中考数学试题-2018年中考数学第一轮基础知识点测试题7
陕西省2018年中考数学真题试题(含解析)含答案
陕西省2018年中考数学真题试题一、选择题:(本大题共10题,每题3分,满分30分)1. -的倒数是A. B. - C. D. -【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵=1,∴-的倒数是-,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2. 如图,是一个几何体的表面展开图,则该几何体是A. 正方体B. 长方体C. 三棱柱D. 四棱锥【答案】C【解析】根据表面展开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。
【详解】观察可知图中有一对全等的三角形,有三个长方形,所以此几何体为三棱柱,故选C【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图特点是解决此类问题的关键.3. 如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠1互补的角的个数.【详解】如图,∵l1∥l2,l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2、∠3、∠4、∠5共4个,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4. 如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为A. -B.C. -2D. 2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k. 【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-,故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.5. 下列计算正确的是A. a2·a2=2a4B. (-a2)3=-a6C. 3a2-6a2=3a2D. (a-2)2=a2-4【答案】B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.6. 如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A. B. 2 C. D. 3【答案】C【分析】由已知可知△ADC是等腰直角三角形,根据斜边AC=8可得AD=4,在Rt△ABD中,由∠B=60°,【解析】可得BD==,再由BE平分∠ABC,可得∠EBD=30°,从而可求得DE长,再根据AE=AD-DE即可【详解】∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=8,∴AD=4,在Rt△ABD中,∠B=60°,∴BD===,∵BE平分∠ABC,∴∠EBD=30°,∴DE=BD•tan30°==,∴AE=AD-DE=,故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.7. 若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为A. (-2,0)B. (2,0)C. (-6,0)D. (6,0)【答案】B【解析】【分析】根据l1与l2关于x轴对称,可知l2必经过(0,-4),l1必经过点(3,-2),然后根据待定系数法分别求出l1、l2的解析式后,再联立解方程组即可得.【详解】由题意可知l1经过点(3,-2),(0,4),设l1的解析式为y=kx+b,则有,解得,所以l1的解析式为y=-2x+4,由题意可知由题意可知l2经过点(3,2),(0,-4),设l1的解析式为y=mx+n,则有,解得,所以l2的解析式为y=2x-4,联立,解得:,所以交点坐标为(2,0),故选B.【点睛】本题考查了两直线相交或平行问题,关于x轴对称的点的坐标特征,待定系数法等,熟练应用相关知识解题是关键.8. 如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是A. AB=EFB. AB=2EFC. AB=EFD. AB=EF【答案】D【解析】【分析】连接AC、BD交于点O,由菱形的性质可得OA=AC,OB=BD,AC⊥BD,由中位线定理可得EH=BD,EF=AC,根据EH=2EF,可得OA=EF,OB=2EF,在Rt△AOB中,根据勾股定理即可求得AB=EF,由此即可得到答案.【详解】连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH=BD,EF=AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB==EF,故选D.【点睛】本题考查了菱形的性质、三角形中位线定理、勾股定理等,正确添加辅助线是解决问题的关键.9. 如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为A. 15°B. 35°C. 25°D. 45°【答案】A【详解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.10. 对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先由题意得到关于a的不等式,解不等式求出a的取值范围,然后再确定抛物线的顶点坐标的取值范围,据此即可得出答案.【详解】由题意得:a+(2a-1)+a-3>0,解得:a>1,∴2a-1>0,∴<0,,∴抛物线的顶点在第三象限,故选C.【点睛】本题考查了抛物线的顶点坐标公式,熟知抛物线的顶点坐标公式是解题的关键.二、填空题:(本大题共4题,每题3分,满分12分)11. 比较大小:3_________ (填<,>或=).【答案】<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴3<,故答案为:<.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.12. 如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为________【答案】72°【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键13. 若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______【答案】【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=,故答案为:y=.【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.14. 点O是平行四边形ABCD的对称中心,AD>AB,E、F分别是AB边上的点,且EF=AB;G、H分别是BC 边上的点,且GH=BC;若S1,S2分别表示∆EOF和∆GOH的面积,则S1,S2之间的等量关系是______________ 【答案】2S1=3S2【解析】【分析】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,根据点O是平行四边形ABCD的对称中心以及平行四边形的面积公式可得AB•ON=BC•OM,再根据S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,则可得到答案.【详解】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,∵点O是平行四边形ABCD的对称中心,∴S平行四边形ABCD=AB•2ON, S平行四边形ABCD=BC•2OM,∴AB•ON=BC•OM,∵S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,∴S1=AB•ON,S2=BC•OM,∴2S1=3S2,故答案为:2S1=3S2.【点睛】本题考查了平行四边形的面积,中心对称的性质,正确添加辅助线、准确表示出图形面积是解题的关键.三、解答题(共11小题,计78分.解答应写出过程)15. 计算:(-)×(-)+|-1|+(5-2π)0【答案】【解析】【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.【详解】(-)×(-)+|-1|+(5-2π)0=3+-1+1=4.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.16. 化简:【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算即可得.【详解】===.【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的顺序是解题的关键.17. 如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)【答案】作图见解析.【解析】【分析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点.【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.18. 如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG =DH+GH即可证得AG=HD.【详解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在∆ABH和∆DCG中,,∴∆ABH≌∆DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.19. 对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m=,n= ;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.【答案】(1)30;19%;(2)B;(3)80.1分.【解析】【分析】(1)根据B组的频数以及频率可求得样本容量,然后用样本容量乘以D组的百分比可求得m的值,用A的频数除以样本容量即可求得n的值;(2)根据中位数的定义进行解答即可得解;(3)根据平均数的定义进行求解即可得.【详解】(1)72÷36%=200,m=200×15%=30,n==19%,故答案为:30,19%;(2)一共有200个数据,从小到大排序后中位数是第100个、第101个数据的平均数,观察可知中位数落在B组,故答案为:B;(3)本次全部测试的平均成绩==80.1分.【点睛】本题考查了频数分布表,扇形统计图,中位数,平均数等知识,熟练掌握相关的概念是解题的关键.20. 周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.【答案】河宽为17米.【解析】【分析】由题意先证明∆ABC∽∆ADE,再根据相似三角形的对应边成比例即可求得AB的长.【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90°,∵∠CAB=∠EAD,∴∆ABC∽∆ADE,∴,又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,∴,∴AB=17,即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.21. 经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣味x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.【答案】(1)前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【解析】【分析】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据等量关系:①销售红枣和小米共3000kg,②获得利润4.2万元,列方程组进行求解即可得;(2)根据总利润=红枣的利润+小米的利润,可得y与x间的函数关系式,根据一次函数的性质即可得答案.【详解】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据题意得:,解得:,答:前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)根据题意得:y=(60-40)x+(54-38)×=12x+16000,∵k=12>0,∴y随x的增大而增大,∵x≥600,∴当x=600时,y取得最小值,最小值为y=12×600+16000=23200,∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,弄清题意,找出各个量之间的关系是解题的关键.22. 如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【答案】(1);(2).【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为=;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23. 如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)如图,连接ON,根据直角三角形斜边中线等于斜边的一半可得AD=CD=DB,从而可得∠DCB=∠DBC,再由∠DCB=∠ONC,可推导得出ON∥AB,再结合NE是⊙O的切线,ON//AB,继而可得到结论;(2)如图,由(1)可知ON∥AB,继而可得N为BC中点,根据圆周角定理可知∠CMD=90°,继而可得MD∥CB,再由D是AB的中点,根据得到MD=NB.【详解】(1)如图,连接ON,∵CD是Rt△ABC斜边AB上的中线,∴AD=CD=DB,∴∠DCB=∠DBC,又∵OC=ON,∴∠DCB=∠ONC,∴∠ONC=∠DBC,∴ON∥AB,∵NE是⊙O的切线,ON是⊙O的半径,∴∠ONE=90°,∴∠NEB=90°,即NE⊥AB;(2)如图所示,由(1)可知ON∥AB,∵OC=OD,∴∴CN=NB=CB,又∵CD是⊙O的直径,∴∠CMD=90°,∵∠ACB=90°,∴∠CMD+∠ACB=180°,∴MD//BC,又∵D是AB的中点,∴MD=CB,∴MD=NB.【点睛】本题考查了切线的性质、三角形中位线、圆周角定理等,正确添加辅助线、熟练应用相关知识是解题的关键.24. 已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求出△ABC的面积;(2)将抛物线向左或向右平移,得到抛物线L´,且L´与x轴相交于A´、B´两点(点A´在点B´的左侧),并与y轴交于点C´,要使△A´B´C´和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.【答案】(1)A(-3,0),B(2,0),C(0,6);15;(2)y=x2-7x-6,y=x2+7x-6,y=x2-x-6.【解析】【分析】(1)在抛物线解析式中分别令x=0、y=0即可求得抛物线与坐标轴的交点坐标,然后根据三角形面积公式即可求得三角形的面积;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC 的面积相等,高也只能是6,分点C´在x轴上方与x轴下方两种情况分别讨论即可得.【详解】(1)当y=0时,x2+x-6=0,解得x1=-3,x2=2,当x=0时,y=-6,∴A(-3,0),B(2,0),C(0,6),∴S△ABC=AB·OC=×5×6=15;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC的面积相等,高也只能是6,设A(a,0),则B(a+5,0),y=(x-a)(x-a-5),当x=0时,y=a2+5a,当C´点在x轴上方时,y=a2+5a=6,a=1或a=-6,此时y=x2-7x-6或y=x2+7x-6;当C´点在x轴下方时,y=a2+5a=-6,a=-2或a=-3,此时y=x2-x-6或y=x2+x-6(与原抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y=x2-7x-6,y=x2+7x-6,y=x2-x-6.【点睛】本题考查了抛物线与坐标轴的交点、抛物线的平移等知识,熟知抛物线沿x轴左右平移时,抛物线与x轴两个交点间的距离不变是解(2)小题的关键.25. 问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P 的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③【答案】(1)5;(2)18;(3)(3-9)km.【解析】【分析】(1)如图(1),设外接圆的圆心为O,连接OA, OB,根据已知条件可得△AOB是等边三角形,由此即可得半径;(2)如图(2)所示,连接MO并延长交⊙O于N,连接OP,显然,MN即为MP的最大值,根据垂径定理求得OM的长即可求得MN的最大值;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP",则P´P"即为最短距离,其长度取决于PA的长度,根据题意正确画出图形,得到点P的位置,根据等边三角形、勾股定理等进行求解即可得PE+EF+FP的最小值.【详解】(1)如图(1),设外接圆的圆心为O,连接OA, OB,∵O是等腰三角形ABC的外心,AB=AC,∴∠BAO=∠OAC=∠BAC==60°,∵OA=OB,∴△AOB是等边三角形,∴OB=AB=5,故答案为:5;(2)如图(2)所示,连接MO并延长交⊙O于N,连接OP,显然,MP≤OM+OP=OM+ON=MN,ON=13,OM==5,MN=18,∴PM的最大值为18;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP"由对称性可知PE+EF+FP=P´E+EF+FP"=P´P",且P´、E、F、P"在一条直线上,所以P´P"即为最短距离,其长度取决于PA的长度,如图(4),作出弧BC的圆心O,连接AO,与弧BC交于P,P点即为使得PA最短的点,∵AB=6km,AC=3km,∠BAC=60°,∴∆ABC是直角三角形,∠ABC=30°,BC=3,BC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3,∴∠ABO=90°,AO=3,PA=3-3,∠P´AE=∠EAP,∠PAF=∠FAP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E=∠AP"F=30°,∵P´P"=2P´Acos∠AP´E=P´A=3-9,所以PE+EF+FP的最小值为3-9km.【点睛】本题考查了圆的综合题,涉及到垂径定理、最短路径问题等,正确添加辅助线、灵活应用相关知识是解题的关键.。
2018年中考数学试题(含答案)
一、选择题(本题有10小题,每小题3分,共30分) 1. 3-=( ) A. 3 B. 3- C. 31 D. 31- 2.数据1800000用科学计数法表示为( )A.68.1B.6108.1⨯C. 51018⨯D. 61018⨯3.下列计算正确的是( )A. 222=B. 222±=C. 242=D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( )A.方差B. 标准差C. 中位数D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( )A.AN AM >B. AN AM ≥C. AN AM <D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. 20=-y xB. 20=+y xC. 6025=-y xD. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A. 61B. 31C. 21D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A.()︒=++30-3241θθθθ)( B. ()︒=++40-3142θθθθ)( C.()︒=++70-4321θθθθ)( D. ()︒=+++1804321θθθθ)( 9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B.乙C. 丙D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则2123S S >B. 若AB AD >2,则2123S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分)11.计算:=-a a 312.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠213.因式分解:()()=---a b b a 2 14.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。
2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线解析版(精品文档)
2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线(一)一、选择题1. (2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为( )A.20B. 16C. 12D.8第7题图 【答案】B 【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16【知识点】平行四边形的性质,三角形中位线2. (2018四川省南充市,第8题,3分)如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12B .1C .32D【答案】B【思路分析】1.由∠ACB =90°,∠A =30°,BC 的长度,可求得AB 的长度,2.利用直角三角形斜边D的中线等于斜边第一半,求得CD 的长度;3.利用中位线定理,即可求得EF 的长.【解题过程】解:在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,,∴AB =4,CD =12AB ,∴CD =12×4=2,∵E ,F 分别为AC ,AD 的中点,∴EF =12CD =12×2=1,故选B.【知识点】30°所对直角边是斜边的一半;直角三角形斜边的中线等于斜边第一半;中位线定理3. (2018四川省达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) . A .32 B .2 C .52D .3第8题图 【答案】C ,【解析】∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线, ∴MN =12DE =52. 故选C.【知识点】三角形的中位线4. (2018浙江杭州, 10,3分)如图,在△ABC 中,点D 在AB 边上,DE//BC ,与边AC 交于点E ,连接BE ,记△ADE ,△BCE 的面积分别为S 1,S 2,( )A. 若2AD>AB ,则3S 1>2S 2B. 若2AD>AB ,则3S 1<2S 2C. 若2AD<AB ,则3S 1>2S 2D. 若2AD<AB ,则3S 1<2S 2【答案】D【思路分析】首先考虑极点位置,当2AD=AB 即AD=BD 时S 1,S 2的关系,然后再考虑AD>BD 时S 1,S 2的变化情况。
2018届数学中考第一轮复习-6.四边形与平行四边形 - 副本
第六章四边形与平行四边形测试卷一、选择题1.(2017山东泰安,19,3分)如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①B E平分∠CBF②CF平分∠DCB③BC=FB④PF=PC.其中正确的结论个数为()A.1 B.2 C.3 D.42.(2017山东威海,10,3分)如图,在平行四边形ABCD中∠DAB的平分线交CD于点E,交BC的延长线于点G, ∠ABC的平分线交CD于点F,交AD的延长线于点H,交AG与BH成交于点O,连接BE.下列结论错误的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE3.(2017四川眉山,10,3分)如图,EF过□ABCD对角线的交点O,交AD于E,交BC于F.若□ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A.14 B.13 C.12 D.104.(2017•江西, 6, 3分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形5.(2017•宜昌, 10, 3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①②B.①③C.②④D.③④6.(2017•贵阳, 8, 3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.247.(2017•河北, 16, 2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.58.(2017•黑龙江, 17, 3分)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.189.(2017•黄石)如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A.BD<2 B.BD=2 C.BD>2 D.以上情况均有可能10.(2017•株洲, 9, 3分)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形11.(2017山东德州,11,3分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF.给出以下五个结论:①∠MAD=∠AND;②CP=b-ab2;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆.其中正确的个数是()A.2 B.3 C.4 D.512.(2017四川攀枝花,10,3分)10.如图5,正方形ABCD中,点E、F分别在边BC、CD上,△AEF是等边三角形,连接AC交EF于点G,过点G作GH丄CE于点H,若S∆EGH=3,则S∆ADF=()A. 6 B. 4 C.3 D.213.(2017山东泰安,14,3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18 B.1095C.965D.25314.(2017浙江宁波,11,4分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,4BE=,过点E作EF BC∥,分别交BD,CD于G,F两点,若M,N分别是DG,CE的中点,则MN的长为( )A.3 B.23C.13D.415.(2017山东临沂,12,3分)在△ABC中,点D是边BC上的点(与B、C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E、F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形16.(2017•兰州,14,4分)如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A.B.C.D.17.(2017•广东,10,3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④18.(2017•贵港, 12, 3分)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()CABDNM EFGP19.(2017湖北天门,中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点AE=455;④AF=2OAE=,.24.(2017•南通, 10, 3分)如图,矩形ABCD中,AB=10,周长的最小值为(10于点F,G,连接FG.则;④OD=的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD 分)如图为某城市部分街道示意图,四边形为正方形,点G在对角线BD上,1500m,小敏姓周的路线为B,则小聪行走的路程为分) 如图,正方形ABCD中,在DP上,且∠DFE=45°,若分)如图,在正方形ABCD在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写,使得AE CG =,BF DH =,、F 分别是AB 、BC 的中点,CE ⊥AB ,垂足为E ,=BC 上的一点,以BP 为边作正方形BPEF ,使点F 在线的形状,并说明理由;cm214.(2017•海南, 23, 12分)如图,四边形ABCD 是边长为1的正方形,点E 在AD 边上运动,且不与点A 和点D 重合,连结CE ,过点C 作CF ⊥CE 交AB 的延长线于点F ,EF 交BC 于点G . (1)求证:△CDE ≌△CBF ; (2)当DE=时,求CG 的长;(3)连结AG ,在点E 运动过程中,四边形CEAG 能否为平行四边形?若能,求出此时DE 的长;若不能,说明理由.15.(2017•黑龙江, 26, 8分)在四边形ABCD 中,对角线AC 、BD 交于点O .若四边形ABCD 是正方形如图1:则有AC=BD ,AC ⊥BD .旋转图1中的Rt △COD 到图2所示的位置,AC′与BD′有什么关系?(直接写出) 若四边形ABCD 是菱形,∠ABC=60°,旋转Rt △COD 至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.16.(2017•绥化, 28, 9分)如图,在矩形ABCD 中,E 为AB 边上一点,EC 平分∠DEB ,F 为CE 的中点,连接AF ,BF ,过点E 作EH ∥BC 分别交AF ,CD 于G ,H 两点. (1)求证:DE=DC ; (2)求证:AF ⊥BF ;(3)当AF•GF=28时,请直接写出CE 的长.17.(2017•吉林, 23, 8分)如图①,BD 是矩形ABCD 的对角线,∠ABD=30°,AD=1.将△BCD 沿射线BD 方向平移到△B'C'D'的位置,使B'为BD 中点,连接AB',C'D ,AD',BC',如图②. (1)求证:四边形AB'C'D 是菱形;(2)四边形ABC'D′的周长为 ;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.18.(2017•南通, 26, 10分)如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交AD 、BE 、BC 于点P 、O 、Q ,连接BP 、EQ .(1)求证:四边形BPEQ 是菱形;(2)若AB=6,F 为AB 的中点,OF +OB=9,求PQ 的长.。
中考数学第一轮复习基础知识训练(一)(附答案)
中考数学第一轮复习基础知识训练(一)时间:30分钟你实际使用分钟班级姓名学号成绩一、精心选一选1.图(1)所示几何体的左视图...是()2.一对酷爱运动的夫妇,让他们刚满周岁的孩子拼排3块分别写有“20”、“08”、“北京”的字块.假如小孩将字块横着正排,则该小孩能够排成“2008北京”或“北京2008”的概率是()A.16B.14C.13D.123.一名宇航员向地球总站发回两组数据:甲、乙两颗行星的直径分别为46.110⨯千米和46.1010⨯千米,这两组数据之间()A.有差别B.无差别C.差别是40.00110⨯千米D.差别是100千米4.如图,把直线l向上平移2个单位得到直线l′,则l′的表达式为()A.112y x=+B.112y x=-C.112y x=--D.112y x=-+5.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.24204340x+⨯=⨯B.24724340x-⨯=⨯C.24724340x+⨯=⨯D.24204340x-⨯=⨯6.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿()A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多 D.无法确定7.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A.75° B.60° C.45° D.30°8.如图是一台54英寸的大背投彩电放置在墙角的俯视图.设DAO α=∠,彩电后背AD 平行于前沿BC ,且与BC 的距离为60cm ,若100cm AO =,则墙角O 到前沿BC 的距离OE 是( )A.()60100sin cm α+ B.()60100cos cm α+ C.()60100tan cm α+ D.以上答案都不对二、细心填一填9.某农场购置了甲、乙、丙三台打包机,同时分装质量相同的棉花,从它们各自分装的棉花包中随机抽取了10包,测得它们实际质量的方差分别为222S 11.05S 7.96S 16.32===乙甲丙,,.可以确定 打包机的质量最稳定.10.如图,照相时为了把近处的较高物体照下来,常常保持镜头中心不动,使相机旋转一定的角度,若A 点从水平位置顺时针旋转了30︒,那么B 点从水平位置顺时针旋转了__ ____度.图(1) 图(2)第6题第8题ABA D CE B 第7题11.林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知5380.5BAC AB =︒=∠′,米,则这棵大树的直径约为 _____ ____米.12.如图,一次函数11y x =--与反比例函数22y x =-的图象交于点(21)(12)A B --,,,,则使12y y >的x 的取值范围是三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(x 的值.第12题答案参考一、精心选一选 BCAD ACBA二、细心填一填9. 乙 10. __30___ 11. _ 0.5__12. 2x <-或01x <<. 三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.解:解不等式318x -->,得3x <-.解不等式1(5)32x +≤,得x ≤1.原不等式组的解集为3x <-.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(0x的值.解: 点AB 与点A 关于原点对称,∴点B 表示的数是,即x =3分00(((121x ==-=-. 6分第12题3- 2- 1- 0 1。
2018年中考数学试卷及答案解析
2018年中考数学试卷及答案解析一、试卷概述2018年中考数学试卷总分为150分,分为选择、填空、解答三个部分。
选择题和填空题共计65分,解答题共计85分。
试卷难度适中,覆盖了中学数学的各个知识点,考查重点突出,难度适中,题型形式多样。
二、选择题分析选择题共计15道,每道2分,共计30分。
选择题难度适中,覆盖了中学数学基础知识点,考查了学生的记忆和理解能力,其中有几道题需要细心审题,避免失分。
如下是部分选择题:1.若$a>b>0$,则$\frac{a+b}{a-b}$的值为()A.$-\frac{a+b}{b-a}$B.$\frac{a+b}{b-a}$C.$-\frac{a-b}{b-a}$D.$\frac{a-b}{b-a}$2.有一只蚂蚁位于正方形的一个顶点上,若此蚂蚁只能在正方形边界上爬行,并且每次只能向左或向下,那么它到对角线对面的点至少需要爬行多少条边长?A.1B.2C.3D.43.一根梯子,顶端靠在13米高的树上,底端离树8米,求梯子长。
A.15B.16C.17D.24四、解答题分析解答题共计10道,每道8分,共计80分。
解答题部分难度适中,考查了学生的运算能力和理解能力。
基础题型占多数,部分题目需要思维拓展,需要学生多加思考。
如下是部分解答题:1.已知$\frac{1}{\sqrt{u_1}}+\frac{1}{\sqrt{u_2}}=\frac{3}{2}$,求$\frac{1}{2u_1}+\frac{1}{u_2}$的值。
2.如图,在$\triangle ABC$中,点$E$和$F$分别是$\overline{AC}$和$\overline{AB}$的中点,$\overline{BE}$交$\overline{CF}$于点$G$。
如果$AG=4$,$GB=6$,$CG=8$,那么$\overline{BC}$的长为多少?总体来看,2018年中考数学试卷难度适中,考查范围覆盖了中学数学基础知识点,不易出偏题,对于实力较强的学生来说,可以拿到不错的成绩。
2018年中考数学专题《平面直角坐标系》复习试卷含答案解析
2018年中考数学专题复习卷: 平面直角坐标系一、选择题1.在平面直角坐标系中,点P(-1,2)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.点P(x﹣1,x+1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B. C. D.5.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)6. 抛物线(m是常数)的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 在平面直角坐标系中,点关于原点的对称点的坐标是()A. B. C. D.8. 已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法判断9.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A. 横坐标相等B. 纵坐标相等C. 横坐标的绝对值相等D. 纵坐标的绝对值相等10.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是()A. B. ﹣ C. D. ﹣11. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (﹣2,1)B. (﹣1,1)C. (1,﹣2)D. (﹣1,﹣2)12.如图,小手盖住的点的坐标可能为()A. (-4,-5)B. (-4,5)C. (4,5)D. (4,-5)二、填空题13.如果在y轴上,那么点P的坐标是________ .14.平面直角坐标系内,点P(3,-4)到y轴的距离是________15.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=________.16.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。
中考数学第一轮复习检测题(七)
(第4题)c B A C①ABE② J ③(第6题)中考数学第一轮复习检测题(七)班级 姓名 成绩一、选择题(本大题共6小题,每小题2分,共计12分.) 1.与-3互为相反数的是( )A .-3B .3C .-13D .132.温家宝总理在十一届全国人大五次会议上的政府工作报告中指出,2011年共有1228万名中西部家庭经济困难学生享受生活补助.1228万可用科学记数法表示为( )A .1.228×107B .12.28×106C .122.8×105D .1228×104 3.计算(-ab 2)3的结果是( )A .ab 6B .-ab 6C .a 3b 6D .-a 3b 64.如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,AB =BC ,如果||a >||c >||b ,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边5.一名篮球运动员投篮命中的概率是0.8,下列陈述中,正确的是( )A .他在每10次投篮中必有8次投中B .他在10次一组的投篮中,平均会有8次投中C .他投篮 10次,不可能投中9次D .他投篮100次,必投中80次 6.如图,图①、图②、图③分别表示甲、乙、丙三人由A 地到B 地的路线图(箭头表示行进的方向) .其中E 为AB 的中点,AJ >JB .判断三人行进路线长度的大小关系为( )A .甲<乙<丙B .乙<丙<甲C .丙<乙<甲D .甲=乙=丙 二、填空题(本大题共10小题,每小题2分,共计20分.) 7.使二次根式1-x 有意义的字母x 的取值范围是 . 8. 分解因式a -a = .9.若(x +y )2-2x -2y +1=0,则x +y = .10.如图,已知点A (1,2)在反比例函数y =kx 的图象上,观察图象可知,当x >1时, y 的取值范围是 .11.直角坐标平面上有一个轴对称图形,点A (3,-1)、B (3,-7)是此图形上的一对对称点.若此图形上有一点C (-2,-9),则点C 在图形上的一个对称点坐标为 . 12.小刚在最近的一次数学测试中考了93分,从而使本学期之前所有的数学测试平均分由73分提高到78分,他要想在下次考试中把本学期平均分提高到80分以上(包含80分),下次考试他至少要考 分.(第20题)(第15题)(第14题) GF B A D E (第13题)´ 13.如图,将正五边形ABCDE 的C 点固定,并依顺时针方向旋转,若要使得新五边形A ´B ´C ´D ´E ´的顶点D ´落在直线BC 上,则至少要旋转 °.14.如图,在等腰梯形ABCD 中,AE 是梯形的高,将△ABE 沿BC 方向平移,使点A 与点D 重合,得△DFG .若∠B =60°,当四边形ABFD 是菱形时,ABBC的值为 .15.如图,正方形网格中的每个小正方形的边长都相等.△ABC 的三个顶点A ,B ,C 都在格点上,若格点D 在△ABC 外接圆上,则图中符合条件的点D 有 个(点D 与点A 、B 、C 均不重合). 16.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A =70°,BC =2,则图中阴影部分面积为 .三、解答题(本大题共9小题,共68分.) 17.(6分)计算 (212-13)⨯6. 18.(6分)解方程x 2x -1+111-2x=2.19.(6分)解不等式组⎩⎪⎨⎪⎧3(x +2)<x +8,x 2≥x -13.并写出整数解.20.(7分)甲、乙两人玩一个转盘游戏.准备如图三个可以自由转动的转盘,甲转动转盘,乙记录指针停下时所指的数字.游戏规定,转动全部三个转盘,指针停下后,三个数字中有数字相同时,就算甲赢,否则就算乙赢.请判断这个游戏是否公平?说明你的理由.65°40°65°75° 40°75° 40°65°654 ① ② ③ ④40° A B C 第22题(2)10 21.(8分)如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE ∥BC ,过点D 作DE ∥AB ,AC 、DE 交于O 点,AE 、DE 交于E 点,连接EC . (1)求证:AD =EC ;(2)若∠BAC 是直角,求证:四边形ADCE 是菱形.22.(8分)在直角三角形中,如果已知2个元素(其中至少有一个是边),那么就可以求出其余的3个未知元素.对于任意三角形,我们需要知道几个元素就可以求出其余的未知元素呢?思考并解答下列问题:(1)观察下列4幅图,根据图中已知元素,可以求出其余未知元素的三角形是 .(2)如图,在△ABC 中,已知∠B =40°,BC =12,AB =10,能否求出AC ?如果能,请求出AC 的长度(答案保留根号);如果不能,还需要增加哪个条件?(参考数据:sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)23.(9分)已知P (-3,m )和Q (1,m )是二次函数y =2x 2+bx +1图象上的两点.(1)求b 的值;(2)将二次函数y =2x 2+bx +1的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.AB C E(第21题) O(第24题) A B B C A DE C M Q N P ① ② 24.(9分)一块直角三角形木板,它的一条直角边AC 长为1.5m ,面积为1.5m 2.现在要把它加工成一个面积最大的正方形桌面.甲、乙两位同学的加工方法分别如图①、图②所示.请用学过的知识说明哪位同学的加工方法符合要求.25.(9分)一辆货车从A 地出发以每小时100km 的速度匀速驶往B 地,一段时间后,一辆轿车从B 地出发沿同一条路匀速驶往A 地.货车行驶1.8小时后,在距B 地120km 处与轿车相遇.图中线段表示货车离B 地的距离y 1与所用时间x 的关系.根据函数图象探究: (1)求y 1与x 之间的函数关系式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离B 地的距离y 2与所用时间x 的关系的图象,用文字说明该图象与x 轴交点所表示的实际意义.y ∕(第25题)。
江西省2018年中考数学试题(含解析)
江西省2018年中等学校招生考试数学试题卷 【解析】说明:1.全卷满分120分,考试时间120分钟。
2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.﹣2的绝对值是A. −2B.2C.﹣12D.12【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】B ★2.计算(−a)2▪ba 2的结果为A. bB.−bC.abD. ba【解析】本题考察代数式的乘法运算,容易,注意(−a)2=a 2 ,约分后值为b . 【答案】A ★3.如图所示的几何体的左视图为ABCD【解析】本题考察三视图,容易,但注意错误的选项B 和C. 【答案】D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动” 的问卷调查后,绘制出频数分布直方图,由图可知,下列结 论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%【解析】本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】C ★第3题(第4题)乒乓球径毛球足球篮球5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个 正方形组成轴对称图形的平移方向有 A.3个B. 4个 C. 5个 D. 无数个【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向, 否则两个图形不轴对称. 【答案】C ★★6.在平面直角坐标系中,分别过点A(m,0),B(m ﹢2,0)作轴的垂线l 1和l 2 ,探究直线l 1和l 2与双曲 线的关系,下列结论中错误..的是 A.两直线中总有一条与双曲线相交B.当m =1时,两条直线与双曲线的交点到原点的距离相等C.当−2﹤m ﹤0时,两条直线与双曲线的交点在y 轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当m =0时,l 2与双曲线有交点,当m =-2时,l 1与双曲线有交点,当m ≠0,m ≠﹣2时,l 1与l 2和双曲线都有交点,所以A 正确;当m =1时,两交点分别是(1,3),(3,1),到原点的距离都是√10,所以B 正确;当−2﹤m ﹤0时,l 1在y 轴的左侧,l 2在y 轴的右侧,所以C 正确;两交点分别是(m,3m )和(m +2,3m+2),两交点的距离是√4+36[m (m+2)]2 ,当m 无限大时,两交点的距离趋近于2,所以D 不正确;注意是错误的选项.【答案】D ★★★二、填空题(本大题共6小题,每小题3分,共18分) 7.若分式有意义,则的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以. 【答案】★8.2018年5月13日,中国首艘国产航空母舰首次执行海上试航 任务,其排水量超过6万吨,将数60000用科学记数法表示应 为.【解析】本题考察科学记数法,把60000写成a ×10b 的形式,注意1≤a <10 【答案】6×104★9.中国的《九章算术》是世界现代数学的两大泉之一,其中有一问题:“今有牛五,羊二,值金十 两。
2018年中考数学总复习第一编教材知识梳理篇第7章圆第1节圆的有关概念及性质精讲试题2
第七章圆第一节圆的有关概念及性质,河北五年中考真题及模拟)垂径定理及推论1.(2017邯郸中考模拟)将球放在一个圆柱形玻璃杯的杯口上,图中所示是其轴截面的示意图.杯口内径AB 为⊙O的弦,AB=6 cm,⊙O的直径DE⊥AB于点C,测得tan∠DAB=53,该球的直径是__345__cm__.圆周角定理及推论2.(2017张家口中考模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C 作弦CD⊥AB,∠OCD的平分线交⊙O于点P.当点C在上半圆(不包括A,B两点)上移动时,点P( B) A.到CD的距离保持不变B.位置不变︵C.等分BDD.随点C的移动而移动三角形的外心及圆内接三角形3.(2017保定中考模拟)如图,已知直线MN∥AB,把△ABC剪成三部分,点C在直线AB上,点O在直线MN 上,则点O是△ABC的( C)A.垂心B.重心C.内心D.外心4.(2015河北中考)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( B)A.△ABE B.△ACFC.△ABD D.△ADE,中考考点清单)圆的有关概念__圆是中心对称图形,对称中心为⑧理弦,并且平分弦所对的两条,并且圆周角1.在解决与弦有关的问题时,作垂直于弦的直径可以构造直角三角形,从而将求解转化成解直角三角形的问题.2.在同圆或等圆中,如果两个圆心角、两个圆周角、两条弧有一组量相等,那么它们所对应的其余各组量也相等.,中考重难点突破)垂径定理及应用【例1】(黄石中考)如图所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON =( ) A .5 B .7 C .9 D .11【解析】由题意可得,OA =13,∠ONA =90°,AB =24,∴AN =12,∴ON =OA 2-AN 2=132-122=5. 【答案】A1.(2017黔东南中考)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =15°,半径为2,则弦CD 的长为( A )A .2B .-1C . 2D .4与圆有关的角的计算【例2】(2017贵港中考)如图,A ,B ,C ,D 是⊙O 上的四个点,B 是AC ︵的中点,M 是半径OD 上任意一点,若∠BDC=40°,则∠AM B 的度数不可能是( A ) A .45° B .60° C .75° D .85°【解析】据圆周角定理求得∠AOB 的度数一定不小于∠AMB 的度数,据此即可判断. 【答案】D2.(绍兴中考)如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 为( D ) A .60° B .45° C .35° D .30°。
全国2018年中考数学试题分知识点汇编02科学记数法,近似数
全国2018年中考数学试题分知识点汇编02科学记数法,近似数一、选择题1. (2018广东省,2,3)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14 420 000人次,将数14 420 000用科学记数法表示为A. B. C. D.71.44210⨯0.144210⨯81.44210⨯8⨯70.144210【答案】A【解析】科学记数法最后化简形式a×10n(),如果这个数为大数,那么n的计算方式为整数个数减1,如果为极小数,那么n为0的个数110≤<a【知识点】科学记数法2. (2018广西省桂林市,6,3分)2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学计数法表示为( )A.1.28×1014 B.1.28×10-14 C .128×1012 D.0.126×1015【答案】A.【解析】128 000 000 000 000是一个整数数位有15位的数,科学记数法表示一个数,就是把一个数写成a×10n的形式(其中1≤|a|<10,n为整数),故在用科学记数法表示时,a=1.28,n=15-1=14,即128 000 000 000 000=1.28×1014,故选择A.【知识点】科学记数法3. (2018广西省柳州市,5,3分)世界人口约7 000 000 000人,则科学记数法可表示为( )A.9×107B.7×1010C.7×109D.0.7×109【答案】C【解析】科学记数法的表示形式为a×10n,其中1≤|a|<10.若用科学记数法表示绝对值较大的数,则n的值等于该数的整数位数减去1,则a=7,n=10-1=9,故7 000 000 000=7×109.【知识点】科学记数法4. (2018海南省,3,3分)在海南省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注,据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000用科学记数法表示为()A.485×105 B.48.5×106 C.4.85×107 D. 485×108【答案】C【解析】用科学记数法表示较大的数时,其形式为a×10n,其中1≤|a|<10,n是正整数,这里的n等于原数的整数位减1,∴48500000=4.85×107,故选择C.【知识点】科学记数法--------表示较大的数5. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2018甘肃省兰州市,3,4分)据中国电子商务研究中心()发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资.数据1159.56亿元用科学计数法可表示为( )A.1159.56×108元B. 11.5956×1010元C.1.15956×1011元D.1.15956×108元【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.故1159.56亿=1.15956×1011.【知识点】科学记数法7. (2018黑龙江省齐齐哈尔市,题号3,分值3)“厉害了,我的国!” 2018年1月18日,国家统计周对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶.把82万亿用科学记数法表示为()A. 8.2xlO13B. 8.2xl012C.D. 8.2xlO9118.210⨯【答案】A【解析】由科学记数法的定义可知,82万亿=82000000000000= 8.2xlO13 .【知识点】科学记数法.8. (2018湖北省江汉油田潜江天门仙桃市,3,3分) 2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.B.C.D.2⨯11⨯103.5103.510⨯103.510⨯3510【答案】B【解析】本题主要考查科学记数法.科学记数法表示数的标准形式为(且,为整数),所以350亿用科学记数法表示为.故选B .n a 10⨯101<≤a n 103.510⨯【知识点】科学记数法9.(湖北省咸宁市,3,3) 2017年,咸宁市经济运行总体保持平稳较快增长,全年GDP 约123 500 000 000元,增速在全省17个市州中排名第三.将.123 500 000 000用科学记数法表示为( )A .123.5×109 B.12.35×1010 C.1.235×108D .1.235×1011【答案】D【解析】123 500 000 000的整数数位有12位,所以a ×10中,a 的值为1.235,n的值为12-1=11,即123 500 000 000=1.235×1011,故选D .n【知识点】科学记数法10. (2018湖南省怀化市,3,4分)在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列。
广东深圳2018-2019年中考数学试题分类解析专项7:统计与概率
广东深圳2018-2019年中考数学试题分类解析专项7:统计与概率专题7:统计与概率一、选择题1.〔深圳2002年3分〕深圳市某中学环保小组星期六上街开展环保宣传活动,其中十位同学负责收集废电池,每人收集到的废电池分别为5、7、3、4、9、4、6、7、6、4,那么这一组数据的众数是【】A、4B、5C、6D、7【答案】A。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是4,故这组数据的众数为4。
应选A。
2.〔深圳2003年5分〕某班5位同学的身高分别为155,160,160,161,169〔单位:厘米〕,这组数据中,以下说法错误的选项是【】A、众数是160B、中位数是160C、平均数是161D、标准差是25【答案】D。
【考点】众数,中位数,平均数,标准差。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是160,故这组数据的众数为162。
因此A是对的。
中位数是一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔最中间两个数的平均数〕。
由此这组数据的中位数为:160。
因此B是对的。
平均数是指在一组数据中所有数据之和再除以数据的个数。
因此这组数据的平均数为〔155+160+160+161+169〕=161。
故C是对的。
15利用方差的公式可求出方差,和标准差=方差的算术平方根:这组数据的方差为:[〔155-161〕2+〔160-161〕2+〔160-161〕2+〔161-161〕2+〔169-161〕2]=102,15,因此D是错误的。
应选D。
标准差=3.〔深圳2004年3分〕学校开展为贫困地区捐书活动,以下是八名学生捐书的册数:2,2,2,3,6,5,6,7,那么这组数据的中位数为【】A、2B、3C、4D、4.5【答案】C。
【考点】中位数。
【分析】中位数是一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔最中间两个数的平均数〕。
2018年中考数学试题分项版解析汇编:专题07+函数的图像、性质和应用问题(第01期)(广西专版)
一、选择题1.(2015南宁)(3分)如图,已知经过原点的抛物线)0(2≠++=a c bx ax y 的对称轴是直线1-=x ,下列结论中:①0>ab , ②0>++c b a , ③当002<<<-y x 时,. 正确的个数是( )A .0个B .1个C .2个D .3个2.(2015来宾)(3分)已知矩形的面积为10,长和宽分别为x 和y ,则y 关于x 的函数图象大致是( )A .B .C .D .3.(2015柳州)(3分)下列图象中是反比例函数2y x=-图象的是( ) A . B . C . D .4.(2015柳州)(3分)如图,点A (﹣2,1)到y 轴的距离为( )A .﹣2B .1C .2D .55.(2015柳州)(3分)如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >4 6.(2015钦州)(3分)对于函数4y x=,下列说法错误的是( ) A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小7.(2015玉林防城港)(3分)如图,反比例函数k y x =的图象经过二次函数2y ax bx =+图象的顶点(12-,m )(m >0),则有( )A .2a b k =+B .2a b k =-C .0k b <<D .0a k << 8.(2015百色)(3分)已知函数2 1 (0)4 (0)x x y x x +≥⎧=⎨<⎩,当x =2时,函数值y 为( )A .5B .6C .7D .89.(2015北海)(3分)正比例函数y kx =的图象如图所示,则k 的取值范围是( )A .k >0B .k <0C .k >1D .k <110.(2015北海)(3分)如图,在矩形OABC 中,OA =8,OC =4,沿对角线OB 折叠后,点A 与点D 重合,OD 与BC 交于点E ,则点D 的坐标是( )A .(4,8)B .(5,8)C .(245,325)D .(225,365) 11.(2015崇左)(3分)若反比例函数ky x=的图象经过点(2,-6),则k 的值为( )A .-12B .12C .-3D .312.(2015贵港)(3分)如图,已知二次函数212433y x x =-的图象与正比例函数223y x =的图象交于点A (3,2),与x 轴交于点B (2,0),若120y y <<,则x 的取值范围是( )A .0<x <2B .0<x <3C .2<x <3D .x <0或x >3 13.(2015桂林)(3分)如图,直线y kx b =+与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足30a -≤<时,k 的取值范围是( )A .10k -≤<B .13k ≤≤C .1k ≥D .3k ≥14.(2015河池)(3分)将抛物线2y x =向右平移2个单位,再向上平移3个单位后,抛物线的解析式为( )A .2(2)3y x =++B .2(2)3y x =-+C .2(2)3y x =+- D .2(2)3y x =--15.(2015河池)(3分)反比例函数1my x=(0x >)的图象与一次函数2y x b =-+的图象交于A ,B 两点,其中A (1,2),当21y y >时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >216.(2015河池)(3分)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :43y kx =+与x 轴、y 轴分别交于A 、B ,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .1217.(2015贺州)(3分)已知120k k <<,则函数1k y x=和21y k x =-的图象大致是( ) A . B . C . D .二、填空题18.(2015南宁)(3分)如图,点A 在双曲线23y =(0x >)上,点B 在双曲线ky x=(0x >)上(点B 在点A 的右侧),且AB ∥x 轴.若四边形OABC 是菱形,且∠AOC =60°,则k = .19.(2015柳州)(3分)直线21y x =+经过点(0,a ),则a = .20.(2015钦州)(3分)一次函数y kx b =+(0k ≠)的图象经过A (1,0)和B (0,2)两点,则它的图象不经过第 象限.21.(2015钦州)(3分)如图,以O 为位似中心,将边长为256的正方形OABC 依次作位似变化,经第一次变化后得正方形OA 1B 1C 1,其边长OA 1缩小为OA 的12,经第二次变化后得正方形OA 2B 2C 2,其边长OA 2缩小为OA 1的12,经第三次变化后得正方形OA 3B 3C 3,其边长OA 3缩小为OA 2的12,......,按此规律,经第n 次变化后,所得正方形OA n B n C n 的边长为正方形OABC 边长的倒数,则n = .22.(2015梧州)(3分)已知反比例函数ky x=经过点(1,5),则k = . 23.(2015北海)(3分)已知点A (2-,m )是反比例函数8y x=图象上的一点,则m 的值为 .24.(2015北海)(3分)如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为P 1,P 2,P 3,…,P n ﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T 1,T 2,T 3,…,T n ﹣1,用S 1,S 2,S 3,…,S n ﹣1分别表示Rt △T 1OP 1,Rt △T 2P 1P 2,…,Rt △T n ﹣1P n ﹣2P n ﹣1的面积,则当n =2015时,S 1+S 2+S 3+…+S n ﹣1= .25.(2015贵港)(3分)如图,已知点A 1,A 2,…,A n 均在直线1y x =-上,点B 1,B 2,…,B n 均在双曲线1y x=-上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴,B n A n +1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若11a =-,则a 2015= .26.(2015桂林)(3分)如图,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A 、C 的坐标分别是(2,4)、(3,0),过点A 的反比例函数ky x=的图象交BC 于D ,连接AD ,则四边形AOCD 的面积是 .27.(2015贺州)(3分)函数1y x =+的自变量x 的取值范围为 .28.(2015贺州)(3分)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①abc >0,②a ﹣b +c <0,③2a =b ,④4a +2b +c >0,⑤若点(﹣2,1y )和(13-,2y )在该图象上,则12y y >.其中正确的结论是 (填入正确结论的序号).三、解答题29.(2015南宁)(10分)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米. (1)用含a 的式子表示花圃的面积.(2)如果通道所占面积是整个长方形空地面积的83,求出此时通道的宽. (3)已知某园林公司修建通道、花圃的造价1y (元)、2y (元)与修建面积x (m 2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?30.(2015南宁)(10分)在平面直角坐标系中,已知A 、B 是抛物线2y ax =(0a >)上两个不同的点,其中A 在第二象限,B 在第一象限,(1)如图1所示,当直线AB 与x 轴平行,∠AOB =90°,且AB =2时,求此抛物线的解析式和A 、B 两点的横坐标的乘积.(2)如图2所示,在(1)所求得的抛物线上,当直线AB 与x 轴不平行,∠AOB 仍为90°时,A .B 两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.(3)在(2)的条件下,若直线22--=x y 分别交直线AB ,y 轴于点P 、C ,直线AB 交y 轴于点D ,且∠BPC =∠OC P ,求点P 的坐标.31.(2015来宾)(8分)过点(0,﹣2)的直线1l :1y kx b =+(0k ≠)与直线2l :21y x =+交于点P (2,m ).(1)写出使得12y y <的x 的取值范围; (2)求点P 的坐标和直线1l 的解析式.32.(2015来宾)(12分)在矩形ABCD 中,AB =a ,AD =b ,点M 为BC 边上一动点(点M 与点B 、C 不重合),连接AM ,过点M 作MN ⊥AM ,垂足为M ,MN 交CD 或CD 的延长线于点N . (1)求证:△CMN ∽△BAM ;(2)设BM =x ,CN =y ,求y 关于x 的函数解析式.当x 取何值时,y 有最大值,并求出y 的最大值;(3)当点M 在BC 上运动时,求使得下列两个条件都成立的b 的取值范围:①点N 始终在线段CD 上,②点M 在某一位置时,点N 恰好与点D 重合.33.(2015柳州)(8分)如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数ky x=(0k >)的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EF A 的面积最大,最大面积是多少?34.( 2015柳州)(12分)如图,已知抛物线21(76)2y x x =--+的顶点坐标为M ,与x 轴相交于A ,B 两点(点B 在点A 的右侧),与y 轴相交于点C .(1)用配方法将抛物线的解析式化为顶点式:2()y a x h k =-+(0a ≠),并指出顶点M 的坐标; (2)在抛物线的对称轴上找点R ,使得CR +AR 的值最小,并求出其最小值和点R 的坐标;(3)以AB 为直径作⊙N 交抛物线于点P (点P 在对称轴的左侧),求证:直线MP 是⊙N 的切线.35.(2015钦州)(8分)抛物线243y x x =-+与x 轴交于A 、B 两点(点A 在点B 的左侧),点C 是此抛物线的顶点.(1)求点A 、B 、C 的坐标; (2)点C 在反比例函数ky x=(0k ≠)的图象上,求反比例函数的解析式. 36.(2015梧州)(8分)梧州市特产批发市场有龟苓膏粉批发,其中A 品牌的批发价是每包20元,B 品牌的批发价是每包25元,小王需购买A 、B 两种品牌的龟苓膏共1000包.(1)若小王按需购买A 、B 两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y 元,设A 品牌买了x 包,请求出y 与x 之间的函数关系式.(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A 品牌比B 品牌少5元,请你帮他计算,A 品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)?37.(2015梧州)(12分)如图,抛物线22y ax bx =++与坐标轴交于A 、B 、C 三点,其中B (4,0)、C (﹣2,0),连接AB 、AC ,在第一象限内的抛物线上有一动点D ,过D 作DE ⊥x 轴,垂足为E ,交AB 于点F . (1)求此抛物线的解析式;(2)在DE 上作点G ,使G 点与D 点关于F 点对称,以G 为圆心,GD 为半径作圆,当⊙G 与其中一条坐标轴相切时,求G 点的横坐标;(3)过D 点作直线DH ∥AC 交AB 于H ,当△DHF 的面积最大时,在抛物线和直线AB 上分别取M 、N 两点,并使D 、H 、M 、N 四点组成平行四边形,请你直接写出符合要求的M 、N 两点的横坐标.38.( 2015玉林防城港)(9分)某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y (千克)与销售价x (元/千克)存在一次函数关系,如图所示. (1)求y 关于x 的函数关系式(不要求写出x 的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?39.(2015玉林防城港)(12分)已知:一次函数210y x =-+的图象与反比例函数ky x=(0k >)的图象相交于A ,B 两点(A 在B 的右侧).(1)当A (4,2)时,求反比例函数的解析式及B 点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P ,使△P AB 是以AB 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)当A (a ,﹣2a +10),B (b ,﹣2b +10)时,直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D .若52BC BD =,求△ABC 的面积.40.(2015百色)(6分)如图,反比例函数my x=的图象与一次函数y kx b =+的图象交于M (1,3),N 两点,点N 的横坐标为﹣3.(1)根据图象信息可得关于x 的方程m kx b x=+的解为 ; (2)求一次函数的解析式.41.(2015百色)(12分)抛物线2y x bx c =++经过A (0,2),B (3,2)两点,若两动点D 、E 同时从原点O 分别沿着x 轴、y 轴正方向运动,点E 的速度是每秒1个单位长度,点D 的速度是每秒2个单位长度.(1)求抛物线与x 轴的交点坐标;(2)若点C 为抛物线与x 轴的交点,是否存在点D ,使A 、B 、C 、D 四点围成的四边形是平行四边形?若存在,求点D 的坐标;若不存在,说明理由;(3)问几秒钟时,B 、D 、E 在同一条直线上?42.(2015北海)(12分)如图1所示,已知抛物线245y x x =-++的顶点为D ,与x 轴交于A 、B 两点,与y 轴交于C 点,E 为对称轴上的一点,连接CE ,将线段CE 绕点E 按逆时针方向旋转90°后,点C 的对应点C ′恰好落在y 轴上.(1)直接写出D 点和E 点的坐标;(2)点F 为直线C ′E 与已知抛物线的一个交点,点H 是抛物线上C 与F 之间的一个动点,若过点H 作直线HG 与y 轴平行,且与直线C ′E 交于点G ,设点H 的横坐标为m (0<m <4),那么当m 为何值时,ΔHGF ΔBGF :S S =5:6?(3)图2所示的抛物线是由245y x x =-++向右平移1个单位后得到的,点T (5,y )在抛物线上,点P 是抛物线上O 与T 之间的任意一点,在线段OT 上是否存在一点Q ,使△PQT 是等腰直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.43.(2015崇左)(12分)如图,在平面直角坐标系中,点M 的坐标是(5,4),⊙M 与y 轴相切于点C ,与x 轴相交于A 、B 两点.(1)则点A 、B 、C 的坐标分别是A (__,__),B (__,__),C (__,__);(2)设经过A 、B 两点的抛物线解析式为21(5)4y x k =-+,它的顶点为F ,求证:直线FA 与⊙M 相切; (3)在抛物线的对称轴上,是否存在点P ,且点P 在x 轴的上方,使△PBC 是等腰三角形.如果存在,请求出点P 的坐标;如果不存在,请说明理由.44.(2015贵港)(5分)如图,已知△ABC 三个顶点坐标分别是A (1,3),B (4,1),C (4,4).(1)请按要求画图:①画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1;②画出△ABC 绕着原点O 顺时针旋转90°后得到的△A 2B 2C 2.(2)请写出直线B 1C 1与直线B 2C 2的交点坐标.45.(2015贵港)(7分)如图,一次函数y x b =+的图象与反比例函数k y x=的图象交于点A 和点B (﹣2,n ),与x 轴交于点C (﹣1,0),连接OA .(1)求一次函数和反比例函数的解析式;(2)若点P 在坐标轴上,且满足P A =OA ,求点P 的坐标.46.(2015贵港)(10分)如图,抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.①当P A ⊥NA ,且P A =NA 时,求此时点P 的坐标;②当四边形P ABC 的面积最大时,求四边形P ABC 面积的最大值及此时点P 的坐标.47.(2015桂林)(12分)如图,已知抛物线212y x bx c =-++与坐标轴分别交于点A (0,8)、B (8,0)和点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动.(1)直接写出抛物线的解析式:;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积?若存在,求出P 点的坐标;若不存在,请说明理由.48.(2015河池)(8分)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)分别写出两种花卉的付款金额y (元)关于购买量x (盆)的函数解析式;(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?49.(2015河池)(12分)如图1,抛物线223y x x =-++与x 轴交于A ,B ,与y 轴交于C ,抛物线的顶点为D ,直线l 过C 交x 轴于E (4,0).(1)写出D 的坐标和直线l 的解析式;(2)P (x ,y )是线段BD 上的动点(不与B ,D 重合),PF ⊥x 轴于F ,设四边形OFPC 的面积为S ,求S 与x 之间的函数关系式,并求S 的最大值;(3)点Q 在x 轴的正半轴上运动,过Q 作y 轴的平行线,交直线l 于M ,交抛物线于N ,连接CN ,将△CMN 沿CN 翻转,M 的对应点为M ′.在图2中探究:是否存在点Q ,使得M ′恰好落在y 轴上?若存在,请求出Q 的坐标;若不存在,请说明理由.50.(2015贺州)(12分)如图,已知抛物线2y x bx c =-++与直线AB 相交于A (﹣3,0),B (0,3)两点.(1)求这条抛物线的解析式;(2)设C 是抛物线对称轴上的一动点,求使∠CBA =90°的点C 的坐标;(3)探究在抛物线上是否存在点P,使得△APB的面积等于3?若存在,求出点P的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础知识反馈卡·5.3
时间:15分钟 满分:50分
一、选择题(每小题4分,共20分)
1.在半径为12的⊙O 中,60°圆心角所对的弧长是( )
A .6π
B .4π
C .2π
D .π
2.一条弦分圆周为5∶4两部分,则这条弦所对的圆周角的度数为( )
A .80°
B .100°
C .80°或100°
D .以上均不正确
3.如图J5-3-1,半径为1的四个圆两两相切,则图中阴影部分的面积为( )
A .4-π
B .8-π
C .2(4-π)
D .4-2π
图J5-3-1 图J5-3-2 图J5-3-3
4.如图J5-2-2是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是( )
A .60°
B .90°
C .120°
D .180°
5.如图J5-3-3,P A ,PB 是⊙O 的切线,切点是A ,B ,已知∠P =60°,OA =3,那么∠AOB 所对的弧的长度为( )
A .6π
B .5π
C .3π
D .2π
二、填空题(每小题4分,共16分)
6.圆锥底面半径为12,母线长为2,它的侧面展开图的圆心角是
______.
7.正多边形的一个内角为120°,则该多边形的边数为________.
8.已知扇形的半径为3 cm ,扇形的弧长为π cm ,则该扇形的面积是________cm 2,扇形的圆心角为________度.
9.如图J5-3-4,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是________.
图J5-3-4
答题卡
6.________
8.________________9.________
三、解答题(共14分)
10.如图J5-3-5,⊙O的半径为1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π).
图J5-3-5
基础知识反馈卡·5.3
1.B 2.C 3.A 4.B 5.D
6.90°7.68.1.5π60
9.60π10.略。