,求ME的长.五、填空题(共5小题,每小题3分,满分15分)23.若关于x的方程的解为正数,则a的取值范围是.24.如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是.25.若关于x的一元二次方程x2+kx+4k2﹣3=0的两个实数根x1,x2,且满足x1+x2=x1•x2,则k的值为.26.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个B.2个C.3个D.4个27.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).二、解答题28.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.29.情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A 重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′=°.问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE 和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.拓展延伸如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF 于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.30.如图,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE.(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明,若不成立,说明理由.(2)若正方形GFED绕D旋转到如图3的位置(F在线段AD上)时,延长CE交AG于H,交AD于M,①求证:AG⊥CH;②当AD=4,DG=时,求CH的长.(3)在(2)的条件下,在如图所示的平面上,是否存在以A、G、D、N为顶点的四边形为平行四边形的点N?如果存在,请在图中画出满足条件的所有点N的位置,并直接写出此时CN的长度;若不存在,请说明理由.2014-2015学年四川省成都七中育才学校八年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,是中心对称但不一定是轴对称图形的是()A.等边三角形B.矩形 C.菱形 D.平行四边形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形.故错误;B、矩形是轴对称图形,也是中心对称图形.故错误;C、菱形是轴对称图形,也是中心对称图形.故错误;D、平行四边形不一定是轴对称图形,是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.使分式有意义的x的取值范围是()A.x≥B.x≤C.x>D.x≠【考点】分式有意义的条件.【分析】要使分式有意义,分母不等于0.所以2x﹣1≠0,即可求解.【解答】解:根据题意得2x﹣1≠0,解得x≠,故选:D.【点评】主要考查了分式的意义,只有当分式的分母不等于0时,分式才有意义,解答此类题目的一般方法是用分母不等于0来列不等式解出未知数的范围.3.一元二次方程x2﹣4x﹣1=0配方后正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x﹣4)2=1 D.(x﹣4)2=5【考点】解一元二次方程-配方法.【专题】配方法.【分析】本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【解答】解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,∴x2﹣4x+4=1+4,∴(x﹣2)2=5.故选B.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标为()A.(﹣2,3)B.(﹣3,2)C.(2,﹣3)D.(3,﹣2)【考点】坐标与图形变化-旋转.【分析】作出图形,然后写出点A′的坐标即可.【解答】解:如图,点A′的坐标为(﹣3,2).故选B.【点评】本题考查了坐标与图象变化﹣旋转,此类题目,利用数形结合的思想求解更简便.5.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是正方形D.两条对角线相等且互相垂直平分的四边形一定是正方形【考点】命题与定理.【分析】根据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C、D进行判断.【解答】解:A、一组对边相等,且这组对边平行的四边形一定是平行四边形,所以A选项错误;B、对角线相等的平行四边形一定是矩形,所以B选项错误;C、两条对角线相等且互相垂直平分的四边形一定是正方形,所以C选项错误;D、两条对角线相等且互相垂直平分的四边形一定是正方形,所以D选项正确.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.6.如图,△ABC中,AB=AC,AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,对于结论:①DE=DF;②BD=CD;③AD上任一点到AB、AC的距离相等;④AD上任一点到B、C的距离相等.其中正确的是()A.仅①②B.仅③④C.仅①②③ D.①②③④【考点】角平分线的性质;等腰三角形的性质.【专题】几何图形问题.【分析】利用角平分线的性质计算.【解答】解:∵AD是角平分线,DE⊥AB,DF⊥AC,E、F为垂足,∴DE=DF,且AD上任一点到AB、AC的距离相等;又AB=AC,根据三线合一的性质,可得AD垂直平分BC∴BD=CD,AD上任一点到B、C的距离相等.故选D.【点评】此题主要考查角平分线的性质和等腰三角形的性质.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5C.a≥1且a≠5D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是()A.6 B.8 C.18 D.27【考点】多边形的对角线;多边形内角与外角.【分析】根据凸n边形的内角和为1260°,求出凸n边形的边数,即可得出从一个顶点出发可引出(n﹣3)条对角线.【解答】解:∵凸n边形的内角和为1260°,∴(n﹣2)×180°=1260°,解得n=9,∴9﹣3=6.故选:A.【点评】本题考查了多边形的内角和定理及多边形的对角线,熟记多边形的内角和计算公式是正确解答本题的基础.9.甲、乙两人同时从A地出发,骑自行车行30千米到B地,甲比乙每小时少走3千米,结果乙先到40分钟.若设乙每小时走x千米,则可列方程()A.B.﹣=C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】首先根据题意可得乙每小时走x千米,则甲每小时走(x﹣3)千米,根据题意可得等量关系:甲走30千米的时间﹣乙走30千米的时间=40分钟,由等量关系列出方程即可.【解答】解:设乙每小时走x千米,则甲每小时走(x﹣3)千米,由题意得:﹣=,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是根据题意,找出等量关系,设出未知数,列出方程.10.用边长相等的下列两种正多边形,不能进行平面镶嵌的是()A.等边三角形和正六边形 B.正方形和正八边形C.正五边形和正十边形D.正六边形和正十二边形【考点】平面镶嵌(密铺).【分析】分别求出各个正多边形每个内角的度数,再结合镶嵌的条件即可作出判断.【解答】解:A、正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,能密铺,故此选项不合题意;B、正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,能密铺,故此选项不合题意;C、正五形的每个内角是108°,正十边形的每个内角是144°,∵2×108°+144°=360°,能密铺,故此选项不合题意;D、正六边形的每个内角是120°和正十二边形的每个内角是150°,120m+150n=360°,m=3﹣n,显然n 取任何正整数时,m不能得正整数,故不能铺满,符合题意.故选:D.【点评】此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.二、填空题11.当x= 1 时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.若实数a满足a2﹣2a﹣1=0,则2a2﹣4a+5= 7 .【考点】代数式求值.【专题】计算题.【分析】根据a2﹣2a﹣1=0得出a2﹣2a=1,然后等式的左右两边同乘以2即可得到2a2﹣4a=2,再求2a2﹣4a+5的值就容易了.【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴2a2﹣4a=2,∴2a2﹣4a+5=2+5=7.故答案为7.【点评】本题考查了代数式求值,解题的关键是求出2a2﹣4a的值,再代入2a2﹣4a+5即可.13.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为15 .【考点】三角形中位线定理;平行四边形的性质.【分析】根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.【解答】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15.故答案为:15.【点评】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.14.如图,面积为12cm2的△ABC沿BC方向平移至△DEF位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积是36 cm2.【考点】平移的性质.【分析】根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.【解答】解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ACED的面积=12×3=36cm2.【点评】本题的关键是得出四边形ACED的面积是三个△ABC的面积.然后根据已知条件计算.15.如图,▱ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为.【考点】平行四边形的性质;等边三角形的性质;含30度角的直角三角形;勾股定理.【专题】压轴题;数形结合.【分析】由平行四边形的性质及直角三角形的性质,推出△CDF为等边三角形,再根据勾股定理解答即可.【解答】解:∵在平行四边形ABCD中,AB∥CD,∠ABC=60°,∴∠DCF=60°,又∵EF⊥BC,∴∠CEF=30°,∴CF=CE,又∵AE∥BD,∴AB=CD=DE,∴CF=CD,又∵∠DCF=60°,∴∠CDF=∠DFC=60°,∴CD=CF=DF=DE=2,∴在Rt△CEF中,由勾股定理得:EF====.故答案为2.【点评】本题考查平行四边形的性质的运用.解题关键是利用平行四边形的性质结合三角形性质来解决有关的计算和证明.三、解答题:16.解方程:﹣1.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1=﹣2x﹣x+3,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.解方程:(2x+3)2=3(2x+3)【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:(2x+3)2﹣3(2x+3)=0,分解因式得:(2x+3)(2x+3﹣3)=0,解得:x1=﹣,x2=0.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.18.先化简,再求值:,其中.【考点】分式的化简求值.【专题】计算题.【分析】首先把分式通分、约分,然后化简,最后代入数值计算即可求解.【解答】解:==,当时,原式=.【点评】此题主要考查了分式的化简求值,解题时首先把分式通分、约分化简,然后代入数值计算即可解决问题.四、解答题19.如图,方格纸中的最小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C坐标为(0,﹣1)①画出△ABC向上平移3个单位后得到的△A1B1C1;②画出△ABC绕点C顺时针旋转90°后得到的△A2B2C2;③画出△ABC关于点C中心对称后得到的△A3B3C3.【考点】作图-旋转变换;作图-平移变换.【专题】作图题.【分析】①利用平移的性质分别画出点A、B、C的对应点A1、B1、C1,于是可得△A1B1C1;②利用网格的特征和旋转的性质分别画出点A、B、C的对应点A2、B2、C2,于是可得△A2B2C2;③利用中心对称的性质分别画出点A、B、C的对应点A3、B3、C3,于是可得△A3B3C3.【解答】解:①如图,△A1B1C1为所作;②如图,△A2B2C2为所作;③如图,△A3B3C3为所作.【点评】本题考查了作图:旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.20.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【考点】分式方程的应用.【专题】销售问题;压轴题.【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.(2)盈利=总售价﹣总进价.【解答】解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【考点】一元二次方程的应用.【专题】代数几何综合题.【分析】(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.【解答】解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.【点评】此题主要考查了一元二次方程的应用以及根的判别式和勾股定理逆定理等知识,正确由已知获取等量关系是解题关键.22.矩形ABCD中,M是BC的中点,DE⊥AM,E是垂足.(1)求证:△ABM∽△DEA;(2)求证:DC•AE=DE•MC;(3)若AB=4,BC=6,求ME的长.【考点】相似三角形的判定与性质;矩形的性质.【分析】(1)根据矩形的性质得∠B=90°,AD∥BC,则∠DAE=∠AMB,而DE⊥AM,所以∠B=∠AED=90°,于是根据相似三角形的判定即可得到△ADE∽△MAB;(2)由△ADE∽△MAB,可得到AB•AE=DE•MB,又AB=CD,BM=MC,等量代换即可得出结论;(3)由M是BC中点,AD=BC=6得到BM=3,在R t△ABM中,根据勾股定理得AM=5,再由△ADE∽△MAB,利用相似比计算出AE,然后利用EM=AM﹣AE求解【解答】(1)证明:∵四边形ABCD为矩形,∴∠B=90°,AD∥BC,∴∠DAE=∠AMB,∵DE⊥AM∴∠B=∠AED=90°,∴△ADE∽△MAB;(2)∵△ADE∽△MAB,∴AB•AE=DE•MB,∵四边形ABCD为矩形,∴AB=CD,∵M是BC的中点,∴BM=MC,∴DC•AE=DE•MC;(3)解:∵M是BC中点,AD=BC=6∴BM=BC=3,在Rt△ABM中,AB=4,∴AM==5,∵△ADE∽△MAB,∴=,即=,∴AE=,∴EM=AM﹣AE=5﹣=.【点评】本题考查了相似三角形的判定与性质:有两组角对应相等的两三角形相似;相似三角形对应边的比相等.本题同时也考查了勾股定理和矩形的性质.五、填空题(共5小题,每小题3分,满分15分)23.若关于x的方程的解为正数,则a的取值范围是a<1且a≠﹣1 .【考点】分式方程的解.【专题】计算题.【分析】先求得方程的解,再解x>0,求出a的取值范围.【解答】解:解方程,得x=,∵关于x的方程的解为正数,∴x>0,即>0,当x﹣1=0时,x=1,代入得:a=﹣1.此为增根,∴a≠﹣1,解得:a<1且a≠﹣1.故答案为:a<1且a≠﹣1.【点评】本题主要考查了解分式方程及解不等式,难度适中.24.如图,△DEF是由△ABC绕某点旋转得到的,则这点的坐标是(0,1).【考点】坐标与图形变化-旋转.【专题】压轴题.【分析】根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.【解答】解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为(0,1).【点评】本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,关键是对旋转性质的把握.25.若关于x的一元二次方程x2+kx+4k2﹣3=0的两个实数根x1,x2,且满足x1+x2=x1•x2,则k的值为.【考点】根与系数的关系.【分析】根据一元二次方程根与系数的关系及x1+x2=x1x2,得出关于k的方程,解方程并用根的判别式检验得出k的值即可.【解答】解:由根与系数的关系,得x1+x2=﹣k,x1x2=4k2﹣3,又∵x1+x2=x1x2,所以﹣k=4k2﹣3,即4k2+k﹣3=0,解得k=或﹣1,因为△≥0时,所以k2﹣4(4k2﹣3)≥0,解得:≤k≤,故k=﹣1舍去,∴k=.故答案是:.【点评】本题主要考查了一元二次方程根与系数关系的应用,属于基础题,关键不要忘记利用根的判别式进行检验.26.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个B.2个C.3个D.4个【考点】翻折变换(折叠问题);正方形的性质.【专题】证明题;压轴题.【分析】根据题给条件,证不出①CM=DM;△BMN是由△BMC翻折得到的,故BN=BC,又点F为BC的中点,可知:sin∠BNF==,求出∠BNF=30°,继而可求出②∠ABN=30°;在Rt△BCM中,∠CBM=30°,继而可知BC=CM,可以证出③AB2=3CM2;求出∠NPM=∠NMP=60°,继而可证出④△PMN是等边三角形.【解答】解:∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF==,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°﹣∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°==,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°﹣∠MBC=60°,∠NMP=90°﹣∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选:C.【点评】本题考查翻折变换的知识,有一定难度,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.27.如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于(结果保留根号).【考点】相似三角形的性质;等边三角形的性质.【专题】计算题.【分析】根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,再根据求出其边长,可根据三角函数得出三角形面积.【解答】解:∵△ABC∽△ADE,AB=2AD,∴=,∵AB=2AD,S△ABC=,∴S△ADE=,如图,在△EAF中,过点F作FH⊥AE交AE于H,∵∠EAF=∠BAD=45°,∠AEF=60°,∴∠AFH=45°,∠EFH=30°,∴AH=H F,设AH=HF=x,则EH=xtan30°=x.又∵S△ADE=,作CM⊥AB交AB于M,∵△ABC是面积为的等边三角形,∴×AB×CM=,∠BCM=30°,设AB=2k,BM=k,CM=k,∴k=1,AB=2,∴AE=AB=1,∴x+x=1,解得x==.∴S△AEF=×1×=.故答案为:.。

成都七中育才学校初2021届初二下期数学第10周周练试卷

成都七中育才学校初2021届初二下期数学第10周周练试卷

成都七中育才学校2021届八下数学第十周周练出题人:李施颖 审题人:冯婷班级: 姓名: 学号:一、选择题:(每小题3分,共30分) 1. 把23x x c +-分解因式得23(1)(2)x x c x x +-=++,则c 的值是( )A .2B .3C .3-D .2-2. 若分式2242x x x ---的值为零,则x 的值为( )A .2或2-B .2C .2-D .43. 下列命题正确的是( ) A .平行四边形是轴对称图形 B .对角线互相垂直的四边形是菱形 C .菱形的对角线相等 D .矩形的对角线相等。

4. 如果关于x 的方程2337x m x +-=+的解为不大于2的非负数,那么m 的取值范围是( )A . 7m ≥或5m ≤B .5,6,7m =C .无解D .57x ≤≤5. 已知方程355x a x x =---有增根,则a 的值为( ) A .5B .﹣5C .6D .46. 将多项式2()10()25x y y x ---+因式分解的结果是( )A .2(5)x y -- B .2(5)x y -+ C .2(5)x y ++D .2(5)x y +-7.如图,在四边形ABCD 中,E 是BC 的中点,连结DE 并延长,交AB的延长线于点F ,AB BF =。

添加一个条件,使四边形ABCD 是平行四边形,你认为下面四个条件中可选择的是( )A .AD BC =B .CD BF =C .A C ∠=∠D .F CDE ∠=∠ 8.如图,已知:矩形ABCD 中,CE BD ⊥于E ,:3:1DCE ECB ∠∠=,则ACE ∠=( )A .30oB .45oC .60oD .40o 9.对于非零的两个实数a 、b ,规定11a b b a⊗=-,若1(1)2x ⊗+=,则x 的值为( ) A .32 B .23C .23-D .32-10.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达。

八年级数学下册(北师版) 周周清 检测内容:1

八年级数学下册(北师版) 周周清 检测内容:1

检测内容:1.1-1.2得分________卷后分________评价________一、选择题(每小题5分,共35分)1.如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为(B)A.25°B.65°C.70°D.75°第1题图第3题图2.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边.若(a-2)2+b-2+|c-22 |=0,则此三角形是(A)A.等腰直角三角形B.直角三角形C.等腰三角形D.钝角三角形3.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是△ABC,△BCD的角平分线,则图中的等腰三角形有(A)A.5个B.4个C.3个D.2个4.某市在旧城改造中,计划在一块如图所示的△ABC空地上种植一草皮以美化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要(B)A.300a元B.150a元C.450a元D.225a元5.等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数是(C)A.70°B.110°C.70°或110°D.20°或160°6.如图,点A,B,C在同一条直线上,△ABD,△BCE均为等边三角形,连接AE 和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM, 则∠DMA的度数为(B)A.45°B.60°C.75°D.90°第6题图第7题图7.如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有(D)A .1个B .2个C .3个D .3个以上二、填空题(每小题5分,共20分)8.命题“两条直线相交只有一个交点”的逆命题是__只有一个交点的两条直线一定相交__,它是__真__命题.9.如图,在△ABC 中,AB =AC ,AD ,CE 是三角形的高,垂足为D ,E ,若∠CAD =20°,则∠BCE =__20°__.第9题图第10题图10.如图,在Rt △ABC 中,∠C =90°,点D 在线段BC 上,且∠B =30°,∠ADC =60°,BC =3,则BD 的长度为__2__.11.在△ABC 中,AB =22 ,BC =1,∠ABC =45°,以AB 为边作等腰直角三角形ABD ,使∠ABD =90°,连接CD ,则线段CD 的长为.三、解答题(共45分)12.(8分)如图,AC ⊥BC ,BD ⊥AD ,AC ,BD 相交于点O ,AC =BD .(1)求证:BC =AD ;(2)求证:△OAB 是等腰三角形.证明:(1)∵AC ⊥BC ,BD ⊥AD ,∴∠D =∠C =90°,在Rt △ADB 与Rt △BCA 中,⎩⎪⎨⎪⎧AB =BA ,AC =BD , ∴Rt △ABD ≌Rt △BAC (HL),∴BC =AD (2)由(1)得,∠DBA =∠CAB ,∴OA =OB ,即△OAB 是等腰三角形13.(12分)如图,△ABC 为等边三角形,∠1=∠2=∠3.(1)求∠BEC 的度数;(2)△DEF 是等边三角形吗?请说明理由.解:(1)∠BEC=∠ADE+∠DFE=∠ABD+∠2+∠CAF+∠1=∠ABC+∠BAC=60°+60°=120°(2)是等边三角形.理由:由(1)知∠DEF=180°-120°=60°.同理∠EDF=∠DFE=60°,∴△DEF是等边三角形14.(12分)如图,把长方形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明.解:(1)证明:由题意得B′F=BF,∠B′FE=∠BFE.又∵AD∥BC,∴∠B′EF=∠BFE,∴∠B′FE=∠B′EF,∴B′F=B′E,∴B′E=BF(2)a,b,c的关系为a2+b2=c2,连接BE,则BE=B′E,由(1)知B′E=BF=c,∴BE=c.∵AE2+AB2=BE2,又∵AE=a,AB=b,∴a2+b2=c2(若写a+b>c也可以)15.(13分)(1)操作发现:如图①,D是等边三角形ABC边BA上一动点(点D与点B 不重合),连接DC,以DC为边在BC上方作等边三角形DCF,连接AF.你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)类比猜想:如图②,当动点D运动至等边三角形ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:如图③,当动点D在等边三角形ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方,下方分别作等边三角形DCF和等边三角形DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你探究的结论.解:(1)AF=BD,证明△ACF≌△BCD(SAS)(2)仍成立(3)AF+BF′=AB,证明:由(1)知,AF=BD,易证△ACD≌△BCF′(SAS),∴BF′=AD,∴AF+BF′=BD+AD=AB。

成都市第七中学初中数学八年级下期中经典练习题(含答案)

成都市第七中学初中数学八年级下期中经典练习题(含答案)

一、选择题1.(0分)[ID :9928]按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x 张,摆放的椅子为y 把,则y 与x 之间的关系式为( )A .y =6xB .y =4x ﹣2C .y =5x ﹣1D .y =4x+22.(0分)[ID :9906]在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )A .9.7m ,9.9mB .9.7m ,9.8mC .9.8m ,9.7mD .9.8m ,9.9m3.(0分)[ID :9905]如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .3105C .105D .3554.(0分)[ID :9884]如图,直线y x m =-+与3yx 的交点的横坐标为-2,则关于x的不等式30x m x -+>+>的取值范围( )A .x>-2B .x<-2C .-3<x<-2D .-3<x<-15.(0分)[ID :9882]有一直角三角形纸片,∠C =90°BC =6,AC =8,现将△ABC 按如图那样折叠,使点A与点B重合,折痕为DE,则CE的长为( )A.27B.74C.72D.46.(0分)[ID:9878]如图,在平行四边形ABCD中,AC、BD相交于点O,下列结论:①OA =OC;②∠BAD=∠BCD;③AC⊥BD;④∠BAD+∠ABC=180°中,正确的个数有()A.1个 B.2个 C.3个 D.4个7.(0分)[ID:9870]函数y=11xx+-中,自变量x的取值范围是()A.x>-1B.x>-1且x≠1C.x≥一1D.x≥-1且x≠1 8.(0分)[ID:9868]若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k<3B.k<0C.k>3D.0<k<39.(0分)[ID:9854]如图,已知圆柱底面的周长为4dm,圆柱的高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm10.(0分)[ID:9850]如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )A.4B.2.4C.4.8D.511.(0分)[ID:9926]如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃12.(0分)[ID:9839]为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD13.(0分)[ID:9910]小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A.2.7 米B.2.5 米C.2.1 米D.1.5 米⊥于,D E是AC的中点.若14.(0分)[ID:9885]如图,ABC中,CD AB==则CD的长等于()6,5,AD DEA.5B.6C.8D.1015.(0分)[ID:9869]如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是EF=,BD=4,则菱形ABCD的周长为()AB,BC边上的中点,连接EF.若3A.4B.6C.47D.28二、填空题16.(0分)[ID :10017]计算:2(21)+=__________.17.(0分)[ID :10009]如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .18.(0分)[ID :9998]一组数据4、5、a 、6、8的平均数5x =,则方差2s =________.19.(0分)[ID :9983]△ABC 中,AB =13cm ,BC =10cm ,BC 边上的中线AD =12cm .则AC =______cm .20.(0分)[ID :9978]在矩形ABCD 中,对角线AC 、BD 交于点O ,AB =1,∠AOB =60°,则AD =________.21.(0分)[ID :9976]如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF ⊥,若3AC =,5BC =,则DF =__________.22.(0分)[ID :9967]如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为____.23.(0分)[ID :9944]2a =3b =,用含,a b 0.54,结果为________.24.(0分)[ID :9939]在平面直角坐标系中,(1,0)(4,0)(0,3),A B C -、、若以A B C D 、、、为顶点的四边形是平行四边形,则D 点坐标是________________.25.(0分)[ID :9965]如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB=2,BC=4,则图中阴影部分的面积为_______.三、解答题26.(0分)[ID :10132]如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E(1)证明:四边形ACDE 是平行四边形;(2)若AC=8,BD=6,求△ADE 的周长.27.(0分)[ID :10128]如图,已知AC 是矩形ABCD 的对角线,AC 的垂直平分线EF 分别交BC 、AD 于点E 和F ,EF 交AC 于点O .(1)求证:四边形AECF 是菱形;(2)若AB =6,AD =8,求四边形AECF 的周长.28.(0分)[ID :10112]计算:16(23)(23)273--. 29.(0分)[ID :10061](1)用>=<、、填空 32 21②23 3252 2365 5220182017 20172016(2)观察.上式,请用含1)1,(,1n n n n -+≥的式子,把你发现的规律表示出来,并证明结论的正确性.30.(0分)[ID :10035]“五一”节假期间, 小亮一家到某度假村度假.小亮和他妈妈坐公交车先出发,他爸爸自驾车沿着相同的道路后出发,他爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村,如图是他们离家的距离()s km 与小亮离家的时间()t h 的关系图,请根据图回答下列问题:(1)小亮和妈妈坐公交车的速度为 /km h ;爸爸自驾的速度为 /km h (2)小亮从家到度假村期间,他离家的距离()s km 与离家的时间()t h 的关系式为 ;小亮从家到度假村的路途中,当他与他爸爸相遇时,离家的距离是 km (3)当小亮和妈妈与他爸爸第2次相遇后,一直到全家会和为止,t 为多少时小亮和妈妈与爸爸相距10km ?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.D2.B3.B4.C5.B6.C7.D8.D9.A10.C11.D12.B13.C14.C15.C二、填空题16.3+2【解析】【分析】【详解】解:故答案为:3+217.40【解析】【分析】作出辅助线因为△ADF与△DEF同底等高所以面积相等所以阴影图形的面积可解【详解】如图连接EF∵△ADF与△DEF同底等高∴S=S即S−S=S−S即S=S=15cm同理可得S=S18.4【解析】【分析】首先根据其平均数为5求得a的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s19.13【解析】【分析】在△ABD中根据勾股定理的逆定理即可判断AD⊥BC然后根据线段的垂直平分线的性质即可得到AC=AB从而求解【详解】∵AD是中线AB=13BC=10∴∵52+122 =132即BD220.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AC=2OABD=2BOAC=BD∴OB=O A∵∴是等边三角形故答案为【点睛】本题考查矩形的对角线相等21.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF=AC=15∴DF=DE﹣E22.6【解析】【分析】先根据矩形的特点求出BC的长再由翻折变换的性质得出△CEF是直角三角形利用勾股定理即可求出CF的长再在△ABC中利用勾股定理即可求出AB的长【详解】解:∵四边形ABCD是矩形AD=23.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型24.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC为对角线三种情况进行求解【详解】如图所示①AC为对角线时AB=5∴点D的坐标为(-53)②BC为对角线时AB=5∴点D的坐标为(5325.4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半即可求得结果【详解】由图可知阴影部分的面积故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】观察可得,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.第x张餐桌共有6+4(x-1)=4x+2,由此即可解答.【详解】有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,∵多一张餐桌,多放4把椅子,∴第x张餐桌共有6+4(x-1)=4x+2.∴y与x之间的关系式为:y=4x+2.【点睛】本题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律即可求得y 与x 之间的关系式.2.B解析:B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m ,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m ,故选:B .【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.3.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22AD DE +2231+10, ∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 故选:B .本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.4.C解析:C【解析】【分析】【详解】解:∵直线y x m =-+与3y x 的交点的横坐标为﹣2,∴关于x 的不等式3x m x -+>+的解集为x <﹣2,∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x >﹣3,∴3x m x -+>+>0的解集是﹣3<x <﹣2,故选C .【点睛】本题考查一次函数与一元一次不等式.5.B解析:B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB ,根据翻折不变性,可知△DAE ≌△DBE ,从而得到BD=AD ,BE=AE ,设CE=x ,则AE=8-x ,在Rt △CBE 中,由勾股定理列方程求解.【详解】∵△CBE ≌△DBE ,∴BD=BC=6,DE=CE ,在RT △ACB 中,AC=8,BC=6,∴.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA ≌△EDB∴EA=EB∴在Rt △BCE 中,设CE=x ,则BE=AE=8-x ,∴BE 2=BC 2+CE 2,∴(8-x )2=62+x 2,解得x=74. 故选B .【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.6.C解析:C【解析】试题分析:根据平行四边形的性质依次分析各选项即可作出判断.∵平行四边形ABCD∴OA=OC,∠BAD=∠BCD,∠BAD+∠ABC=180°,但无法得到AC⊥BD故选C.考点:平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7.D解析:D【解析】根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.故选D.8.D解析:D【解析】【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,∴{k−3<0−k<0,解得:0<k<3,故选:D.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.9.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度,圆柱底面的周长为4dm ,圆柱高为2dm ,2AB dm ,2BC BC dm , 22222448AC , 22AC dm ,∴这圈金属丝的周长最小为242ACdm . 故选:A .【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.10.C解析:C【解析】【分析】连接BD ,根据菱形的性质可得AC ⊥BD ,AO=12AC ,然后根据勾股定理计算出BO 长,再算出菱形的面积,然后再根据面积公式BC•AE=12AC•BD 可得答案. 【详解】连接BD ,交AC 于O 点,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =5,∴1,22AC BD AO AC BD BO ⊥==,, ∴90AOB ∠=,∵AC=6,∴AO=3,∴4 BO==,∴DB=8,∴菱形ABCD的面积是116824 22AC DB⨯⋅=⨯⨯=,∴BC⋅AE=24,245AE=,故选C.11.D解析:D【解析】【分析】根据气温T如何随时间t的变化而变化图像直接可解答此题.【详解】A.根据图像4时气温最低,故A错误;B.最低气温为零下3℃,故B错误;C.0点到14点之间气温先下降后上升,故C错误;D描述正确.【点睛】本题考查了学生看图像获取信息的能力,掌握看图像得到有用信息是解决此题的关键. 12.B解析:B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.C解析:C【解析】【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【详解】=2.1(米).故选C .【点睛】本题考查了勾股定理的应用.善于提取题目的信息是解题以及学好数学的关键.14.C解析:C【解析】【分析】先根据直角三角形的性质求出AC 的长,再根据勾股定理即可得出结论.【详解】解:∵ABC 中,CD AB ⊥于D ,∴∠ADC =90°,则ADC 为直角三角形,∵E 是AC 的中点,DE =5,∴AC =2DE =10,在Rt ADC 中,AD =6,AC =10,∴8CD =, 故选:C .【点睛】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键. 15.C解析:C【解析】【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,∴∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12OB=12BD=2,∴,∴菱形ABCD 的周长为.故选C.二、填空题16.3+2【解析】【分析】【详解】解:故答案为:3+2解析:3+22【解析】【分析】【详解】(2+1)=(2)+22+1=3+22.解:222故答案为:3+22.17.40【解析】【分析】作出辅助线因为△ADF与△DEF同底等高所以面积相等所以阴影图形的面积可解【详解】如图连接EF∵△ADF与△DEF同底等高∴S=S 即S−S=S−S即S=S=15cm同理可得S=S解析:40【解析】【分析】作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.【详解】如图,连接EF∵△ADF与△DEF同底等高,=S DEF∴SADF−S DPF =S DEF−S DPF,即SADF即S APD =S EPF =15cm2,同理可得S BQC =S EFQ =25cm2,∴阴影部分的面积为S EPF +S EFQ =15+25=40cm2.故答案为40.【点睛】此题考查平行四边形的性质,解题关键在于进行等量代换.18.4【解析】【分析】首先根据其平均数为5求得a的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s解析:4【解析】【分析】首先根据其平均数为5求得a的值,然后再根据方差的计算方法计算即可.【详解】解:根据题意得(4+5+a+6+8)=5×5,解得a=2,则这组数据为4,5,2,6,8的平均数为5,所以这组数据的方差为s2= 15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4.故答案为:4【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.13【解析】【分析】在△ABD中根据勾股定理的逆定理即可判断AD⊥BC然后根据线段的垂直平分线的性质即可得到AC=AB从而求解【详解】∵AD是中线AB=13BC=10∴∵52+122=132即BD2解析:13【解析】【分析】在△ABD中,根据勾股定理的逆定理即可判断AD⊥BC,然后根据线段的垂直平分线的性质,即可得到AC=AB,从而求解.【详解】∵AD是中线,AB=13,BC=10,∴152BD BC==.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13.故答案为13.【点睛】本题考查的知识点是勾股定理的逆定理与线段的垂直平分线的性质,解题关键是利用勾股定理的逆定理证得AD ⊥BC .20.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AC=2OABD=2BOAC=BD ∴OB=OA ∵∴是等边三角形故答案为【点睛】本题考查矩形的对角线相等 解析:3 【解析】【分析】【详解】解:∵四边形ABCD 是矩形,∴AC=2OA ,BD=2BO ,AC=BD ,∴OB=OA ,∵60∠=,AOB ∴OAB 是等边三角形,1OB AB ∴==22BD OB ==223AD BD AB =-=故答案为3.【点睛】本题考查矩形的对角线相等.21.1【解析】【分析】根据三角形中位线定理求出DE 根据直角三角形的性质求出EF 计算即可【详解】解:∵DE 分别为ABAC 的中点∴DE=BC =25∵AF⊥CFE 为AC 的中点∴EF=AC =15∴DF=DE ﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出EF ,计算即可.【详解】解:∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =2.5, ∵AF ⊥CF ,E 为AC 的中点, ∴EF =12AC =1.5, ∴DF =DE ﹣EF =1,故答案为:1.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.22.6【解析】【分析】先根据矩形的特点求出BC的长再由翻折变换的性质得出△CEF是直角三角形利用勾股定理即可求出CF的长再在△ABC中利用勾股定理即可求出AB的长【详解】解:∵四边形ABCD是矩形AD=解析:6【解析】【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【详解】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8-3=5,在Rt△CEF中,4CF===设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,则AB=6.故答案为:6.【点睛】本题考查了翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.23.【解析】【分析】将化简后代入ab即可【详解】解:∵∴故答案为:【点睛】本题考查了二次根式的乘除法法则的应用解题的关键是将化简变形本题属于中等题型解析:3 10 ab【解析】【分析】化简后,代入a,b即可.【详解】====∵2a=,3b=,∴3 0540 .1=ab故答案为:310 ab.【点睛】本题考查了二次根式的乘除法法则的应用,解题的关键是将0.54化简变形,本题属于中等题型.24.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC为对角线三种情况进行求解【详解】如图所示①AC为对角线时AB=5∴点D的坐标为(-53)②BC为对角线时AB=5∴点D的坐标为(53解析:(-5,3)、(5,3)、(3,−3)【解析】【分析】作出图形,分AB、BC、AC为对角线三种情况进行求解.【详解】如图所示,①AC为对角线时,AB=5,∴点D的坐标为(-5,3),②BC为对角线时,AB=5,∴点D的坐标为(5,3),③AB为对角线时,C平移至A的方式为向左平移1个单位,向下平移3个单位,∴点B 向左平移1个单位,向下平移3个单位得到点D的坐标为(3,−3),综上所述,点D的坐标是(-5,3)、(5,3)、(3,−3).故答案为:(-5,3)、(5,3)、(3,−3).【点睛】本题考查了坐标与图形的性质,平行四边形的判定,根据题意作出图形,注意要分情况进行讨论.25.4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半即可求得结果【详解】由图可知阴影部分的面积故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE 解析:4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半,即可求得结果.【详解】由图可知,阴影部分的面积1424 2=⨯⨯=故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE的面积等于△BOF的面积,从而可以判断阴影部分的面积等于矩形面积的一半.三、解答题26.(1)证明见解析;(2)18.【解析】【分析】【详解】解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.27.(1)见解析;(2)25【解析】【分析】(1)根据四边相等的四边形是菱形即可判断;(2)设AE=EC为x,利用勾股定理解答即可.【详解】(1)证明:∵四边形ABCD是矩形∴AD∥BC,∴∠DAC=∠ACB,∵EF垂直平分AC,∴AF=FC,AE=EC,∴∠FAC=∠FCA,∴∠FCA=∠ACB,∵∠FCA+∠CFE=90°,∠ACB+∠CEF=90°,∴∠CFE=∠CEF,∴CE=CF,∴AF=FC=CE=AE,∴四边形AECF是菱形.(2)设AE=EC为x,则BE=(8-x)在Rt△ABE中,AE2=AB2+BE2,即x2=62+(8-x)2,解得:x=254,所以四边形AECF的周长=254×4=25.【点睛】考查矩形的性质、线段的垂直平分线的性质、菱形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.28.1【解析】【分析】先利用平方差公式计算,然后把二次根式化为最简二次根式后合并即可.【详解】解:原式=43--=1【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.29.(1)<,<,<,<,<;(2<【解析】【分析】(1)首先用1除以每个数,求出商是多少;再比较出它们商的大小;然后根据商越大,则原来的数就越小,判断出它们的大小关系即可;(2)根据(1<【详解】=解:(1)=1>11;2==∵>∴22=2=>+22<2==2>22==>故答案为:<;<;<;<;<;(2<证明:因为22n =+ (24n =②②-①得(222n -=-因为1n ≥<n <所以(220->200n >>∴>【点睛】此题主要考查了实数大小的比较,二次根式的性质,以及不等式的性质,解答此题的关键是要明确:被除数一定时,商越大,则除数越小. 30.(1)20,60;(2)()2003s t t =≤≤,30或45;(3)198t =或236t =时,小亮和妈妈与爸爸相距10km【解析】【分析】(1)根据函数图象可以分别求得小亮和妈妈坐公交车的速度和爸爸自驾的速度; (2)根据题意可以求得相应的函数解析式;(3)根据函数图象和各段对应的函数解析式可以解答本题.【详解】解:(1)由图可得,小亮和妈妈坐公交车的速度为:60÷3=20km/h ,爸爸自驾的速度为:60×(2-1)=60km/h ,故答案为:20,60;(2)∵小亮和妈妈坐公交车的速度为20km/h ,∴小亮从家到度假村期间,他离家的距离s (km )与离家的时间(h )的关系式为:s=20t ,当1≤t≤2时,设小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=kt+b ,则0260k b k b +=⎧⎨+=⎩,得6060k b =⎧⎨=-⎩, 即当1≤t≤2时,小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=60t-60, 当2≤t≤3时,设小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=ct+d ,则 30260c d c d +=⎧⎨+=⎩,得60180c d =-⎧⎨=⎩, 即当2≤t≤3时,小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=-60t+180,令20t=60t-60,得t=1.5,此时,s=20×1.5=30, 20t=-60t+180,得t=2.25,此时s=20×2.25=45,故答案为:()2003s t t =≤≤,30或45;(3)解:由题意:第2次相遇时,小明离家45km ,离家的时间(h )为45÷20=94h , ①当爸爸在回家途中当94≤t≤3时,20t-(-60t+180)=10,解得,198t =, 即小明离家198h ,小亮和妈妈与爸爸相距10km ②当爸爸再次返回,3≤t≤4时,设小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=et+f ,则30460e f e f +=⎧⎨+=⎩,得60180e f =⎧⎨=-⎩, ∴当3≤t≤4时,小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为: s=60t-180,令60-(60t-180)=10,得236t =, 即小明离家236h ,小亮和妈妈与爸爸相距10km , 综上:198t =或236t =时,小亮和妈妈与爸爸相距10km . 【点睛】本题考查函数图象以及常量与变量、函数关系式,利用函数图象获取正确信息是解题关键.。

四川省成都市七中学育才学校2024届数学八年级第二学期期末统考试题含解析

四川省成都市七中学育才学校2024届数学八年级第二学期期末统考试题含解析

四川省成都市七中学育才学校2024届数学八年级第二学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是( )A .等腰梯形B .直角梯形C .菱形D .矩形2.已知点(-2,y 1),(-1,y 2),(4,y 3)在函数y =的图象上,则( )A .y 2<y 1<y 3B .y 1<y 2<y 3C .y 3<y 1<y 2D .y 3<y 2<y 13.化简()()AB CD BE DE -+-的结果是( ).A .CAB .AC C .0D .AE4.如图,在△ABC 中,∠A =45°,∠B =30°,CD ⊥AB ,垂足为D ,CD =1,则AB 的长为( )A .3B .23C .31+D .231+5.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm6.平行四边形具有的特征是( )A .四个角都是直角B .对角线相等C .对角线互相平分D .四边相等7.下列计算正确的是 ()A .822-=B .()236-=C .42232a a a -=D .()235a a -=8.在矩形ABCD 中,下列结论中正确的是( )A .AB CD = B .AC BD = C .AO OD = D .BO OD =-9.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连接EB ,EC ,DB ,下列条件中,不能使四边形DBCE 成为菱形的是( )A .AB =BE B .BE ⊥DC C .∠ABE =90°D .BE 平分∠DBC10.在二次根式2a -中,a 能取到的最小值为( )A .0B .1C .2D .2.5二、填空题(每小题3分,共24分)11.函数19y x =-自变量的取值范围是______. 12.某物体对地面的压强()2/p N m 随物体与地面的接触面积()2S m 之间的变化关系如图所示(双曲线的一支).如果该物体与地面的接触面积为20.24m ,那么该物体对地面的压强是__________()2/N m .13.平行四边形ABCD 中,∠A -∠B =20°,则∠A =______,∠B =_______.14.已知一元二次方程2816x x -=-,则根的判别式△=____________.15.已知正方形的一条对角线长为22,则该正方形的边长为__________cm .16.某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y (米)与王艳出发时间x (分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.17.如图,已知直线l 1:y =k 1x +4与直线l 2:y =k 2x ﹣5交于点A ,它们与y 轴的交点分别为点B ,C ,点E ,F 分别为线段AB 、AC 的中点,则线段EF 的长度为______.18.如图,已知矩形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD ,BC 于E ,F ,若3AB =,4BC =,则阴影部分的面积是______.三、解答题(共66分)19.(10分)如图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,∠BAC 的平分线AE 交C 于F ,EG ⊥AB 于G ,请判断四边形GECF 的形状,并证明你的结论.20.(6分)如图,一次函数y kx b =+与反比例函数m y x =的图象交于A (1,4),B (4,n )两点. (1)求反比例函数和一次函数的解析式; (2)点P 是x 轴上的一动点,当PA+PB 最小时,求点P 的坐标;(3)观察图象,直接写出不等式m kx b x+≥的解集.21.(6分)小红帮弟弟荡秋千(如图1),秋千离地面的高度h (m )与摆动时间t (s )之间的关系如图2所示.(1)根据函数的定义,请判断变量h 是否为关于t 的函数?(2)结合图象回答:①当t=0.7s 时,h 的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?22.(8分)解不等式组:2(1)421142x x x x <-+⎧⎪⎨+-≥⎪⎩,并在数轴上表示出它的解集.23.(8分)根据要求,解答下列问题.(1)根据要求,解答下列问题.①方程x2-2x+1=0的解为________________________;②方程x2-3x+2=0的解为________________________;③方程x2-4x+3=0的解为________________________;…… ……(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x+8=0的解为________________________;②关于x的方程________________________的解为x1=1,x2=n.(3)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.24.(8分)如图,点P是正方形ABCD的边BC上的任意一点,连接AP,作DE⊥AP,垂足是E,BF⊥AP,垂足是F.求证:DE=BF+EF.25.(10分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图1摆放时,都可以用“面积法”来证明,请你利用图1或图1证明勾股定理(其中∠DAB=90°)求证:a1+b1=c1.26.(10分)直线y=x+b与双曲线y=mx交于点A(﹣1,﹣5).并分别与x轴、y轴交于点C、B.(1)直接写出b=,m=;(2)根据图象直接写出不等式x+b<mx的解集为;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在,请求出D的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)1、D【解题分析】首先作出图形,根据三角形的中位线定理,可以得到1EF BD2=,1GH BD2=,1EH AC2=,1FG AC.2=再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.【题目详解】解:连接AC,BD.∵E,F是AB,AD的中点,即EF是ABD的中位线.1EF BD2∴=,同理:1GH BD2=,1EH AC2=,1FG AC2=.又等腰梯形ABCD中,AC BD=.EF FG GH EH∴===.∴四边形EFGH是菱形.OP是EFG的中位线,∴EF EG ,PM //FH ,同理,NM EG ,∴EF NM ,∴四边形OPMN 是平行四边形.PM //FH ,OP //EG , 又菱形EFGH 中,EG FH ⊥,OP PM ∴⊥∴平行四边形OPMN 是矩形.故选:D .【题目点拨】本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH 和四边形OPMN 的边的关系.2、A【解题分析】把x 的取值分别代入函数式求y 的值比较即可.【题目详解】解:由 y =得,y 1==-4, y 2==-8, y 3==2 ,∴y 2<y 1<y 3 .故答案为:A【题目点拨】本题考查了函数值的大小比较,已知自变量值比较函数值有3种方法,①根据函数解析式求出函数值直接比较;②根据函数性质比较;③画出函数图像进行比较,其中①是最容易掌握的方法.3、B【解题分析】根据三角形法则计算即可解决问题.【题目详解】解:原式()()AB BE CD DE =+-+AE CE =-AE EC =+ AC =,故选:B.【题目点拨】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.4、C【解题分析】在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.【题目详解】在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则,故.故选C.【题目点拨】本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.5、D【解题分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【题目详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【题目点拨】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.6、C【解题分析】根据平行四边形的性质进行选择.【题目详解】平行四边形对角线互相平分,对边平行且相等,对角相等.故选C【题目点拨】本题考核知识点:平行四边形性质. 解题关键点:熟记平行四边形性质.7、A【解题分析】A. ==,故正确;-=,故不正确;B. ()239C. 4232与不是同类项,不能合并,故不正确;a aD. ()236-=,故不正确;a a故选A.8、C【解题分析】根据相等向量及向量长度的概念逐一进行判断即可.【题目详解】相等向量:长度相等且方向相同的两个向量.A. AB CD=-,故该选项错误;=,但方向不同,故该选项错误;B. AC BD=,故该选项正确;C. 根据矩形的性质可知,对角线互相平分且相等,所以AO ODD. BO OD=,故该选项错误;故选:C.【题目点拨】本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键.9、A【解题分析】根据菱形的判定方法一一判断即可;【题目详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵BE⊥DC,∴对角线互相垂直的平行四边形为菱形,故本选项正确;C、∵∠ABE=90°,∴BD=DE,∴邻边相等的平行四边形为菱形,故本选项正确;D、∵BE平分∠DBC,∴对角线平分对角的平行四边形为菱形,故本选项正确.故选A.【题目点拨】本题考查了平行四边形的判定以及菱形的判定,正确掌握菱形的判定与性质是解题关键.10、C【解题分析】根据二次根式的定义求出a的范围,再得出答案即可.【题目详解】a-2≥0,即a≥2,所以a能取到的最小值是2,故选C.【题目点拨】本题考查了二次根式的定义,能熟记二次根式的定义是解此题的关键.二、填空题(每小题3分,共24分)x>11、9【解题分析】根据分式与二次根式的性质即可求解.【题目详解】依题意得x-9>0,x>解得9故填:9x >.【题目点拨】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.12、500【解题分析】首先通过反比例函数的定义计算出比例系数k 的值,然后可确定其表达式,再根据题目中给出的自变量求出函数值【题目详解】 根据图象可得120P S =当S=0.24时,P=1200.24 =500,即压强是500Pa. 【题目点拨】此题考查反比例函数的应用,列方程是解题关键13、100°, 80°【解题分析】根据平行四边形的性质得出AD ∥BC ,求出∠A+∠B=180°,解方程组求出答案即可.【题目详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∠B=80°,故答案为:100°,80°.【题目点拨】本题考查了平行四边形的性质,能根据平行线得出∠A+∠B=180°是解此题的关键,注意:平行四边形的对边平行. 14、0【解题分析】根据一元二次方程根的判别式24b ac =-,将本题中的a 、b 、c 带入即可求出答案.【题目详解】解:∵一元二次方程2816x x -=-,整理得:28160x x -+=,可得:a 1,b 8,c 16==-=,∴根的判别式()2248411664640b ac =-=--⨯⨯=-=; 故答案为0.【题目点拨】本题考查一元二次方程根的判别式,首先把方程化成一般形式,得出一元二次方程的二次项系数、一次项系数与常数项,再根据根的判别式公式求解,解题中需注意符号问题.15、2【解题分析】根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.【题目详解】解:∵正方形的对角线长为,设正方形的边长为x,∴2x² 解得:x=2∴正方形的边长为:2故答案为2.【题目点拨】本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.16、1.【解题分析】根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为503秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果. 【题目详解】解:设王艳骑自行车的速度为xm /min ,则爸爸的速度为:(5x +152⨯x )÷5=32x (m /min ), 由函数图象可知,公司距离演奏厅的距离为9400米,∵公司位于家正西方3900米,∴家与演奏厅的距离为:9400﹣3900=5500(米),根据题意得,5x+5×12x +(50103-)×3(2)2x⋅=5500,解得,x=200(m/min),∴爸爸的速度为:33002x=(m/min)∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣(50103-)×300=1(m).故答案为:1.【题目点拨】本题考查了函数图象与行程问题,解题的关键是将函数图象与实际的行程对应起来,列出方程,解出相关量.17、.【解题分析】根据直线方程易求点B、C的坐标,由两点间的距离得到BC的长度.所以根据三角形中位线定理来求EF的长度.【题目详解】解:∵直线l1:y=k1x+4,直线l2:y=k2x﹣5,∴B(0,4),C(0,﹣5),则BC=1.又∵点E,F分别为线段AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=.故答案是:.18、1【解题分析】首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△AOD的面积.【题目详解】∵四边形ABCD是矩形,∴OA=OC,AD∥BC,∴∠AEO=∠CFO.在△AOE和△COF中,∵AEO CFOOA OCAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE≌△COF,∴S△AOE=S△COF,∴S阴影= S△COF +S△EOD =S△AOE+S△EOD∵S △AOD 14=BC •AD =1,∴S 阴影=1. 故答案为:1.【题目点拨】本题考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的14,是解决问题的关键.三、解答题(共66分)19、四边形GECF 是菱形,理由详见解析.【解题分析】试题分析:根据全等三角形的判定定理HL 进行证明Rt △AEG ≌Rt △AEC (HL ),得到GE=EC ;根据平行线EG ∥CD 的性质、∠BAC 平分线的性质以及等量代换推知∠FEC=∠CFE ,易证CF=CE ;从而根据邻边相等的平行四边形是菱形进行判断.试题解析:四边形GECF 是菱形,理由如下:∵∠ACB=90°,∴AC ⊥EC .又∵EG ⊥AB ,AE 是∠BAC 的平分线,∴GE=CE .在Rt △AEG 与Rt △AEC 中,{GE CE AE AE==, ∴Rt △AEG ≌Rt △AEC (HL ),∴GE=EC ,∵CD 是AB 边上的高,∴CD ⊥AB ,又∵EG ⊥AB ,∴EG ∥CD ,∴∠CFE=∠GEA ,∵Rt △AEG ≌Rt △AEC ,∴∠GEA=∠CEA ,∴∠CEA=∠CFE ,即∠CEF=∠CFE ,∴GE=EC=FC,又∵EG∥CD,即GE∥FC,∴四边形GECF是菱形.考点:菱形的判定.20、(1)反比例函数的解析式为4yx=;一次函数的解析式为y=-x+5;(2)点P的坐标为(175,0);(3)x<0或1≤x≤4【解题分析】(1)将点A(1,4)代入myx=可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点P即可.(3)根据图象得出不等式mkx bx+≥的解集即可。

四川省成都市七中育才学校2015-2016八年级数学下学期第3周周练试题 北师大版

四川省成都市七中育才学校2015-2016八年级数学下学期第3周周练试题 北师大版

四川省成都市七中育才学校2015-2016八年级数学下学期第3周周练试题一.选择题(每题3分,共30分)1.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)2.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2B.3C.5D.7第4题第6题3()131+-xm,若y随x的增大而减小,则m的取值范围是()A.31<mB.31-<mC.31>mD.31->m4.如图,当y<0时,自变量x的范围是().A.x<-2 B.x>-2 C.x>2 D.x<25.点A(4,12m m--)在第三象限,则m的取值范围是().A.12m> B. 4m< C.142m<< D. 4m>6.如图,△ABC的周长为30 cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4 cm,则△ABD的周长是( )A.22 cm B.20 cm C.18 cm D.15 cm7.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°.∠B′=110°,则∠BCA′的度数是().A.110°B.80°C.40°D.30°8.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打()A. 6折B. 7折C. 8折D. 9折9.如图,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的三倍,则图中的四边形ACED的面积为()A. 48cm2B.60cm2C.72cm2D.无法确定10.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△第10题第9题CDB 旋转90°,则旋转后点D 的对应点D '的坐标是( )A.(2,10)B.(-2,0)C.(2,10)或(-2,0)D.(10,2)或(-2,0)请将选择题的答案填在下面的表格里二.填空题(每小题4分,共16分)11..如图,在Rt△ABC 中,∠错误!未找到引用源。

成都市七中育才学校初中数学八年级下期末阶段测试(答案解析)

成都市七中育才学校初中数学八年级下期末阶段测试(答案解析)

一、选择题1.(0分)[ID :10228]如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB 生长在它的正中央,高出水面部分BC 的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B′,则这根芦苇AB 的长是( )A .15尺B .16尺C .17尺D .18尺2.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥3.(0分)[ID :10219]均匀地向如图的容器中注满水,能反映在注水过程中水面高度h 随时间t 变化的函数图象是( )A .B .C .D .4.(0分)[ID :10214]要使函数y =(m ﹣2)x n ﹣1+n 是一次函数,应满足( )A .m ≠2,n ≠2B .m =2,n =2C .m ≠2,n =2D .m =2,n =05.(0分)[ID :10142]如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠6.(0分)[ID :10138]小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .7.(0分)[ID :10137]下列有关一次函数y =﹣3x +2的说法中,错误的是( ) A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为(0,2)C .函数图象经过第一、二、四象限D .图象经过点(1,5)8.(0分)[ID :10135]若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .9.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差10.(0分)[ID :10190]下列计算中正确的是( )A .325+=B .321-=C .3333+=D .3342= 11.(0分)[ID :10188]如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为( )A .1B .2C .3D .4 12.(0分)[ID :10166]如图,点P 是矩形ABCD 的边上一动点,矩形两边长AB 、BC 长分别为15和20,那么P 到矩形两条对角线AC 和BD 的距离之和是( )A .6B .12C .24D .不能确定13.(0分)[ID :10161]如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A .10mB .15mC .18mD .20m14.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .515.(0分)[ID :10150]如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80二、填空题16.(0分)[ID :10328]如图,矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD ,交BC 于E ,若∠EAO=15°,则∠BOE 的度数为 度.17.(0分)[ID :10324]若x=2-1, 则x 2+2x+1=__________.18.(0分)[ID :10318]长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b +ab 2的值为_____.19.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____.20.(0分)[ID :10300]如图,在平面直角坐标系xOy 中,点(0,6)C ,射线//x CE 轴,直线y x b =-+交线段OC 于点B ,交x 轴于点A ,D 是射线CE 上一点.若存在点D ,使得ABD △恰为等腰直角三角形,则b 的值为_______.21.(0分)[ID :10283]如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.22.(0分)[ID :10257]如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若DQ =2QC ,BC =3,则平行四边形ABCD 周长为_____.23.(0分)[ID :10252]有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .24.(0分)[ID :10250]如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.25.(0分)[ID :10248]已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是_________.三、解答题26.(0分)[ID :10420]先化简,再求值:()22111a a a ⎛⎫-+÷+ ⎪+⎝⎭,其中21a =-.27.(0分)[ID :10387]已知:如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .求证:∠EBF =∠EDF .28.(0分)[ID :10369]如图,已知一次函数y=kx+b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求△AOB 的面积.29.(0分)[ID :10358]如图,在正方形网格中,小正方形的边长为1,A ,B ,C 为格点 ()1判断ABC 的形状,并说明理由.()2求BC边上的高.30.(0分)[ID:10353]如图,在平行四边形ABCD中,已知点E在AB上,点F在CD =.上,且AE CF求证:DE BF=.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.A3.A4.C5.B6.D7.D8.C9.D10.D11.C12.B13.C14.A15.C二、填空题16.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△B AE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD ∴∠BAE=∠E17.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式18.【解析】【分析】由周长和面积可分别求得a+b和ab的值再利用因式分解把所求代数式可化为ab(a+b)代入可求得答案【详解】∵长宽分别为ab的矩形它的周长为14面积为10∴a+b==7ab=10∴a219.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二20.3或6【解析】【分析】先表示出AB坐标分①当∠ABD=90°时②当∠ADB=90°时③当∠DAB=90°时建立等式解出b即可【详解】解:①当∠ABD=90°时如图1则∠DBC+∠ABO=90°∴∠D21.【解析】【分析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示连接HCDF且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG ∴∠BCF=∠DCG=3022.【解析】试题解析:∵由题意可知AQ是∠DAB的平分线∴∠DAQ=∠BAQ∵四边形ABCD 是平行四边形∴CD∥ABBC=AD=3∠BAQ=∠DQA∴∠DAQ=∠DAQ∴△AQD是等腰三角形∴DQ =AD23.2【解析】试题分析:先由平均数计算出a=4×5-2-3-5-6=4再计算方差(一般地设n个数据x1x2…xn的平均数为=()则方差=)==2考点:平均数方差24.2+2【解析】【分析】地毯的竖直的线段加起来等于BC水平的线段相加正好等于AC即地毯的总长度至少为(AC+BC)【详解】在Rt△ABC中∠A=30°BC=2m∠C=90°∴AB=2BC=4m ∴AC=25.a>b【解析】【分析】【详解】解:∵一次函数y=﹣2x+1中k=﹣2∴该函数中y随着x的增大而减小∵1<2∴a>b故答案为a>b【点睛】本题考查一次函数图象上点的坐标特征三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.【详解】解:依题意画出图形,设芦苇长AB=AB′=x 尺,则水深AC=(x-2)尺,因为B'E=16尺,所以B'C=8尺在Rt △AB'C 中,82+(x-2)2=x 2,解之得:x=17,即芦苇长17尺.故选C .【点睛】本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.2.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.3.A解析:A【解析】试题分析:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A . 考点:函数的图象.4.C解析:C【解析】【分析】根据y=kx+b (k 、b 是常数,k≠0)是一次函数,可得m-2≠0,n-1=1,求解即可得答案.【详解】解:∵y=(m ﹣2)x n ﹣1+n 是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.【点睛】本题考查了一次函数,y=kx+b,k、b是常数,k≠0,x的次数等于1是解题关键.5.B解析:B【解析】【分析】根据平行四边形的性质以及平行四边形的判定定理即可作出判断.【详解】解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,若AE=CF,则OE=OF,∴四边形DEBF是平行四边形;B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;C、∵在平行四边形ABCD中,OB=OD,AD∥BC,∴∠ADB=∠CBD,若∠ADE=∠CBF,则∠EDB=∠FBO,∴DE∥BF,则△DOE和△BOF中,EDB FBO OD OBDOE BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确;D、∵∠AED=∠CFB,∴∠DEO=∠BFO,∴DE∥BF,在△DOE和△BOF中,DOE BOFDEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.【点睛】本题考查了平行四边形的性质以及判定定理,熟练掌握定理是关键.6.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s最大,到家,s为0,据此可判断.【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF符合要求.故选D.【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.7.D解析:D【解析】【分析】A、由k=﹣3<0,可得出:当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、利用一次函数图象上点的坐标特征,可得出:函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、由k=﹣3<0,b=2>0,利用一次函数图象与系数的关系可得出:一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D、利用一次函数图象上点的坐标特征,可得出:一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.此题得解.【详解】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项B不符合题意;C、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项C不符合题意;D 、当x =1时,y =﹣3x +2=﹣1,∴一次函数y =﹣3x +2的图象不经过点(1,5),选项D 符合题意.故选:D .【点睛】此题考查一次函数图象上点的坐标特征以及一次函数的性质,逐一分析四个选项的正误是解题的关键.8.C解析:C【解析】【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解.【详解】∵函数()0y kx k =≠的值随自变量的增大而增大,∴k >0,∵一次函数2y x k =+,∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限;故答案为C.【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.9.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

2022-2023学年四川省成都七中育才学校八年级(下)期中数学试卷+答案解析(附后)

2022-2023学年四川省成都七中育才学校八年级(下)期中数学试卷+答案解析(附后)

2022-2023学年四川省成都七中育才学校八年级(下)期中数学试卷1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2. 如果,那么下列各式中正确的是( )A. B. C. D.3. 下列各式从左到右的变形中,是因式分解的是( )A. B.C. D.4. 点向左平移3个单位,向上平移2个单位到点Q,则点Q的坐标为( )A. B. C. D.5. 平行四边形ABCD中,,则的度数为( )A. B. C. D.6. 下列说法错误的是( )A. 对角线互相平分的四边形是平行四边形B. 角平分线上的点到角的两边的距离相等C. 两个全等的三角形,一定成中心对称D. 等边三角形是轴对称图形,且有三条对称轴7. 不等式组的解集在数轴上表示为( )A. B.C. D.8.如图,在等腰直角三角形ABC中,,将沿BC方向平移得到,若,,则( )A. B. C. D.9. 分式有意义则x的取值范围是______ .10. 化分式方程为整式方程时,方程两边同乘的最简公分母为______ .11. 关于x的二次三项式因式分解的结果是,则______.12. 如图,在正方形网格中,绕某点旋转一定的角度得到,则旋转中心是点______ 请从点O、Q、P、M中选择13. 如图,在中,分别以点A、C为圆心,大于长为E,若半径画弧,两弧相交于点M、N,作直线MN分别交BC、AC于点D、,的周长为13cm,则的周长为______14. 分解因式:;分解因式:;解方程:;求不等式组的解集.15. 先化简,再求值:,其中16. 正方形网格中网格中的每个小正方形边长是,的顶点均在格点上,请在所给的直角坐标系中解答下列问题;请画出与关于原点对称的;请画出绕点A逆时针旋转得到的,并写出点的坐标______ ;求绕点A逆时针旋转后,线段AB扫过的图形面积.17. 如图,在平行四边形ABCD中,对角线AC、BD交于点O,,,垂足分别为E、求证:四边形AECF是平行四边形;若,,求四边形AECF的面积.18. 如图1,在平面直角坐标系中,直线与x轴、y轴分别交于A、B两点,现将绕点O顺时针旋转到,使得,垂足为D,此时D点坐标为,动点E从原点出发,以一个单位每秒的速度沿x轴正方向运动,设运动时间为t秒.请求出A点的坐标;如图2,当时,DE交y轴于点M,求出此时点M的坐标;为中的点,当点E在运动过程中,直线上有一点Q,是否存在以M、E、B、Q为顶点的四边形是平行四边形,若存在,请求出对应的t的值;若不存在,请说明理由.19. 若关于x的方程有增根,则m的值是______.20. 已知▱ABCD中,,,过点B作交CD所在的直线于H,若,则______21. 因式分解是中学数学中最重要的恒等变形之一,是解决许多数学问题的有力工具,七中育才帅虎同学设计了一种“因式分解密码”:对多项式进行因式分解得到,若取,,则,,,,可得密码为212714,对于代数式,若取,,可能得到的密码是______写出满足条件的一个答案即可22. 已知直线:经过点,直线:经过点,且直线与关于第一,三象限角平分线所在直线对称,则关于x的不等式的解集是______ .23. 如图,是边长为3的等边三角形,延长AC至点P,使得,点E在线段AB上,且,连接PE,以PE为边向右作等边,过点E作交FA的延长线于点M,点N为MF的中点,则四边形AEPN的面积为______ .24. 位于四川省广汉市的“三星堆”,被称为20世纪人类最伟大的考古发现之一,被誉为“长江文明之源”,昭示了长江流域与黄河流域一样,同属中华文明的母体,七中育才八年级学生计划下周前往此处开展文史探究活动,下面是两位同学对于出行方案的讨论:请根据以上信息,求出每辆甲种和每辆乙种大巴的座位数;为保证顺利出行,大巴车司机计划近期加油两次,打算采用两种加油方式:方式一:每次均按照相同油量升加油;方式二:每次均按照相同金额元加油.若第一次加油单价为x元/升,第二次加油单价为y元/升,请分别写出每种加油方式的平均单价用含x、y的代数式表示,并根据你所学知识帮助大巴车司机选择上述哪种加油方式更合算.25. 已知长为a、b、c、d的四条线段,以a、b为边构造,其中,;以c、d为边构造,其中,判断和的形状并证明;将和按照图1方式放置,当B、C、E共线时,取BE的中点M,连接AM、若,请猜想与之间的数量关系,并证明;如图2,当B、C、E不共线时,连接BE并取其中点M,连接AM、DM、若,中的猜想是否仍然成立?若成立请证明,若不成立请说明理由.26.如图1,在中,,,将线段AB绕点B逆时针旋转得线段BD,旋转角为,连接①若,则______ ;②若,求的度数.如图2,当时,过点B作于点E,CD与BE相交于点F,请探究线段CF与线段BE之间的数量关系;当时,作点A关于CD所在直线的对称点,当点在线段BC所在的直线上时,求的面积.答案和解析1.【答案】D【解析】解:A、该图形是中心对称图形,不是轴对称图形;故A不符合题意;B、该图形既不是轴对称图形,也不是中心对称图形;故B不符合题意;C、该图形是中心对称图形,不是轴对称图形;故C不符合题意;D、该图形既是轴对称图形又是中心对称图形;故D符合题意.故选:根据轴对称图形与中心对称图形的概念判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】D【解析】解:A、两边都加或减同一个数或减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B错误;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故C错误;D、不等式的两边都乘以或除以同一个负数,不等号的方向改变,故D正确;故选:根据不等式的性质,两边都加或减同一个数或减同一个整式,不等号的方向不变;不等式的两边都乘以或除以同一个正数,不等号的方向不变;不等式的两边都乘以或除以同一个负数,不等号的方向改变,可得答案.本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数时,不等号的方向改变.3.【答案】C【解析】解:A、,是整式乘法,故此选项不合题意;B、,不符合因式分解的定义,故此选项不合题意;C、是分解因式,符合题意;D、,不符合因式分解的定义,故此选项不合题意;故选:直接利用因式分解的定义得出答案.此题主要考查了因式分解的意义,正确分解因式是解题关键.4.【答案】A【解析】解:根据题意,点Q的横坐标为:;纵坐标为;即点Q的坐标是故选:让P的横坐标减3,纵坐标加2即可得到点Q的坐标.本题考查了坐标与图形变化-平移,用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.5.【答案】A【解析】解:在▱ABCD中,,若,则,故选:根据平行四边形的性质可知,平行四边形的对角相等,邻角互补,再根据已知即可求解.本题考查平行四边形的性质,在应用平行四边形的性质解题时,要根据具体问题,有选择的使用,避免混淆性质,以致错用性质.6.【答案】C【解析】解:A、对角线互相平分的四边形是平行四边形,正确,故A不符合题意;B、角平分线上的点到角的两边的距离相等,正确,故B不符合题意;C、两个全等的三角形,不一定成中心对称,故C符合题意;D、等边三角形是轴对称图形,且有三条对称轴,正确,故D不符合题意.故选:由平行四边形的判定,角平分线的性质,中心对称的定义,等边三角形的性质,即可判断.本题考查平行四边形的判定,角平分线的性质,等边三角形的性质,中心对称,掌握以上知识点是解题的关键.7.【答案】B【解析】解:,解不等式①得:,解不等式②得:,不等式组的解集是表示在数轴上,如图所示:故选:根据不等式解集的表示方法即可判断.本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来向右画;<,向左画,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.【答案】B【解析】解:是等腰直角三角形,,沿BC方向平移得到,,是等腰直角三角形,,的面积,,,故选:由等腰直角三角形的性质得到,由平移的性质,得到是等腰直角三角形,由三角形的面积公式求出PC长,即可求出的长,从而求出的长.本题考查平移的性质,等腰直角三角形,关键是掌握平移的性质,等腰直角三角形的性质.9.【答案】【解析】解:根据题意得,解得,即x的取值范围是根据分式有意义的条件得到,然后解不等式即可.本题考查了分式有意义的条件:分式有意义的条件是分母不等于零.10.【答案】【解析】解:化分式方程为整式方程时,方程两边同乘的最简公分母为故答案为:根据最简公分母的定义即可得出答案.本题考查了解分式方程,最简公分母,要注意:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母,掌握最简公分母是解题的关键.11.【答案】5【解析】解:关于x的二次三项式因式分解的结果是,则,故故答案为:直接利用多项式乘法进而得出m的值.此题主要考查了多项式乘多项式,正确掌握相关运算法则是解题关键.12.【答案】P【解析】如图,连接,可得其垂直平分线相交于点P,故旋转中心是P点.故答案为:根据旋转的性质,对应点到旋转中心的距离相等,可得对应点连线的垂直平分线的交点即为旋转中心.本题考查了旋转的性质,对应点连线的垂直平分线的交点即为旋转中心,熟练掌握旋转中心的确定方法是解题的关键.13.【答案】19【解析】解:由作图得MN垂直平分AC,,,的周长为13cm,,,即,的周长故答案为:先利用基本作图得到MN垂直平分AC,,,然后利用等线段代换计算的周长.本题考查了作图-基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了线段垂直平分线的性质.14.【答案】解:;;,方程两边都乘,得,解得:,检验:当时,,所以是增根,即分式方程无解;,解不等式①,得,解不等式②,得,所以不等式组的解集是【解析】根据提取公因式法分解因式即可;根据完全平方公式分解因式即可;方程两边都乘得出,求出方程的解,再进行检验即可;先根据不等式的性质求出不等式的解集,再关键求不等式组解集的规律求出不等式组的解集即可.本题考查了分解因式,解分式方程和解一元一次不等式组等知识点,能选择适当的方法分解因式是解的关键,能把分式方程转化成整式方程是解的关键,能根据求不等式组解集的规律求出不等式组的解集是解的关键.15.【答案】解:原式,当时,原式【解析】根据分式的减法法则、除法法则把原式化简,把x的值代入计算即可.本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.16.【答案】【解析】解:如图,即为所求.如图,即为所求.点的坐标为故答案为:由勾股定理得,,线段AB扫过的图形面积为根据中心对称的性质作图即可.根据旋转的性质作图,即可得出答案.利用勾股定理求出AB的长,再利用扇形面积公式计算即可.本题考查作图-旋转变换、中心对称、扇形面积公式,熟练掌握旋转和中心对称的性质、勾股定理、扇形面积公式是解答本题的关键.17.【答案】证明:四边形ABCD是平行四边形,,,,,,,,在和中,,≌,,四边形AECF是平行四边形;解:,,,,,,由可知,≌,,,四边形AECF是平行四边形,,【解析】由平行四边形的性质得,,则,再证,然后证≌,得,即可得出结论;由含角的直角三角形的性质得,则,再由全等三角形的性质得,则,然后由平行四边形面积公式即可得出结论.本题考查了平行四边形的判定与性质、全等三角形的判定与性质、含角的直角三角形的性质以及勾股定理等知识,熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.18.【答案】解:把代入得:,解得,,在中,令得:,解得,点的坐标为;如图:在中,令得,,,,由旋转可得,,,,,,,,,,点M是OB中点,;存在以M、E、B、Q为顶点的四边形是平行四边形,理由如下:过作于K,如图:,,,,,,≌,,,,由知,,直线DM的函数解析式为,由设直线的解析式为,把代入得:,解得,直线的解析式为;设,,又,,①若QE,MB为对角线,则QE,MN的中点重合,,解得,的值为;②若QM,EB为对角线,则QM,EB的中点重合,,解得,的值为;③若QB,EM为对角线,则QB,EM的中点重合,,解得,的值为;综上所述,t的值为或或【解析】把代入得,即得,令可得A点的坐标为;在中,得,由和旋转可得,有,从而可得,,故点M是OB中点,得;过作于K,证明≌,可得,由,,可知直线DM的函数解析式为,从而可得直线的解析式为;设,,分三种情况:①若QE,MB为对角线,则QE,MN的中点重合,,②若QM,EB为对角线,则QM,EB的中点重合,,③若QB,EM为对角线,则QB,EM的中点重合,,分别解方程组可得答案.本题考查一次函数的综合应用,涉及待定系数法,函数图象上点坐标的特征,平行四边形的性质及应用等知识,解题的关键是方程思想的应用.19.【答案】2【解析】解:方程两边都乘,得,方程有增根,最简公分母,即增根是,把代入整式方程,得故答案为:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出未知字母的值.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.【答案】5或11【解析】解:如图1,,,,,,四边形ABCD是平行四边形,,;如图2,,,,,,四边形ABCD是平行四边形,,;综上所述,或11cm,故答案为:5或分两种情况:如图1,如图2,根据勾股定理和平行四边形的性质即可得到结论.本题考查了平行四边形的性质,勾股定理,分类讨论是解题的关键.21.【答案】315311【解析】解:当,时,即,,,,可得密码为本题通过对多项式进行因式分解,然后分别求出每个式子的值,然后组成密码.本题考查了因式分解的应用,通过因式分解,得到对应的结果.22.【答案】【解析】解:直线与关于第一,三象限角平分线所在直线对称,点关于直线的对称点一定在直线上,点关于直线的对称点一定在直线上,把,两点代入中得,,,,直线:,把,两点代入中得,,,,直线:,由得,,故答案为:分别求出点和点关于直线的对称点的坐标,利用待定系数法求出直线,直线的解析式,再解不等式即可.本题考查了一次函数与一元一次不等式的关系,待定系数法求解析式,直线的对称变换等知识,掌握点的对称变换特征是解题关键.23.【答案】【解析】解:作交AB的延长线于点G,是边长为3的等边三角形,,,,,是等边三角形,点P在AC的延长线上,,,是等边三角形,,,,在和中,,≌,,,,,,,是等边三角形,,,,在和中,,≌,,点N为MF的中点,,,作于点H,于点D,则,,,,,,故答案为:作交AB的延长线于点G,则,,,,所以是等边三角形,,而是等边三角形,则,,所以,即可证明≌,得,所以,,再证明是等边三角形,则,,可证明≌,得,则,,作于点H,于点D,则,,由勾股定理得,所以,于是得到问题的答案.此题重点考查等边三角形的判定与性质、全等三角形的判定与性质、勾股定理、根据转化思想求图形的面积等知识与方法,正确地作出所需要的辅助线是解题的关键.24.【答案】解:设每辆甲种大巴车的座位数为个,则每辆乙种大巴车的座位数为个,根据题意可得:,解得:,经检验,为原方程的解,则,每辆甲种大巴车的座位数有45个,每辆乙种大巴车的座位数有54个;按照方式一加油的平均单价为元/升,按照方式一加油的平均单价为元/升,按方式二加油的平均单价-按方式二加油的平均单价得:元/升,,,且,,,即,选择方式二加油更合算.【解析】设每辆甲种大巴车的座位数为个,则每辆乙种大巴车的座位数为个,根据“都租同一种车辆,甲种大巴车比乙种大巴车多3辆”列出方程,求解即可;根据“加油费用=加油量加油单价”分别算出两种加油方式的平均单价,再利用作差法比较两种加油方式的平均单价的大小即可求解.本题主要考查分式方程的应用、列代数式.解题关键是:正确理解题意,找准等量关系列出方程,并进行正确的求解;利用“加油费用=加油量加油单价”列出代数式,熟练掌握用作差法比较代数式大小.25.【答案】解:结论:,都是等腰三角形;理由:,,,,,都是等腰三角形;猜想:理由:延长AM 到T ,使得,连接AD ,DT ,ET ,延长AC 交ET 的延长线于点,,,≌,,,,,,,,,,≌,,,,,猜想仍然成立.理由:延长AM 到Q ,使得,连接AD ,DQ ,EQ ,延长AC 交EQ 于点,,,≌,,,,,,,,,≌,,,,,【解析】利用非负数的性质证明,,可得结论;猜想:延长AM到T,使得,连接AD,DT,ET,延长AC 交ET的延长线于点证明≌,推出,,推出,推出,再证明≌,推出,可得结论;猜想仍然成立,证明方法类似本题属于三角形综合题,考查了等腰三角形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,四边形内角和定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.26.【答案】45【解析】解:①将线段AB绕点B逆时针旋转得线段BD,,,是等边三角形,,,,,,故答案为:45;②将线段AB绕点B逆时针旋转得线段BD,,,,;,理由如下:如图2,过点C作直线BE于H,,,,,,是等腰直角三角形,,,,,又,,≌,,;如图3,当点在点B的左侧时,,,,点A关于CD所在直线的对称点,,,,,,,,;如图4,当点在点B的右侧时,同理可求;综上所述:的面积为或①由旋转的性质可得,由等腰三角形的性质可求,即可求解;②由旋转的性质和等腰三角形的性质可求解;由“AAS”可证≌,可得,由等腰直角三角形的性质可求解;分两种情况讨论,由勾股定理可求,即可求解.本题是四边形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质等知识,添加恰当辅助线构造全等三角形是解题的关键.。

四川省成都七中育才学校八年级数学下学期期末模拟试题

四川省成都七中育才学校八年级数学下学期期末模拟试题

四川省成都七中育才学校2014-2015学年八年级数学下学期期末模拟试题一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2 D.﹣4﹣b23.若分式的值为0,则()A.x=±1B.x=1 C.x=﹣1 D.x=04.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.85.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.427.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.28.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=39.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2= .12.函数的自变量x的取值范围是.13.若=,则= .14.关于x的方程x2﹣mx+4=0有两个相等实根,则m= .15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.17.先化简,再求值已知:,求的值.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)= .22.若关于x的分式方程﹣1=无解,则m的值.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第象限.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC= .25.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.2014-2015学年四川省成都七中育才学校八年级(下)期末数学模拟试卷(2)参考答案与试题解析一、选择题1.如果a>b,那么下列各式中正确的是()A.a﹣3<b﹣3 B.<C.﹣2a<﹣2b D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的基本性质判断.【解答】解:A、如果a>b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,a﹣3<b﹣3不成立;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,<不成立;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b成立;D、﹣a<﹣b.故选C.【点评】不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变.2.下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2﹣2ab C.﹣a2+25b2 D.﹣4﹣b2【考点】因式分解-运用公式法.【专题】计算题.【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式=(a+)2,不合题意;B、原式=(a﹣b)2,不合题意;C、原式=(5b+a)(5b﹣a),不合题意;D、原式不能分解,符合题意.故选D.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.3.若分式的值为0,则()A.x=±1B.x=1 C.x=﹣1 D.x=0【考点】分式的值为零的条件.【分析】分式值为零的条件是分式的分子等于0,分母不等于0.【解答】解:∵分式的值为0,∴|x|﹣1=0,x+1≠0.∴x=±1,且x≠﹣1.∴x=1.故选:B.【点评】本题主要考查的是分式值为零的条件,明确分式值为零时,分式的分子等于0,分母不等于0是解题的关键.4.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【解答】解:根据题意,得:(n﹣2)×180=360×3,解得n=8.故选D.【点评】解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.5.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.6.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第10个图案中,所包含的黑色正三角形的个数是()A.36 B.38 C.40 D.42【考点】规律型:图形的变化类.【分析】仔细观察发现第n个图案中,黑色正三角形的个数分别是4n.【解答】解:第1个图案中,黑色正三角形的个数分别是4;第2个图案中,黑色正三角形的个数分别是2×4=8;第3个图案中,黑色正三角形的个数分别是3×4=12;…第n个图案中,黑色正三角形的个数分别是4n.故当n=10时,4n=4×10=40.故选C.【点评】本题考查了图形的变化类问题,找规律的题,应以第一个图象为基准,细心观察,得到第n个图形与第一个图形之间的关系.7.解关于x的方程产生增根,则常数m的值等于()A.﹣1 B.﹣2 C.1 D.2【考点】分式方程的增根.【专题】计算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解;方程两边都乘(x﹣1),得x﹣3=m,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=﹣2.故选:B.【点评】增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,则m的值是()A.m=3或m=﹣1 B.m=﹣3或m=1 C.m=﹣1 D.m=3【考点】一元二次方程的解.【专题】压轴题.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解.把x=0代入方程式即可解.【解答】解:关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一根是0,把x=0代入得到m2﹣2m﹣3=0,解得m=3或﹣1,因为m+1≠0,则m≠﹣1,因而m=3.故本题选D.【点评】本题主要考查了方程的根的定义,就是能使方程左右两边相等的未知数的值,本题特别要注意一元二次方程的二次项系数不等于0.9.如图所示,点E是平行四边形ABCD的边BC延长线上的一点,AE与CD相交于G,则图中相似三角形共有()A.2对B.3对C.4对D.5对【考点】相似三角形的判定.【分析】已知平行四边形的对边平行,平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似.【解答】解:∵AD∥BC∴△ADG∽△ECG,△ADG∽△EBA,△ABC∽△CDA,△EGC∽△EAB;所以共有四对故选C.【点评】本题考虑平行线截三角形的两边或两边的延长线所得的三角形与原三角形相似,注意要找全,不可漏掉任何一个.10.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二.填空题:11.已知2x﹣y=,xy=2,则2x2y﹣xy2= .【考点】因式分解-提公因式法.【分析】直接提取公因式xy,进而分解因式,将已知代入求出即可.【解答】解:∵2x﹣y=,xy=2,∴2x2y﹣xy2=xy(2x﹣y)=2×=.故答案为:.【点评】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.12.函数的自变量x的取值范围是x>2 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2>0,解得x>2.故答案为:x>2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.若=,则= .【考点】比例的性质.【分析】根据比例的性质,即可解答.【解答】解:∵,∴7m=11n,∴,故答案为:.【点评】本题考查了比例的性质,解决本题的关键是熟记比例的性质.14.关于x的方程x2﹣mx+4=0有两个相等实根,则m= ±4.【考点】根的判别式.【专题】探究型.【分析】先根据一元二次方程有两个相等的实数根得出△=0即可得到关于m的方程,求出m的值即可.【解答】解:∵关于x的方程x2﹣mx+4=0有两个相等实根,∴△=(﹣m)2﹣4×4=0,解得m=±4.故答案为:±4.【点评】本题考查的是根的判别式,根据题意得出关于m的方程是解答此题的关键.15.如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为81 .【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【专题】压轴题.【分析】作PE⊥AD与E,过点P作FG⊥CD于G,交AB于F,根据已知条件以及正方形ABCD的性质,易证明四边形AEPF是正方形,则其边长是2,易证得△PQG≌△BPF,则QG=PF=2,则大正方形的边长是9,进而可得其面积.【解答】解:作PE⊥AD与E,过点P作PF⊥AB于F,延长FP交CD于G,∵正方形ABCD,∴∠DAC=∠BAC=45°,∠DAB=90°=∠PEA=∠PFA,∴PE=PF,∴四边形AEPF是正方形,∴AE=PE=PF=AF,∵AP=2,由勾股定理得:AE2+PE2=,∴AE=PE=PF=AF=2,∴PG=BF,且∠PFB=∠PGQ=90°;∵∠FBP+∠FPB=90°,∴∠FBP=∠G PQ,在△PQG和△BPF中,∴△PQG≌△BPF,则QG=PF=2,∴AB=BC=CD=2+2+5=9,则大正方形的边长是9,即面积是81;故答案为81.【点评】此题主要是通过作辅助线构造正方形和全等三角形,然后求得大正方形的边长.三.解答题:16.(1)分解因式:4a(a﹣1)2﹣(1﹣a)(2)解方程:2x2+4x﹣1=0(3)解不等式组,并求出它的所有整数解.【考点】解一元一次不等式组;因式分解-提公因式法;解一元二次方程-公式法;一元一次不等式组的整数解.【分析】(1)利用提公因式法分解,然后利用公式法即可分解;(2)利用求根公式即可求解;(3)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集,然后确定整数解即可.【解答】解:(1)原式=4a(a﹣1)2+(a﹣1)=(a﹣1)【4a(a﹣1)+1】=(a﹣1)(4a2﹣4a+1)=(a﹣1)(2a﹣1)2;(2)∵a=2,b=4,c=﹣1,b2﹣4ac=16+8=24>0,∴x=,则x1=,x2=;(3),解①得x<,解②得:x≥﹣5.则不等式组的解集是﹣5≤x<.则整数解是:﹣5,﹣4,﹣3,﹣2,﹣1,0,1.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.17.先化简,再求值已知:,求的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再=,设x=2k,y=3k(k≠0),再代入进行计算即可.【解答】解:原式=[﹣]×=×==;解法一:∵ =,不妨设x=2k,y=3k(k≠0),∴原式==;解法二: =∵=,∴原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.如图,已知△ABC的三个顶点的坐标分别为A(﹣2.3)、B(﹣6,0)、C(﹣1,0)(1)画出△ABC关于原点对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.【考点】作图-旋转变换;平行四边形的性质.【专题】作图题.【分析】(1)根据关于原点对称的点的坐标特征,画出点A、B、C的对应点A′、B′、C′,即可得到△A′B′C′;(2)利用网格特点,根据旋转的性质画出点A、B、C旋转后的对应点A″,B″、C″,即可得到△A″B″C″;(3)分类讨论:分别以AB、BC和AC为对角线作出平行四边形,然后写出第四个顶点D的坐标.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,△A″B″C″为所作,点B的对应点B″的坐标的坐标为(0,﹣6);(3)如图,四边形ABCD′、四边形ADBC和四边形ABD″C为所作,第四个顶点D的坐标为(3,3)或(﹣7,3)或(﹣5,﹣3).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的性质.19.如图:四边形ABCD是菱形,对角线AC与BD相交于O,菱形ABCD的周长是20,BD=6.(1)求AC的长.(2)求菱形ABCD的高DE的长.【考点】菱形的性质.【专题】计算题.【分析】(1)菱形的四边相等,周长是20,则边长为5;根据菱形对角线互相垂直平分,可得OC=AC,OD=3.运用勾股定理求出OC便可求出AC.(2)利用等积法求解:S△ABD=AB•DE=BD•OA.【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BO=OD,AO=OC.∵菱形的周长是20,∴DC=.∵BD=6,∴OD=3.在Rt△DOC中==4.∴AC=2OC=8.(2)∵S△ABD=AB•DE=BD•OA,∴5•DE=6×4∴DE=.【点评】此题考查了菱形的性质:对角线互相垂直平分;四边相等.问题(2)亦可运用菱形面积的两种表达式求解.菱形的面积有两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在AC上运动到何处时,四边形AECF为矩形?请说明理由;(3)当点O在AC上运动时,四边形BCFE能为菱形吗?请说明理由.【考点】菱形的判定;矩形的判定.【分析】(1)由直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,易证得OE=OC,同理可证OC=OF,则可证得OE=OF=OC;(2)根据平行四边形的判定以及矩形的判定得出即可.(3)菱形的判定问题,若使菱形,则必有四条边相等,对角线互相垂直,进而分析求出即可.【解答】(1)证明:∵CE是∠ACB的平分线,∴∠1=∠2,∵MN∥BC,∴∠1=∠3,∴∠2=∠3,∴OE=OC,同理可证OC=OF,∴OE=OF;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由是:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,∴平行四边形AECF是矩形.(3)解:不可能.理由如下:如图,连接BF,∵CE平分∠ACB,CF平分∠ACG,∴∠ECF=∠ACB+∠ACG=(∠ACB+∠ACG)=90°,若四边形BCFE是菱形,则BF⊥EC,但在△DFC中,不可能存在两个角为90°,所以不存在其为菱形.【点评】本题考查了平行线的性质,角平分线的定义,等腰三角形的判定,正方形、菱形的判定,难度适中,注意掌握数形结合思想的应用.一.填空题:21.已知a2﹣3a+1=0,则(a2﹣)(a﹣)= 15 .【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a变形后求出a+=3,两边平方求出a2+的值,原式第一个因式利用平方差公式化简,变形后将各自的值代入计算即可求出值.【解答】解:∵a2﹣3a+1=0,∴a+=3,两边平方得:(a+)2=a2++2=9,即a2+=7,则原式=(a+)(a﹣)2=3(a2+﹣2)=15.故答案为:15.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.若关于x的分式方程﹣1=无解,则m的值﹣或﹣.【考点】分式方程的解.【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得m的值.【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.【点评】本题考查了分式方程的解,把分式方程转化成整式方程,把分式方程的增根代入整式方程,求出答案.23.已知关于x的一元一次不等式组有解,则直线y=﹣x+b不经过第三象限.【考点】一次函数与一元一次不等式.【分析】根据关于x的一元一次不等式组有解即可得到b的范围,即可判断直线经过的象限.【解答】解:根据题意得:b+2<3b﹣2,解得:b>2.当b>2时,直线经过第一、二、四象限,不过第三象限.故填:三.【点评】根据不等式组的解集的确定方法首先确定b的范围是解决本题的关键.24.如图:在梯形ABCD中两条对角线AC、BD相交于点O,已知OB=18cm,OD=12cm,则S△ABD:S△ABC= .【考点】相似三角形的判定与性质;梯形.【分析】在梯形ABCD中,由于AD∥BC,于是得到△ADO∽△BCO,求出,即可得到结论.【解答】解:在梯形ABCD中,∵AD∥BC,∴△ADO∽△BCO,∴,∴,∴==,故答案为:【点评】本题考查了梯形的性质,相似三角形的判定和性质,知道等高三角形的面积的比等于底的比是解题的关键.25.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是﹣1 .【考点】菱形的性质;翻折变换(折叠问题).【分析】根据题意,在N的运动过程中A′在以M为圆心、AD为直径的圆上的弧AD上运动,当A′C 取最小值时,由两点之间线段最短知此时M、A′、C三点共线,得出A′的位置,进而利用锐角三角函数关系求出A′C的长即可.【解答】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.二.解答题:26.已知:关于x的方程x2﹣(k+1)x+k2+1=0的两根是一个矩形两邻边的长.(1)k取何值时,方程有两个实数根;(2)当矩形的对角线长为时,求k的值.【考点】根与系数的关系;根的判别式;勾股定理;矩形的性质.【分析】(1)根据一元二次方程根的判别式,方程有两个实数根,则判别式△≥0,得出关于k的不等式,求出k的取值范围.(2)根据勾股定理和根与系数的关系得出关于k的方程,求出k的值并检验.【解答】解:(1)设方程的两根为x1,x2则△=[﹣(k+1)]2﹣4(k2+1)=2k﹣3,∵方程有两个实数根,∴△≥0,即2k﹣3≥0,∴k≥∴当k≥,方程有两个实数根.(2)由题意得:,又∵x12+x22=5,即(x1+x2)2﹣2x1x2=5,(k+1)2﹣2(k2+1)=5,整理得k2+4k﹣12=0,解得k=2或k=﹣6(舍去),∴k的值为2.【点评】解决本题的关键是利用一元二次方程根与系数的关系和勾股定理,把问题转化为解方程求得k的值.27.我市向汶川灾区赠送270台计算机并于近期启运,经与其物流公司联系,得知用A型汽车若干辆,刚好装完;如用B型汽车,可比A型汽车少一辆,但有一辆少装30台.已知每辆A型汽车比每辆B型汽车少装15台.(1)求只选用A型汽车或B型汽车装运需要多少辆?(2)已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若运送这批计算机同时用这两种型的汽车,其中B型汽车比A型汽车多用1辆,所需运费比单独用任何一种型号的汽车都要节省,按这种方案需A、B两种型号的汽车各多少辆?运费多少元?【考点】分式方程的应用.【分析】(1)本题可根据两车的辆数的数量关系来列方程.等量关系为:装270台需A型车的数量=装300台需B型车的数量+1.由此可得出方程求出未知数.(2)可先根据(1)求出单独用两种车分别要多少费用,然后让同时用两种车时花的费用小于单独用一种车的最少的费用.得出车的数量的取值范围,然后判断出有几种运输方案,然后根据运输方案求出运费.【解答】解:(1)设A型汽车每辆可装计算机x台,则B型汽车每辆可装计算机(x+15)台.依题意得: =+1.解得:x=45,x=﹣90(舍去).经检验:x=45是原方程的解.则x+15=60.答:A型汽车每辆可装计算机45台,B型汽车每辆可装计算机60台.(2)由(1)知.若单独用A型汽车运送,需6辆,运费为2100元;若单独用B型汽车运送,需车5辆,运费为2000元.若按这种方案需同时用A,B两种型号的汽车运送,设需要用A型汽车y辆,则需B型汽车(y+1)辆.根据题意可得:350y+400(y+1)<2000.解得:y<.因汽车辆数为正整数.∴y=1或2.当y=1时,y+1=2.则45×1+60×2=165<270.不同题意.当y=2时,y+1=3.则45×2+60×3=270.符合题意.此时运费为350×2+400×3=1900元.答:需要用A型汽车2辆,则需B型汽车3辆.运费1900元【点评】本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程或不等式,再求解.28.如图,已知A、B两点的坐标分别为(40,0)和(0,30),动点P从点A开始在线段AO上以每秒2个长度单位的速度向原点O运动、动直线EF从x轴开始以每1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=15时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t,使得△PEF的面积等于160(平方单位)?若存在,请求出此时t的值;若不存在,请说明理由.(3)当t为何值时,△EOP与△BOA相似.【考点】相似三角形的判定与性质;根的判别式.【专题】综合题;分类讨论.【分析】(1)由于EF∥x轴,则S△PEF=EF•OE.t=15时,OE=15,关键是求EF.易证△BEF∽△BOA,则,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于160,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.【解答】解:(1)∵EF∥OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴当t=15时,OE=BE=15,OA=40,OB=30,∴∴S△PEF=EF•OE=(平方单位)(2)∵△BEF∽△BOA,∴∴整理,得t2﹣30t+240=0∵△=302﹣4×1×240=﹣60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于160(平方单位)的t值(3)当∠EPO=∠BAO时,△EOP∽△BOA∴,即解得,t=12当∠EPO=∠ABO时,△EOP∽△AOB∴,即解得,∴当t=12或时,△EOP∽△BOA【点评】本题主要考查了相似三角形的判定和性质,一元二次方程根的判别式等知识点,要注意最后一问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.不要忽略掉任何一种情况.。

成都七中育才学校届初二下期数学周周练

成都七中育才学校届初二下期数学周周练

成都七中育才学校初二下期数学第十六周周练习班级:八年级 班 学号: 姓名:A 卷(共100分)一、选择题:(每小题3分,共30分)1. 将222axy ax y axz --+提公因式后,另一个因式是( ) A .222xy x y xz +- B .22y x y z -+- C .22y xy z ++D .22y xy z +-2. 化简下列各式,结果不为整式的是( )A .22222()()2()x y x y xy x y x y -+-+- B .22222833x x x y x y÷-- C .214121x x x ÷-+D .2222222()()m mab m n a b m n ÷-- 3. 下列命题中,是真命题的是( )A .邻补角的平分线互相垂直B .若180αβ∠+∠=,则α∠与β∠互为邻补角C .若两个角相等,则这两个角为对顶角D .同位角都相等 4. 如图,下列结论正确的是( )A .1234∠+∠>∠+∠B .1234∠+∠=∠+∠C .1234∠+∠<∠+∠D .无法比较以上四个角的大小5. 顺次连接等腰梯形各边中点所得的四边形一定是( )A .平行四边形B .菱形C .矩形D .正方形 6. 已知菱形的周长为96cm ,两个邻角的比是1:2,则这个菱形的较短对角线的长为( ) A .21cm B .22cm C .23cm D .24cm 7. 平面直角坐标系中的点P (2m -,12m )关于x 轴的对称点在第四象限,则m 的取值范围在数轴上可表示为( )8. 已知不等式组841x x x m +<-⎧⎨>⎩的解集为3x >,则m 的取值范围是( )A .3m ≤B .3m <C .3m ≥D .3m >9. 若23y zx ==,且24x y z +-=,则x y z ++=( ) A .6B .10C .12D .1410.若333a b b c c ak c a b---===,且0a b c ++≠,则k 的值为( ) A .1 B .2 C .1- D .2-11.一块长方形地基,长为75米,宽为30米,把它画在比例尺为1:100的图纸上,长应是 ,D .C .B .A .(第4题图)1 23 4宽应是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中育才学校2016届八年级下数学第十周测
一、选择题:(每小题3分,共30分)
1. 当2x =时,下列各式的值为0的是( )
A .
2
2
32
x x x --+ B .
12
x - C .
24
9
x x -- D .
2
1
x x +- 2.一个凸多边形的每一内角都等于140°,那么,从这个多边形的一个顶点出发的对角线的条数是( ) A .9条 B .8条 C .7条 D . 6条
3.方程
221
2332x x x
-=-
--的解是( ) A . 1.5x = B .4x = C .0x = D .无解 4.关于x 的不等式21x a -≤-的解集如图所示,则a 的取值是( )
A .0
B .3-
C .2-
D .1-
5.如图,若AB CD ∥,60C ∠=o
,则A E ∠+∠=( )
A .20o
B .30o
C .40o
D .60o
6.下列多项式中,能用完全平方公式分解因式的是( )
A .2
1x x ++ B .22
12xy x y -+
C .21
2
a a -+
D .22
2a b ab --
7.把2
3x x c +-分解因式得2
3(1)(2)x x c x x +-=++,则c 的值是( )
A .2
B .3
C .3-
D .2-
8.正方形具有而菱形不一定具有的性质是( )
A .四条边相等
B .对角线互相平分且垂直
C .对角线相等
D .对角线平分一组对角
9.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,如果ABC △的周长比AOB △的周长长10cm ,则矩形的边BC 的长是( )
A .5cm
B .10cm
C .7.5cm
D .不能确定 10.如图,在ABC △中,90C ∠=o
,AD 平分BAC ∠,DE AB ⊥于E ,有下列结论:①CD ED =;②AC BE AB +=;③BDE BAC ∠=∠;④AD 平分CDE ∠;⑤,其中正确的是( )个
A .1
B .2
C .3
D .4
请将选择题的答案天如下表:
题号 1 2 3 4 5 6 7 8 9 10 答案
二、填空题:(每小题4分,共20分)
11.多项式3
44x x -分解因式的结果是 。

12.一项工程,甲独做6小时完成,甲、乙合做要2小时完成,那么乙单独做要 小时完成。

0 1
-2 -3 -1 (第4题图)
A
B
C
D
E
(第5题图) A B
C D O (第9题图)
A B
C D E (第10题图)
13.关于x 的一元一次不等式组2
32x b x b >+⎧⎨<-⎩
有解,则直线y x b =-+不经过第 象限。

14.如图,正方形ABCD 中,25DAF ∠=o
,AF 交对角线BD 于E ,交CD 于F ,则
BEC ∠= 度。

15.已知关于x 的不等式组0
320x a x ->⎧⎨->⎩
的整数解共有6个,则a 的取值范围
是 。

三、解答题:16题每小题5分,共20分,17、18、19题每题10分) (1)分解因式:2
2
12x y xy +--;
(2)解不等式组3(2)81123x x x x --≤⎧⎪
+⎨-<⎪⎩
,并求出其最小整数解。

(3)解方程:54251
24362
x x x x -+=---;
A
B
C
D E
F
(第14题图)
(4)化简求值:
2 2 4
1222
622
x x x x
x x x x
+-+
⎛⎫
÷-

+-+-
⎝⎭。

其中
1
3
2
x=-
17.如图,矩形ABCD的对角线AC、BD相交于点O,AE BD
⊥,垂足为E,12
∠=∠,2
AB cm
=。

(1)求BAC
∠的度数;(2)求BC的长。

18.如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DE⊥AB于E,DF⊥AC于F,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.
A
B C
D
O
E
1
2
19.如图,在ABCD □中,M 、N 分别是AD 、BC 的中点,90AND ∠=o ,连接CM 交DN 于点O 。

(1)求证:ABN CDM △≌△;
(2)过点C 作CE MN ⊥于点E ,交DN 于点P ,若1PE =,12∠=∠,求AN 的长。

A B N M D C O E P 1 2。

相关文档
最新文档