Approximate MLE Algorithm for Source Localization Based
proximal policy optimization algorithms 原文
proximal policy optimization algorithms 原文Proximal Policy Optimization (PPO) is a popular algorithm for reinforcement learning that has gained significant attention in recent years. In this article, we will provide an overview of PPO and discuss some of the key concepts and techniques used in the algorithm.PPO is a type of policy optimization algorithm that is designed to find the optimal policy for a given reinforcement learning problem. The goal of PPO is to maximize the expected reward by updating the policy iteratively based on past experiences. Unlike some other policy optimization algorithms, PPO does not require any assumptions about the model dynamics and can be used with both discrete and continuous action spaces.One of the main advantages of PPO is its simplicity and ease of implementation. The algorithm is based on the policy gradient method, which involves estimating the gradient of the policy by running multiple trajectories of the agent in the environment and computing the average reward. PPO uses a surrogate objective function that approximates the policy gradient and performs multiple updates to ensure stability and convergence.The key idea behind PPO is to balance the exploration and exploitation trade-off. The algorithm achieves this by limiting the magnitude of the policy updates using a clipping parameter. This parameter ensures that the new policy does not deviate too much from the old policy, thereby avoiding catastrophic changes. Additionally, PPO introduces an adaptive penalty term that discourages the policy from changing too rapidly.Another important concept in PPO is the use of value functions to estimate the expected rewards. Value functions can be used to calculate the advantage of taking a particular action, which is then used to update the policy. PPO uses a value function approximation to estimate the advantages and computes the surrogate objective function based on these estimates.PPO also incorporates an importance sampling technique to handle off-policy training. This technique allows the algorithm to use past experiences for updating the policy, even if they were collected using an older policy. By importance sampling, PPO can estimate the probabilities of actions under the new policy, which is necessary for the policy updates.In conclusion, proximal policy optimization is a powerful algorithm for reinforcement learning that has shown promising results in various domains. Its simplicity, stability, and ability to handle both discrete and continuous action spaces make it a popular choice among researchers and practitioners. By balancing the exploration-exploitation trade-off and incorporating value functions and importance sampling, PPO has become an effective method for finding optimal policies in reinforcement learning problems.。
Autodesk Nastran 2023 参考手册说明书
FILESPEC ............................................................................................................................................................ 13
DISPFILE ............................................................................................................................................................. 11
File Management Directives – Output File Specifications: .............................................................................. 5
BULKDATAFILE .................................................................................................................................................... 7
minimaxApprox包:多项式和分数函数最小最大近似实现的Remez算法说明书
Package‘minimaxApprox’October13,2023Type PackageTitle Implementation of Remez Algorithm for Polynomial and RationalFunction ApproximationVersion0.2.2Date2023-10-12Description Implements the algorithm of Remez(1962)for polynomial minimaxapproximation and of Cody et al.(1968)<doi:10.1007/BF02162506>forrational minimax approximation.License MPL-2.0URL https:///aadler/MiniMaxApproxBugReports https:///aadler/MiniMaxApprox/issuesImports stats,graphicsSuggests tinytest,covrByteCompile yesNeedsCompilation yesEncoding UTF-8UseLTO yesAuthor Avraham Adler[aut,cre,cph](<https:///0000-0002-3039-0703>) Maintainer Avraham Adler<***********************>Repository CRANDate/Publication2023-10-1321:10:02UTCR topics documented:minimaxApprox-package (2)coef.minimaxApprox (3)minimaxApprox (4)minimaxErr (7)minimaxEval (8)plot.minimaxApprox (9)print.minimaxApprox (10)12minimaxApprox-packageIndex11minimaxApprox-package Implementation of Remez Algorithm for Polynomial and RationalFunction ApproximationDescriptionImplements the algorithm of Remez(1962)for polynomial minimax approximation and of Cody etal.(1968)<doi:10.1007/BF02162506>for rational minimax approximation.DetailsThe DESCRIPTIONfile:Package:minimaxApproxType:PackageTitle:Implementation of Remez Algorithm for Polynomial and Rational Function ApproximationVersion:0.2.2Date:2023-10-12Authors@R:person(given="Avraham",family="Adler",role=c("aut","cre","cph"),email="********************* Description:Implements the algorithm of Remez(1962)for polynomial minimax approximation and of Cody et al.(1 License:MPL-2.0URL:https:///aadler/MiniMaxApproxBugReports:https:///aadler/MiniMaxApprox/issuesImports:stats,graphicsSuggests:tinytest,covrByteCompile:yesNeedsCompilation:yesEncoding:UTF-8UseLTO:yesAuthor:Avraham Adler[aut,cre,cph](<https:///0000-0002-3039-0703>)Maintainer:Avraham Adler<***********************>Archs:x64Index of help topics:coef.minimaxApprox Extract coefficients from a "minimaxApprox"objectminimaxApprox Minimax Approximation of FunctionsminimaxApprox-package Implementation of Remez Algorithm forPolynomial and Rational Function ApproximationminimaxErr Evaluate the Minimax Approximation ErrorminimaxEval Evaluate Minimax Approximationplot.minimaxApprox Plot errors from a "minimaxApprox" objectprint.minimaxApprox Print method for a "minimaxApprox object"coef.minimaxApprox3Author(s)Avraham Adler[aut,cre,cph](<https:///0000-0002-3039-0703>)Maintainer:Avraham Adler<***********************>coef.minimaxApprox Extract coefficients from a"minimaxApprox"objectDescriptionExtracts the numerator and denominator vectors from a"minimaxApprox"object.Usage##S3method for class minimaxApproxcoef(object,...)Argumentsobject An object inheriting from class"minimaxApprox"....Other arguments.ValueCoefficients extracted from the"minimaxApprox"object.A list containing:a The polynomial coefficients or the rational numerator coefficients.b The rational denominator coefficients.Missing for polynomial approximation. Author(s)Avraham Adler<***********************>See AlsominimaxApproxExamplesPP<-minimaxApprox(exp,0,1,5)coef(PP)identical(unlist(coef(PP),s=FALSE),PP$a)RR<-minimaxApprox(exp,0,1,c(2,3))coef(RR)identical(coef(RR),list(a=RR$a,b=RR$b))minimaxApprox Minimax Approximation of FunctionsDescriptionCalculates minimax approximations to functions.Polynomial approximation uses the Remez (1962)algorithm.Rational approximation uses the Cody-Fraser-Hart (Cody et al.,1968)version of the al-gorithm.Polynomial evaluation uses the Compensated Horner Scheme of Langlois et al.(2006).UsageminimaxApprox(fn,lower,upper,degree,relErr =FALSE,xi =NULL,opts =list())Argumentsfnfunction;A vectorized univariate function having x as its first argument.This could be a built-in R function,a predefined function,or an anonymous function defined in the call;see Examples .lower numeric;The lower bound of the approximation interval.upper numeric;The upper bound of the approximation interval.degreeinteger;Either a single value representing the requested degree for polynomial approximation or a vector of length 2representing the requested degrees of the numerator and denominator for rational approximation.relErr logical;If TRUE ,calculate the minimax approximation using relative error.The default is FALSE which uses absolute error.xinumeric;For rational approximation,a vector of initial points of the correct length— (degree )+2.If missing,the approximation will use the appropriate Chebyshev nodes.Polynomial approximation always uses Chebyshev nodes and will ignore xi with a message.optslist ;Configuration options including:•maxiter :integer;The maximum number of iterations to attempt conver-gence.Defaults to 100.•miniter :integer;The minimum number of iterations before allowing con-vergence.Defaults to 10.•conviter :integer;The number of successive iterations with the same re-sults allowed before assuming no further convergence is possible.Defaults to 10.Will overwrite maxiter if conviter is explicitly passed and is larger than maxiter .•showProgress :logical;If TRUE will print error values at each iteration.•convRatio :numeric;The convergence ratio tolerance.Defaults to 1+1×10−9.See Details .•tol :numeric;The absolute difference tolerance.Defaults to 1×10−14.See Details .•tailtol :numeric;The tolerance of the coefficient of the largest power of x to be ignored when performing the polynomial approximation a secondtime.Defaults to the smaller of 1×10−10or upper −lower106.Set to NULL to skip the degree +1check completely.See Details .•ztol :numeric;The tolerance for each polynomial or rational numerator or denominator coefficient’s contribution to not to be set to 0.Similar to polynomial tailtol but applied at each step of the algorithm.Defaults to NULL which leaves all coefficients as they are regardless of magnitude.DetailsConvergence:The function implements the Remez algorithm using linear approximation,chiefly as described by Cody et al.(1968).Convergence is considered achieved when all three of the fol-lowing criteria are met:1.The observed error magnitudes are within tolerance of the expected error—the Distance Test .2.The observed error magnitudes are within tolerance of each other—the Magnitude Test .3.The observed error signs oscillate—the Oscillation Test .“Within tolerance”can be met in one of two ways:1.The difference between the absolute magnitudes is less than or equal to tol .2.The ratio between the absolute magnitudes of the larger and smaller is less than or equal to convRatio .For efficiency,the Distance Test is taken between the absolute value of the largest observed error and the absolute value of the expected error.Similarly,the Magnitude Test is taken between the absolute value of the largest observed error and the absolute value of the smallest observed error.Both tests can be passed by either being within tol or convRatio as described above.Polynomial Evaluation:The polynomials are evaluated using the Compensated Horner Scheme of Langlois et al.(2006)to enhance both stability and precision.Polynomial Algorithm “Singular Error”Response:When too high of a degree is requested for the tolerance of the algorithm,it often fails with a singular matrix error.In this case,for the polynomial version,the algorithm will try looking for an approximation of degree n +1.If it finds one,and the contribution of that coefficient to the approximation is ≤tailtol ,it will ignore that coefficient and return the resulting degree n polynomial,as the largest coefficient is effectively 0.The contribution is measured by multiplying that coefficient by the endpoint with the larger absolute magnitude raised to the n +1power.This is done to prevent errors in cases where a very small coefficient is found on a range with very large absolute values and the resulting contribution to the approximation is not de minimis .Setting tailtol to NULL will skip the n +1test completely.Close-to-Zero Tolerance:For each step of the algorithms’iterations,the contribution of the found coefficient to the total sum (as measured in the above section)is compared to the ztol option.When less than or equal to ztol ,that coefficient is set to 0.Setting ztol to NULL skips the test completely.For intervals near or containing zero,setting this option to anything other than NULL may result in either non-convergence or poorer results.ValueminimaxApprox returns an object of class"minimaxApprox"which inherits from the class list.The generic accessor function coef will extract the numerator and denominator vectors.There are also default print and plot methods.An object of class"minimaxApprox"is a list containing the following components:a The polynomial coefficients or the rational numerator coefficients.b The rational denominator coefficients.Missing for polynomial approximation.EE The absolute value of the expected error as calculated by the Remez algorithms.OE The absolute value of largest observed error between the function and the ap-proximation at the extremal basis points.iterations The number of iterations of the algorithm.This does not include any iterations required to converge the error value in rational approximation.x The basis points at which the minimax error was achieved.Warning A logicalflag indicating if any warnings were thrown.NoteAt present,the algorithms are implemented using machine double precision,which means that the approximations are at best slightly worse.Research proceeds on more precise,stable,and efficient implementations.So long as the package remains in an experimental state—noted by a0major version—the API may change at any time.Author(s)Avraham Adler<***********************>ReferencesRemez,E.I.(1962)General computational methods of Chebyshev approximation:The problems with linear real Atomic Energy Commission,Division of Technical Information.AEC-tr-4491Fraser W.and Hart J.F.(1962)“On the computation of rational approximations to continuous functions”,Communications of the ACM,5(7),401–403,doi:10.1145/368273.368578Cody,W.J.and Fraser W.and Hart J.F.(1968)“Rational Chebyshev approximation using linear equations”,Numerische Mathematik,12,242–251,doi:10.1007/BF02162506Langlois,P.and Graillat,S.and Louvet,N.(2006)“Compensated Horner Scheme”,in Algebraic and Numerical Algorithms and Computer-assisted Proofs.Dagstuhl Seminar Proceedings,5391, doi:10.4230/DagSemProc.05391.3See AlsominimaxEval,minimaxErrminimaxErr7ExamplesminimaxApprox(exp,0,1,5)#Built-in&polynomialfn<-function(x)sin(x)^2+cosh(x)#Pre-definedminimaxApprox(fn,0,1,c(2,3))#RationalminimaxApprox(function(x)x^3/sin(x),0.7,1.6,6L)#Anonymousfn<-function(x)besselJ(x,nu=0)#More than one inputb0<-0.893576966279167522#Zero of besselYminimaxApprox(fn,0,b0,c(3L,3L))#Cf.DLMF3.11.19 minimaxErr Evaluate the Minimax Approximation ErrorDescriptionEvaluates the difference between the function and the minimax approximation at x.UsageminimaxErr(x,mmA)Argumentsx a numeric vectormmA a"minimaxApprox"return objectDetailsThis is a convenience function to evaluate the approximation error at x.ValueA vector of the same length as x containing the approximation error values.Author(s)Avraham Adler<***********************>See AlsominimaxApprox,minimaxEval8minimaxEval Examples#Show resultsx<-seq(0,0.5,length.out=11L)mmA<-minimaxApprox(exp,0,0.5,5L)err<-minimaxEval(x,mmA)-exp(x)all.equal(err,minimaxErr(x,mmA))#Plot resultsx<-seq(0,0.5,length.out=1001L)plot(x,minimaxErr(x,mmA),type="l")minimaxEval Evaluate Minimax ApproximationDescriptionEvaluates the rational or polynomial approximation stored in mmA at x.UsageminimaxEval(x,mmA)Argumentsx a numeric vectormmA a"minimaxApprox"return objectDetailsThis is a convenience function to evaluate the approximation at x.ValueA vector of the same length as x containing the approximated values.Author(s)Avraham Adler<***********************>See AlsominimaxApprox,minimaxErrExamples#Show resultsx<-seq(0,0.5,length.out=11L)mmA<-minimaxApprox(exp,0,0.5,5L)apErr<-abs(exp(x)-minimaxEval(x,mmA))all.equal(max(apErr),mmA$EE)#Plot resultscurve(exp,0.0,0.5)curve(minimaxEval(x,mmA),0.0,0.5,add=TRUE,col="red",lty=2L)plot.minimaxApprox Plot errors from a"minimaxApprox"objectDescriptionProduces a plot of the error of the"minimaxApprox"object,highlighting the basis points and the error bounds.Usage##S3method for class minimaxApproxplot(x,y,...)Argumentsx An object inheriting from class"minimaxApprox".y Ignored.In call as required by R in Writing R Extensions:chapter7....Further arguments to plot.Specifically to pass ylim to allow for zooming in or out.ValueNo return value;called for side effects.Author(s)Avraham Adler<***********************>See AlsominimaxApproxExamplesPP<-minimaxApprox(exp,0,1,5)plot(PP)print.minimaxApprox Print method for a"minimaxApprox object"DescriptionProvides a more human-readable output of a"minimaxApprox"object.Usage##S3method for class minimaxApproxprint(x,digits=6L,...)Argumentsx An object inheriting from class"minimaxApprox".digits integer;Number of digits to which to round the ratio....Further arguments to print.DetailsTo print the raw"minimaxApprox"object use print.default.ValueNo return value;called for side effects.Author(s)Avraham Adler<***********************>See AlsominimaxApproxExamplesPP<-minimaxApprox(exp,0,1,5)PPprint(PP,digits=2L)print.default(PP)Index∗NumericalMathematicscoef.minimaxApprox,3minimaxApprox,4minimaxErr,7minimaxEval,8plot.minimaxApprox,9print.minimaxApprox,10∗hplotplot.minimaxApprox,9∗methodscoef.minimaxApprox,3plot.minimaxApprox,9print.minimaxApprox,10∗optimizeminimaxApprox,4∗packageminimaxApprox-package,2∗printprint.minimaxApprox,10class,3,6,9,10coef.minimaxApprox,3list,3,4,6minimaxApprox,3,4,7–10minimaxApprox-package,2minimaxErr,6,7,8minimaxEval,6,7,8plot.minimaxApprox,9print.minimaxApprox,1011。
Econometric and Statistical Computing Using Ox
Econometric and Statistical Computing Using OxFRANCISCO CRIBARI–NETO1and SPYROS G.ZARKOS21Departamento de Estat´ıstica,CCEN,Universidade Federal de Pernambuco,Recife/PE,50740–540,Brazil E-mail:cribari@npd.ufpe.br2National Bank of Greece,86Eolou str.,Athens10232,GreeceE-mail:s.zarkos@primeminister.grAbstract.This paper reviews the matrix programming language Ox from the viewpoint of an econometri-cian/statistician.We focus on scientific programming using Ox and discuss examples of possible interest to econometricians and statisticians,such as random number generation,maximum likelihood estimation,and Monte Carlo simulation.Ox is a remarkable matrix programming language which is well suited to research and teaching in econometrics and statistics.Key words:C programming language,graphics,matrix programming language,maximum likelihood estima-tion,Monte Carlo simulation,OxOne of the cultural barriers that separates computer scientists from regular scientists and engineers is a differing point of view on whether a30%or50%loss of speed is worth worrying about.In many real-time state-of-the art scientific applications,such a loss is catastrophic.The practical scientist is trying to solve tomorrow’s problem with yesterday’s computer;the computer scientist,we think, often has it the other way.Press et.al.(1992,p.25) 1.IntroductionApplied statisticians,econometricians and economists often need to write programs that implement estimation and testing procedures.With computers powerful and affordable as they are nowadays,they tend to do that in programming environments rather than in low level programming languages.The former(e.g.,GAUSS,MATLAB,R,S-PLUS)make programming accessible to the vast majority of researchers,and,in many cases,can be combined with the latter(e.g.,C,Fortran)to achieve additional gains in speed.The existence of pre-packaged routines in statistical software that is otherwise best suited to perform data analysis(such as in S-PLUS)does not make the need for“statistical comput-ing”any less urgent.Indeed,many newly developed techniques are not rapidly implemented into statistical software.If one wishes to use such techniques,he/she would have to program them.Additionally,several techniques are very computer-intensive,and require efficient pro-gramming environments/languages(e.g.,bootstrap within a Monte Carlo simulation,double bootstrap,etc.).It would be nearly impossible to perform such computer-intensive tasks with traditional statistical software.Finally,programming forces one to think harder about the problem at hand,the estimation and testing methods that he/she will choose to use.Of course,the most convincing argument may be the following quote from the late John Tukey:“In a world in which the price of calculation continues to decrease rapidly,but the price of theorem proving continues to hold steady or increase,elementary economics indicates that we ought to spend a larger fraction of our time on calculation.”1The focus of our paper is on the use of Ox for‘econometric computing’.That is,we discuss features of the Ox language that may be of interest to statisticians and econometricians,and exemplify their use through examples.Readers interested in reviews of Ox,including the language structure,its syntax,and its advantages and disadvantages,are referred to Cribari–Neto(1997),Keng and Orzag(1997),Kusters and Steffen(1996)and Podivinsky(1999).1 2.A Brief Overview of OxOx is a matrix programming language with object-oriented support developed by Jur-gen Doornik,a Dutch graduate student(at the time)at Nuffield College,Oxford.The development of Ox started in April1994.Doornik’s primary goal was to develop a matrix programming language for the simulations he wished to perform for his doctoral dissertation. The veryfirst preliminary version of Ox dates back to November1994.In the summer of 1995,two other econometricians at Nuffield College started using Ox for their research:Neil Shephard and Richard Spady.From that point on,the development of Ox became a serious affair.The current Ox version is numbered3.00.Ox binaries are available for Windows and severalflavors of UNIX(including Linux)and can be downloaded from /Users/Doornik/,which is the main Ox web page.All versions are free for educational purposes and academic research,with the exception of the‘Professional Windows version’.This commercial version comes with a nice interface for graphics known as GiveWin(available for purchase from Timberlake Consultants, ).The free Ox versions can be launched from the command line in a console/terminal win-dow,which explains why they are also known as‘console versions’.Doornik also distributes freely a powerful text editor for Windows:OxEdit(see also the OxEdit web page,which is currently at ).It can be used as a front-end not only to Ox(the console version)but also to other programs and languages,such as C,C++,T E X,L a T E X,etc.The Ox syntax is very similar to that of C,C++and Java.In fact,its similarity to C (at least as far as syntax goes)is one of its major advantages.2One characteristic similarity with C/C++is in the indexing,which starts at zero,and not at one.This means that thefirst element of a matrix,say A,is accessed as A[0][0]instead of as A[1][1].A key difference between Ox and languages such as C,C++and Java is that matrix is a basic type in Ox. Also,when programming in Ox one needs to declare the variables that will be used in the program(as is the case in C/C++),but unlike in C/C++,one does not have to specify the type of the variables that are declared.Ox’s most impressive feature is that it comes with a comprehensive mathematical and statistical function library.A number of useful functions and methods are implemented into the language,which makes it very useful for scientific 1A detailed comparison involving GAUSS,Macsyma,Maple,Mathematica,MATLAB,MuPAD,O-Matrix,Ox, R-Lab,Scilab,and S-PLUS can be found at http://www.scientificweb.de/ncrunch/ncrunch.pdf(“Com-parison of mathematical programs for data analysis”by Stefan Steinhaus).Ox is the winner when it comes to speed.2Other important advantages of Ox are the fact that it is fast,free,can be easily linked to C,Fortran, etc.,and can read and write data in several different formats(ASCII,Gauss,Excel,Stata,Lotus,PcGive, etc.).2programming.Ox comes with a comprehensive set of helpfiles in HTML form.The documentation of the language can be also found in Doornik(2001).A good introduction to Ox is Doornik, Draisma and Ooms(1998).3.A Few Simple IllustrationsOurfirst example is a very simple one,and intends to show the similarity between the Ox and C syntaxes.We wish to develop a program that produces a small table converting temperatures in Fahrenheit to Celsius(from0F to300F in steps of20F).The source of this example is Kerninghan and Ritchie(1988).The C code can be written as follows./****************************************************************PROGRAM:celsius.c**USAGE:To generate a conversion table of temperatures(from*Fahrenheit to Celsius).Based on an example in the*Kernighan&Ritchie’s book.****************************************************************/#include<stdio.h>int main(void){int fahr;printf("\nConversion table(F to C)\n\n");printf("\t%3s%5s\n","F","C");/*Loop over temperatures*/for(fahr=0;fahr<=300;fahr+=20){printf("\t%3d%6.1f\n",fahr, 5.0*(fahr-32)/9.0);}printf("\n");return0;}The output produced by compiled C code using the gcc compiler(Stallman,1999)under the Linux operating system(MacKinnon,1999)is:[cribari@edgeworth c]$gcc-O2-o celsius celsius.c[cribari@edgeworth c]$./celsiusConversion table(F to C)F C0-17.820-6.7340 4.46015.68026.710037.812048.914060.016071.118082.220093.3220104.4240115.6260126.7280137.8300148.9The next step is to write the same program in Ox code.The Ox transcription of the celcius.c program follows:/****************************************************************PROGRAM:celsius.ox**USAGE:To generate a conversion table of temperatures(from*Fahrenheit to Celsius).Based on an example in the*Kernighan&Ritchie’s book.***************************************************************/#include<oxstd.h>main(){decl fahr;print("\nConversion table(F to C)\n\n");print("\t F C\n");//Loop over temperaturesfor(fahr=0;fahr<=300;fahr+=20){print("\t","%3d",fahr);print("","%6.1f", 5.0*(fahr-32)/9.0,"\n");}print("\n");}The Ox output is:[cribari@edgeworth programs]$oxl celsiusOx version 3.00(Linux)(C)J.A.Doornik,1994-2001Conversion table(F to C)F C40-17.820-6.740 4.46015.68026.710037.812048.914060.016071.118082.220093.3220104.4240115.6260126.7280137.8300148.9The two programs above show that the Ox and C syntaxes are indeed very similar.Note that Ox accepts C style comments(/*...*/),and also C++like comments to the end of the line(//).3We also note that,unlike C,Ox accepts nested comments.The similarity between the Ox and C syntaxes is a major advantage of Ox over other matrix languages.Kendrick and Amman(1999)provide an overview of programming languages in economics.In the introduction of their paper,they give the following advice to users who are starting to program:“Begin with one of the high-level or modeling languages.(...)Then work downward in the chain and learn either Fortran,C,C++,or Java.”If a user then starts with Ox and‘works downward’to C or C++the transition will be smoother than if he/she starts the chain with other high level languages.As a second illustration of the use of Ox in econometrics and statistics,we develop a simple program thatfirst simulates a large number of coin tosses,and then counts the frequency (percentage)of tails.The code which is an Ox translation,with a smaller total number of runs,of the C code given in Cribari–Neto(1999),thus illustrates Kolmogorov’s Law of Large Numbers.We begin by writing a loop-based version of the coin tossing experiment./*******************************************************************PROGRAM:coin_loop.ox**USE:Simulates a large number of coin tosses and prints*the percentage of tails.**PURPOSE:The program illustrates the first version of the*law of large numbers which dates back to James*Bernoulli.******************************************************************/#include<oxstd.h>/*maximum number of coin tosses*/3Ox also borrows from Java;the println function,for instance,comes from the Java programming language.5const decl COIN_MAX=1000000;main(){decl j,dExecTime,temp,result,tail,s;//Start the clock(to time the execution of the program).dExecTime=timer();//Choose the random number generator.ranseed("GM");//Main loop:for(j=10;j<=COIN_MAX;j*=10){tail=0;for(s=0;s<j;s++){temp=ranu(1,1);tail=temp>0.5?tail:tail+1;}result=100.0*tail/j;print("Percentage of tails from",j,"tosses:","%8.2f",result,"\n");}print("\nEXECUTION TIME:",timespan(dExecTime),"\n");}The instruction tail=temp>0.5?tail:tail+1;does exactly what it does in C: it sets the variable tail equal to itself if the stated condition is true(temp>0.5)and to tail+1otherwise.We now vectorize the above code for speed.The motivation is obvious:vectorization usually leads to efficiency gains,unless of course one runs into memory problems.It is note-worthy that one of the main differences between a matrix programming language and a low level language,such as C and C++,is that programs should exploit vector and matrix opera-tions when written and executed in a matrix-oriented language,such as Ox.The vectorized code for the example at hand is:/*******************************************************************PROGRAM:coin_vec.ox**USE:Simulates a large number of coin tosses and prints*the percentage of tails.**PURPOSE:The program illustrates the first version of the*law of large numbers which dates back to James*Bernoulli.******************************************************************/6#include<oxstd.h>/*maximum number of coin tosses*/const decl COIN_MAX=1000000;main(){decl j,dExecTime,temp,tail;//Start the clock(to time the execution of the program).dExecTime=timer();//Choose the random number generator.ranseed("GM");//Coin tossing:for(j=10;j<=COIN_MAX;j*=10){temp=ranu(1,j);tail=sumr(temp.<0.5)*(100.0/j);print("Percentage of tails from",j,"tosses:","%8.2f",double(tail),"\n");}print("\nEXECUTION TIME:",timespan(dExecTime),"\n");}The output of the loop-based program is:[cribari@edgeworth programs]$oxl coin_loopOx version 3.00(Linux)(C)J.A.Doornik,1994-2001Percentage of tails from10tosses:40.00Percentage of tails from100tosses:53.00Percentage of tails from1000tosses:49.10Percentage of tails from10000tosses:49.69Percentage of tails from100000tosses:49.83Percentage of tails from1000000tosses:49.99EXECUTION TIME: 2.41whereas the vectorized code generates the following output: [cribari@edgeworth programs]$oxl coin_vecOx version 3.00(Linux)(C)J.A.Doornik,1994-2001Percentage of tails from10tosses:40.00Percentage of tails from100tosses:53.00Percentage of tails from1000tosses:49.10Percentage of tails from10000tosses:49.69Percentage of tails from100000tosses:49.83Percentage of tails from1000000tosses:49.99EXECUTION TIME:0.237Note that the empirical frequency of tails approaches1/2,the population mean,as predicted by the Law of Large Numbers.As far as efficiency goes,we see that vectorization leads to a sizeable improvement.The loop-based program yields an execution time which is over10 times greater than that of its vectorized version,on a DELL Pentium III1GHz computer with512MB RAM running on Linux.4Some languages,like C,operate faster on rows than on columns.The same logic applies to Ox.To illustrate the claim,we modify the vectorized code so that the random draws are stored in a column vector(they were previously stored in a row vector).To that end,one only needs to change two lines of code:for(j=10;j<=COIN_MAX;j*=10){temp=ranu(j,1);//1st changetail=sumc(temp.<0.5)*(100.0/j);//2nd changeprint("Percentage of tails from",j,"tosses:","%8.2f",double(tail),"\n");}This new vectorized code now runs in0.35second.That is,we see a speed penalty of over 50%when we transpose the code so that we work with a large column vector instead of working with a large row vector.4.Econometric ApplicationsMaximum likelihood estimates oftentimes need to be computed using a nonlinear op-timization scheme.In order to illustrate how that can be done using Ox,we consider the maximum likelihood estimation of the number of degrees-of-freedom of a Student t distri-bution.Maximization is performed using a quasi-Newton method(known as the‘BFGS’method)with numerical gradient,i.e.,without specifying the score function.(Note that this estimator is substantially biased in small samples.)It is noteworthy that Ox has routines for other optimization methods as well,such as the Newton-Raphson and the BHHH methods. An advantage of the BFGS method is that it allows users to maximize likelihoods without having to specify a score function.See Press et al.(1992,Chapter10)for details on the BFGS and other nonlinear optimization methods.See also Mittelhammer,Judge and Miller(2000,§8.13),who on page199write that“[t]he BFGS algorithm is generally regarded as the best performing method.”The example below uses a random sample of size50,the true value of the parameter is3,and the initial value of the optimization scheme is2.(We have neglected a constant in the log-likelihood function.)/**************************************************************PROGRAM:t.ox**USAGE:Maximum likelihood estimation of the number of*degrees of freedom of a Student t distribution.*************************************************************/4The operating system was Mandrake Linux8.0running on kernel2.4.3.8#include<oxstd.h>#include<oxprob.h>#import<maximize>const decl N=50;static decl s_vx;fLogLik(const vP,const adFunc,const avScore,const amHess) {decl vone=ones(1,N);decl nu=vP[0];adFunc[0]=double(N*loggamma((nu+1)/2)-(N/2)*log(nu)-N*loggamma(nu/2)-((nu+1)/2)*(vone*log(1+(s_vx.^2)/nu)));if(isnan(adFunc[0])||isdotinf(adFunc[0]))return0;elsereturn1;//1indicates success}main(){decl vp,dfunc,dnu,ir;ranseed("GM");vp= 2.0;dnu= 3.0;s_vx=rant(N,1,3);ir=MaxBFGS(fLogLik,&vp,&dfunc,0,TRUE);print("\nCONVERGENCE:",MaxConvergenceMsg(ir));print("\nMaximized log-likelihood:","%7.3f",dfunc);print("\nTrue value of nu:","%6.3f",dnu);print("\nML estimate of nu:","%6.3f",double(vp));print("\nSample size:","%6d",N);print("\n");}Here is the Ox output:[cribari@edgeworth programs]$oxl tOx version 3.00(Linux)(C)J.A.Doornik,1994-2001CONVERGENCE:Strong convergenceMaximized log-likelihood:-72.813True value of nu: 3.0009ML estimate of nu: 1.566Sample size:50The maximum likelihood estimate ofν,whose true value is3,is ν=1.566.This example shows that nonlinear maximization of functions can be done with ease using Ox.Of course, one can estimate more complex models in a similar fashion.For example,the parameters of a nonlinear regression model can be estimated by setting up a log-likelihood function,and maximizing it with a MaxBFGS call.It is important to note,however,that Ox does not come with routines for performing constrained maximization.The inclusion of such functions in Ox would be a great addition to the language.A number of people have developed add-on packages for Ox.These handle dynamic panel data(DPD),ARFIMA models,conditionally heteroskedastic models,stochastic volatil-ity models,state space forms.There is,moreover,Ox code for quantile regressions,and in particular, 1(i.e.,least absolute deviations)regressions.The code corresponds to the al-gorithm described in Portnoy and Koenker(1997)and is available at Roger Koenker’s web page(/roger/research/rqn/rqn.html).We consider,next,the G@RCH2.0package recently developed by S´e bastien Laurent and Jean–Philippe Peters,which is dedicated to the estimation and forecasting of ARCH,GARCH models.The GARCH add-on package comes in two versions,namely:(i)the‘Full Version’which requires a registered copy of Ox Professional3.00,since it is launched from OxPack and makes use of the GiveWin interface,and(ii)the‘Light Version’which only requires the free (‘console’)version of Ox.It relies on Ox’s object-oriented programming capabilities,being a derived class of Ox’s Modelbase type of class.The package is available for download at http://www.egss.ulg.ac.be/garch.We borrow the example program(GarchEstim.ox)in order to illustrate the use of the GARCH code(as with everything else,in the context of the console,i.e.free,version of Ox).The GARCH object(which is created with the source code provided by this add-on package)allows for the estimation of a large number of uni-variate ARCH-type models(e.g.,ARCH,GARCH,IGARCH,FIGARCH,GJR,EGARCH, APARCH,FIEGARCH,FIAPARCH)under Gaussian,Student–t,skewed Student and gen-eralized error distributions.Forecasts(one-step-ahead density forecasts)of the conditional mean and variance are also available,as well as several misspecification tests and graphics commands.#include<oxstd.h>#import<packages/garch/garch>main(){decl garchobj;garchobj=new Garch();//***DATA***//garchobj.Load("Data/demsel.in7");();garchobj.Select(Y_VAR,{"DEM",0,0});10garchobj.SetSelSample(-1,1,-1,1);//***SPECIFICATIONS***//garchobj.CSTS(1,1);//cst in Mean(1or0),cst in Variance(1or0)garchobj.DISTRI(0);//0for Gauss,1for Student,2for GED,3for Skewed-Student garchobj.ARMA(0,0);//AR order(p),MA order(q).garchobj.ARFIMA(0);//1if Arfima wanted,0otherwisegarchobj.GARCH(1,1);//p order,q ordergarchobj.FIGARCH(0,0,1000);//Arg.1:1if Fractionnal Integration wanted.//Arg.2:0->BBM,1->Chung//Arg.3:if BBM,Truncation ordergarchobj.IGARCH(0);//1if IGARCH wanted,0otherwisegarchobj.EGARCH(0);//1if EGARCH wanted,0otherwisegarchobj.GJR(0);//1if GJR wanted,0otherwisegarchobj.APARCH(0);//1if APARCH wanted,0otherwise//***TESTS&FORECASTS***//garchobj.BOXPIERCE(<5;10;20>);//Lags for the Box-Pierce Q-statistics.garchobj.ARCHLAGS(<2;5;10>);//Lags for Engle’s LM ARCH test.garchobj.NYBLOM(1);//1to compute the Nyblom stability test,0otherwisegarchobj.PEARSON(<40;50;60>);//Cells(<40;50;60>)for the adjusted Pearson//Chi-square Goodness-of-fit test,0if not computed//G@RCH1.12garchobj.FORECAST(0,100);//Arg.1:1to launch the forecasting procedure,//0elsewhere//Arg.2:Number of one-step ahead forecasts//***OUTPUT***//garchobj.MLE(1);//0:both,1:MLE,2:QMLEgarchobj.COVAR(0);//if1,prints variance-covariance matrix of the parameters.garchobj.ITER(0);//Interval of iterations between printed intermediary results//(if no intermediary results wanted,enter’0’) garchobj.TESTSONLY(0);//if1,runs tests for the raw Y series,prior to//any estimation.garchobj.GRAPHS(0);//if1,prints graphics of the estimations//(only when using GiveWin).garchobj.FOREGRAPHS(0);//if1,prints graphics of the forecasts//(only when using GiveWin).//***PARAMETERS***//garchobj.BOUNDS(0);//1if bounded parameters wanted,0otherwisegarchobj.DoEstimation(<>);garchobj.STORE(0,0,0,0,0,"01",0);//Arg.1,2,3,4,5:if1->stored.(Res-SqRes-CondV-MeanFor-VarFor)//Arg.6:Suffix.The name of the saved series will be"Res_ARG6"//(or"MeanFor_ARG6",...).//Arg.7:if0,saves as an Excel spreadsheet(.xls).//If1,saves as a GiveWin dataset(.in7)delete garchobj;}11We have run the above code to obtain the MLE and QMLE results of an ARMA(0,0)model in the mean equation and GARCH(1,1)model in the variance equation,assuming Gaussian distributed errors.Some portmanteau tests,such as the Box–Pierce Q-statistic and the LM ARCH test,the Jarque–Bera normality test etc,were also calculated for the daily observations on the Dow Jones Industrial Average(Jan.1982-Dec.1999,a total of4,551observations). The output follows.Ox version 3.00(Linux)(C)J.A.Doornik,1994-2001Copyright for this package:urent and J.P.Peters,2000,2001.G@RCH package version 2.00,object created on14-08-2001----Database information----Sample:1-4313(4313observations)Frequency:1Variables:4Variable#obs#miss min mean max std.devDEM43130-6.3153-0.0022999 3.90740.75333PREC4313000.4259250.82935SUCC4313000.418550.81568OBSVAR43130 3.3897e-060.567539.853 1.3569 **********************SPECIFICATIONS*********************Mean Equation:ARMA(0,0)model.No regressor in the meanVariance Equation:GARCH(1,1)model.No regressor in the varianceThe distribution is a Gauss distribution.Strong convergence using numerical derivativesLog-likelihood=-4651.57Please wait:Computing the Std Errors...Maximum Likelihood EstimationCoefficient Std.Error t-value t-probCst(M)0.0031860.0100190.31800.7505Cst(V)0.0178730.003216 5.5580.0000GARCH(Beta1)0.8702150.01168674.460.0000ARCH(Alpha1)0.1028470.00964210.670.0000Estimated Parameters Vector:0.003186;0.017873;0.870215;0.102847No.Observations:4313No.Parameters:4*************TESTS**12***********Statistic t-Test P-ValueSkewness-0.20031 5.37237.7733e-08Excess Kurtosis 1.868425.061 1.3133e-138Jarque-Bera656.19656.19 3.2440e-143---------------Information Criterium(minimize)Akaike 2.158856Shibata 2.158855Schwarz 2.164763Hannan-Quinn 2.160942---------------BOX-PIERCE:ValueMean of standardized residuals-0.00065Mean of squared standardized residuals0.99808H0:No serial correlation==>Accept H0when prob.is High[Q<Chisq(lag)] Box-Pierce Q-statistics on residualsQ(5)=17.7914[0.00321948]Q(10)=26.4749[0.00315138]Q(20)=44.9781[0.00111103]Box-Pierce Q-statistics on squared residuals-->P-values adjusted by2degree(s)of freedomQ(5)=8.01956[0.0456093]Q(10)=12.4119[0.133749]Q(20)=34.563[0.0107229]--------------ARCH1-2test:F(2,4306)= 2.7378[0.0648]ARCH1-5test:F(5,4300)= 1.5635[0.1668]ARCH1-10test:F(10,4290)= 1.2342[0.2632]--------------Diagnostic test based on the news impact curve(EGARCH vs.GARCH)Test ProbSign Bias t-Test 1.175980.23960Negative Size Bias t-Test 1.828560.06747Positive Size Bias t-Test0.975420.32935Joint Test for the Three Effects 4.468820.21509---------------Joint Statistic of the Nyblom test of stability: 1.77507Individual Nyblom Statistics:Cst(M)0.43501Cst(V)0.22234GARCH(Beta1)0.10147ARCH(Alpha1)0.10050Rem:Asymptotic1%critical value for individual statistics=0.75.Asymptotic5%critical value for individual statistics=0.47.---------------Adjusted Pearson Chi-square Goodness-of-fit testLags Statistic P-Value(lag-1)P-Value(lag-k-1)4078.06890.0002040.0000405089.05190.0004090.00010060103.25320.0003250.00008913Rem.:k=#estimated parameters---------------Elapsed Time: 4.67seconds(or0.0778333minutes).The stochastic volatility package(SvPack),written by Neil Shephard,is essentially a dy-namic link library for Ox of C code that deals with the implementation of likelihood inference in volatility models.The fact that it is written in C guarantees optimal speed,whereas the linking to Ox definitely improves usability.It requires the Ox state space package(SsfPack), which provides for Kalmanfiltering,smoothing and simulation smoothing algorithms of Gaus-sian multivariate state space forms(see Koopman,Shephard and Doornik,1999;Ooms,1999, and also ),as well as ARMS(Adaptive Rejection Metropolis Sam-pling),an Ox front-end for C code for adaptive rejection sampling algorithms(i.e.,routines for efficient sampling from complicated univariate densities)developed and documented by Michael Pitt(based on C code by Wally Gilks).The Arfima package is a set of Ox functions that create a class(an ARFIMA object) for the estimation and testing of AR(F)IMA models(Beran,1994).The models can be esti-mated via exact maximum likelihood,modified profile likelihood and nonlinear least squares. ArfimaSim is an additional simulation class included in the Arfima package that provides the means for Monte Carlo experiments based on the Arfima class.The Dynamic Panel Data package,DPD,like the Arfima and G@RCH packages,is a nice example of object-oriented Ox programming.They are derived classes written in Ox.DPD, which is entirely written in Ox,implements dynamic panel data models,as well as some static ones,and can handle unbalanced panels.Monte Carlo experimentation is possible with the simulation class DPSSim,included in this Ox add-on package.5.GraphicsOx has a number of commands that help create publication-quality graphics.This is, however,one of the areas where more progress is expected.The graphics capabilities of the console version of Ox are not comparable to those of,say,GAUSS,MATLAB,R or S-PLUS.It is important to note,however,that the professional version of Ox comes with an impressive interface for graphics:GiveWin.It allows users,for example,to modify a graph with a few clicks of the mouse.With GiveWin,it is possible to edit all graphs on the screen, manipulate areas,add Greek letters,add labels,change fonts,etc.Therefore,users who intend to make extensive use of the plotting capabilities of the language to produce publication quality graphics should consider using the professional version of Ox.5An alternative strategy would be to use Ox for programming,save the results to afile, read the resultsfile into R,which is also free,and then produce publication quality plots from there.6It is also possible to use GnuDraw,an Ox package written by Charles Bos (http://www2.tinbergen.nl/~cbos/).GnuDraw allows users to create gnuplot(http:// )graphics from Ox,extending the possibilities offered by existing OxDraw 5The newest,just released,version3.00of Ox has improved graphics capabilities.For instance,it now has built-in functions for producing3D plots.6For details on R,see .14。
EM算法原理总结
EM算法原理总结EM算法(Expectation-Maximization algorithm)是一种迭代优化算法,用于估计含有隐变量的概率模型参数。
它能够在缺失数据情况下对概率模型进行参数估计,并可以通过迭代的方式逐步逼近模型的最大似然估计。
EM算法的原理可以总结为以下几个步骤:1.初始化模型参数:首先需要对模型的参数进行初始化。
通常可以采用随机初始化或者根据经验设定的初始值。
2. E步:在E步中,算法会根据当前的参数估计值来计算隐变量在每个数据样本上的期望值(expectation)。
这个计算过程通常使用条件概率的形式,即根据当前参数计算隐变量的后验概率。
3.M步:在M步中,算法会根据E步中计算得到的隐变量的期望值,来最大化似然函数。
这个最大化的过程通常使用最大似然估计的方法,通过对似然函数求偏导数,并使其等于零来求解参数。
4.更新参数:在M步中得到的参数估计值将作为下一轮迭代的初始值。
如此循环迭代,直到模型参数收敛,或者达到预设的迭代次数。
EM算法的优势在于它对于含有隐变量的概率模型的参数估计更加稳定。
由于EM算法使用期望值来替代隐变量,对于缺失数据的情况下也能进行有效的估计。
此外,EM算法的计算过程也相对简单而清晰,容易实现。
然而,EM算法也存在一些不足之处。
首先,EM算法只能够得到概率模型的局部最大似然估计,不能保证找到全局最大似然估计。
其次,EM算法对初始参数的选择非常敏感,有时候可能会陷入局部最优解。
另外,EM算法的收敛速度可能较慢,需要进行多次迭代才能达到理想的结果。
为了解决这些问题,可以采用一些改进的EM算法,如加速的EM算法(accelerated EM algorithm)、剪枝的EM算法(pruning-based EM algorithm)等。
这些改进的算法在EM算法的基础上对其进行了一些改进和优化,提高了算法的收敛速度和估计精度。
总结来说,EM算法是一种用于估计含有隐变量的概率模型参数的优化算法。
稀疏算子 编译
稀疏算子(Sparse Operator)是指只对部分元素进行操作的算子,例如矩阵乘法中的稀疏矩阵。
在编译过程中,稀疏算子的处理通常涉及到如何有效地存储和计算稀疏矩阵,以及如何优化稀疏算子的计算性能。
以下是一些编译中处理稀疏算子的常见方法:
1.压缩存储:对于稀疏矩阵,可以使用压缩存储方法来减少存储空间的使用。
例
如,可以使用三元组表示法或行主序存储法等。
2.稀疏算子优化:针对稀疏算子进行优化,可以显著提高计算性能。
例如,可以
使用快速傅里叶变换(FFT)等算法加速稀疏矩阵乘法等操作。
3.代码生成优化:在编译器中,可以根据稀疏算子的特性生成优化的代码。
例如,
可以使用向量化指令、并行计算等技术来加速稀疏算子的计算。
4.内存优化:对于大规模的稀疏矩阵,内存的使用也是一个重要的问题。
可以使
用内存优化技术,例如缓存优化、内存对齐等,来提高内存的使用效率。
5.并行计算:对于大规模的稀疏矩阵操作,可以使用并行计算技术来加速计算。
例如,可以将稀疏矩阵分成多个子矩阵,并使用多线程或分布式计算等技术进行并行处理。
总之,在编译过程中处理稀疏算子需要综合考虑存储、计算和内存等多个方面,并使用各种优化技术来提高计算性能和内存使用效率。
DB11_T969-2013城市雨水系统规划设计暴雨径流计算标准
附件:批准发布的北京市地方标准目录
北京市质量技术监督局 北京市规划委员会
2013年4月18日
北京市质量技术监督局办公室
2013年4月19日印发
附件
批准发布的北京市地方标准目录
序号 地方标准编号 地方标准名称 批准日期 实施日期一
城市雨水系
20”一07一”‘ 一 统规划设计暴.
1
- DB11/ T
条文说明................……。....……。.............................……,...............……21
DB 111T 969- 2013
CONTENTS
I General Povisions ..........................................................................1 2 Terms and Definition ...................................................................... 2 3 Calculation Method and Parameters ............................................... 4
口日 北 京 市 地 方 标 准
编 号:DB11 /T 969-2013 备案号:J 12340- 2013
城市雨水系统规划设计暴雨
径流计算标准
St andar d of s t or m wat er r unof f cal cul at i on f or
urban storm drainage system planning and design
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
em算法原理
EM算法原理一、简介EM(Expectation Maximization)算法是一种常见的统计学习方法,用于估计参数和解决一些难以处理的问题,特别是在存在隐变量的情况下。
EM算法最初由数学家罗伯特·卢德米勒(RobertLushmiller)和理查德·贝尔曼(RichardBellman)在20世纪50年代提出,后来由 statisticiansDempster, Laird, and Rubin 进一步发展,因此也被命名为Dempster-Laird-Rubin算法。
EM算法在许多领域都有广泛的应用,如混合高斯模型、隐马尔可夫模型、高斯过程回归等。
二、EM算法的步骤EM算法主要由两个步骤组成:E步(ExpectationStep)和M步(Maximization Step),这两个步骤在迭代过程中交替进行。
1.E步:计算隐变量的条件期望。
给定当前的参数估计值,计算隐变量的条件期望,通常表示为参数的函数。
这个步骤中,隐变量对数似然函数的参数更新起着关键作用。
2.M步:最大化期望值函数。
在E步计算出期望值之后,M步将尝试找到一组参数,使得这个期望值函数最大。
这个步骤中,通常使用优化算法来找到使期望值函数最大的参数值。
这两个步骤在迭代过程中交替进行,每次迭代都更新了参数的估计值,直到满足某个停止准则(如参数收敛或达到预设的最大迭代次数)。
三、EM算法的特点与优点1.处理隐变量:EM算法能够处理数据中存在的隐变量问题,这是它与其他参数估计方法相比的一大优势。
通过估计隐变量的概率分布,EM算法能够更准确地描述数据的生成过程。
2.简单易行:相对于其他优化算法,EM算法相对简单易懂,也容易实现。
它的主要目标是最优化一个简单的对数似然函数,这使得EM算法在许多情况下都能给出很好的结果。
3.稳健性:对于一些数据异常或丢失的情况,EM算法往往表现出较好的稳健性。
这是因为EM算法在估计参数时,会考虑到所有可用的数据,而不仅仅是正常的数据点。
机器学习43条军规:关于机器学习(ML)工程的最佳实践文档
机器学习43条军规:关于机器学习(ML)工程的最佳实践文档Google发布了关于机器学习(ML)工程的最佳实践文档,旨在帮助已掌握ML基础知识的人员从谷歌机器学习的最佳实践中受益。
它介绍了一种ML样式,类似于Google C++++ 样式指南和其他常用的实用编程指南。
本文档旨在帮助已掌握ML基础知识的人员从谷歌机器学习的最佳实践中受益。
它介绍了一种ML样式,类似于Google C++ 样式指南和其他常用的实用编程指南。
如果您学习过ML方面的课程,或者拥有ML模型的构建或开发经验,则具备阅读本文档所必需的背景知识。
术语在我们讨论有效的ML的过程中,会反复提到下列术语:实例:要对其进行预测的事物。
例如,实例可以是一个网页,您希望将其分类为"与猫相关" 或"与猫无关"。
标签:预测任务的答案,它可以是由ML系统生成的答案,也可以是训练数据中提供的正确答案。
例如,某个网页的标签可能是"与猫相关"。
特征:预测任务中使用的实例的属性。
例如,某个网页可能具有"包含字词猫" 这一特征。
特征列:一组相关特征,例如用户可能居住的所有国家/地区的集合。
样本的特征列中可能包含一个或多个特征。
"特征列" 是Google 专用的术语。
特征列在Yahoo/Microsoft 使用的VM 系统中被称为"命名空间" 或场。
样本:一个实例(及其特征)和一个标签。
模型:预测任务的统计表示法。
您使用样本训练一个模型,然后使用该模型进行预测。
指标:您关心的一个数值。
也许(但不一定)可以直接得到优化。
目标:算法尝试优化的一种指标。
管道:ML算法的基础架构。
管道包括从前端收集数据、将数据放入训练数据文件、训练一个或多个模型以及将模型运用到生产环境。
点击率:点击。
MLE和EM算法的学习和阅读整理
MLE和EM算法的学习和阅读整理MLE和EM算法是统计学和机器学习中常用的两种方法。
MLE(最大似然估计)是一种用于估计参数的方法,它通过最大化一组数据的可能性函数来确定参数。
而EM(期望最大化)算法则是一种发现隐藏变量的通用方法,它通过迭代计算参数的估计值来找到最佳可能的参数。
MLE(最大似然估计)MLE的思想来源于贝叶斯定理,假设我们有一组数据D,在给定一组参数θ的条件下,D的联合概率可以表示为:P(D|θ)。
MLE所做的是通过选择使得P(D|θ)最大的一组参数值θ*来估计数据的参数。
即:θ* = argmaxθP(D|θ)根据贝叶斯定理,P(D|θ)可以表示为,P(D|θ) = ΠP(di|θ),其中di是我们的数据。
那么我们就可以通过求解这个式子的最大值来得到我们的估计参数值θ*。
但是,有一些情况下,直接求导数无法得到闭式解(closed-form solution)的形式。
这时我们可以使用EM算法。
EM算法当有一些隐含变量存在时,如果我们采用MLE是很难得到模型参数的。
这时我们可以采用EM算法。
EM算法就是一种迭代的最大似然估计算法,使用EM算法求解的目标是联合分布P(x, z|θ),其中x是观测变量,z是隐含变量,θ是待估计参数。
根据贝叶斯定理,我们可以写出后验分布P(z|x,θ),也就是在知道x和θ的条件下,z的分布。
因此,EM算法讲求的是一种求解参数θ的迭代方法,每一步都涉及两个基本步骤:E步和M步。
E步:计算隐含变量z的期望。
即计算下式的期望。
Q(θ|θn) = E[logp(x, z|θ)|x,θn]M步:最大化该期望。
其中θn是在前一次迭代中估计出来的θ值。
1. 初始值设定:给定一个初始值θ02. E步:计算Q(θ|θn)3. M步:最大化Q(θ|θn)得到最新的参数值θn+14. 判断收敛:判断是否符合计算的精度要求5. 如果不满足,继续迭代对于MLE和EM算法的优缺点,我们可以梳理如下:MLE的优点:(1)MLE所需要的假设比贝叶斯方法简单,比如不需要设置先验分布(2)容易计算,计算的复杂度相对较低(1)由于MLE通常是点估计,我们无法得到参数的分布,这意味着我们对每个参数都分配了一个单一的值,忽略了这些参数值可能的不确定性(2)MLE也不够鲁棒,它对异常数据点非常敏感(1)EM算法可以处理缺失或者损失的数据(2)EM算法的鲁棒性比MLE好,它会更加平滑的估计参数(2)EM算法对初始值敏感,如果初始估计值不够准确,可能导致算法陷入局部最小值总结:。
origin非对称最小二乘平滑算法
origin非对称最小二乘平滑算法
非对称最小二乘平滑算法是一种用于处理非对称数据的平滑算法。
在处理实际数据时,经常会遇到一些非对称的情况,例如数据的一侧分布较广,另一侧分布较窄。
在这种情况下,使用传统的最小二乘平滑算法可能会导致结果失真。
而非对称最小二乘平滑算法能够更好地处理这种情况,因为它考虑到了数据的不对称性。
非对称最小二乘平滑算法的基本思想是,对于每一个数据点,根据其所在的位置和分布情况,为其分配一个权重。
这个权重是根据数据点的位置和分布情况计算出来的,能够反映数据点的重要程度。
在计算平滑值时,根据每个数据点的权重进行加权平均,从而得到更加准确的结果。
非对称最小二乘平滑算法的实现步骤如下:
1. 确定数据点的位置和分布情况,并根据这些信息计算每个数据点的权重。
2. 根据权重对数据进行加权平均,计算出平滑值。
3. 重复上述步骤,直到达到预设的迭代次数或满足其他停止条件。
非对称最小二乘平滑算法的优点在于,它能够更好地处理非对称数据,得到更加准确的结果。
同时,它还具有较好的鲁棒性,能够处理异常值和缺失值
等问题。
然而,非对称最小二乘平滑算法的实现较为复杂,需要仔细处理数据点的位置和分布情况,以及权重的计算和加权平均的计算。
Matlab中的关联规则挖掘方法介绍
Matlab中的关联规则挖掘方法介绍引言关联规则挖掘是一种数据挖掘技术,它通过分析数据集中的项集之间的频繁关联程度,发现其中的规律和关系。
在商业领域,关联规则挖掘常用于市场篮子分析,帮助企业理解产品间的关联性,从而优化营销策略。
在本文中,我们将介绍如何使用Matlab中的工具包进行关联规则挖掘,并讨论一些应用案例。
一、数据预处理在进行关联规则挖掘之前,必须先对数据进行预处理。
这包括数据清洗、转换和归一化等步骤。
在Matlab中,可以使用数据统计、数据导入和数据清洗工具箱来完成这些任务。
首先,我们需要确认数据集的格式,并使用适当的函数来读取数据。
然后,我们可以使用数据清洗工具箱中的函数来删除重复数据、填充缺失值,并进行必要的数据转换和归一化。
二、关联规则挖掘算法Matlab提供了多种关联规则挖掘算法,包括Apriori算法、Eclat算法和FP-growth算法等。
这些算法可用于发现频繁项集,并利用频繁项集生成关联规则。
以下是对其中几种算法的简要介绍:1. Apriori算法Apriori算法是关联规则挖掘中最常用的算法之一。
它通过逐层搜索频繁项集来发现关联规则。
具体而言,Apriori算法首先生成所有的单个项的频繁项集,再通过连接和剪枝操作生成更高维度的频繁项集,直到不再有频繁项集产生为止。
2. Eclat算法Eclat算法是一种基于垂直数据存储结构的关联规则挖掘算法。
它通过对数据集进行垂直方向的投影来寻找频繁项集。
具体而言,Eclat算法将数据集按照项的不同取值进行分组,并使用交集操作来寻找频繁项集。
3. FP-growth算法FP-growth算法是一种基于前缀树(Prefix Tree)结构的关联规则挖掘算法。
它通过构建一颗FP树(Frequency Pattern Tree)来寻找频繁项集,并利用FP树生成关联规则。
具体而言,FP-growth算法首先扫描数据集,统计每个项的频次,然后根据频次构建FP树,并进行频繁项集的挖掘。
CS880 Approximations Algorithms
CS880:Approximations AlgorithmsScribe:Tom Watson Lecturer:Shuchi Chawla Topic:Inapproximability Date:4/27/2007 So far in this course,we have been proving upper bounds on the approximation factors achievable for certain NP-hard problems by giving approximation algorithms for them.In this lecture,we shift gears and prove lower bounds for some of these problems,under the assumption that P=NP. For some problems,essentially matching upper and lower bounds are known,indicating that the approximability properties of these problems are well-understood.We show that(nonmetric)TSP cannot be approximated within any factor.We also show that the Edge Disjoint Paths problem is√NP-hard to approximate within a factor of O(m1/2− )for all >0,essentially matching the O(reduction to obtain a polynomial-time algorithm for SAT.For inapproximability results,L is an optimization problem,say a maximization problem,rather than a language,and we would like it to be the case that composing a polynomial-time approximation algorithm for L with the reduction yields a polynomial time-algorithm for SAT.This goal is achieved with a gap-introducing reduction, illustrated as follows.SAT Yes NoL OPT >OPT <αβThis type of reduction maps the“yes”instances of SAT to instances of L with optimal objective value greater thanα,and it maps the“no”instances of SAT to instances of L with optimal objective value less thanβ,for some parametersαandβ.Anα/β-approximation algorithm for L has the property that on instances with OP T<βit produces a solution of value less thanβ(obviously) and on instances with OP T>αit produces a solution of value greater thanαreduction from SAT to L ,proving that L is NP-hard to approximate with a factor ofα /β .We will see examples where L and L are the same problem butα /β >α/β;these reductions can appropriately be called gap-amplifying reductions.We have been assuming that the problems we are dealing with are maximization problems,but the same concepts apply to minimization problems.We now look at some concrete examples of how this framework is employed to prove inapproximability results.27.2Traveling Salesperson ProblemOurfirst example is for the Traveling Salesperson Problem(TSP),in which we are given a set of n nodes and a distance between each pair of nodes,and we seek a minimum-length tour that visits every node exactly once.Recall that in a previous lecture,we obtained a3/2-approximation algorithm for Metric TSP.How much does the approximability deteriorate when we eliminate the requirement that the distances form a metric?We show that TSP in its full generality is actually inapproximable in a very strong sense.Theorem27.2.1TSP cannot be approximated within any factor unless P=NP.Proof:Recall the standard NP-hardness proof for TSP,which is a reduction from the Hamiltonian Tour problem.Given an unweighted graph G,we construct a TSP instance on the same set of nodes, where nodes adjacent in G are at distance1and nodes not adjacent in G are at distance for some value >1.Now if G has a Hamiltonian tour then the TSP instance has a tour of length n(the number of nodes)and otherwise every tour in the TSP instance has length at least n−1+ .Thus this reduction is,in fact,a gap-introducing reduction,proving that TSP is hard to approximate within any factor less than(n−1+ )/n.Since we can choose to be as large as we like,this proves the theorem.m)-approximation algorithm for this problem,where m is the number of edges.We now show that that result is essentially tight. There is an NP-hardness proof for EDP where the hard EDP instances only have k=2terminal pairs.Since for such instances,the optimum objective value is either2or at most1,we immediately get the following result.Theorem27.3.1For k=2,EDP is NP-hard to approximate within any factor less than2.We employ a bootstrapping argument to show that Theorem27.3.1implies the following result.3Theorem 27.3.2EDP is NP -hard to approximate within a factor of O (m 1/2− )for all >0.Proof:We give a gap-amplifying reduction from EDP with 2source-sink pairs to EDP.Suppose we are given a graph H with two terminal pairs (x 1,y 1)and (x 2,y 2).We construct an EDP instance with k terminal pairs,for some k to be determined later,in a graph G having the following generalstructure.t t t t 123k23k1If we expand each of the filled-in nodes into a single edge likethis:then the optimal objective value is always 1since for every two (s i ,t i )pairs,the unique paths connecting s i to t i intersect at some filled-in node and would thus have to share the edge there.If we expand each of the filled-in nodes into a pair of edges likethis:then the optimal objective value is always k ,since each filled-in node can accomodate both of the (s i ,t i )pairs whose paths intersect there.4Instead,we expand each filled-in node into a copy of H ,as follows.x 11y x 2y 2HIt follows that if H has edge disjoint paths from x 1to y 1and from x 2to y 2,then each of the filled-in nodes can accommodate both (s i ,t i )pairs that would like to use it,implying that the optimal objective value for G is k ,and otherwise each filled-in node can accomodate at most one (s i ,t i )pair,implying that the optimal objective value for G is 1.We have succeeded in amplifying the trivial factor 2gap for H into a factor k gap for G .Let h denote the number of edges in H .For any given >0,we can take k =h 1/ and the reduction still runs in polynomial time.Since the number of edges in G is m =O (k 2h )=O (k 2+ ),the inapproximability factor we achieve is k =Ω(m 1/(2+ )),which suffices to prove the theorem.Theorem27.4.1If Clique is NP-hard to approximate within a factor ofα,then it is also NP-hard to approximate with a factor ofα2.Proof:We give a gap-amplifying reduction from Clique to itself.Suppose we are given a graph G=(V,E).We construct the graph G =(V ,E )as follows.We take V =V×V,and let {(u,v),(w,x)}∈E iffboth of the following conditions hold:1){u,w}∈E or u=w2){v,x}∈E or v=x.We claim that if the maximum clique size in G is k,then the maximum clique size in G is k2.We first show that the maximum clique size in G is at least k2by taking an arbitrary clique Q⊆V in G and showing that Q×Q⊆V is a clique in G .Let(u,v)and(w,x)be nodes in Q×Q.Since u,w∈Q,condition1follows immediately.Since v,x∈Q,condition2follows immediately.Thus {(u,v),(w,x)}∈E and Q×Q is a clique of size k2in G .Now we show that the maximum clique size in G is at most k2.Consider an arbitrary clique S⊆V×V in G ,and let S ={u:(u,v)∈S for some v∈V}and S r={v:(u,v)∈S for some u∈V}. Now S is a clique in G since if u=w are nodes in S then there exist v,x∈V such that (u,v),(w,x)∈S and thus{(u,v),(w,x)}∈E ,which implies that{u,w}∈E by condition1. Similarly,S r is a clique in G.We have|S |·|S r|≥|S|,and since|S |≤k and|S r|≤k,we get that |S|≤k2,as desired.Thisfinishes the proof of our claim.It follows that if the maximum clique size in G is either at least s or less than s/α,for some value s,then the maximum clique size in G is either at least s2or less than(s/α)2=s2/α2.Thus we have succeeded in amplifying a gap ofαto a gap ofα2.。
ML-常见算法简介(CommonAlgorithms)
ML-常见算法简介(CommonAlgorithms)机器学习常见算法简介 - 原⽂链接:应该使⽤哪种机器学习算法?很⼤程度上依赖于可⽤数据的性质和数量以及每⼀个特定⽤例中你的训练⽬标。
不要使⽤最复杂的算法,除⾮其结果值得付出昂贵的开销和资源。
这⾥给出了⼀些最常见的算法,按使⽤简单程度排序。
1. 决策树(DT,Decision Trees)在进⾏逐步应答过程中,典型的决策树分析会使⽤分层变量或决策节点,例如,可将⼀个给定⽤户分类成信⽤可靠或不可靠。
优点:擅长对⼈、地点、事物的⼀系列不同特征、品质、特性进⾏评估场景举例:基于规则的信⽤评估、赛马结果预测2. ⽀持向量机(SVM,Support Vector Machine)基于超平⾯(hyperplane),⽀持向量机可以对数据群进⾏分类。
优点:⽀持向量机擅长在变量 X 与其它变量之间进⾏⼆元分类操作,⽆论其关系是否是线性的场景举例:新闻分类、⼿写识别3. 回归(Regression)回归可以勾画出因变量与⼀个或多个因变量之间的状态关系。
在这个例⼦中,将垃圾邮件和⾮垃圾邮件进⾏了区分。
优点:回归可⽤于识别变量之间的连续关系,即便这个关系不是⾮常明显场景举例:路⾯交通流量分析、邮件过滤4. 朴素贝叶斯分类(Naive Bayes Classification)朴素贝叶斯分类器⽤于计算可能条件的分⽀概率。
每个独⽴的特征都是「朴素」或条件独⽴的,因此它们不会影响别的对象。
例如,在⼀个装有共 5 个黄⾊和红⾊⼩球的罐⼦⾥,连续拿到两个黄⾊⼩球的概率是多少?从图中最上⽅分⽀可见,前后抓取两个黄⾊⼩球的概率为 1/10。
朴素贝叶斯分类器可以计算多个特征的联合条件概率。
优点:对于在⼩数据集上有显著特征的相关对象,朴素贝叶斯⽅法可对其进⾏快速分类场景举例:情感分析、消费者分类5. 隐马尔可夫模型(Hidden Markov model)显马尔可夫过程是完全确定性的——⼀个给定的状态经常会伴随另⼀个状态。
proximal policy optimization algorithms 原文
proximal policy optimization algorithms 原文近端策略优化算法(proximal policy optimization algorithms,PPO)是一种用于优化强化学习(reinforcement learning)中策略函数的算法,可以用于解决连续动作空间和离散动作空间的问题。
PPO是由OpenAI于2017年提出的,相较于传统的策略梯度算法,PPO通过引入一种剪切项和一种重要性抽样技术,可以更加稳定地学习并且具有强化学习中的一些重要性质。
PPO算法的核心思想是在优化过程中保持新策略和旧策略之间的“近似保持”。
PPO主要包含两个步骤:采集经验(collecting experiences)和优化策略(optimizing policy)。
在采集经验阶段,PPO使用当前的策略来与环境进行交互,从而生成一些轨迹或样本。
然后,通过这些样本来估计策略的值函数和概率分布。
在优化策略阶段,PPO使用上一步骤中采集到的样本来更新策略函数。
PPO采用的优化方法是通过最大化一个近似策略的目标函数来实现的。
目标函数是由两个部分组成:策略比率和剪切项。
策略比率用来衡量新策略和旧策略之间的差异。
PPO通过最大化策略比率来更新策略函数。
然而,在进行策略更新时,PPO限制了策略比率的变化幅度,以保证更新的稳定性。
剪切项用来限制策略更新的幅度。
剪切项可以看作是一个正则化项,它通过限制策略更新的幅度来降低更新步长。
这样可以避免策略函数的大幅度改变,从而提高了训练过程的稳定性。
PPO的重要性抽样技术可以用于调整样本的分布,使其更加符合当前的策略。
这样可以提高样本的有效性和稳定性,避免样本之间的相关性。
重要性抽样技术通过引入一个重要性抽样比例来调整样本的分布。
这个比例可以用来权衡新样本和旧样本之间的权重。
总的来说,PPO算法是一种通过近似保持来稳定地学习策略函数的强化学习算法。
它通过引入剪切项和重要性抽样技术来优化策略的学习过程。
c++人工蜂群算法求解函数最小值
x[r1 * dim] += dx; //更新位置
x[r2 * dim] += dy; //更新位置
cout << "iter " << iter << ": " << x << " f=" << f(x) << endl;
for (int j = 0; j < dim; j++) {
x[j] = distribution(generator);
}
cout << "bee " << i << ": " << x << " f=" << f(x) << endl;
}
//迭代搜索
for (int iter = 0; iter < n_iterations; iter++) {
人工蜂群算法(Artificial Bee Colony, ABC)是一种模拟蜜蜂觅食行为的优化算法,可用于求解函数的最小值问题。下面是一个使用C++实现的人工蜂群算法求解函数最小值的示例代码:
#include <iostream>
#include <cmath>
#include <random>
#include <vector>
double y_new = f(x_new); //计算新解的函数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Approximate MLE Algorithm for Source Localization Basedon TDOA Measurements∗Guoxiang GuDepartment of Electrical and Computer EngineeringLouisiana State University,Baton Rouge,LA70803-5901July2006,Revised January2007ABSTRACTSource localization is investigated based on noisy measurements of TDOA(time-difference of arrival)in which the measurement noises are assumed to be Gauss distributed.The solution to the constrained WLS(weighted least-squares)is derived and applied to the source localization problem based on TDOAs.The proposed algorithm is shown to be an approximate MLE(maximum likelihood estimation)algorithm under some mild condition.The simulation results show that the proposed approximate MLE algorithm compares favorably with the existing solution methods for source localization based on TDOA measurements.Keywords:Passive source localization,TDOA,AOA,MLE,constrained LS1.INTRODUCTIONPassive source localization has been an important research topic in the signal processing society.It has received greater attention in recent years due to the renewed interest in wireless location(cf.Sayed et al.11and the references therein).This paper considers source localization based on TDOA measurements that has been studied in several papers from Abel and Smith1to Friedlander,6in Hahn and Tretter,8in papers from Ho and Xu10to Schau and Robinson,12and in Torrieri.15Despite the fact that the measurement noises are additive and Gaussian,such a source localization problem is nonlinear in nature and the exact MLE solution is difficult to compute.For this reason,the problem was initially investigated for the case when the sensors are arranged in a linear fashion1,2,8where different optimum processing techniques are proposed under various assumptions. When the sensors are distributed irregularly,the optimum solutions are much harder to obtain.A linearization approach based on Taylor series is proposed in5,15to compute the optimum solution iteratively.Because of the existence of local minima,the Taylor series method requires an initial solution close to the global minimum.A more appealing approach is the quasi-linear method employed in6,12,13that converts the nonlinear measurement equations into quasi-linear measurement equations by treating the nonlinear term as a parameter.Two different procedures are developed independently in6,13that turn out be mathematically equivalent.A further progress is made in3,10which treats the nonlinear term as an independent variable to be estimated that is solved via WLS procedure together with the location variables.A second WLS is then introduced to minimize the mismatch between the nonlinear term and the location estimate.This two-step WLS procedure is shown to be more effective and closer to the true optimum solution than other existing approaches.In this paper we consider the same passive source localization problem using the same quasi-linear measure-ment equations.Different from the existing solution methods,the nonlinear term in the quasi-linear measurement ∗This research is supported in part by US Air Force.Further author information E-mail:ggu@,Telephone:(225)578-5534Wireless Sensing and Processing II, edited by Raghuveer M. Rao, Sohail A. Dianat, Michael D. Zoltowski,Proc. of SPIE Vol. 6577, 657707, (2007) · 0277-786X/07/$18 · doi: 10.1117/12.719865equations is treated as a constraint which is in fact a quadratic constraint.A numerical procedure based on simultaneous diagonalization9is developed to compute the WLS solution under the quadratic constraint.This new procedure is shown to be an approximate MLE solution under the assumption that the ratios of the distances between all but one sensor and the target to the noise variance in TDOA measurements are suitably large.The assumption is rather mild and is satisfied so long as the relative distances among all the sensors are suitably large and the noise variance is suitably small which hold in practice for localization based on TDOA measurements. Our results are fairly complete and complement the existing ones in the literature.The simulation results il-lustrate the effectiveness of the proposed solution procedures that compare favorably with the existing results. However due to the space limite,the simulation results are not presented which are available in.72.PROBLEM FORMULATION AND PRELIMINARY ANALYSISFor simplicity we consider only two-dimensional localization although the results are applicable to the three-dimensional case as well.Denote(x k,y k)as the position of the k th sensor and(x T,y T)as the position of the stationary target.Our goal is to estimate the position(x T,y T)based on the TDOA measurement data collected by n sensors located at{(x k,y k)}n k=1.LetR k,T=(x T−x k)2+(y T−y k)2,R T=R1,T,(1)be the distance between the target and the k th sensor.Then the TDOAs are defined by∆t k,1:=(R k,T−R T)/c=T−x k2T−y k2−T−x12T−y12/c(2)for k=2,3,···,n with c the speed of light.The target location is embedded in TDOAs or∆t k,1=∆t k,1(x T,y T). As in the literature we assume that the measurements of TDOAs are given by∆ˆt k,1=∆t k,1(x T,y T)+δt k,1(3)where{δt k,1}n k=2are uncorrelated Gaussian random variables with mean zero and varianceσ2t.That is,the measurement noises have the joint probability density function(PDF)asp∆(δt;x T,y T)=1(2π)n−1σn−1texp−nk=212σ2t∆ˆt k,1−∆t k,1(x T,y T)2.(4)It follows that source localization based on TDOAs is a nonlinear estimation problem.For the joint PDF in(4),an MLE solution to the source localization problem seeks(x T,y T)such that p(δt;x T,y T)achieves its global maximum that is an unbiased estimate under some regularity condition.14The well-known Cram´e r-Rao bound dictates that the error covariance associated with any unbiased estimate is bounded below by the inverse of the corresponding FIM(Fisher information matrix).The computation of the FIM can be complex but has simpler formulas in the case of Gaussian random variables.For source localization based on TDOA measurements,the corresponding FIM can be obtained by applying the Slepian formula14that leads toFIM(∆t)=nk=21c2σ2tcos(βk)−cos(β1)sin(βk)−sin(β1)cos(βk)−cos(β1)sin(βk)−sin(β1)(5)whereβk is the bearing parameter given byβk=tan−1[(y T−y k)/(x T−x k)]and1≤k≤n.Denoteρk=x2k+y2k and rewrite(2)equivalently as(x T−x k)2+(y T−y k)2=(x T−x1)2+(y T−y1)2+c∆t k,12.(6)Then with appropriate scaling we arrive at the following equation:1√cρ2k−ρ21=2√cx k−x1y k−y1xTy T+c√c∆t2k,1+2√cR T∆t k,1(7)for2≤k≤n.The TDOA data in(3)can be substituted in to obtain a quasi-linear model as in.3,6,12,13Indeeddenotea k=1√cρ2k−ρ21−c2(∆ˆt2k,1+µσ2t),ηk=−2√c(R T+c∆ˆt k,1)δt k+c√c(δt2k−µσ2t)(8)for2≤k≤n whereµ≥0.Letθ=x T y T R Tbe the location parameter vector.Thena=Hθ+η⇐⇒⎡⎢⎢⎢⎢⎣a2a3...a n⎤⎥⎥⎥⎥⎦=2√c⎡⎢⎢⎢⎢⎣x2−x1y2−y1c∆ˆt2,1x3−x1y3−y1c∆ˆt3,1.........x n−x1y n−y1c∆ˆt n,1⎤⎥⎥⎥⎥⎦⎡⎢⎣x Ty TR T⎤⎥⎦+⎡⎢⎢⎢⎢⎣η2η3...ηn⎤⎥⎥⎥⎥⎦(9)The above is the same as the quasi-linear model in the literature with{a k}pseudo-measurements and{ηk}the corresponding noises.However it imposes a constraint to the parameter vectorθas(θ−θ0) Q(θ−θ0)=0,Q=diag(1,1,−1),(10)whereθ0=x1y10.Denote E{·}and E{·|·}as the expectation and conditional expectation.Forµ=1,E{ηk|∆ˆt k,1}=0,E{η2k|∆ˆt k,1}=4c(R T+c∆ˆt k,1)2σ2t+2c3σ4t(11) where E{δt3k}=0and E{δt4k}=3σ4t are used.The question is under what condition{ηk}are Gauss distributed, assuming that{δt k}are Gauss distributed with zero mean.The next lemma is useful.Lemma2.1.Let Z=−2αV+V2−σ2whereα>0and Z is a Gauss random variable with mean zero and varianceσ2.If the ratio ofαtoσis sufficiently large,then Z is approximately Gauss distributed in the neighborhood of−σ2with mean zero and variance4α2σ2.Proof:It is easy to verify that E{Z}=0andσ2Z=E{Z2}=4α2σ2+2σ4=2σ2(2α2+σ2).(12) By noting that Z=(V−α)2−(σ2+α2),we haveV=−α±22Z≥−(σ2+α2).(13)Since V is Gauss distributed,the PDF of Z is given byp Z(z)=1√2πσ2⎧⎨⎩e−12σ2α−√z+(σ2+α2)22z+(σ2+α2)+e−12σ2α+√z+(σ2+α2)22z+(σ2+α2)⎫⎬⎭.(14)Figure1.PDF p Z(z)versus Gauss PDF with x-axis scaled byσ−1,y-axis byσ,andα=10σLet U=22The integral of thefirst term in p Z(z)isI1=1√2∞−(σ2+α2)e−12σ2α−√z+(σ2+α2)2222dz=1√∞−ασe−v2/2dv=:Qασ.Hence it is concluded that ifασis sufficiently large,then I1≈1and thus p Z(z)is dominated by thefirst term.It is also easy to see that whenασis sufficiently large,σ2Z is dominated by4α2σ2.In the case of z+σ2= withclose to zero,we havep Z(z)≈1√2⎧⎨⎩e−12σ2α−√z+(σ2+α2)2222⎫⎬⎭≈1√22exp−(z+σ2)28σα(15)concluding that Z is approximately Gauss distributed in the neighborhood of z=−σ2.Although Lemma2.1states that Z is approximately Gauss distributed near−σ2,it does not imply that its PDF peaks at Z=−σ2.In fact it can be shown by straightforward calculation that the PDF of Z peaks at −3σ2,E{Z}≈0,and E{Z2}≈(2ασ)2provided thatασ>>1.Figure1shows the approximate PDF of Z given byp Z(z)≈1√2⎧⎨⎩e−12α−√ 2222⎫⎬⎭(16)in solid line and the PDF of Gauss random variable with mean−σ2and variance(2ασ)2in dashed line where α=10σis used.Therefore Z is approximately Gaussian not only in the neighborhood of Z=−σ2but in a much greater interval.We comment that the approximate PDF of Z and the exact of PDF of Z are indistinguishable for the caseα≥10σ.We note that Z is Gauss distributed if and only ifγZ is Gauss distributed withγa nonzero constant.In addition it is reasonable to assume that∆ˆt k,1≈∆t k,1for2≤k≤n.Hence by applying Lemma2.1to theelements of the noise vector in(9)we can conclude that{ηk}are approximately Gauss distributed provided thatασ=R T+c∆ˆt k,1cσt≈R T+c∆t k,1cσt=R k,Tcσt>>1.(17)Such a condition holds as long as the relative distances among all the sensors are suitably large and the noise variance is suitably small.It is thus concluded that by takingµ=0,{ηk}in(9)are approximately Gauss distributed and can be well approximated by Gauss variable with mean zero and variance4c(R k,T+c∆ˆt k,1)2σ2t≈4cR2k,Tσ2t provided that the condition in(17)holds.In factµ=0is what employed in.3,10 Because{ηk}are approximately Gauss distributed with mean zero and variance{4cR2k,Tσ2t}in the caseµ=0, the joint PDF in(4)can be replaced by the following PDFp Z(η;x T,y T)≈1(2π)n−1det(Σ)exp−12(a−Hθ) Σ−1(a−Hθ)(18)whereΣ≈4cσ2t diagR22,T,R23,T,···,R2n,T.Recall the constraint(10)for the parameter vector.Hence anapproximate MLE for the location parameter vectorθis the one that minimizesJ=12(a−Hθ) Σ−1(a−Hθ)(19)subject to the constraint(10)under the condition in(17).A solution will be provided in the next section to such constrained WLS problems.In the following we provide an approximate expression of the FIM for the quasi-linear model(9)when{ηk}are approximately Gaussin distributed.Lemma2.2.Suppose that the noise vector in the quasi-linear model(9)admits an approximate joint PDF in (18).Then the associated FIM with respect to the location parameter(x T,y T)is approximately the same as in(5).Proof:DenoteθT=x T y T.Then Hθ=H1θT+bR T whereH1=2√c⎡⎢⎢⎢⎢⎣x2−x1y2−y1x3−x1y3−y1......x n−x1y n−y1⎤⎥⎥⎥⎥⎦,b=2√c⎡⎢⎢⎢⎢⎣∆ˆt2,1∆ˆt3,1...∆ˆt n,1⎤⎥⎥⎥⎥⎦.(20)Thus the quadratic function in(19)that is the exponent of the joint PDF in(18)has the formJ=12(a−bR T−H1θT) Σ−1(a−bR T−H1θT).(21)Because both Hθ=bR T+H1θT andΣin the joint PDF involve the location parameters(x T,y T),the Slepian-Bangs formula14can be applied to compute the associated FIM that is given byFIM=nk=2c24R2k,Tσ2t2x kc2+b k cos(β1)2y kc2+b k sin(β1)2x kc2+b k cos(β1)2y kc2+b k sin(β1)+nk=22R2k,Tcos(β1)sin(β1)cos(β1)sin(β1).(22)Under the condition(17),the above is dominated by thefirst summation leading toFIM≈nk=214c2σ2t R2k,T2x k+c2b k cos(β1)2y k+c2b k sin(β1)2x k+c2b k cos(β1)2y k+c2b k sin(β1)=nk=21c2σ2tcos(βk)−cos(β1)sin(βk)−sin(β1)cos(βk)−cos(β1)sin(βk)−sin(β1)(23)that is identical to the expression in(5).We comment that the second summation in(22)is resulted from the Bangs’formula.Under the condition(17), it is insignificant compared with thefirst summation implying thatFIM is insensitive to(x T,y T)embedded in the covarianceΣ.In addition Lemma2.2shows thatFIM associated with the quasi-linear model is approximately the same as the FIM associated with the nonlinear measurement model.This fact justifies the formulation of the constrained WLS for computing an approximate MLE solution to source localization based on TDOA measurements.3.SOLUTION TO THE CONSTRAINED WLS PROBLEMMinimization of J in(19)subject to the constraint(10)has been tackled in6,12,13and in.3,10Several solution procedures have been developed but they all bypass the difficulty in solving the constrained WLS problem directly.In this section,we provide a general solution tomin θ Qθ=012(a−Hθ) Σ−1(a−Hθ)(24)The solution to the above constrained WLS is applicable to the case when the constraint is given by(θ−θ0) Q(θ−θ0)=0withθ0=0.See Remark3.2.In(24),the matrix Q is an indefinite nonzero matrix with size × and matrix H has rank that is its number of columns.We employ the method of Lagrange multiplier to solve(24).Letλbe real and considerJ=12(Hθ−a) Σ−1(Hθ−a)+θ Qθ.(25)Then the necessary condition for optimality yields the conditionH Σ−1[Hθ−a]+λQθ=0⇐⇒θ=[H Σ−1H+λQ]−1H Σ−1a.(26) An optimal solution needs to satisfy the constraintθ Qθ=0leading toa Σ−1H[H Σ−1H+λQ]−1Q[H Σ−1H+λQ]−1H Σ−1a=0.(27)The solution algorithm hinges to the computation of the real rootλfrom the above equation and there can be more than one such real root.The result of simultaneous diagonalization in9can be employed for this purpose. BecauseΣ=Σ >0and Q=Q ,there exists a nonsingular matrix S such that H Σ−1H=SDΣS and Q=SD Q S where DΣand D Q are both diagonal.It is noted that DΣand D Q have the same inertia asΣand Q,respectively.It follows that(27)is equivalent to(S−1H Σ−1a) (λI+DΣD−1Q )−1D−1Q(λI+DΣD−1Q)−1(S−1H Σ−1a)=0.(28)Let D −1Q =diag(q 1,q 2,···,q ).Then it has the same number of negative and positive elements as D =D ΣD −1Q =diag(d 1,d 2,···,d )by the positivity of Σand D Σ.In fact q i d i >0.The matrices S and D can be obtained by eigenvalue decomposition of A Σ−1AQ −1=SDS −1.Let v i be the i th element of S −1H Σ−1a .Then (28)is equivalently converted into the following:(S −1H Σ−1a ) (λI +D −1Q D Σ)−1D −1Q (λI +D ΣD −1Q )−1(S −1H Σ−1a )=i =1q i v 2i (λ+d i )2=0.(29)Because Q is indefinite,there is at least one strictly positive and one strictly negative element from {q i } i =1.Hence the above equation has at least one real root.However there are only finitely many real λvalues satisfying(29).In fact all the roots of the nonlinear equation in (29)are roots of the following polynomial with degree 2( −1):i =1q i v 2i k =i(λ+d k )2=0.(30)For source localization based on TDOAs,the constraint is given by (10)in which case =3implying that the computational complexity due to the roots computation is rather modest.Denote {λk }r k =1as the r real roots of (30).Now by (26),Hθ−a =[H (H Σ−1H +λk Q )−1H Σ−1−I ]a = HQ −1(λk I +H Σ−1HQ −1)−1H Σ−1−I a = (λk I +HQ −1H Σ−1)−1HQ −1H Σ−1−I a=−λk (λk I +HQ −1H Σ−1)−1a =−λk Σ(λk Σ+HQ −1H )−1aSubstituting the above into the performance index leads toJ =12λ2k a (λk Σ+HQ −1H )−1Σ(λk Σ+HQ −1H )−1a.(31)Let λopt be one of the r real roots that minimizes J over {λk }r k =1.Then in light of (26),the optimal θis obtained as θ=θopt given by θopt =[H Σ−1H +λopt Q ]−1H Σ−1a.(32)The above solution procedure is summarized into the following theorem.Theorem 3.1.Consider the constrained WLS in (24).Let H Σ−1HQ −1=SDS −1be the eigenvalue decompo-sition with {d i }eigenvalues.Then there holdH Σ−1H =SD ΣS ,Q =SD Q S ,(33)with D Σand D Q diagonal and D =D ΣD −1Q.Denote v =S −1H Σ−1a and {λk }as real roots of (30).If λopt minimizes J in (31)over {λk },then the solution to the constrained WLS is given by (32).Remark 3.2.If the quadratic constraint is δθ Qδθ=(θ−θ0) Q (θ−θ0)=0which involves θ0=0,then by Hθ=Hθ0+Hδθ,we may consider to solve alternativelymin δθ Qδθ=012[(a −Hθ0)−Hδθ] Σ−1[(a −Hθ0)−Hδθ].The above is identical to the constrained WLS in (24)with δθas unknown to which the solution procedure developed earlier is applicable.After the optimal δθopt is available,θopt =δθopt +θ0can also be obtained.It is noted that in applying the solution procedure in Theorem3.1to source localization based on TDOAs, the noise covariance matrixΣis unavailable that depends on the target location(x T,y T).As in the literature, we may setΣ=I to compute an initial location solution(ˆx(0)T,ˆy(0)T)via the constrained WLS procedure which can then be substituted intoΣto compute the solutionθopt to the corresponding constrained WLS.Although further iterations can be employed to obtain a more accurate solution,simulation results show that they are unnecessary.In fact by the proof of Lemma2.2,the second summation in the expression ofFIM in(23)is due to the Bang’s formula obtained by computing derivative ofΣwith respect to(x T,y T).This term is insignificant compared with thefirst summation implying that the minimum achievable error variance by unbiased estimators is insensitive to the location parameter(x T,y T)embedded inΣ.Therefore it is adequate to compute the solution to the constrained WLS twice.Finally we would like to comment that the constrained WLS solution is an approximate MLE solution to the source localization problem based on TDOAs by treating measured TDOAs{∆ˆt k,1}n k=2as deterministic quantities.That is,it is an approximate MLE solution conditioned on the measured TDOAs.However it is also important to observe that even if we treat{∆ˆt k,1}n k=2as random,the constrained WLS solution is still an approximate MLE solution.Recall that a WLS solution can be obtained by choosing a perturbation vectorˆ∆a that has the smallest Euclidean norm such that16rankΣ−1/2HΣ−1/2a+ˆ∆a=rankΣ−1/2H(34)and then solveΣ−1/2Hθ=Σ−1/2a+ˆ∆a.Basically the imperfect measurements in a are removed byˆ∆a.It is noted that the third column of H,or b in(20),involves imperfect measurements as well.However the variance of the measurement noise in vector b is only4cσ2t,much smaller than4cσ2t R2k,T(variances ofηk)under the condition(17).Hence it is unnecessary to introduce the perturbation to the third column of H that does not affect the approximate MLE estimate that is validated in our simulation study,although not reported here.4.CONCLUDING REMARKSThe problem of passive localization has been investigated based on TDOA measurements which is a nonlinear estimation problem.It has been shown that the nonlinear term in the quasi-linear measurement equations can be treated as a constraint which is in fact a quadratic constraint.A numerical procedure based on simultaneous diagonalization is developed to compute the weighted LS(LS)solution under the quadratic constraint.This new procedure is shown to be an approximate MLE solution under the assumption that the ratios of the distances between all but one sensor and the target to the noise variance in TDOA measurements are suitably large.Because of the space limit,the simulation results are not presented in the present conference version.As concluding remarks,we comment that the assumption on uncorrelated TDOA measurement noises can be removed.Such an assumption is in fact not used in deriving the constrained WLS solution.That is,the solution procedure summarized in Theorem3.1is applicable to the case whenΣis an arbitrary symmetric positive definite matrix. See also the results in3for the derivation of the various covariance matrices when the TDOA measurement noises are correlated.We also comment that the moving source localization studied in10involves two quadratic constraints to which a similar constrained WLS solution can be derived.However it involves roots computation for two2-variate polynomials which has high complexity.How to bypass such a high complexity is currently under study.REFERENCES1.J.S.Abel and J.O.Smith,“Source range and depth estimation from multipath range difference measure-ments,”IEEE Trans.Acoust.Speech,Signal Processing,vol.37,pp.1157-1165,Aug.1989.2.G.C.Carter,“Time delay estimation for passive sonar signal processing,”IEEE Trans.Acoust.Speech,Signal Processing,vol.29,pp.463-470,June1981.3.Y.T.Chan and K.C.Ho,“A simple and efficient estimator for hyperbolic location,”IEEE Trans.SignalProcessing,vol.42,pp.1905-1915,Aug.1994.4.B.T.Fang,“Simple solutions for hyperbolic and related positionfixes,”IEEE Trans.Aerosp.Electron.Syst.,vol.26,pp.748-753,Sept.1990.5.W.H.Foy,“Position-location solutions by Taylor-series estimation,”IEEE Trans.Aerosp.Electron.Syst.,vol.12,pp.187-194,Mar.1976.6.B.Friedlander,“A passive localization algorithm and its accuracy analysis,”IEEE J.Ocean.Eng.,vol.12,pp.234-245,Jan.1987.7.G.Gu,“Target localization based on TDOAs and FDOAs,”Quarterly report to Sensor Directorate,WPAFB,March2006.8.W.R.Hahn and S.A.Tretter,“Optimum processing for delay-vector estimation in passive signal arrays,”IEEE rm.Theory,vol.19,pp.608-614,Sept.1973.9.R.A.Horn and C.R.Johnson,Matrix Analysis,Cambridge University Press,reprinted in1999.10.K.C.Ho and W.Xu,“An accurate algebraic solution for moving source location using TDOA and FDOAmeasurements,”IEEE Trans.Signal Processing,vol.52,pp.2453-2463,Sept.2004.11.A.H.Sayed,A.Tarighat,and N.Khajehnouri,“Network-based wireless location,”IEEE Signal ProcessingMagazine,vol.22,pp.24-40,July2005.12.H.C.Schau and A.Z.Robinson,“Passive source localization employing intersecting spherical surfaces fromtime-of-arrival differences,”IEEE Trans.Acoust.Speech,Signal Processing,vol.35,pp.1223-1225,Aug.1987.13.J.O.Smith and J.S.Abel,“Closed-form least-squares source location estimation from range-difference mea-surements,”IEEE Trans.Acoust.Speech,Signal Processing,vol.35,pp.1661-1669,Dec.1987.14.P.Stoica and R.Moses,Introduction to Spectral Analysis,Prentice-Hall,Upper-Saddle River,NJ,1997.15.D.J.Torrieri,“Statistical theory of passive location systems,”IEEE Trans.Aerosp.Elect.Syst.,vol.20,pp.183-198,Mar.1984.16.S.van Huffel and J.Vandewalle,The Total Least Squares problem:Computational Aspects and Analysis,SIAM Publisher,1991.。