重庆市南开中学2015-2016学年度春期初三下阶段测试三数学卷(扫描版 无答案)

合集下载

重庆南开中学初2015级九年级(下)阶段测试(二)数 学 试 题

重庆南开中学初2015级九年级(下)阶段测试(二)数  学  试  题

重庆南开中学初2015级九年级(下)阶段测试(二)数 学 试题(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,对称轴为直线a bx 2-= 一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡中对应的方框涤黑. 1.计算()()26-÷-的结果是(▲)A .3B .3-C .4D .4- 2.计算()53·2a a -的结果是(▲)A .82a B .82a - C .152a D .152a - 3.下列图形中不是..轴对称图形的是(▲)4.如果110-=m ,那么m 的取值范围是(▲)A .10<<mB .21<<mC .32<<mD .43<<m 5.在平面直角坐标系中,一次函数13+-=x y 的图象所经过的象限是(▲)A .二、三、四B .一、三、四C .一、二、四D .一、二、三 6.如图,直线1l ∥直线2l ,含︒60角的直角三角板ABC 的直角顶点A 在直线2l 上,且︒=∠60ABC ,︒=∠451,则2∠的度数为(▲)A .︒15B .︒20C .︒25D .︒307.笑笑统计了3月份某天全国8个城市的空气质量指数,并绘制了折线统计图(如图),则这8个城市的空气质量指数的中位数是(▲) A .59 B .58 C .50 D . 42 8.如图,AB 是O 的直径,点C 、点D 在O 上,连结AC 、BC 、AD 、CD , 若︒=∠50BAC ,则ADC ∠的度数等于(▲) A .30° B .35° C .40° D .45°9.将一些完全相同的梅花按如图所示的规律摆放,第1个图形有5朵梅花,第2个图形有8朵梅花,第3个图形有13朵梅花,…,按此规律,则第11个图形中共有梅花的朵数是(▲)第1个图形 第2个图形 第3个图形 A .121 B .125 C .144 D .14810.南开(融侨)中学组织一批学生前往重庆綦江古剑山变电站参加社会实践活动,活动中男生藏白色安全帽,女生戴红色安全帽.大家发现一个有趣的现象,每位男生看到的白色安全帽比红色多6顶,而每位女生看到的白色安全帽是红色的2倍.设男生有x 人,女生有y 人,那么下列等量关系成立的是(▲) A .()⎩⎨⎧-=-=-1261x y y x B .()⎩⎨⎧-=-=-1261y x y x C .⎩⎨⎧=-+=-x y y x 2161 D .()⎩⎨⎧-=+=-1261y x y x11.黄老师带南开艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,黄老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,黄老师在机场附近追上校车。

重庆市南开中学2015届九年级数学下学期阶段测试(3月)月考试题(一)

重庆市南开中学2015届九年级数学下学期阶段测试(3月)月考试题(一)

重庆市南开中学2015届九年级数学下学期阶段测试(3月)月考试题(一)(全卷共五个大题,满分l50分,考试时间l20分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,,对称轴公式为a bx 2-=. 一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、 C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑. 1.在350213.,,,π-中,无理数是(▲) A .3- B .21C .πD .0.35 2.下列事件中,必然事件是(▲)A .6月14日晚上能看到月亮B .早晨的太阳从东方升起C .打开电视,正在播放新闻D .任意掷一枚均匀的硬币,正面朝上 3.下列图形既是轴对称图形又是中心对称图形的是(▲)4.在某次数学测验中:随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89, 则这组数据的众数、中位数分别为(▲)A .81,82B .83,81C .81,81D .83,82 5.若二次根式42-x 有意义,则x 的取值范围是(▲)A .2=xB .2≠xC .2≤xD .2≥x 6.如图,AB ∥CD ,AD 平分BAC ∠,若︒=∠70BAD ,贝ACD ∠的度数为(▲) A .40° B .45° C .50° D .55°7.如图O 的直径4=AB ,点C 在O 上,︒=∠30ABC ,则AC 的长是(▲) A .2 B .3 C .2 D .18.分式方程13121-=--x x x 的解为(▲) A .3=x B .3-=x C .4=x D .4-=x9.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD交于点F ,254::=∆∆ABF DEF S S ,则DE :EC= (▲)A .2:5B .2:3C .3:5D .3:210.打开某洗衣机开关。

重庆南开中学阶段测试三数学(含答案)

重庆南开中学阶段测试三数学(含答案)

重庆南开(融侨)中学初2016届九年级(上)阶段测试(三)数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-。

一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。

1、小圆身高170cm ,以小圆的身高为标准,小圆爸爸的身高为180cm ,记作10+cm ,那么小圆妈妈的身高为165cm 应记为( ) A 、5+cm B 、10+cm C 、5-cm D 、10-cm 2、计算()22x y -的结果是( ) A 、422x yB 、4x y -C 、22x yD 、42x y3、下列图案中,不是..中心对称图形的是( )A .B .C .D . 4、如图,//,110,70AB CD DBF ECD ∠=∠= ,则E ∠的度数为( )A 、30B 、40C 、50D 、60 5、已知3x =是关于x 的方程53x a -=的解,则a 的值等于( ) A 、12 B 、14 C 、12- D 、14-6、如图,点A 、B 、C 是O 上的三点,且AB OB =,则ACB ∠的度数为( ) A 、22.5B 、30C 、45D 、604题图 6题图 7题图7、一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( ) A 、0x > B 、0x < C 、2x > D 、2x <8、如图,DEF ∆是由ABC ∆经过位似变换得到的,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,则DEF ∆与ABC ∆的面积比是( ) A 、1:4 B 、1:2C 、1:9D 、9、用火柴棒按如下方式搭图形,按照这种方式搭下去,搭第8个图形需火柴棒的根数是( ) A 、48根 B 、50根 C 、52根 D 、54根10、如图,在Rt ABC ∆中,90,6ACB AC BC ∠=== ,D AC 为的中点,E 是线段AB 边上一动点,连接ED 、EC ,则CDE ∆周长的最小值为( )A 、B 、C 、3D 、311、如图,矩形OABC 放置在平面直角坐标系中,OA 所在直线为x 轴,OC 所在直线为y 轴,且4,2OA OC ==。

初中数学重庆市南开中学九年级数学下学期阶段测试考试题一.docx

初中数学重庆市南开中学九年级数学下学期阶段测试考试题一.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下面的数中,与﹣3的和为0的是()A.0.35 B. C.﹣3 D.3 试题2:下列计算正确的是()A. B. C. D.试题3:下列图形中,是中心对称图形的是()A. B.C. D.试题4:下列叙述正确的是()A.方差越大,说明数据越稳定B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变评卷人得分C.不在同一直线上的三点确定一个圆D .两边及其一边的对角对应相等的两个三角形全等试题5:函数的自变量的取值范围是()A. B.且 C. D.且试题6:若与是同类项,则的值是()A.1 B.2 C.3D.4试题7:如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数是()A.65° B.55° C.45° D .35°试题8:.如图,AB是圆O的直径,BD、CD分别是过圆O上点B、C的切线,且∠BDC=100°,连接AC,则∠A的度数为()A.15° B.30° C.40° D .45°如图,已知矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点处,若四边形EFDC 与矩形ABCD相似,则AD=()A. B. C.4D.试题10:如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图形含有正方形的个数为()A.102 B.91 C.55D.31试题11:如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系是()A.B. C. D.如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数的图像上,已知点B的坐标是,则的值为()A.16 B.12 C.8 D.4试题13:刚刚过去的2015年,中国旅游业实现了持续健康较快的发展,预计全年旅游总收入可达2900000000000元,将数据2900000000000用科学计数法表示为_________试题14:请计算:________试题15:下图是由若干个小正方形搭建的几何体的三视图,那么此几何体由______个小正方形搭建而成.主视图俯视图左视图试题16:如图,在△ABC中,CA=CB,∠ACB=90°,AB=,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C 恰好在弧EF上,则图中阴影部分的面积为________(结果保留π)试题17:有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程有两个不相等的实数根,且以x为自变量的二次函数的图象不经过点的概率是________试题18:如图,将等腰Rt△GAE绕点A顺时针旋转60°得到△DAB,其中∠GAE=∠DAB=90°,GE与AD交于点M,过点D作DC∥AB 交AE于点C,已知AF平分∠GAM,EH⊥AE交DC于点H,连接FH交DM与点N,若AG=,则MN的值为________试题19:解方程:试题20:如图,在△ABC中,∠ABC=∠ACB,过A作AD⊥AB交BC的延长线于D,过C作CE⊥AC使AE=BD.求证:∠E=∠D.试题21:化简;试题22:化简;试题23:某数学兴趣小组将我校九年级某班学生一分钟跳绳的测试成绩进行了整理,分成5个小组(x表成绩,单位:次,且100≤x<200),根据测试成绩绘制出部分频数分布表和部分频数分布直方图,其中B、E两组测试成绩人数直方图的高度比为4:1,请结合下列图标中相关数据回答下列问题:测试成绩频数分布表组别成绩x次频数(人数) 频率A 100≤x<1205B 120≤x<140bC 140≤x<16015 30%D 160≤x<18010E 180≤x<200a(1)填空:a=_____,b=_____,本次跳绳测试成绩的中位数落在_____组(请填写字母);(2)补全频数分布直方图;(3)已知本班中甲、乙两位同学的测试成绩分别为185次、195次,现要从E组中随机选取2人介绍经验,请用列表法或画树状图的方法,求出甲、乙两人中至少1人被选中的概率.试题24:对,定义一种新运算,规定:(其中,均为非零常数),这里等式右边是通常的四则运算,例如:,已知,(1)求,的值;(2)若关于的不等式组恰好有3个整数解,求实数的取值范围。

2015-2016学年九年级(下)第三次质检数学试卷

2015-2016学年九年级(下)第三次质检数学试卷

2015-2016学年九年级(下)第三次质检数学试卷参考答案与试题解析一、选择题1.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】常规题型.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:几何体的主视图是:故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【解答】解:在Rt△ABC中,由勾股定理,得AB==5.sinB==,故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球【考点】可能性的大小.【分析】根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案.【解答】解:∵布袋中有除颜色外完全相同的11个球,其中10个黑球、1个白球,∴从布袋中随机摸出一个球是黑球的概率为,摸出一个球是白球的概率为,∴A、这个球一定是黑球,错误;B、摸到黑球、白球的可能性的大小一样,错误;C、这个球可能是白球,正确;D、事先能确定摸到什么颜色的球,错误;故选:C.【点评】此题考查了可能性大小以及概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.【考点】概率公式.【分析】由一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,直接利用概率公式求解即可求得答案.【解答】解:∵一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴你抬头看信号灯时是绿灯的概率是: =.故选C.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据x y实际意义x、y应大于0,其图象在第一象限.【解答】解:∵ xy=4,∴xy=4,∴y=(x >0,y >0),当x=1时,y=4,当x=4时,y=1,故选:C .【点评】考查了反比例函数的图象及应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.7.已知反比例函数y=的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2.则m 的取值范围是( )A .m <0B .m >0C .mD .m【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征得x 1=,x 2=,而x 1<x 2<0时,y 1<y 2,则2﹣5m <0,然后解不等式即可.【解答】解:∵反比例函数y=的图象上有A (x 1,y 1)、B (x 2,y 2), ∴x 1=,x 2=,∵x 1<x 2<0时,y 1<y 2,∴2﹣5m <0,∴m>.故选D .【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.8.如图,△ABC 为⊙O 的内接三角形,∠AOB=100°,则∠ACB 的度数为( )A.100°B.130°C.150°D.160°【考点】圆周角定理.【分析】首先在优弧AB上取点D,连接AD,BD,然后由圆周角定理,求得∠D的度数,又由圆的内接四边形的性质,求得∠ACB的度数.【解答】解:在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠D=∠AOB=50°,∴∠ACB=180°﹣∠D=130°.故选B.【点评】此题考查了圆周角定理以及圆的内接四边形的性质.注意准确作出辅助线是解此题的关键.9.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为()A.B.C.D.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】计算题.【分析】先根据平行四边形的性质得AB∥CD,AB=CD,而E是AB的中点,BE=AB=CD,再证明△BEF∽△DCF,然后根据相似三角形的性质可计算的值.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∵E是AB的中点,∴BE=AB=CD;∵BE∥CD,∴△BEF∽△DCF,∴=()2=.故选C.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时主要利用相似比计算相应线段的长.10.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.2【考点】正多边形和圆.【专题】压轴题.【分析】首先设⊙O的半径是r,则OF=r,根据AO是∠EAF的平分线,求出∠COF=60°,在Rt△OIF中,求出FI的值是多少;然后判断出OI、CI的关系,再根据GH∥BD,求出GH的值是多少,再用EF的值比上GH的值,求出的值是多少即可.【解答】解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.【点评】此题主要考查了正多边形与圆的关系,要熟练掌握,解答此题的关键是要明确正多边形的有关概念:①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.二、填空题11.从﹣1,0,1,2四个数中任意取出两个数,这两个数和为负数的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有,12种等可能的结果数,再找出两个数和为负数的结果数,然后根据概率公式计算.【解答】解:画树状图为:,共有12种等可能的结果数,其中两个数和为负数的结果数为2,所以两个数和为负数的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.12.已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(4,0),则c= ﹣4 .【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】由于已知抛物线与x轴的交点坐标,则可用交点式表示解析式为y=(x+1)(x﹣4),然后变形为一般式即可得到c的值.【解答】解:抛物线的解析式为y=(x+1)(x﹣4),即y=x2﹣3x﹣4,所以c=﹣4.故答案为﹣4.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.13.某小区2014年底绿化面积为1000平方米,计划2016年底绿化面积要达到1440平方米,如果每年绿化面积的增长率相同,那么这个增长率是 20% .【考点】一元二次方程的应用.【专题】增长率问题.【分析】一般用增长后的量=增长前的量×(1+增长率),如果设人均年收入的平均增长率为x ,根据题意即可列出方程.【解答】解:设平均增长率为x ,根据题意可列出方程为:1000(1+x )2=1440. 解得:(1+x )2=1.44.1+x=±1.2.所以x 1=0.2,x 2=﹣2.2(舍去).故x=0.2=20%.答:这个增长率为20%,故答案为:20%【点评】本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键.14.如图是一几何体的三视图,则这个几何体的全面积是 33π .【考点】圆锥的计算;由三视图判断几何体.【分析】首先确定几何体的形状,根据三视图中提供的数据即可计算.【解答】解:几何体是圆锥,底面直径是6,则底面周长是6π,母线长是8.则侧面积是:×6π×8=24π,底面面积是:9π.则全面积是:24π+9π=33π.故答案为:33π.【点评】本题主要考查了三视图,以及圆锥的侧面积的计算,正确根据三视图确定圆锥的底面直径以及母线长是解题的关键.15.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要12mm.【考点】正多边形和圆.【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.【解答】解:如图所示:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=A B=OC=BC,∴四边形ABCO是菱形,∵AB=12mm,∠AOB=60°,∴cos∠BAC=,∴AM=12×=6,∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=12mm.故答案为:12.【点评】本题考查了正多边形和圆的知识、三角函数;构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行计算是解决问题的关键.16.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为.【考点】旋转的性质.【分析】先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF 是△ABC的中位线,由三角形的面积公式即可得出结论.【解答】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AB=2BC=4,AC=2,∵△EDC是△ABC旋转而成,∴B C=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,=DF×CF=×=.∴S阴影【点评】考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.17.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP= 1或4或2.5 .【考点】相似三角形的判定;矩形的性质.【专题】分类讨论.【分析】需要分类讨论:△APD∽△PBC 和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP 的长度.【解答】解:①当△APD∽△PBC 时,=,即=, 解得:PD=1,或PD=4;②当△PAD∽△PBC 时,=,即=,解得:DP=2.5.综上所述,DP 的长度是1或4或2.5.故答案是:1或4或2.5.【点评】本题考查了矩形的性质,相似三角形的判定与性质.对于动点问题,需要分类讨论,以防漏解.18.如图所示,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设△B 2D 1C 1的面积为S 1,△B 3D 2C 2的面积为S 2,…,△B n+1D n C n 的面积为S n ,则S 1= ,S n = (用含n 的式子表示).【考点】相似三角形的判定与性质;三角形的面积;等腰直角三角形.【专题】压轴题;规律型.【分析】连接B 1、B 2、B 3、B 4、B 5点,显然它们共线且平行于AC 1,依题意可知△B 1C 1B 2是等腰直角三角形,知道△B 1B 2D 1与△C 1AD 1相似,求出相似比,根据三角形面积公式可得出S 1,同理:B 2B 3:AC 2=1:2,所以B 2D 2:D 2C2=1:2,所以S 2=×=,同样的道理,即可求出S 3,S 4…S n .【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴S △AB1C1=×1×1=,连接B 1、B 2、B 3、B 4、B 5点,显然它们共线且平行于AC 1∵∠B 1C 1B 2=90°∴A 1B 1∥B 2C 1∴△B 1C 1B 2是等腰直角三角形,且边长=1,∴△B 1B 2D 1∽△C 1AD 1,∴B 1D 1:D 1C 1=1:1,∴S 1=×=,故答案为:;同理:B 2B 3:AC 2=1:2,∴B 2D 2:D 2C 2=1:2,∴S 2=×=,同理:B 3B 4:AC 3=1:3,∴B 3D 3:D 3C 3=1:3,∴S 3=×=,∴S 4=×=,…∴S n =故答案为:.【点评】本题主要考查相似三角形的判定和性质,等腰直角三角形的定义和性质、三角形的面公式等知识点、本题关键在于作好辅助线,得到相似三角形,求出相似比,就很容易得出答案了,意在提高同学们总结归纳的能力.三、解答题(第19题10分,第20题12分,共22分)19.如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点O 顺时针方向旋转90°后得△A 1B 1C 1,画出△A 1B 1C 1并直接写出点C 1的坐标为 (2,3) ;(2)以原点O 为位似中心,在第四象限画一个△A 2B 2C 2,使它与△ABC 位似,并且△A 2B 2C 2与△ABC 的相似比为2:1.【考点】作图-位似变换;作图-旋转变换.【专题】作图题.【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A 1、B 1、C 1,从而得到△A 1B 1C 1;(2)利用关于原点中心对称的点的特征特征,把A 、B 、C 点的横纵坐标都乘以﹣2得到A 2、B 2、C 2的坐标,然后描点即可得到△A 2B 2C 2.【解答】解:(1)如图,△A 1B 1C 1为所作,点C 1的坐标为(2,3);(2)如图,△A 2B 2C 2为所作.故答案为(2,3).【点评】本题考查了位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.20.(1)计算:sin30°+3tan60°﹣cos245°.(2)如图,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD 的长.【考点】解直角三角形;特殊角的三角函数值.【分析】(1)将特殊角的三角函数值代入求解;(2)根据三角函数的定义和直角三角形的解法解答即可.【解答】解:(1)sin30°+3tan60°﹣cos245°===;(2)Rt△DBC 中,sin∠DBC=,sin60°=,,BD=4,∠ABD=∠AB C﹣∠DBC=75°﹣60°=15°,∠A+∠ABC=90°,∠A=90°﹣∠ABC=90°﹣75°=15°,∴∠ABD=∠A,∴AD=BD=4.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.四、21.我市某蔬菜生产基地在气温较低时,用装有恒温系统的大鹏栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解析下列问题:(1)求y与x的函数关系式;(2)当x=16时,大棚内的温度约为多少度?【考点】反比例函数的应用;一次函数的应用.【分析】(1)需要分类讨论:AD段为直线;AB段平行于x轴的直线;BC段为双曲线的一部分,利用待定系数法求解即可;(2)把x=16代入反比例函数解析式进行解答.【解答】解:(1)设AD解析式是y=mx+n(m≠0),则,解得,∴y=5x+8.∵双曲线y=经过B(12,18),∴18=,解得k=216.∴y=.综上所述,y与x的函数解析式为:y=;(2)当x=16时,y==13.5.答:当x=16时,大棚内的温度约为13.5度.【点评】此题主要考查了反比例函数的应用,求函数解析式时,一定要结合图形,对自变量x的取值范围进行分类讨论,以防漏解或错解.22.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若⊙O的半径为3,求阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OA ,如图,先根据圆周角定理得到∠AOC=2∠B=120°,则∠AOP=60°,再计算出∠OCA 的度数,接着利用AP=AC 得到∠P=∠ACO=30°,然后根据三角形内角和可计算出∠PAO=90°,于是利用切线的判定定理可判断PA 是⊙O 的切线;(2)在Rt△AOP 中,利用含30度的直角三角形三边的关系得到PO=2OA=6,PA=OA=3,然后根据三角形面积公式和扇形面积公式,利用S 阴影部分=S △PAO ﹣S 扇形OAD 进行计算即可.【解答】(1)证明:连接OA ,如图,∵∠AOC=2∠B=120°,∴∠AOP=60°,∵OA=OC,∴∠OCA=∠OAC=(180°﹣120°)=30°,∵AP=AC,∴∠P=∠ACO=30°,∴∠PAO=180°﹣30°﹣60°=90°,∴OA⊥PA,∴PA 是⊙O 的切线;(2)解:在Rt△AOP 中,PO=2OA=6,PA=OA=3,∴S 阴影部分=S △PAO ﹣S 扇形OAD =•3•3﹣=.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积公式.五、(本题12分)23.如图,某数学活动小组要测量楼AB 的高度,楼AB 在太阳光的照射下在水平面的影长BC 为6米,在斜坡CE 的影长CD 为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE 的坡度为1:2.4,求楼AB 的高度.(坡度为铅直高度与水平宽度的比)【考点】解直角三角形的应用-坡度坡角问题.【分析】作DN⊥AB,垂足为N,作CM⊥DN,垂足为M,设CM=5x,根据坡度的概念求出CM、DM,根据平行线的性质列出比例式,计算即可.【解答】解:作DN⊥AB,垂足为N,作CM⊥DN,垂足为M,则CM:MD=1:2.4=5:12,设CM=5x,则MD=12x,由勾股定理得CD==13x=13∴x=1∴CM=5,MD=12,四边形BCMN为矩形,MN=BC=6,BN=CM=5,太阳光线为平行光线,光线与水平面所成的角度相同,角度的正切值相同,∴AN:DN=1.5:1.35=10:9,∴9AN=10DN=10×(6+12)=180,AN=20,AB=20﹣5=15,答:楼AB的高度为15米.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度是坡面的铅直高度h 和水平宽度l的比是解题的关键,注意平行线的性质的应用.六、(本题12分)24.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y甲(万元)与进货量x(吨)近似满足函数关系y甲=0.3x;乙种水果的销售利润y乙(万元)与进货量x(吨)近似满足函数关系y乙=ax2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y乙为1.4万元;进货量x为2吨时,销售利润y乙为2.6万元.(1)求y乙(万元)与x(吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意列出二元一次方程组,求出a、b的值即可求出函数关系式的解.(2)已知w=y甲+y乙=0.3(10﹣t)+(﹣0.1t2+1.5t),用配方法化简函数关系式即可求出w的最大值.【解答】解:(1)由题意,得:解得∴y乙=﹣0.1x2+1.5x.(2)W=y甲+y乙=0.3(10﹣t)+(﹣0.1t2+1.5t)∴W=﹣0.1t2+1.2t+3.W=﹣0.1(t﹣6)2+6.6.∴t=6时,W有最大值为6.6.∴10﹣6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.【点评】本题考查学生利用二次函数解决实际问题的能力,注意二次函数的最大值往往要通过顶点坐标来确定.七、(本题12分)25.如图①,C为线段BE上的一点,分别以BC和CE为边在BE的同侧作正方形ABCD和正方形CEFG,M、N分别是线段AF和GD的中点,连接MN(1)线段MN和GD的数量关系是MN=DG ,位置关系是MN⊥DG;(2)将图①中的正方形CEFG绕点C逆时针旋转90°,其他条件不变,如图②,(1)的结论是否成立?说明理由;(3)已知BC=7,CE=3,将图①中的正方形CEFG绕点C旋转一周,其他条件不变,直接写出MN的最大值和最小值.【考点】四边形综合题;直角三角形斜边上的中线;三角形中位线定理;正方形的性质;梯形中位线定理;相似形综合题.【专题】探究型.【分析】(1)连接FN并延长,与AD交于点S,如图①,易证△SDN≌△F GN,则有DS=GF,SN=FN,然后运用三角形中位线定理就可解决问题;(2)过点M作MT⊥DC于T,过点M作MR⊥BC于R,连接FC、MD、MG,如图②,根据平行线分线段成比例可得BR=GR=BG,DT=ET=DE,根据梯形中位线定理可得MR=(FG+AB),MT=(EF+AD),从而可得MR=MT,RG=TD,由此可得△MRG≌△MTD,则有MG=MD,∠RMG=∠TMD,则有∠RMT=∠GMD,进而可证到△DMG是等腰直角三角形,然后根据等腰三角形的性质和直角三角形斜边上的中线等于斜边的一半,就可解决问题;(3)连接GM到点P,使得PM=GM,延长GF、AD交于点Q,连接AP,DP,DM如图③,易证△APD≌△CGD,则有PD=DG,根据等腰三角形的性质可得DM⊥PG,根据直角三角形斜边上的中线等于斜边的一半可得MN=DG.要求MN的最大值和最小值,只需求DG的最大值和最小值,由GC=CE=3可知点G在以点C为圆心,3为半径的圆上,再由DC=BC=7,就可求出DG的最大值和最小值.【解答】解:(1)连接FN并延长,与AD交于点S,如图①.∵四边形ABCD和四边形EFGC都是正方形,∴∠D=90°,AD=DC,GC=GF,AD∥BE∥GF,∴∠DSN=∠GFN.在△SDN和△FGN中,,∴△SDN≌△FGN,∴DS=GF,SN=FN.∵AM=FM,∴MN∥AS,MN=AS,∴∠MNG=∠D=90°,MN=(AD﹣DS)=(DC﹣GF)=(DC﹣GC)=DG.故答案为MN=DG,MN⊥DG;(2)(1)的结论仍然成立.理由:过点M作MT⊥DC于T,过点M作MR⊥BC于R,连接FC、MD、MG,如图②,则A、F、C共线,MR∥FG∥AB,MT∥EF∥AD.∵AM=FM,∴BR=GR=BG,DT=ET=DE,∴MR=(FG+AB),MT=(EF+AD).∵四边形ABCD和四边形EFGC都是正方形,∴FG=GC=EC=EF,AB=BC=DC=AD,∴MR=MT,RG=TD.在△MRG和△MTD中,,∴△MRG≌△MTD,∴MG=MD,∠RMG=∠TMD,∴∠RMT=∠GMD.∵∠MRC=∠RCT=∠MTC=90°,∴四边形MRCT是矩形,∴∠RMT=90°,∴∠GMD=90°.∵MG=MD,∠GMD=90°,DN=GN,∴MN⊥DG,MN=DG.(3)连接GM到点P,使得PM=GM,延长GF、AD交于点Q,连接AP,DP,DM如图③,在△AMP和△FMG中,,∴△AMP≌△FMG,∴AP=FG,∠APM=∠FGM,∴AP∥GF,∴∠PAQ=∠Q,∵∠DOG=∠ODQ+∠Q=∠OGC+∠GCO,∠ODQ=∠OGC=90°,∴∠Q=∠GCO,∴∠PAQ=∠GCO.∵四边形ABCD和四边形EFGC都是正方形,∴DA=DC,GF=GC,∴AP=CG.在△APD和△CGD中,,∴△APD≌△CGD,∴PD=DG.∵PM=GM,∴DM⊥PG.∵DN=GN,∴MN=DG.∵GC=CE=3,∴点G在以点C为圆心,3为半径的圆上,∵DC=BC=7,∴DG的最大值为7+3=10,最小值为7﹣3=4,∴MN的最大值为5,最小值为2.【点评】本题主要考查了全等三角形的判定与性质、正方形的性质、三角形中位线定理、平行线分线段成比例、梯形中位线定理、等腰直角三角形的判定与性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆的定义、平行线的判定与性质等知识,综合性强,有一定的难度,证到△DMG是等腰直角三角形是解决第(2)小题的关键,证到MN=DG 是解决第(3)小题的关键.八、(本题14分)26.如图,直线y=﹣x+3与x轴交于A点,与y轴交于B点,对称轴为x=1的抛物线经过A、B两点,与x轴的另一个交点为C,抛物线与对称轴交于D点,连接CE、CB、BD.(1)求抛物线的解析式;(2)求证:BD∥CE;(3)在直线AB上是否存在点P,使以B、D、P为顶点的三角形与△BCE相似?若存在,直接写出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得B、A点坐标,根据函数值相等的点关于对称轴对称,可得C点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的判断与性质,可得∠BDF=∠CEG,根据平行线的判定,可得答案;(3)根据相似三角形的判定与性质,可得关于m的方程,根据解方程,可得m的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当x=0时,y=3,即B点(0,3),当y=0时,x=3,即A点坐标为(3,0),由A、C关于x=1对称,得C(﹣1,0).设抛物线的解析式为y=ax2+bx+c,将A、B、C坐标代入,得,解得,抛物线的解析式为y=﹣x2+2x+3;(2)证明:如图1,作BF⊥DE于F,F点的坐标为(1,3),D(1,4),BF=1,DF=4﹣3=1;当x=1时,y=﹣1+3=2,即E点坐标为(1,2),G(1,0),EG=2,CG=2.==,∠BFD=∠CGE=90°,∴△BFD∽△CGE,∴∠BDF=∠CEG,∴BD∥CE;(3)如图2,设P点坐标为(m,﹣m+3),E(1,2),B(0,3),由勾股定理,得BE==,CE==2,PB==﹣m,BD==,由△BDP∽△ECB,=,即=,解得m=﹣,﹣m+3=,即P(﹣,),在直线AB上存在点P,使以B、D、P为顶点的三角形与△BCE相似,P(﹣,).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用相似三角形的判定与性质得出∠BDF=∠CEG是解题关键;利用相似三角形的对应边成比例得出关于m的方程是解题关键.。

重庆南开中学2015—2016学年度(下)初2017级期末考试数学试卷

重庆南开中学2015—2016学年度(下)初2017级期末考试数学试卷

重庆南开中学2015—2016学年度(下)初2017级期末考试数 学 试 题(满分l50分 考试时间120分钟)一、选择题:(本大题共l2个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B , C ,D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷...中对应的表格内. 1.实数-3,3,0,2三中最大的数是(▲).A .-3B .3C .0D .22.下列图形中,是轴对称图形的是(▲).3.把多项式a a 92-分解因式,结果正确的是(▲).A .()9-a aB .()()33-+a a aC .()()33-+a aD .()932--a 4.三本相同的书本叠成如图所示的几何体,其主视图是(▲).5.函数21+=x y 中自变量x 的取值范围是(▲). A .x ≠-2 B .x ≠2 C .x>-2 D .X<-26.如果两个相似三角形相似比是l :4,那么它们的对应角平分线之比是(▲).A .1:4B .1:8C .1:16D .1:27.若关于x 的一元二次方程062=++bx ax 的一个根为x=-2,则代数式62+-b a 值为(▲).A .6B .3C .0D .-38.一次函数()0≠+=k k kx y 和反比例函数()0≠=k xk y 在同一直角坐标系中的图象大致是(▲)9.2016特步欢乐跑·中国(重庆站)10公里锦标赛于5月8日上午在重庆市巴南区巴滨路圆满举行.若 专业队员甲的速度是业余队员乙的速度的2.5倍,比赛开始后甲先出发5分钟,到达终点50分钟后乙才 到.若设乙的速度为x 千米/小时,则根据题意列得方程为(▲)A . 55.2105010-=-x xB .6055.210605010-=+x xC .6055.210605010+=+x x D .6055.210605010-=-x x10.如图,在ABCD 中,G 为CD 延长线_k 一点,连接BG 交AD 、AC 于点E 、F ,1=∆AEF S ,S 3=∆AFB S 则GDE S ∆的值为(▲).A .4B .8C .16D .3211.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…;则第⑥个图案中“●”的个数为(▲).12.如图,ABC Rt ∆在平面直角坐标系中,顶点A 在x 轴上,︒=∠90ACB ,CB ∥x 轴,双曲线x k y =经过点 C 及AB 的三等分点D(即BD=2AD),12=∆BCD S ,则k 的值为(▲).A .-3B .-4C .-5D .-6二、填空题(每小题4分,共24分)请将每个小题的答案直接填写在答题卷中相应的横线上........... 13.如果35=-b b a ,那么=b a ▲ . 14.若P 为AB 的黄金分割点,且AP>PB ,AB=12cm ,则=AP ▲ cm . 15.关于x 的方程0322=++m x x 有两个相等的实数根,则m 的值为 ▲ .16.小明用自制的直角三角形纸DEF 测量树AB 的高度.测量时,使直角边DF 保持水平状态,DF 延长线 交AB 于点G ,使斜边DE 与点A 在同一条直线上.测得边DF 离地面的高度DC 为1.8m ,点D 到AB 的 距离等于9m(如图所示).已知DF=45cm ,EF=30cm ,那么树AB 的高度等于 ▲ m .17.在不透明的盒子里装有5个分别写有数字O ,1,2,3,4的小球,它们除数字不同外其余全部相同, 现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,然后在剩下的小球中随机再取出一 个,将小球上的数字作为点P 的纵坐标,则点P 落在双曲线x y 5=与直线6+-=x y 围成的封闭区域(含边 界)的概率是 ▲ .18.已知正方形ABCD 中,AC 、BD 交于点O ,21=DE OE ,连AE ,将ADE ∆沿4D 翻折,得'ADE ∆.点F 是AE 的中点,连CF 、DF 、F E '。

重庆市南开中学2015-2016学年度春期九年级数学下半期测试题

重庆市南开中学2015-2016学年度春期九年级数学下半期测试题

( 1)求交点 A 、 B 的坐标以及直线 BC 的解析式;
( 2)如图 1,动点 P 从点 B 出发以每秒 5 个单位的速度向点 O 运动,过点 P 作 y 轴的平行线交线段
BC 于点 M ,交抛物线于点 N ,过点 N 作 NK BC 交 BC 于点 K ,当 MNK 与 MPB 的面积比 为 1: 2 时,求动点 P 的运动时间 t 的值; ( 3)如图 2,动点 P 从点 B 出发以每秒 5 个单位的速度向点 A 运动, 同时另一动点 Q 从点 A 出发沿 AC 以相同速度向终点 C 运动,且 P 、Q 同时停止, 分别以 PQ 、BP 为边在 x 轴上方作正方形 PQEF 和正方形 BPGH (正方形顶点按顺时针排序) ,当正方形 PQEF 和正方形 BPGH 重叠部分是一个轴
PB' AD ,若 CD 3 , BC 4 ,则 BP 长度为(

A 、4 3
B、 5 3
C、 3 4
D、 5 4
12、如图,抛物线 y 2x 2 bx c 的顶点在 OAB 的边 OB 、AB 上运动(不
经过点 O ,点 A ),已知 A 0,2 , B 2,1 ,则下列说法错误的是 (

A 、 0 b 8 B 、 0 c 9 C 、 1 2c b D 、 b2 8c 16
27160 个,那么三月
份该厂区最少应安排多少台 B 种机器人投入生产。
24、如果一个自然数可以表示为两个连续奇数的立方差,
那么我们就称这个自然数为 “麻辣数”。如:
2 13
3
1 , 26
33
13 ,所以 2、 26 均为“麻辣数” 。
【立方差公式 a3 b3 a b a2 ab b2 】
( 1)请判断 98 和 169 是否为“麻辣数” ,并说明理由;

重庆南开中学九年级下学期月考数学试题(含答案)

重庆南开中学九年级下学期月考数学试题(含答案)

重庆南开中学九年级数学下学期月考试题(全卷共五个大题,满分l50分,考试时间l20分钟)注意事项:1.试题的答案书写在答题卡...上不得在试卷上直接作答; 2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线),请一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回. 参考公式:抛物线()02≠++=a c bx ax y 的定点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,,对称作为ab x 2-=. 一、选择题:(本大题共l2个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正 确答案所对应的方框涂黑.1.实数4的倒数是(▲)A .4B .41C .-4D .41- 2.计算()232x 的结果是(▲) A .64x B .62x C .54x D .52x 3.下列商标是轴对称图形的是(▲)4.在代数式12+x 中,x 的取值范围是(▲) A .0>x B .0≤x C .x ≠-1 D .x ≠0 5.下列调查中,适合采用普查方式的是(▲)A .调查市场上粽子的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了违禁物品D .调查我市市民收看重庆新闻的情况6.ABC ∆与DEF ∆的相似比为3:4,则ABC ∆与DEF ∆的周长比为(▲)A .3:2B .3:4C .4:5D .9:167.如图,a ∥b ,将—块三角板的直角顶点放在直线a 上,若︒=∠421,则2∠的度数为(▲)A .46°B .48°C .56°D .72°8.如图,A 、B 、C 是O 上的三点,︒=∠40ACB ,则AOB ∠的度数为(▲)A .20°B .40°C .60°D .80°9.不等式组⎪⎩⎪⎨⎧-+≤-1321022x x x >的解集是(▲) A .1≥x B .14≤-x > C .4<xD .1≤x10.五一假期,刘老师开车自驾前往荣昌,他开车离开家时,由于车流量大,行进非常缓慢,十几分钟后,终于行驶在畅通无阻的高速公路上,大约五十分钟后,汽车顺利到达荣昌收费站,经停车缴费后,进入车流量较小的道路,很快就到达了荣昌县城.在以上描述中,汽车行驶的路程s(千米)与所经历的时间t(小时)之间的大致函数图象是(▲)11.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有l8颗棋子,…,则第⑥个图形中棋子的颗数为(▲)12.如图,Rt OAB ∆的直角边OA 在x 轴正半轴上,︒=∠60AOB ,反比例函数()03>x xy =的图象与Rt OAB ∆两 边OB ,AB 分别交于点C ,D .若点C 是OB 边的中点,则点D 的坐标是(▲)A .()3,1B .()1,3 C .⎪⎪⎭⎫ ⎝⎛23,2 D .⎪⎪⎭⎫ ⎝⎛43,4二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答. 题卡..中对应的横线上. 13.化简()()11-+a a 的结果为 ▲ .14.某校乒乓球训练队共有7名队员,他们的年龄(单位:岁)分别为:l2,13,14,12,l3,15,l3,则他们年龄的众数为 ▲ 岁.15.计算()120153121-⎪⎭⎫ ⎝⎛--+-的值为 ▲ . 16.如图,AB 为半圆O 的直径,点C 在AB 的延长线上,CD 与半圆O 相切于点D ,且42==CD AB ,则图中阴影部分的面积为 ▲ .(结果保留π)17.从23-,1-,0,1这四个数中,任取一个数作为m 的值,恰好使得关于x ,y 的二元一 次方程组⎩⎨⎧-=--=-232y x m y x 有整数解,且使以x 为自变量的一次函数()331-++=m x m y的图象不经过第二象限,则取到满足条件的m 值的概率为 ▲ .18.如图,ABC ∆中,4==AC AB ,︒=∠120BAC ,以A 为一个顶点的等边三角形ADE 绕点A 在BAC ∠内旋转,AD 、AE 所在的直线与BC 边分别交于点F 、G ,若点B 关于直线AD 的对称点为'B ,当'FGB ∆是以点G 为直角顶点的直角三角形时,BF 的长为 ▲ .三、解答题:(本大题共2个小题。

重庆市南开中学2015届九年级下学期期中考试数学试卷

重庆市南开中学2015届九年级下学期期中考试数学试卷

重庆南开中学初2015级九年级(下)半期考试数 学 试 题一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号 为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑. 1.2的相反数是( ▲ ) A .2 B .21 C .-2 D .21- 2.计算322·x x -的结果是( ▲ )A .52x -B .52xC .62x -D .62x 3.下列图形中,既是中心对称图形又是轴对称图形的是( ▲ )A .B .C .D .4.如图,点O 在直线AC 上,BO ⊥DO 于点O ,若︒=∠1451,则3∠的度数为( ▲ ) A .35° B .45° C .55° D .65°5.若a(a≠0)是关于方程022=-+a bx x 的一个根,则b a +的值为( ▲ ) A .2 B .-2 C .0 D .46.如图,已知DE ∥BC ,且AD:DB=2:1,则△ADE 与△ABC 的面积比为( ▲ ) A .1:4 B .2:3 C .4:6 D .4:9 7.下列说法正确的是( ▲ )A .调查重庆市空气质量情况应采用普查的方式B .若A 、B 两组数据的平均数相同,A 组数据的方差2A S =0.03,B 组数据的方差2B S =0.2,则8组数据比A 组数据稳定C .南开中学明年开运动会一定会下雨D .为了解初三年级24个班课间活动的使用情况。

李老师采用普查的方式 8.如图,⊙O 是正方ABCD 的外接圆,点E 是弧AB 上任意一点,则DEC ∠的度数为( ▲ ) A .40° B .45° C .48° D .50° 9.关于x 的方程11=+x a的解是负数,则口的取值范围是( ▲ )A .a<lB .a<1且a≠0C .a≤1D .a≤l 且a≠010.2015年4月l8日周杰伦“摩天轮2”演唱会在重庆奥体中心如期举行.小王开车从家出发前去观看,预计1个小时能到达,可当天路上较为拥堵,行驶了半个小时,刚好行驶了一半路程,道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是小王将车停在轻轨站的车库,然后坐轻轨前往,结果按预计时间到达.下面能反映小王距离奥体中心的距离y (千米)与时间x (小时)的函数关系的大致图象是( ▲ )A .B .C .D . 11.将一些形状相同的小棒按如图所示的方式摆放。

2016春北师大版数学九年级下册综合练习题

2016春北师大版数学九年级下册综合练习题

重庆南开中学初2015届九年级(下)阶段测试(三)数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1、试题的答案书写在答题卡...上不得在试卷上直接作答; 2、作答前认真阅读答题卡...上的注意事项; 3、作图(包括作辅助线),请一律用黑色..签字笔完成; 4、考试结束,由监考人员将试题与答题卡...一并收回。

参考公式:()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴公式为2b x a=-。

一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个就是正确的,请将答题..卡.上对应题目的正确答案标号涂黑。

1、实数4的倒数就是( )A 、4B 、14C 、4-D 、14- 2、计算32(2)x 的结果就是( )A 、64xB 、62xC 、54xD 、52x3、下列商标就是轴对称图形的就是( )A 、B 、C 、D 、4、在代数式21x +中,x 的取值范围就是( ) A 、0x > B 、0x ≤C 、1x ≠-D 、0x ≠ 5、下列调查中,适合采用普查方式的就是( )A 、调查市场上粽子的质量情况B 、调查某品牌圆珠笔芯的使用寿命C、调查乘坐飞机的旅客就是否携带了违禁物品D、调查我市市民收瞧重庆新闻的情况6、△ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长比为()A、3:2B、3:4C、4:5D、9:167、如图,//a b,将一块三角板的直角顶点放在直线a上,若∠1=42°,则∠2的度数为()A、46°B、48°C、56°D、72°8、如图,A、B、C就是O上的三点,∠ACB=40°,则∠AOB的度数为()A、20°B、40°C、60°D、80°9、不等式组2201213xxx-≤⎧⎪+⎨>-⎪⎩的解集就是( )A、1x≥B、41x-<≤C、4x<D、1x≤10、五一假期,刘老师开车自驾前往荣昌,她开车离开家时,由于车流量大,行进非常缓慢,十几分钟后,终于形势在畅通无阻的告诉公路上,大约五十分钟后,汽车顺利到达荣昌收费站,经停车缴费后,进入车流量较小的道路,很快就到达了荣昌县城.在以上描述中,汽车行驶的路程s(千米)与所经历的时间t(小时)之间的大致函数图象就是( )A、B、C、D、11、下列图形都就是由同样大小的棋子按一定的规律组成,其中第①个图形由3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有18个棋子,…,则第⑥个图形中棋子的颗数为( )A 、63B 、84C 、108D 、15212、如图,Rt OAB ∆的直角边OA 在x 轴正半轴上,60AOB ∠=,反比例函数3(0)y x =>的图象与Rt OAB ∆两边OB ,AB 分别交于点C ,D .若点C 就是OB 边的中点,则点D 的坐标就是( )A 、(1,3)B 、(3,1)C 、3(2,)D 、3(4,) 二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。

重庆市南开中学九年级数学下册第三单元《锐角三角函数》检测卷(包含答案解析)

重庆市南开中学九年级数学下册第三单元《锐角三角函数》检测卷(包含答案解析)

一、选择题1.如图,在O 中,E 是直径AB 延长线上一点,CE 切O 于点E ,若2CE BE =,则E ∠的余弦值为( )A .35B .45C .34D .432.如图,四边形ABCD 中,AB AC AD ==,E 是BC 的中点,AE CE =,3BAC CBD ∠=∠,6266BD =+,则AB 的长为( )A .6B .62C .12D .102 3.下表是小红填写的实践活动报告的部分内容,设铁塔顶端到地面的高度FE 为xm ,根据以上条件,可以列出的方程为 ( )题目 测量铁塔顶端到地面的高度测量目标示意图 相关数据 10,45,50CD m αβ==︒=︒A .()10tan50x x =-︒B .()10cos50x x =-︒C .10tan50x x -=︒D .()10sin50x x =+︒ 4.如图,将一副三角尺如图所示叠放在一起,则BE CE的值是( )A .3B .33C .2D .325.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .255C .55D .126.在△ABC 中,∠C=90º,AC=3,AB=4,则下列结论正确的是( )A .34sinA =B .34cos A =C .34tan A =D .34cot A = 7.如图,在矩形ABCD 中,AB =3,做BD 的垂直平分线E ,F ,分别与AD 、BC 交于点E 、F ,连接BE ,DF ,若EF =AE +FC ,则边BC 的长为( )A .23B .33C .63D .9328.如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cosα的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC9.如图,ABC ∆的三个项点均在格点上,则tan A 的值为( )A.12B.55C.2 D.25510.如图,为一幅重叠放置的三角板,其中∠ABC=∠EDF=90°,BC与DF共线,将△DEF沿CB方向平移,当EF经过AC的中点O时,直线EF交AB于点G,若BC=3,则此时OG的长度为()A.322B.332C.32D.33322-11.如图,在△ABC中,∠ACB=60°,∠CAB=45°,BC=4,点D为AB边上一个动点,连接CD,以DA、DC为一组邻边作平行四边形ADCE,则对角线DE的最小值是()A26B.3C.4 D.312.如图,正方形ABCD的边长为1,点A与原点重合,B在y轴正半轴上,D在x轴负半轴上,将正方形ABCD绕着点A逆时针旋转30至AB C D''',CD与B C''相交于点E,则E坐标为()A.3 1,3⎛⎫- ⎪⎪⎝⎭B.11,2⎛⎫-⎪⎝⎭C.31,2⎛⎫-⎪⎪⎝⎭D.21,3⎛⎫- ⎪⎝⎭二、填空题13.如图,在矩形ABCD中,6BC=,4cos5CAB∠=,P为对角线AC上一动点,过线段BP上的点M作EF BP⊥,交AB边于点E,交BC边于点F,点N为线段EF的中点,若四边形BEPF的面积为18,则线段BN的最大值为 ________ .14.如图,长方形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C’处,BC’交AD于点E,则线段DE的长为____.15.如图,已知四边形ABCD,AC与BD相交于点O,∠ABC=∠DAC=90°,14tan,23BOACBOD∠==,则ABDCBDSS=___.16.如图,MN 是半径为1的O 的直径,点A 在O 上,30AMN ∠=︒,点B 是AN 的中点,点P 是直径MN 上一个动点,则PA PB +的最小值为______.17.如图,∠EFG =90°,EF =10,OG =17,cos ∠FGO =0.6,则点F 的坐标是_______.18.如图,在△BDE 中,∠BDE =90°,BD =4,点D 的坐标是(6,0),∠BDO =15°,将△BDE 旋转到△ABC 的位置,点C 在BD 上,则旋转中心的坐标为__________.19.如图,在ABC ∆中,3AB AC cm ==,120A ∠=︒,AB 的垂直平分线分别交,AB BC 于,D E ,则EC 的长为_________.20.如图,在ABC ∆中10AB AC ==,以AB 为直径的圆O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且12CBF A ∠=∠,1tan 3CBF ∠= ,则BC 的长为__________.三、解答题21.如图,矩形ABCD 中,33,sin ,5AB ACB =∠=E 为边BC 上一点,将ABE △沿AE 翻折,使点B 恰好落在对角线AC 上,记作B ',(1)求BE 的长;(2)联结DB ',求cot B DC '∠的值.22.计算:(1)|-2|-2cos60°+(π-2020)0;(2)(13)-1+18+|-2|-4sin45° 23.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长50cm AB =,拉杆BC 的伸长距离最大时可达35cm ,点A 、B 、C 在同一条直线上,在箱体底端装有圆形的滚筒A ,A 与水平地面切于点D ,在拉杆伸长至最大的情况下,当点B 距离水平地面38cm 时,点C 到水平面的距离CE 为59cm ,设AF ∥MN .(1)求A 的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C 端拉旅行箱时,CE 为80cm ,64CAF ∠=︒,求此时拉杆BC 的伸长距离.(精确到1cm ,参考数据:sin 640.90︒≈,cos640.39︒≈,tan64 2.1︒≈)24.先化简,再求值:2311422a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中10cos302tan 45a ︒=+︒. 25.因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览.当船在A 处时,船上游客发现岸上M 处的临皋亭和N 处的遗爱亭都在东北方向;当游船向正东方向行驶600m 到达B 处时,游客发现遗爱亭在北偏西15°方向;当游船继续向正东方向行驶400m 到达C 处时,游客发现临皋亭在北偏西60°方向.求临皋亭M 处与遗爱亭N 处之间的距离(计算结果保留根号).26.门环,在中国绵延了数千多年的,集实用、装饰和门第等級为一体的一种古建筑构件,也成为中国古建“门文化”中的一部分,现有一个门环的示意图如图所示,点O 为正六边形 ABCDEF 的中心.(1)请用无刻度直尺与圆规,过点O 作一个⊙P ,使⊙P 与直线AF 和直线AB 同时相切.(请保留作图痕迹)(2)若正六边形 ABCDEF E 的边长为18cm ,试求(1)中⊙P 的半径.(结果保留根号)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接OC ,则∠OCE=90°,设OC=OB=x ,22CE BE k ==,根据勾股定理即可列出方程222(2)()x k x k +=+,解得32x k =,再根据余弦的定义即可求得答案. 【详解】解:如图,连接OC ,∵CE 切O 于点E ,∴∠OCE=90°,设OC=OB=x ,22CE BE k ==,∵在Rt OCE △中,222OC CE OE +=,∴222(2)()x k x k +=+, 解得32x k =, ∴52OE OB BE k =+=, ∴24cos 552CE k E OE k ===, 故选:B .【点睛】本题考查了切线的性质、勾股定理以及锐角三角函数,熟练掌握切线的性质以及勾股定理是解决本题的关键.2.C解析:C【分析】作DF BC ⊥于F ,根据题意判断出ABC ∆是等腰直角三角形,求出CBD ∠的度数,进而判断出ACD ∆是等边三角形,设AB a ,在Rt BDF ∆中利用直角三角形的性质求出DF 的长,用a 表示出CF 的长,再根据勾股定理即可得出a 的值,进而得出答案.【详解】解:作DF BC ⊥于F ,AB AC AD ==,E 是BC 的中点,AE BC ∴⊥,AE CE =,BE EC =,90BAC ∴∠=︒,45ABC ACB ∴∠=∠=︒,3BAC CBD ∠=∠,30DBC ∴∠=︒,15ABD ∠=︒,1801515150BAD ∴∠=︒-︒-︒=︒,90BAC ∠=︒,60CAD ∴∠=︒,AC AD =,ACD ∴∆是等边三角形,AB AC AD CD ∴===,设AB a,则BC =,AC AD CD a ===,在Rt BDF ∆中,30DBF ∠=︒,6266BD =+, 32362BD DF ∴==+,3cos (6266)3692BF BD CBD =∠=+⨯=+, 36922CF BF BC a ∴=-=+-,在Rt CDF ∆中,由勾股定理可得222CF DF CD +=, 即222(36922)(3236)a a +-++=,解得12a =或12324+,∵12324+>6266+,即此时AB >BD ,不符合,∴AB=12,故选:C .【点睛】本题考查的是等腰直角三角形的性质、等边三角形的判定与性质及含30度角的直角三角形的性质,解答此题的关键是作出辅助线,构造出含30度角的直角三角形,根据直角三角形的性质进行解答.3.A解析:A【分析】过D 作DH ⊥EF 于H ,则四边形DCEH 是矩形,根据矩形的性质得到HE =CD =10,CE =DH ,求得FH =x−10,得到CE =x−10,根据三角函数的定义列方程即可得到结论.【详解】过D 作DH ⊥EF 于H ,则四边形DCEH 是矩形,∴HE =CD =10,CE =DH ,∴FH =x−10,∵∠FDH =α=45°,∴DH =FH =x−10,∴CE =x−10,∵tanβ=tan50°=EF CE =-10x x , ∴x =(x−10)tan 50°,故选:A .【点睛】 本题考查了解直角三角形的应用,由实际问题抽象出边角关系的等式,正确的识别图形是解题的关键.4.B解析:B【分析】设AC=AB=x,求得3tan33ACCD xD===,根据相似三角形的性质即可得到结论.【详解】解:设AC=AB=x,则3tan3ACCD xD===,∵∠BAC=∠ACD=90°,∴∠BAC+∠ACD=180°,∴AB∥CD,∴△ABE∽△DCE,∴33BE ABCE CD x===,故选:B.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.5.D解析:D【分析】连接AC,根据网格图不难得出=90CAB∠︒,求出AC、BC的长度即可求出ABC∠的正切值.【详解】连接AC,由网格图可得:=90CAB∠︒,由勾股定理可得:AC2AB=2∴tan ABC ∠=21222AC AB ==. 故选:D . 【点睛】 本题主要考查网格图中锐角三角函数值的求解,根据网格图构造直角三角形是解题关键. 6.B解析:B【分析】按照锐角三角函数的定义求各函数值即可. 【详解】解:如图,由勾股定理可得BC=2222437AB AC -=-=选项A ,74BC sinA AB ==,故错误; 选项B ,3cos 4AC A AB ==,故正确; 选项C ,7tan 3BCA AC ,故错误; 选项D ,37cot77AC A BC ===,故错误; 故应选:B【点睛】 本题考查了锐角三角函数定义,解答关键是按照相关锐角三角函数定义解题. 7.B解析:B【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF 是菱形,所以可求出BE ,AE ,进而可求出BC 的长.【详解】解:∵四边形ABCD 是矩形,//,DE BF ∴,,DEO BFO EDO FBO ∴∠=∠∠=∠ EF 垂直平分BD ,OB OD ∴=,BOF DOE ∴∆∆≌,,OE OF ∴=∴ 四边形BEDF 是菱形,∵四边形ABCD 是矩形,四边形BEDF 是菱形,∴∠A=90°,AD=BC ,DE=BF ,OE=OF ,EF ⊥BD ,∠EBO=FBO ,∴AE=FC .又EF=AE+FC ,∴EF=2AE=2CF ,又EF=2OE=2OF ,AE=OE ,∴△ABE ≌OBE , ∴∠ABE=∠OBE ,∴∠ABE=∠EBD=∠DBC=30°,∴BE= cos30BO ︒= ∴BF=BE=∴∴BC=BF+CF=故选B .【点睛】本题考查了矩形的性质、菱形的性质以及在直角三角形中30°角所对的直角边时斜边的一半,解题的关键是求出∠ABE=∠EBD=∠DBC=30°. 8.C解析:C【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD ,进而利用锐角三角函数关系得出答案.【详解】解:∵AC ⊥BC ,CD ⊥AB ,∴∠α+∠BCD =∠ACD +∠BCD ,∴∠α=∠ACD ,∴cosα=cos ∠ACD =BD BC =BC AB =DC AC , 只有选项C 错误,符合题意.故选:C .【点睛】 此题主要考查了锐角三角函数的定义,得出∠α=∠ACD 是解题关键.9.A解析:A【分析】连接格点BD,根据格点的长度求出BD、CD边的长度,根据勾股定理证明∠BDC=90°,再计算BDtan A=AD计算即可.【详解】解:如图所示,连接格点BD,根据格点的性质,可得BD=CD=2,BC=2,∴∠BDC=90°,故ABD为在直角三角形,且AD=22,∴BD21tan A=AD222,故选:A.【点睛】本题考查了勾股定理及锐角三角函数的定义,属于基础题,解答本题的关键是掌握格点三角形边长的求解办法.10.A解析:A【分析】分别过O作OH⊥BC,过G作GI⊥OH,由O是中点,根据平行线等分线段定理,可得H为BC的中点,则可得BH=32,再由三个角都是直角的四边形是矩形,可得GI=BH=32,在等腰直角三角形OGI中,即可求解.【详解】解:过O作OH⊥BC于H,过G作GI⊥OH于I ∵∠ABC=90°,∴AB⊥BC,∴OH∥AB,又O为中点,∴H为BC的中点,∴BH=12BC=32∵GI⊥OH,∴四边形BHIG为矩形,∴GI∥BH,GI=BH=32,又∠F=45°,∴∠OGI=45°,∴在Rt△OGI中,32cos2GIOGOGI==∠.故选:A【点睛】本题考查了解直角三角形及平行线等分线段定理,构造合适的辅助线是解题关键.11.A解析:A【分析】设DE交AC于O,作BF⊥AC于F,由直角三角形的性质得出CF=12BC=2,AF=BF=3CF=3,求出AC=CF+AF=3AO=CO=12AC=3DO=EO,当OD⊥AB时,DO的值最小,即DE的值最小,则△AOD是等腰直角三角形,即可得出结果.【详解】解:设DE交AC于O,作BF⊥AC于F,如图所示:则∠BFC=∠BFA=90°,∵∠ACB=60°,∠CAB=45°,∴∠CBF=30°,∠ABF=45°=∠CAB,∴CF=12BC=2,AF=BF3=3∴AC=CF+AF=3∵四边形ADCE是平行四边形,∴AO=CO=12AC=3DO=EO,∴当OD⊥AB时,DO的值最小,即DE的值最小,则△AOD是等腰直角三角形,∴OD=22AO62+∴DE=2OD26故选:A.【点睛】本题主要考查解直角三角形,平行四边形的性质,掌握平行四边形的性质和特殊角的三角函数值是解题的关键.12.A解析:A【分析】连接AE,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=12∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】如图:连接AE∵将边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB C D ''',∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt △ADE 和Rt △A B′E 中,∵AD AB AE AE '=⎧⎨=⎩∴Rt △ADE ≌Rt △AB′E (HL ),∴∠DAE=∠B′AE=12∠B′AD=30°, ∴DE=ADtan ∠DAE=1×33=33∴点E 的坐标为(-13 故选:A【点睛】本题考查了正方形的性质、坐标与图形旋转.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.二、填空题13.【分析】在△ABC 中求出AC 与AB 的长点P 在AC 上则6≤BP≤8由点N 为线段EF 的中点∠ABC=90º则EF=2BN 根据四边形BEPF 的面积为18利用对角线乘积的一半求面积得BN 与PB 成反比例PB 最 解析:154【分析】在△ABC 中,6BC =,4cos 5CAB ∠=求出AC 与AB 的长,点P 在AC 上 则6≤BP≤8,由点N 为线段EF 的中点,∠ABC=90º,则EF=2BN ,根据四边形BEPF 的面积为18,EF BP ⊥利用对角线乘积的一半求面积得,PB BN=18,BN 与PB 成反比例, PB 最小时,BN 最大,当PB ⊥AC 时,PB 最小,求出最小值即可.在△ABC 中,6BC =,4cos 5CAB ∠=, ∵22sin cos 1CAB CAB ∠+∠=, ∴2243sin =1cos =155CAB CAB ⎛⎫∠-∠-= ⎪⎝⎭, 由正弦函数定义BC sin =ACCAB ∠, ∴AC=BC 6==103sin 5CAB ∠,由勾股定理得AB=2222AC 1068BC -=-=,点P 在AC 上 则6≤BP≤8,∵点N 为线段EF 的中点,由∠ABC=90º,∴EF=2BN ,∵四边形BEPF 的面积为18,EF BP ⊥,∴S 四边形EBFP =11PB EF=PB 2BN=PB BN=1822⨯, ∴PB BN=18, ∴18BN=PB, 当PB 最小时,BN 最大, 当PB ⊥AC 时,PB 最小,即S △ABC=11AB BC=AC BP 22 BP 最小=AB BC 8624==AC 105⨯ BN 最大=1815=2445故答案为:154.本题考查锐角三角函数解直角三角形与点到直线距离最短问题,掌握锐角三角函数及其之间的关系,会用锐角三角函数解直角三角形,掌握垂线段最短,会利用面积或勾股定理求BP 的最小值,解题时要理解BP 最小,BN 最大是解题关键.14.375【分析】首先根据题意得到BE=DE 然后根据勾股定理得到关于线段ABAEBE 的方程解方程即可解决问题【详解】设ED=x 则AE=6﹣x ∵四边形ABCD 为矩形∴AD ∥BC ∴∠EDB=∠DBC 由题意得解析:3.75【分析】首先根据题意得到BE =DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题.【详解】设ED =x ,则AE =6﹣x .∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠EDB =∠DBC .由题意得:∠EBD =∠DBC ,∴∠EDB =∠EBD ,∴EB =ED =x .由勾股定理得:BE 2=AB 2+AE 2,即x 2=9+(6﹣x )2,解得:x =3.75,∴ED =3.75. 故答案为3.75.【点睛】本题考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.15.【分析】过B 点作BE//AD 交AC 于点E 证明得到再证明利用设利用三角形的面积公式可得答案【详解】解:过B 点作BE//AD 交AC 于点EBE ⊥AD ∴∴由∴设则故答案为: 解析:332【分析】过B 点作BE//AD 交AC 于点E ,证明ADO EBO ∽△△,得到3,AO OE =再证明,ABE ACB ∠=∠利用1tan tan ,2BE AE ACB ABE CE BE ∠==∠==设,OE a =利用三角形的面积公式可得答案.【详解】 解:过B 点作BE//AD 交AC 于点E ,90,DAC ∠=︒∴ BE ⊥AD ,ADO EBO ∴∽, ∴,AO DO EO BO=43BO OD = ∴3,4AO DO EO BO == 3,4AO OE ∴= 由1tan 2ACB ∠=, 1,2BE CE ∴= 2,CE BE ∴=90,,ABC BE AC ∠=︒⊥90,ABE CBE CBE ACB ∴∠+∠=︒=∠+∠,ABE ACB ∴∠=∠1tan tan ,2AE ACB ABE BE ∴∠=∠== 2,BE AE ∴=24,CE BE AE ∴==∴OAB OADABD CBD OCB OCD S S S S S S ∆∆+=+()()11221122AO AD AO BE AO AD BE AO OC AD BE OC OC AD OC BE •+•+===+•+• 设,OE a = 则3,4AO a = 7,4AE AO OE a ∴=+= 7,CE a = 8.OC OE CE a =+= 334.832ABDCBD a S AO S OC a ∆∆===故答案为:33216.【详解】解:如解图作点关于直线的对称点连接则线段的长就是的最小值作直径连接∵为的中点点关于直线对称∴∴故答案为:【点睛】本题考查了与圆有关的基础知识如直径的性质圆心角及圆周角的性质 解析:2 【详解】解:如解图,作点B 关于直线MN 的对称点B ',连接AB ',则线段AB '的长就是PA PB +的最小值,作O 直径AC ,连接CB ',∵30AMN ∠=︒,B 为AN 的中点,点B 、B '关于直线MN 对称,∴45C ∠=︒,∴sin 452AB AC '=⋅︒=故答案为:2.【点睛】本题考查了与圆有关的基础知识,如直径的性质、圆心角及圆周角的性质. 17.【分析】先过点F 作直线交轴于点过点作于点证明根据cos ∠FGO=06以及勾股定理即可得到答案【详解】过点F 作直线交轴于点过点作于点如图:∴(两直线平行内错角相等)又∵∠EFG=90°∴∠AFE+∠H解析:(8,12)【分析】先过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,证明FGO ∠HFG FEA =∠=∠,根据cos ∠FGO =0.6以及勾股定理即可得到答案.【详解】过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,如图:∴FGO HFG ∠=∠(两直线平行,内错角相等),又∵∠EFG =90°,∴∠AFE+∠HEG =90°,又∵∠AFE+∠FEA =90°,∴HFG FEA ∠=∠,∴FGO HFG FEA ∠=∠=∠,在Rt AEF ∆中,10EF =,则10cos 100.66AE FEA =⋅∠=⨯= ∴8AF ==(勾股定理),∴1789FH =-=,在Rt FGH ∆中,90.615FG =÷=,∴12HG ==(勾股定理),∴(8,12)F ,故答案为:(8,12).【点睛】本题主要考查了平行的性质(两直线平行,内错角相等)、勾股定理的应用以及三角函数,熟练掌握各知识点并灵活运用是解题的关键.18.【分析】根据旋转的性质AB 与BD 的垂直平分线的交点即为旋转中心P 连接PD 过P 作PF ⊥x 轴于F 再根据点C 在BD 上确定出∠PDB =45°并求出PD 的长然后求出∠PDO =60°根据直角三角形两锐角互余求出解析:(6【分析】根据旋转的性质,AB 与BD 的垂直平分线的交点即为旋转中心P ,连接PD ,过P 作PF ⊥x 轴于F ,再根据点C 在BD 上确定出∠PDB =45°并求出PD 的长,然后求出∠PDO =60°,根据直角三角形两锐角互余求出∠DPF =30°,然后解直角三角形求出点P 的坐标.【详解】如图,AB 与BD 的垂直平分线的交点即为旋转中心P ,连接PD ,过P 作PF ⊥x 轴于F , ∵点C 在BD 上,∴点P 到AB 、BD 的距离相等,都是12BD ,即1422⨯=, ∴∠PDB =45°,PD =∵∠BDO =15°,∴∠PDO =45°+15°=60°,∴∠DPF =30°,∴DF=12PD =12⨯=,cos30PF PD ︒=⋅== ∵点D 的坐标是(6,0),∴OF =OD ﹣DF =6-∴旋转中心的坐标为(6,故答案为:(6.【点睛】本题考查坐标与图形变化-旋转,解直角三角形,熟练掌握旋转的性质确定出旋转中心的位置是解题的关键.19.【分析】根据等腰三角形的性质可求出两底角的度数连接AE可得出AE=BE 推出解直角三角形即可得出答案【详解】解:∵∴连接AE∵ED垂直平分AB∴AE=BE∵∴∴故答案为:【点睛】本题考查的知识点是等腰解析:23【分析】根据等腰三角形的性质可求出两底角的度数,连接AE,可得出AE=BE ,30EAD=∠°,推出90EAC∠=︒,解直角三角形即可得出答案.【详解】解:∵3AB AC cm==,120A∠=︒,∴1(180120)302B C,连接AE,∵ED垂直平分AB,∴AE=BE ,30EAD=∠°,∵120A∠=︒,∴90EAC∠=︒,∴23cos303ACCE===︒故答案为:23.【点睛】本题考查的知识点是等腰三角形的性质、解直角三角形、垂直平分线的性质,综合性较强,但难度不大.20.【分析】连接AE根据AB是直径得出AE⊥BCCE=EB依据已知条件得出∠CBF=∠EABFB是圆的且线进而得出CB的长【详解】解:连接AE∵AB为直径∴AE⊥BC∵AB=AC∴∠EAB=∠CABEB解析:210【分析】连接AE,根据AB是直径,得出AE⊥BC,CE=EB,依据已知条件得出∠CBF=∠EAB,FB是圆的且线,进而得出CB的长.【详解】解:连接AE,∵AB为直径,∴AE⊥BC,∵AB=AC,∴∠EAB=12∠CAB,EB=CE=12CB,∵∠CBF=12∠CAB,tan∠CBF=13,∴∠CBF=∠EAB,tan∠EAB=EBAE =13,∴∠CBF+∠ABC=∠EAB+∠ABC=90°,∴FB是⊙O的切线,∴FB2=FD•FA,在RT△AEB中,AB=10,∴10,∴10,故答案为:10.【点睛】此题考查圆周角的性质,解直角三角形,求得FB是圆的切线是解题的关键.三、解答题21.(1)32;(2)98.【分析】(1)先根据矩形的性质、正弦三角函数、勾股定理可求出5,4AC BC ==,再根据翻折的性质可得3,,90AB AB B E BE AB E B '''===∠=∠=︒,设B E BE x '==,然后在Rt CB E '中,利用勾股定理即可得;(2)如图(见解析),先根据平行线的判定与性质可得CB F ACB '∠=∠,从而可得3sin sin 5CB F ACB '∠=∠=,再利用正弦三角函数、勾股定理、线段的和差可得,,CF B F DF '的值,然后在Rt DB F '中,利用余切三角函数的定义即可得.【详解】(1)四边形ABCD 是矩形,3AB =,3,90CD AB B BCD ∴==∠=∠=︒,在Rt ABC 中,3sin 5AB ACB AC ∠==,即335AC =, 解得5AC =,4BC ∴==,由翻折的性质得:3,,90AB AB B E BE AB E B '''===∠=∠=︒,2,90CB AC AB CB E '''∴=-=∠=︒,设B E BE x '==,则4CE BC BE x =-=-,在Rt CB E '中,222B E B C CE ''+=,即()222x 24x +=-, 解得32x =, 即BE 的长为32; (2)如图,过点B '作B F CD '⊥于点F ,90B FD BCD '∴∠=∠=︒,//B F BC '∴,CB F ACB '∴∠=∠,3sin sin 5CB F ACB '∴∠=∠=, 在Rt CB F '△中,sin CF CB F CB '∠=',即325CF =, 解得65CF =,89,55B F DF CD CF '∴===-=,则在Rt DB F '中,995cot 885DF B DC B F '∠==='.【点睛】本题考查了矩形与折叠问题、平行线的判定与性质、正弦与余切三角函数、勾股定理等知识点,熟练掌握并灵活运用三角函数的定义是解题关键.22.(1)2;(2)52【分析】本题涉及零指数幂、负指数幂、绝对值、二次根式、特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:(1)原式12212=-⨯+, 211=-+,2=. 解:原式2332242=+-⨯ 332222=+-52=【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 23.(1)圆形滚轮的半径AD 的长是8cm ;(2)拉杆BC 的伸长距离为30cm .【分析】(1)作BH ⊥AF 于点K ,交MN 于点H ,则△ABK ∽△ACG ,设圆形滚轮的半径AD 的长是xcm ,根据相似三角形的对应边的比相等,即可列方程求得x 的值;(2)求得CG 的长,然后在直角△ACG 中,求得AC 即可解决问题;【详解】(1)作BH AF ⊥于点K ,交MN 于点H .则BK CG ,ABK ACG ∆∆∽.设圆形滚轮的半径AD 的长是cm x .则BK AB CG AC =,即3850595035x x -=-+, 解得:8x =. 则圆形滚轮的半径AD 的长是8cm ;(2)在Rt ACG ∆中,80872(cm)CG =-=.则sin CG CAF AC ∠=∴AC=72=sin 0.9CG CAF ∠=80(cm) ∴805030(cm)BC AC AB =-=-=.【点睛】本题考查解直角三角形的应用,相似三角形的判定与性质,锐角三角函数等知识,关键把实际问题转化为数学问题加以计算.24.52a --,3- 【分析】 先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】310cos302tan 451021532a =+=⨯=︒+︒, ()()()()()()23113132522422222222a a a a a a a a a a a a a a a ⎡⎤-----⎛⎫-÷=-⋅+=⋅+=-⎢⎥ ⎪--++--+--⎝⎭⎢⎥⎣⎦当532a =时,原式335322==-+-. 【点睛】考查分式的化简求值,关键是化简,掌握运算顺序是化简的关键.25.临皋亭M 处与遗爱亭N 处之间的距离为(80024006米.【分析】过M 作MD ⊥AC 于D ,设MD =x ,在直角三角形中,利用三角函数即可x 表示出AD 与CD ,根据AC =AD +CD 即可列方程,从而求得MD 的长,进一步求得AM 的长;过B 作BE⊥AN于E,在直角三角形中,利用三角函数即可求出AE与NE,再求出ME,从而求得MN.【详解】过M作MD⊥AC于D,设MD=x,在Rt△MAD中,∵∠MAB=45°,∴△ADM是等腰直角三角形,∴AD=MD=x,在Rt△MCD中,∠MCA=90°−60°=30°,∴DC=MD÷tan30°=3MD=3x,∵AC=600+400=1000,∴x+3x=1000,解得:x=500(3−1),∴MD=500(3−1)m,∴AM=2MD=500(6−2)(m),过B作BE⊥AN于E,∵∠MAB=45°,∠BA=75°,∴∠ANB=60°,在Rt△ABE中,∵∠MAB=45°,AB=600,∴BE=AE=22AB=3002,∴ME=AM−AE=500(6−2)−3002=5006−8002,在Rt△NBE中,∵∠ANB=60°,∴NE=33BE=33×3002=1006,∴MN=1006−(5006−8002)=(8002−4006)m,即临摹亭M处与遗爱亭N处之间的距离是((8002−4006)m.【点睛】本题考查了直角三角形的应用−方向角问题,熟练掌握方向角的概念,正确作出辅助线是解题的关键.26.(1)作图见解析;(2)⊙P的半径为36354-.【分析】(1)先过点O作OM⊥AF交AF于点M(或延长EF、BA交于点H,作直线HO),然后作∠HOA 的角平分线OI交AF于点I,再过点I作IP//MO交OA于点P(或在KC上截取KL=MI),最后以点P为圆心,PO长为半径作圆,⊙P即为所求;(2)设OP=PI=r,由题意可得PA=23r,在Rt△API中,PA+PO=18,代入求解即可.【详解】解:(1)第一步过点O作OM⊥AF交AF于点M(或延长EF、BA交于点H,作直线HO)第二步作∠HOA的角平分线OI交AF于点I第三步过点I作IP//MO交OA于点P(或在KC上截取KL=MI)第四步以点P为圆心,PO长为半径作圆,⊙P即为所求.(2)∵AF=18,∴AO=18,∠AOM=∠API=30°(△OAF为等边三角形),设OP=PI=r,PA=PI÷cos30°23,在Rt△API中,23r+=18 ,解得r=354.【点睛】本题考查解直角三角形和正多边形与圆的关系,掌握等边三角形的性质是解题的关键.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档