2016年高考理科数学真题+模拟新题分类汇编:B单元 函数与导数
2016年高考数学文试题分类汇编:导数及其应用
2016年高考数学文试题分类汇编:导数及其应用D二、填空题1、(2016年天津高考)已知函数()(2+1),()xf x x e f x '=为()f x 的导函数,则(0)f '的值为__________.2、(2016年全国III 卷高考)已知()f x 为偶函数,当0x ≤ 时,1()x f x e x --=-,则曲线()y f x =在点(1,2)处的切线方程式_____________________________.三、解答题1、(2016年北京高考)设函数()32.f x x ax bx c =+++(I )求曲线().y f x =在点()()0,0f 处的切线方程;(II )设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围;(III )求证:230ab ->是().f x 有三个不同零点的必要而不充分条件.2、(2016年江苏省高考)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠. (1) 设a =2,b =12.① 求方程()f x =2的根;②若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(2)若01,1<<>,函数()()2a b=-有且只有1个零点,g x f x求ab的值.3、(2016年山东高考)设f(x)=x ln x–ax2+(2a–1)x,a ∈R.(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;(Ⅱ)已知f(x)在x=1处取得极大值.求实数a的取值范围.4、(2016年四川高考)设函数f(x)=a x 2-a -lnx ,g(x)=1x -e e x ,其中a ∈R ,e=2.718…为自然对数的底数。
(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x >1时,g(x)>0;(Ⅲ)确定a 的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立。
2016年高考数学理真题分类汇编:导数及其应用
2016年高考数学理试题分类汇编导数及其应用一、选择题1、(2016年四川高考)设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A2、(2016年全国I 高考)函数y =2x 2–e |x |在[–2,2]的图像大致为【答案】D二、填空题1、(2016年全国II 高考)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .【答案】1ln 2-2、(2016年全国III 高考)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程 是_______________。
【答案】21y x =--三、解答题1、(2016年北京高考) 设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+, (1)求a ,b 的值; (2)求()f x 的单调区间.【解析】 (I )()e a x f x x bx -=+∴()e e (1)e a x a x a x f x x b x b ---'=-+=-+∵曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ ∴(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①2(2)(12)e e 1a f b -'=-+=- ②由①②解得:2a =,e b =(II )由(I )可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,∴222()e (1)e (2)e x x x g x x x ---'=---=-∴g 的最小值是(2)(12)e 1g =-=-∴()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ∀∈R 恒成立 ∴()f x 在(),-∞+∞上单调递增,无减区间.2、(2016年山东高考)已知()221()ln ,R x f x a x x a x -=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立. 【解析】(Ⅰ) 求导数322)11(=)(′x x x a x f --- 322)(1(=x ax x )--当0≤a 时,(0,1)∈x ,0>)(′x f ,)(x f 单调递增, )(1,∈+∞x ,0<)(′x f ,)(x f 单调递减;当0>a 时,3322+(2)(1(=2)(1(=)(′x ax a x x a x ax x x f ))--)--(1) 当<2<a 0时,1>2a, (0,1)∈x 或),(∈+∞2a x ,0>)(′x f ,)(x f 单调递增, )(1,∈ax 2,0<)(′x f ,)(x f 单调递减; (2) 当2=a 时,1=2a, )(0,∈+∞x ,0≥)(′x f ,)(x f 单调递增, (3) 当2>a 时,1<2<0a, )(0,∈ax 2或∞)(1,∈+x ,0>)(′x f ,)(x f 单调递增, ,1)(∈ax 2,0<)(′x f ,)(x f 单调递减; (Ⅱ) 当1=a 时,212+ln =)(x x x x x f --,32322+11=2)(1(=)(′xx x x x x x f 2--)--于是)2+1112+ln =)(′)(322xx x x x x x x f x f 2---(---,-1-1-322+3+ln =xx x x x ,]2,1[∈x令x x x ln =)g(- ,322+3+=)h(xx x x -1-1,]2,1[∈x , 于是)(+(g =)(′)(x h x x f x f )-, 0≥1=1=)(g ′xx x x -1-,)g(x 的最小值为1=g(1);又42432+=+=)(h ′x x x x x x x 6-2-362-3-设6+23=)(θ2x x x --,]2,1[∈x ,因为1=)1(θ,10=)2(θ-, 所以必有]2,1[0∈x ,使得0=)(θ0x ,且0<<1x x 时,0>)(θx ,)(x h 单调递增; 2<<0x x 时,0<)(θx ,)(x h 单调递减;又1=)1(h ,21=)2(h ,所以)(x h 的最小值为21=)2(h . 所以23=21+1=)2(+1(g >)(+(g =)(′)(h x h x x f x f ))-. 即23)()(+'>x f x f 对于任意的]2,1[∈x 成立.3、(2016年四川高考)设函数f (x )=ax 2-a -ln x ,其中a ∈R. (I )讨论f (x )的单调性;(II )确定a 的所有可能取值,使得f (x ) >-e 1-x+在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。
2016年高考数学真题解析之导数真题(理科)
1 x
2 x2
2 x3
)
x
ln
x
3 x
1 x2
2 x3
1
,
x [1,2] ,
令 g(x)
x ln x, h(x)
3 x
1 x2
2 x3
1, x [1,2] .
则 f (x) f '(x) g(x) h(x) ,
由
g
'(x)
x 1 x
0
可得
g(x)
(Ⅰ)求 f(x)的单调区间; (Ⅱ)若 f(x)存在极值点 x0,且 f(x1)= f(x0),其中 x1≠x0,求证:x1+2x0=3;
1 (Ⅲ)设 a>0,函数 g(x)= |f(x)|,求证:g(x)在区间[0,2]上的最大值不.小.于.4 .
5.设函数 f (x) cos 2x ( 1)(cos x 1) ,其中α>0,记 f (x) 的最大值为 A.
2.(Ⅰ)当 x (0, 1 ) 时, f '(x) <0, f (x) 单调递减;当 x ( 1 ,+) 时, f ' (x) >0,
2a
2a
f (x) 单调递增;(Ⅱ) a Î [1 ,+¥) .
2 【来源】2016 年全国普通高等学校招生统一考试理科数学(四川卷精编版) 【解析】 试题分析:本题考查导数的计算、利用导数求函数的单调性,解决恒成立问题,考查学生的
试卷第 2页,总 2页
本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
参考答案 1.(Ⅰ)见解析;(Ⅱ)见解析 【来源】2016 年全国普通高等学校招生统一考试理科数学(山东卷精编版) 【解析】
2016年高考理科数学真题+模拟新题分类汇编:H单元 解析几何
H 单元 解析几何H1 直线的倾斜角与斜率、直线的方程 16.H1、H4[2016·全国卷Ⅲ] 已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.16.4 [详细分析] 直线l :m (x +3)+y -3=0过定点(-3,3),又|AB |=23,∴|3m -3|1+m 22+(3)2=12,解得m =-33.直线方程中,当x =0时,y =2 3.又(-3,3),(0,23)两点都在圆上,∴直线l 与圆的两交点为A (-3,3),B (0,23).设过点A (-3,3)且与直线l 垂直的直线为3x +y +c 1=0,将(-3,3)代入直线方程3x +y +c 1=0,得c 1=2 3.令y =0,得x C =-2,同理得过点B 且与l 垂直的直线与x 轴交点的横坐标为x D =2,∴|CD |=4.H2 两直线的位置关系与点到直线的距离12.E5、H2[2016·江苏卷] 已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.12.45,13 [详细分析] 可行域如图中阴影部分所示,x 2+y 2为可行域中任一点(x ,y )到原点(0,0)的距离的平方.由图可知,x 2+y 2的最小值为原点到直线AC 的距离的平方,即|-2|52=45,最大值为OB 2=22+32=13.H3 圆的方程 3.H2[2016·上海卷] 已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1与l 2的距离是________.3.255 [详细分析] 由两平行线间的距离公式得d =|-1-1|22+12=255.18.H3、H4[2016·江苏卷] 如图1-6,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.18.解:圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5. (1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1. 因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m ,即2x -y +m =0, 则圆心M 到直线l 的距离 d =|2×6-7+m |5=|m +5|5.因为BC =OA =22+42=25,而MC 2=d 2+BC22,所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t ,0),TA →+TP →=TQ →,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.② 将①代入②,得(x 1-t -4)2+(y 1-3)2=25.于是点P (x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上, 从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点,所以5-5≤[(t +4)-6]2+(3-7)2≤5+5,解得2-221≤t ≤2+221. 因此,实数t 的取值范围是[2-221,2+221].H4 直线与圆、圆与圆的位置关系 16.H1、H4[2016·全国卷Ⅲ] 已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.16.4 [详细分析] 直线l :m (x +3)+y -3=0过定点(-3,3),又|AB |=23,∴|3m -3|1+m 22+(3)2=12,解得m =-33.直线方程中,当x =0时,y =2 3.又(-3,3),(0,23)两点都在圆上,∴直线l 与圆的两交点为A (-3,3),B (0,23).设过点A (-3,3)且与直线l 垂直的直线为3x +y +c 1=0,将(-3,3)代入直线方程3x +y +c 1=0,得c 1=2 3.令y =0,得x C =-2,同理得过点B 且与l 垂直的直线与x 轴交点的横坐标为x D =2,∴|CD |=4.4.H4[2016·全国卷Ⅱ] 圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3 D .24.A [详细分析] 圆x 2+y 2-2x -8y +13=0化为标准方程为(x -1)2+(y -4)2=4,故圆心为(1,4),圆心到直线的距离d =|a +4-1|a 2+1=1,解得a =-43.12.H4[2016·天津卷] 如图1-3,AB 是圆的直径,弦CD 与AB 相交于点E ,BE =2AE =2,BD =ED ,则线段CE 的长为________.图1-312.233 [详细分析] 设圆的圆心为O ,连接OD ,可得BO =32,△BOD ∽△BDE ,∴BD 2=BO ·BE =3,∴BD =DE = 3.连接AC ,易知△AEC ∽△DEB ,∴AE DE =CE BE ,即13=EC2,∴EC=233.18.H3、H4[2016·江苏卷] 如图1-6,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.18.解:圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5. (1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1. 因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m ,即2x -y +m =0, 则圆心M 到直线l 的距离 d =|2×6-7+m |5=|m +5|5.因为BC =OA =22+42=25, 而MC 2=d 2+BC22,所以25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t ,0),TA →+TP →=TQ →,所以⎩⎪⎨⎪⎧x 2=x 1+2-t ,y 2=y 1+4.①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.② 将①代入②,得(x 1-t -4)2+(y 1-3)2=25.于是点P (x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上, 从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点,所以5-5≤[(t +4)-6]2+(3-7)2≤5+5,解得2-221≤t ≤2+221. 因此,实数t 的取值范围是[2-221,2+221].H5 椭圆及其几何性质10.H5,H8[2016·江苏卷] 如图1-2,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.10.63 [详细分析] 方法一:由⎩⎨⎧y =b2,x 2a 2+y2b 2=1,可得B (-32a ,b 2),C (32a ,b 2).又由F (c ,0),得FB →=(-32a -c ,b 2),FC →=(32a -c ,b 2).又∠BFC =90°,所以FB →·FC →=0,化简可得2a 2=3c 2,即e 2=c 2a 2=23,故e =63.方法二:同方法一可得B (-32a ,b 2),C (32a ,b2),所以BC =3a ,由椭圆的焦半径公式得BF =a -ex B =a +e ·32a ,CF =a -ex C =a -e ·32a ,又∠BFC =90°,所以BF 2+CF 2=BC 2,即(a +e ·32a )2+(a -e ·32a )2=(3a )2,式子两边同除以a 2可得e 2=23,即e =63.11.H5[2016·全国卷Ⅲ] 已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.3411.A [详细分析] 设M (-c ,y 0),则AM 所在直线方程为y =y 0-c +a(x +a ),令x =0,得E (0,ay 0-c +a ).BM 所在直线方程为y =y 0-c -a (x -a ),令x =0,得y =-ay 0-c -a.由题意得-ay 0-c -a =12×ay 0-c +a,解得a =3c ,故离心率e =c a =13.19.H5,H8[2016·北京卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:|AN |·|BM |为定值.19.解:(1)由题意得⎩⎨⎧c a =32,12ab =1,a 2=b 2+c 2,解得a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)证明:由(1)知,A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时,直线P A 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=|1-y M |=1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=|2-x N |=2+x 0y 0-1.所以|AN |·|BM |=2+x 0y 0-1·1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2=4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4. 综上,|AN |·|BM |为定值.20.H5[2016·四川卷] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T .(1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l 交于点P ,证明:存在常数λ,使得|PT |2=λ|P A |·|PB |,并求λ的值.20.解:(1)由已知得,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1.由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b 2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.①方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2,所以椭圆E 的方程为x 26+y 23=1,点T 的坐标为(2,1).(2)证明:由已知可设直线l ′的方程为y =12x +m (m ≠0),由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎨⎧x =2-2m3,y =1+2m 3,所以P 点坐标为(2-2m 3,1+2m 3),|PT |2=89m 2.设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎨⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2),由Δ>0,解得-322<m <322.由②得x 1+x 2=-4m3,x 1x 2=4m 2-123,所以|P A |=2-2m 3-x 12+1+2m 3-y 12=52|2-2m3-x 1|,同理|PB |=52|2-2m3-x 2 | . 所以|P A |·|PB |=54|(2-2m 3-x 1)(2-2m 3-x 2)|=54|(2-2m 3)2-(2-2m3)(x 1+x 2)+x 1x 2|=54|(2-2m 3)2-(2-2m 3)(-4m 3)+4m 2-123|=109m 2.故存在常数λ=45,使得|PT |2=λ|P A |·|PB |.21.H5,H7,H10[2016·山东卷] 平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程.(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i)求证:点M 在定直线上;(ii)直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.图1-521.解:(1)由题意知a 2-b 2a =32,可得a 2=4b 2.因为抛物线E 的焦点F (0,12),所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1. (2)(i)证明:设P (m ,m 22)(m >0),由x 2=2y ,可得y ′=x , 所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ),即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0), 联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0. 由Δ>0,得0<m <2+5(或0<m 2<2+5)(*), 且x 1+x 2=4m 34m 2+1.因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因此y 0x 0=-14m,所以直线OD 的方程为y =-14mx . 联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14,所以点M 在定直线y =-14上.(ii)由(i)知直线l 的方程为y =mx -m 22.令x =0,得y =-m 22,所以G (0,-m 22).又P (m ,m 22),F (0,12),D (2m 34m 2+1,-m 22(4m 2+1)),所以S 1=12·|GF |·m =(m 2+1)m 4,S 2=12·|PM |·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1),所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.设t =2m 2+1(t >1),则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t+2, 当1t =12,即t =2时,S 1S 2取到最大值94, 此时m =22,满足(*)式,所以P 点坐标为(22,14). 因此S 1S 2的最大值为94,此时点P 的坐标为(22,14).19.H5、H8[2016·天津卷] 设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A ,已知1|OF |+1|OA |=3e|F A |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.19.解:(1)设F (c ,0),由1|OF |+1|OA |=3e |F A |,即1c +1a =3ca (a -c ),可得a 2-c 2=3c 2.又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0,解得x =2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k ,因此直线MH 的方程为y =-1k x+9-4k 212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k ,得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64, 所以直线l 的斜率的取值范围为(-∞,-64]∪[64,+∞). 19.H5[2016·浙江卷] 如图1-5,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示); (2)若任意以点A (0,1)求椭圆离心率的取值范围.图1-519.解:(1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0,故x 1=0,x 2=-2a 2k1+a 2k 2.因此|AP |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AΡ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2.由(1)知,|AP |=2a 2|k 1|1+k 211+a 2k 21,|AQ |=2a 2|k 2|1+k 221+a 2k 22,故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0. 由于k 1≠k 2,k 1,k 2>0得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此(1k 21+1)(1k 22+1)=1+a 2(a 2-2),①因为①式关于k 1,k 2的方程有解的充要条件是 1+a 2(a 2-2)>1, 所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,由e =c a =a 2-1a 得,所求离心率的取值范围为0<e ≤22.H6 双曲线及其几何性质13.H6[2016·北京卷] 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.13.2 [详细分析] 不妨令B 为双曲线的右焦点,A 在第一象限,如图所示.因为四边形OABC 为正方形,|OA |=2,所以c =2 2.因为直线OA 是双曲线的一条渐近线,∠AOB =π4,所以ba =tan π4=1,即a =b ,又a 2+b 2=c 2=8,所以a =2.3.H6[2016·江苏卷] 在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.3.210 [详细分析] 由题目所给方程可得a 2=7,b 2=3,故c 2=10,所以焦距为210.5.H6[2016·全国卷Ⅰ] 已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)5.A [详细分析] 若已知方程表示双曲线,则(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2.又4=4m 2,所以m 2=1,所以-1<n <3.11.H6[2016·全国卷Ⅱ] 已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左、右焦点,点M 在E上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3 D .211.A [详细分析] 易知离心率e =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13= 2.13.H6[2016·山东卷] 已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0).若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.13.2 [详细分析] 将x =-c 代入x 2a 2-y 2b 2=1,得y =±b 2a .∵2|AB |=3|BC |,∴2×2b 2a =3×2c ,整理得2c 2-2a 2-3ac =0,即2e 2-3e -2=0,解得e =2或e =-12(舍去).6.H6[2016·天津卷] 已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1B.x 24-4y 23=1 C.x 24-y 24=1 D.x 24-y 212=1 6.D [详细分析] 由题意及双曲线的对称性画出示意图如图所示,渐近线OB :y =b 2x .设Bx 0,b 2x 0,则12·x 0·b 2x 0=2b 8,∴x 0=1,∴B (1,b 2),∴12+b 24=22,∴b 2=12,∴双曲线方程为x 24-y 212=1.21.H6,H8,F3[2016·上海卷] 双曲线x 2-y 2b2=1(b >0)的左、右焦点分别为F 1,F 2,直线l 过F 2且与双曲线交于A ,B 两点.(1)若l 的倾斜角为π2,△F 1AB 是等边三角形,求双曲线的渐近线方程;(2)设b =3,若l 的斜率存在,且(F 1A →+F 1B →)·AB →=0,求l 的斜率.21.解:(1)设A (x A ,y A ),F 2(c ,0),c =1+b 2,由题意,y 2A =b 2(c 2-1)=b 4, 因为△F 1AB 是等边三角形,所以2c =3|y A |, 即4(1+b 2)=3b 4,解得b 2=2.故双曲线的渐近线方程为y =±2x . (2)由已知,F 1(-2,0),F 2(2,0).设A (x 1,y 1),B (x 2,y 2),直线l :y =k (x -2),显然k ≠0.由⎩⎪⎨⎪⎧x 2-y 23=1,y =k (x -2),得(k 2-3)x 2-4k 2x +4k 2+3=0.因为l 与双曲线交于两点,所以k 2-3≠0,且Δ=36(1+k 2)>0. 设AB 的中点为M (x M ,y M ).由(F 1A →+F 1B →)·AB →=0,即F 1M →·AB →=0,知F 1M ⊥AB ,故kF 1M ·k =-1. 又x M =x 1+x 22=2k 2k 2-3,y M =k (x M -2)=6k k 2-3,所以kF 1M =3k 2k 2-3,所以3k 2k 2-3·k =-1,得k 2=35,故l 的斜率为±155.H7 抛物线及其几何性质 10.H7[2016·全国卷Ⅰ] 以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点,已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A .2 B .4 C .6 D .8 10.B [详细分析] 设抛物线方程为y 2=2px (p >0),点A 在第一象限,点D 在第二象限.根据抛物线的对称性可得点A 的纵坐标为22,代入抛物线方程得x =4p ,即点A (4p,22).易知点D (-p 2,5),由于点A ,D 都在以坐标原点为圆心的圆上,所以16p 2+8=p 24+5,解得p =4,此即为抛物线的焦点到准线的距离.8.H7[2016·四川卷] 设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1 8.C [详细分析] 如图,由题可知F ⎝⎛⎭⎫p 2,0,设P 点坐标为⎝⎛⎭⎫y 22p ,y 0. 显然,当y 0<0时,k OM <0;当y 0>0时,k OM >0.所以要求k OM 的最大值,不妨设y 0>0. 因为OM → = OF → + FM → = OF → + 13FP → = OF →+ 13(OP →-OF →) = 13OP → + 23OF → =⎝⎛⎭⎫y 206p+ p 3,y 03,所以k OM =y 03y 206p + p 3 = 2y 0p + 2p y 0≤222 = 22,当且仅当y 20=2p 2时,等号成立. 14.H7[2016·天津卷] 设抛物线⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数,p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C (72p ,0),AF 与BC 相交于点E .若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.14.6 [详细分析] 由题意得,抛物线的普通方程为y 2=2px ,∴F (p2,0),∴|CF |=3p ,∴|AB |=|AF |=32p ,∴A (p ,±2p ).易知△AEB ∽△FEC ,∴|AE ||FE |=|AB ||FC |=12,故S △ACE =13S △ACF =13×3p ×2p ×12=22p 2=32,∴p 2=6.∵p >0,∴p = 6.9.H7[2016·浙江卷] 若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________.9.9 [详细分析] 由题意得,p =2,则p2=1,即原点到准线的距离是1.由点M 到焦点的距离与到准线的距离相等,知点M 到准线的距离为10,故M 到y 轴的距离为10-1=9.20.H7[2016·上海卷] 有一块正方形菜地EFGH ,EH 所在直线是一条小河,收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域S 1和S 2,其中S 1中的蔬菜运到河边较近,S 2中的蔬菜运到F 点较近,而菜地内S 1和S 2的分界线C 上的点到河边与到F 点的距离相等.现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图1-5所示.(1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出S 1的面积是S 2面积的两倍,由此得到S 1面积的“经验值”为83.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判断哪一个更接近于S 面积的“经验值”.图1-520.解:(1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以EH 为准线的抛物线在正方形EFGH 内的部分,其方程为y 2=4x (0<y <2).(2)依题意,点M 的坐标为(14,1).所求的矩形面积为52,所求的五边形面积为114.矩形面积与“经验值”之差的绝对值为|52-83|=16,而五边形面积与“经验值”之差的绝对值为|114-83|=112,所以五边形面积更接近于S 1面积的“经验值”.22.H7、H8[2016·江苏卷] 如图1-8,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程.(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.22.解:(1)抛物线C :y 2=2px (p >0)的焦点为p2,0,由点p 2,0在直线l :x -y -2=0上,得p2-0-2=0,即p =4.所以抛物线C 的方程为y 2=8x .(2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点M (x 0,y 0),因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ ,于是直线PQ 的斜率为-1,则可设其方程为y =-x +b .①证明:由⎩⎪⎨⎪⎧y 2=2px ,y =-x +b 消去x 得y 2+2py -2pb =0.(*)因为P 和Q 是抛物线C 上的相异两点,所以y 1≠y 2, 从而Δ=(2p )2-4×(-2pb )>0,化简得p +2b >0.方程(*)的两根为y 1,2=-p ±p 2+2pb ,从而y 0=y 1+y 22=-p .因为M (x 0,y 0)在直线l 上,所以x 0=2-p . 因此,线段PQ 的中点坐标为(2-p ,-p ). ②因为M (2-p ,-p )在直线y =-x +b 上, 所以-p =-(2-p )+b ,即b =2-2p .由①知p +2b >0,于是p +2(2-2p )>0,所以p <43.因此,p 的取值范围为0,43.20.H7、H9[2016·全国卷Ⅲ] 已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.20.解:由题设知F (12,0).设l 1:y =a ,l 2:y =b ,则ab ≠0,且A (a 22,a ),B (b 22,b ),P (-12,a ),Q (-12,b ),R (-12,a +b2).记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,所以1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a=-ab a =-b =k 2, 所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=0(舍去)或x 1=1. 设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =yx -1(x ≠1).而a +b 2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为y 2=x -1.21.H5,H7,H10[2016·山东卷] 平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程.(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i)求证:点M 在定直线上;(ii)直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.图1-521.解:(1)由题意知a 2-b 2a =32,可得a 2=4b 2.因为抛物线E 的焦点F (0,12),所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1. (2)(i)证明:设P (m ,m 22)(m >0),由x 2=2y ,可得y ′=x , 所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ),即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0), 联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0.由Δ>0,得0<m <2+5(或0<m 2<2+5)(*), 且x 1+x 2=4m 34m 2+1.因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因此y 0x 0=-14m,所以直线OD 的方程为y =-14mx . 联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14,所以点M 在定直线y =-14上.(ii)由(i)知直线l 的方程为y =mx -m 22.令x =0,得y =-m 22,所以G (0,-m 22).又P (m ,m 22),F (0,12),D (2m 34m 2+1,-m 22(4m 2+1)),所以S 1=12·|GF |·m =(m 2+1)m 4,S 2=12·|PM |·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1),所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.设t =2m 2+1(t >1),则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t+2, 当1t =12,即t =2时,S 1S 2取到最大值94, 此时m =22,满足(*)式, 所以P 点坐标为(22,14). 因此S 1S 2的最大值为94,此时点P 的坐标为(22,14).H8 直线与圆锥曲线(AB 课时作业)10.H5,H8[2016·江苏卷] 如图1-2,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.10.63 [详细分析] 方法一:由⎩⎨⎧y =b2,x 2a 2+y2b 2=1,可得B (-32a ,b 2),C (32a ,b2).又由F (c ,0),得FB →=(-32a -c ,b 2),FC →=(32a -c ,b 2).又∠BFC =90°,所以FB →·FC →=0,化简可得2a 2=3c 2,即e 2=c 2a 2=23,故e =63.方法二:同方法一可得B (-32a ,b 2),C (32a ,b2),所以BC =3a ,由椭圆的焦半径公式得BF =a -ex B =a +e ·32a ,CF =a -ex C =a -e ·32a ,又∠BFC =90°,所以BF 2+CF 2=BC 2,即(a +e ·32a )2+(a -e ·32a )2=(3a )2,式子两边同除以a 2可得e 2=23,即e =63.19.H5,H8[2016·北京卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:|AN |·|BM |为定值.19.解:(1)由题意得⎩⎨⎧c a =32,12ab =1,a 2=b 2+c 2,解得a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)证明:由(1)知,A (2,0),B (0,1).设P (x 0,y 0),则x 20+4y 20=4.当x 0≠0时,直线P A 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=|1-y M |=1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=|2-x N |=2+x 0y 0-1.所以|AN |·|BM |=2+x 0y 0-1·1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2=4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4. 综上,|AN |·|BM |为定值.22.H7、H8[2016·江苏卷] 如图1-8,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程.(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.22.解:(1)抛物线C :y 2=2px (p >0)的焦点为p2,0,由点p 2,0在直线l :x -y -2=0上,得p2-0-2=0,即p =4.所以抛物线C 的方程为y 2=8x .(2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点M (x 0,y 0),因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ ,于是直线PQ 的斜率为-1,则可设其方程为y =-x +b .①证明:由⎩⎪⎨⎪⎧y 2=2px ,y =-x +b 消去x 得y 2+2py -2pb =0.(*)因为P 和Q 是抛物线C 上的相异两点,所以y 1≠y 2, 从而Δ=(2p )2-4×(-2pb )>0,化简得p +2b >0.方程(*)的两根为y 1,2=-p ±p 2+2pb ,从而y 0=y 1+y 22=-p .因为M (x 0,y 0)在直线l 上,所以x 0=2-p . 因此,线段PQ 的中点坐标为(2-p ,-p ). ②因为M (2-p ,-p )在直线y =-x +b 上, 所以-p =-(2-p )+b ,即b =2-2p .由①知p +2b >0,于是p +2(2-2p )>0,所以p <43.因此,p 的取值范围为0,43.20.H8,H9[2016·全国卷Ⅰ] 设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.20.解:(1)证明:因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4. 由题设得A (-1,0),B (1,0),|AB |=2.由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积 S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83). 当l 与x 轴垂直时,其方程为x =1,|MN |=3, |PQ |=8,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83).20.H8[2016·全国卷Ⅱ] 已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 20.解:(1)设M (x 1,y 1),则由题意知y 1>0.当t =4时,椭圆E 的方程为x 24+y 23=1,A (-2,0).由已知及椭圆的对称性知,直线AM 的倾斜角为π4,因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意知t >3,k >0,A (-t ,0).将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2.由题设知,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t .由2|AM |=|AN |得23+tk 2=k3k 2+t,即(k 3-2)t =3k (2k -1). 当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0, 由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 因此k 的取值范围是(32,2).19.H5、H8[2016·天津卷] 设椭圆x 2a 2+y 23=1(a >3)的右焦点为F ,右顶点为A ,已知1|OF |+1|OA |=3e|F A |,其中O 为原点,e 为椭圆的离心率. (1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF ⊥HF ,且∠MOA ≤∠MAO ,求直线l 的斜率的取值范围.19.解:(1)设F (c ,0),由1|OF |+1|OA |=3e |F A |,即1c +1a =3ca (a -c ),可得a 2-c 2=3c 2.又a 2-c 2=b 2=3,所以c 2=1,因此a 2=4. 所以椭圆的方程为x 24+y 23=1.(2)设直线l 的斜率为k (k ≠0),则直线l 的方程为y =k (x -2).设B (x B ,y B ),由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)消去y ,整理得(4k 2+3)x 2-16k 2x +16k 2-12=0,解得x =2或x =8k 2-64k 2+3.由题意得x B =8k 2-64k 2+3,从而y B =-12k4k 2+3.由(1)知,F (1,0),设H (0,y H ),有FH →=(-1,y H ),BF →=9-4k24k 2+3,12k 4k 2+3.由BF ⊥HF ,得BF →·FH →=0,所以4k 2-94k 2+3+12ky H 4k 2+3=0,解得y H =9-4k 212k ,因此直线MH 的方程为y =-1k x+9-4k 212k.设M (x M ,y M ),由方程组⎩⎪⎨⎪⎧y =k (x -2),y =-1k x +9-4k 212k ,得x M =20k 2+912(k 2+1).在△MAO 中,∠MOA ≤∠MAO ⇔|MA |≤|MO |,即(x M -2)2+y 2M ≤x 2M +y 2M ,化简得x M ≥1,即20k 2+912(k 2+1)≥1,解得k ≤-64或k ≥64, 所以直线l 的斜率的取值范围为(-∞,-64]∪[64,+∞). 21.H6,H8,F3[2016·上海卷] 双曲线x 2-y 2b 2=1(b >0)的左、右焦点分别为F 1,F 2,直线l 过F 2且与双曲线交于A ,B 两点.(1)若l 的倾斜角为π2,△F 1AB 是等边三角形,求双曲线的渐近线方程;(2)设b =3,若l 的斜率存在,且(F 1A →+F 1B →)·AB →=0,求l 的斜率.21.解:(1)设A (x A ,y A ),F 2(c ,0),c =1+b 2,由题意,y 2A =b 2(c 2-1)=b 4, 因为△F 1AB 是等边三角形,所以2c =3|y A |, 即4(1+b 2)=3b 4,解得b 2=2.故双曲线的渐近线方程为y =±2x . (2)由已知,F 1(-2,0),F 2(2,0).设A (x 1,y 1),B (x 2,y 2),直线l :y =k (x -2),显然k ≠0.由⎩⎪⎨⎪⎧x 2-y 23=1,y =k (x -2),得(k 2-3)x 2-4k 2x +4k 2+3=0.因为l 与双曲线交于两点,所以k 2-3≠0,且Δ=36(1+k 2)>0. 设AB 的中点为M (x M ,y M ).由(F 1A →+F 1B →)·AB →=0,即F 1M →·AB →=0,知F 1M ⊥AB ,故kF 1M ·k =-1. 又x M =x 1+x 22=2k 2k 2-3,y M =k (x M -2)=6k k 2-3,所以kF 1M =3k 2k 2-3,所以3k 2k 2-3·k =-1,得k 2=35,故l 的斜率为±155.H9 曲线与方程20.H8,H9[2016·全国卷Ⅰ] 设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.20.解:(1)证明:因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4. 由题设得A (-1,0),B (1,0),|AB |=2.由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积 S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83). 当l 与x 轴垂直时,其方程为x =1,|MN |=3, |PQ |=8,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83). 20.H7、H9[2016·全国卷Ⅲ] 已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.20.解:由题设知F (12,0).设l 1:y =a ,l 2:y =b ,则ab ≠0,且A (a 22,a ),B (b 22,b ),P (-12,a ),Q (-12,b ),R (-12,a +b2).记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,所以1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a=-ab a =-b =k 2, 所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=0(舍去)或x 1=1. 设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =yx -1(x ≠1).而a +b 2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为y 2=x -1.H10 单元综合7.H10[2016·浙江卷] 已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<17.A [详细分析] 由题意知,m 2-1=n 2+1,即m 2-n 2=2,故m >n .易知e 1e 2=m 2-1m ·n 2+1n =m 2n 2+m 2-n 2-1mn =m 2n 2+1mn >1,故选A.21.H5,H7,H10[2016·山东卷] 平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程.(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(i)求证:点M 在定直线上;(ii)直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.图1-521.解:(1)由题意知a 2-b 2a =32,可得a 2=4b 2.因为抛物线E 的焦点F (0,12),所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1. (2)(i)证明:设P (m ,m 22)(m >0),由x 2=2y ,可得y ′=x , 所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ),即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0), 联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0.由Δ>0,得0<m <2+5(或0<m 2<2+5)(*), 且x 1+x 2=4m 34m 2+1.因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因此y 0x 0=-14m,所以直线OD 的方程为y =-14mx . 联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14,所以点M 在定直线y =-14上.(ii)由(i)知直线l 的方程为y =mx -m 22.令x =0,得y =-m 22,所以G (0,-m 22).又P (m ,m 22),F (0,12),D (2m 34m 2+1,-m 22(4m 2+1)),所以S 1=12·|GF |·m =(m 2+1)m 4,S 2=12·|PM |·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1),所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.设t =2m 2+1(t >1),。
2016年高考数学理试题分类汇编导数及其应用.doc
2016年高考数学理试题分类汇编导数及其应用一、选择题1、(2016年四川高考)设直线l 1,l 2分别是函数f(x)= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A2、(2016年全国I 高考)函数y=2x 2–e |x|在[–2,2]的图像大致为 【答案】D 二、填空题1、(2016年全国II 高考)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = . 【答案】1ln2-2、(2016年全国III 高考)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________。
【答案】21y x =-- 三、解答题1、(2016年北京高考) 设函数()a xf x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+, (1)求a ,b 的值; (2)求()f x 的单调区间. 【解析】 (I )()e a x f x x bx -=+∴()e e (1)e a x a x a x f x x b x b ---'=-+=-+∵曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+∴(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①2(2)(12)e e 1a f b -'=-+=- ②由①②解得:2a =,e b =(II )由(I )可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,∴222()e (1)e (2)e x x x g x x x ---'=---=-∴g 的最小值是(2)(12)e 1g =-=- ∴()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ∀∈R 恒成立∴()f x 在(),-∞+∞上单调递增,无减区间.2、(2016年山东高考)已知()221()ln ,R x f x a x x a x-=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立. 【解析】(Ⅰ) 求导数322)11(=)(′xx x a x f ---当0≤a 时,(0,1)∈x ,0>)(′x f ,)(x f 单调递增, )(1,∈+∞x ,0<)(′x f ,)(x f 单调递减;当0>a 时,3322+(2)(1(=2)(1(=)(′x ax a x x a x ax x x f ))--)--(1)当<2<a 0时,1>2a,(0,1)∈x 或),(∈+∞2ax ,0>)(′x f ,)(x f 单调递增,)(1,∈ax 2,0<)(′x f ,)(x f 单调递减; (2) 当2=a 时,1=2a, )(0,∈+∞x ,0≥)(′x f ,)(x f 单调递增, (3) 当2>a 时,1<2<0a, )(0,∈ax 2或∞)(1,∈+x ,0>)(′x f ,)(x f 单调递增, ,1)(∈ax 2,0<)(′x f ,)(x f 单调递减; (Ⅱ) 当1=a 时,212+ln =)(x x x x x f --,于是)2+1112+ln =)(′)(322x x x x x x x x f x f 2---(---,-1-1-322+3+ln =xx x x x ,]2,1[∈x令x x x ln =)g(- ,322+3+=)h(xx x x -1-1,]2,1[∈x , 于是)(+(g =)(′)(x h x x f x f )-, 0≥1=1=)(g ′x x x x -1-,)g(x 的最小值为1=g(1);又42432+=+=)(h ′x x x x x x x 6-2-362-3-设6+23=)(θ2x x x --,]2,1[∈x ,因为1=)1(θ,10=)2(θ-, 所以必有]2,1[0∈x ,使得0=)(θ0x ,且0<<1x x 时,0>)(θx ,)(x h 单调递增; 2<<0x x 时,0<)(θx ,)(x h 单调递减;。
2016年全国统一高考数学模拟试卷(理科)
=cos(﹣ x+m) =cos(x﹣ m﹣)的图象. 又 h( x)=cos( x+)的图象, g( x)与 h( x)图象的零点重合,
故 g( x)=cos( x﹣ m﹣)和 h( x) =cos( x+)的图象相差半个周期, ∴=k π﹣﹣ m,即 m=k π﹣, k∈ Z ,故 m 的值不会是, 故选: B.
颗芝麻,则落在区域 Γ中芝麻数约为(
)
A . 114 B. 10 C. 150 D. 50 【考点】 几何概型;简单线性规划.
【分析】 作出两平面区域,计算两区域的公共面积,得出芝麻落在区域
Γ的概率.
【解答】 解:作出平面区域 Ω如图:则区域 Ω的面积为 S△ABC== . 区域 Γ表示以 D()为圆心,以为半径的圆,
4.为防止部分学生考试时用搜题软件作弊,命题组指派
5 名教师对数学卷的选择题、填空
题和解答题这 3 种题型进行改编,则每种题型至少指派一名教师的不同分派方法种数为
()
A . 150 B. 180 C. 200 D. 280 【考点】 计数原理的应用.
【分析】 根据题意,分析可得人数分配上有两种方式即
1,2,2 与 1,1,3,分别计算两种
情况下的情况数目,相加可得答案.
【解答】 解:人数分配上有两种方式即 若是 1, 1, 3,则有 C53× A 33=60 种, 若是 1, 2, 2,则有× A 33=90 种
所以共有 150 种不同的方法.
1, 2, 2 与 1, 1,3.
故选: A .
5.已知函数 g( x)是定义在区间 [ ﹣ 3﹣m ,m2﹣m] 上的偶函数( m> 0),且 f ( x) =,则
【考点】 简单随机抽样. 【分析】 根据随机数表,依次进行选择即可得到结论. 【解答】 解:从随机数表第 1 行的第 5 列和第 6 列数字开始由左到右依次选取两个数字中小 于 20 的编号依次为 08, 02,14, 07,02, 10,.其中第二个和第四个都是 02,重复. 可知对应的数值为 08, 02, 14, 07, 10, 则第 5 个个体的编号为 10. 故答案为: 10
2016年贵州省普通高等学校高考数学模拟试卷(理科)(附答案解析)
由 , 表示两条不同直线, , , 表示三个不同平面,知:
在 中,若 , ,则 与 相交或平行,故 错误;
在 中,若 , , , ,则 与 相交或平行,故 错误;
在 中,若 , ,则 与 相交或平行,故 错误;
在 中,若 , = , = ,则由面面平行的性质定理得 ,故 正确.
6.
【答案】
B
【解答】
由 = ,得 = ,
取 = ,求得 = ;
由 = ,得 = ,
两式作差得 = ,即 ,
又 = ,
∴数列 构成以 为公比的等比数列,
则 ,
则 ,
当 = 时, ,当 = 时, = ,当 = 时, ,
而当 时, ,
∴ 中的最大项的值是 .
三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
∵ 平面 , 平面 ,
∴ ,
∵ , ,
∴ ,
∵ ,
∴ ,
又 ,
∴ 平面 ,
∵ 平面 ,
∴平面 平面 .
解:如图,
以 为原点,取 中点 ,
, , 分别为 轴, 轴, 轴正向,
建立空间直角坐标系,
则 , , .
设 ,
则 ,
, , ,
取 ,则 ,
为面 的法向量.
设 为面 的法向量,
则 ,
即
取 , , ,
则 ,
【答案】
∵在 中 = ,
∴由正弦定理可得 = ,
∴ = ,
∴ = ,
∴ = ,
约掉 可得 ,可得 ;
由三角函数公式化简可得:
∵ ,∴ ,
∴当 即 时,函数取最小值
∴函数 在区间 上的最小值为 ,此时 .
2016届高考数学全真模拟试卷(理科) 含解析
2016年陕西省高考数学全真模拟试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U=R,集合A={x|﹣2≤x<0},B={x|2x﹣1<},则A∩B=()A.(﹣∞,﹣2)∪(﹣1,+∞)B.(﹣∞,﹣2)∪[﹣1,+∞)C.[﹣2,﹣1)D.(﹣2,+∞)2.定义:=ad﹣bc,若复数z满足=﹣1﹣i,则z等于()A.1+i B.1﹣i C.﹣i D.3﹣i3.等差数列{a n}中,a4+a8=﹣2,则a6(a2+2a6+a10)的值为()A.4 B.8 C.﹣4 D.﹣84.在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,则“不是整数”的概率为()A.B. C.D.5.设命题p:=(m,m+1),=(2,m+1),且∥;命题q:关于x的函数y=(m﹣1)log a x(a>0且a≠1)是对数函数,则命题p成立是命题q成立的()A.充分不必要条件B.必要不重充分条件C.充要条件 D.既不充分也不不要条件6.执行如图所示的程序框图,若输出的S等于,则输入的N为()A.8 B.9 C.10 D.77.已知抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上过F的两个端点,设线段AB的中点M在l上的摄影为N,则的值是()A.B.1 C.D.28.在△ABC中,=5,=3,D是BC边中垂线上任意一点,则•的值是()A.16 B.8 C.4 D.29.已知F1,F2分别是双曲线﹣=1(a>0)的左、右焦点,P为双曲线上的一点,若∠F1PF1=60°,则△F1PF2的面积是()A.B.4C.2D.10.已知正四面体的棱长,则其外接球的表面积为( )A.8πB.12πC.πD.3π11.已知函数f(x)=,若函数g(x)=f(x)﹣mx有且只有一个零点,则实数m的取值范围是( )A.[1,4] B.(﹣∞,0]C.(﹣∞,4]D.(﹣∞,0]∪[1,4]12.把曲线C:y=sin(﹣x)•cos(x+)上所有点向右平移a(a>0)个单位,得到曲线C′,且曲线C′关于点(0,0)中心对称,当x∈[π,π](b为正整数)时,过曲线C′上任意两点的直线的斜率恒小于零,则b的值为()A.1 B.2 C.3 D.1或2二、填空题(本大题共4小题,每小题5分,共20分)13.(x﹣)n的展开式中只有第5项的二项式系数最大,则它的展开式中常数项是_______.14.某师傅用铁皮制作一封闭的工件,其直观图的三视图如图示(单位长度:cm,图中水平线与竖线垂直),则制作该工件用去的铁皮的面积为_______cm2.(制作过程铁皮的损耗和厚度忽略不计)15.若实数x,y满足,则的最大值是_______.16.已知数列{a n}中,a1=2,若a n+1=2a n+2n+1(n∈N*),则数列{a n}的通项公式a n=_______.三、解答题(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知,函数的图象过点.(1)求t的值以及函数f(x)的最小正周期和单调增区间;(2)在△ABC中,角A,B,C的对边分别是a,b,c.若,求f(A)的取值范围.18.如图,四棱锥P﹣ABCD中,侧面PDC是正三角形,底面ABCD 是边长为2的菱形,∠DAB=120°,且侧面PDC与底面垂直,M为PB的中点.(1)求证:PA⊥平面CDM;(2)求二面角D﹣MC﹣B的余弦值.19.PM2。
高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 B单元 函数与导数(理科2016年) Word
数 学B 单元 函数与导数 B1 函数及其表示5.B1 函数y =3-2x -x 2的定义域是________.5. 令3-2x -x 2≥0可得x 2+2x -3≤0,解得-3≤x ≤1,故所求函数的定义域为. 11.B1、B4 设f (x )是定义在R 上且周期为2的函数,在区间 因为f (x )的周期为2,所以f (-52)=f (-12)=-12+a ,f (92)=f(12)=110,即-12+a =110,所以a =35,故f (5a )=f (3)=f (-1)=-25.B2 反函数5.B2 已知点(3,9)在函数f (x )=1+a x 的图像上,则f (x )的反函数f -1(x )=________. 5.log 2(x -1),x ∈(1,+∞) 将点(3,9)的坐标代入函数f (x )的解析式得a =2,所以f (x )=1+2x ,所以f -1(x )=log 2(x -1),x ∈(1,+∞).B3 函数的单调性与最值14.B3,B12 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________.14.①2 ②(-∞,-1) 由(x 3-3x )′=3x 2-3=0,得x =±1,作出函数y =x 3-3x 和y =-2x 的图像,如图所示.①当a =0时,由图像可得f (x )的最大值为f (-1)=2.②由图像可知当a ≥-1时,函数f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >a 3-3a ,所以a <-1.13.B3、B4 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.13.(12,32) 由f (x )是偶函数,且f (x )在区间(-∞,0)上单调递增,得f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-2),f (-2)=f (2),∴2|a -1|<2,即|a -1|<12,∴12<a <32.18.B3,B4 设f (x ),g (x ),h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )中至少有一个增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2.对于①,因为增函数减增函数不一定为增函数,所以f (x )不一定为增函数,同理g (x ),h (x )不一定为增函数,因此①为假命题.对于②,易得f (x )是以T 为周期的函数,同理可得g (x ),h (x )也是以T 为周期的函数,所以②为真命题.B4 函数的奇偶性与周期性11.B1、B4 设f (x )是定义在R 上且周期为2的函数,在区间 因为f (x )的周期为2,所以f (-52)=f (-12)=-12+a ,f (92)=f(12)=110,即-12+a =110,所以a =35,故f (5a )=f (3)=f (-1)=-25.15.B4、B12 已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.15.y =-2x -1 设x >0,则-x <0.∵x <0时,f (x )=ln(-x )+3x ,∴f (-x )=ln x -3x ,又∵f (-x )=f (x ),∴当x >0时,f (x )=ln x -3x ,∴f ′(x )=1x-3,即f ′(1)=-2,∴曲线y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),整理得y =-2x -1.14.B4 已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f -52+f (1)=________.14.-2 因为f (x )是周期为2的函数,所以f (x )=f (x +2). 因为f (x )是奇函数,所以f (x )=-f (-x ), 所以f (1)=f (-1),f (1)=-f (-1),即f (1)=0.又f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12,f 12=412=2,所以f ⎝ ⎛⎭⎪⎫-52=-2,从而f ⎝ ⎛⎭⎪⎫-52+f (1)=-2. 9.B4 已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,fx +12=fx -12.则f (6)=( )A .-2B .-1C .0D .29.D ∵当x >12时,f (x +12)=f (x -12),∴f (x )的周期为1,则f (6)=f (1).又∵当-1≤x ≤1时,f (-x )=-f (x ),∴f (1)=-f (-1).又∵当x <0时,f (x )=x 3-1,∴f (-1)=(-1)3-1=-2,∴f (6)=-f (-1)=2. 13.B3、B4 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.13.(12,32) 由f (x )是偶函数,且f (x )在区间(-∞,0)上单调递增,得f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-2),f (-2)=f (2),∴2|a -1|<2,即|a -1|<12,∴12<a <32.18.B3,B4 设f (x ),g (x ),h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )中至少有一个增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2.对于①,因为增函数减增函数不一定为增函数,所以f (x )不一定为增函数,同理g (x ),h (x )不一定为增函数,因此①为假命题.对于②,易得f (x )是以T 为周期的函数,同理可得g (x ),h (x )也是以T 为周期的函数,所以②为真命题.B5 二次函数 B6 指数与指数函数5.E1,C3,B6,B7 已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y>0B .sin x -sin y >0 C.12x -12y<0 D .ln x +ln y >05.C 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y<0,故结论不成立;选项B 中,当x=5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.19.B6、B9、B12 已知函数f (x )=a x +b x(a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x.①方程f (x )=2,即2x +2-x =2,亦即(2x )2-2×2x+1=0, 所以(2x -1)2=0,于是2x=1,解得x =0. ②由条件知f (2x )=22x+2-2x=(2x +2-x )2-2=2-2.因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0, 所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0,所以0是函数g (x )的唯一零点.因为g ′(x )=a xln a +b xln b ,又由0<a <1,b >1知ln a <0,ln b >0, 所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a xln a +b xln b )′=a x(ln a )2+b x (ln b )2, 从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0.因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾.若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b =1,故ln a +ln b =0,所以ab =1.6.B6 已知a =243,b =425,c =2513,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b6.A b =425=245<243=a ,c =523>423=243=a ,故b <a <c .12.B6、B7 已知a >b >1.若log a b +log b a =52,a b =b a,则a =________,b =________.12.4 2 设t =log a b ,则log b a =1t .∵a >b >1,∴0<t <1.由t +1t =52,化简得t 2-52t+1=0,解得t =12,故b =a ,所以a b=aa,b a =(a )a =a 12a ,则a =12a ,即a 2-4a =0,得a =4,b =2.B7 对数与对数函数5.E1,C3,B6,B7 已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y>0B .sin x -sin y >0 C.12x -12y<0 D .ln x +ln y >05.C 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y<0,故结论不成立;选项B 中,当x=5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.8.B7,B8,E1 若a >b >1,0<c <1,则( ) A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c8.C 根据幂函数性质,选项A 中的不等式不成立;选项B 中的不等式可化为bc -1<ac-1,此时-1<c -1<0,根据幂函数性质,该不等式不成立;选项C 中的不等式可以化为a b >log a clog b c=log c b log c a =log a b ,此时a b >1,0<log a b <1,故此不等式成立;选项D 中的不等式可以化为lg c lg a <lg c lg b ,进而1lg a >1lg b,进而lg a <lg b ,即a <b ,故在已知条件下选项D 中的不等式不成立.21.B12、B14、B7 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0),因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎪⎨⎪⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|. 当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A .9.B7,E6 设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1图像上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( )A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)9.A 不妨设P 1(x 1,y 1),P 2(x 2,y 2),其中0<x 1<1<x 2.由l 1,l 2分别是点P 1,P 2处的切线,且f ′(x )=⎩⎪⎨⎪⎧-1x,0<x <1,1x ,x >1,得l 1的斜率k 1=-1x 1,l 2的斜率k 2=1x 2.又l 1与l 2垂直,且0<x 1<x 2,所以k 1·k 2=-1x 1·1x 2=-1⇒x 1·x 2=1,l 1:y =-1x 1(x -x 1)-ln x 1①,l 2:y =1x 2(x -x 2)+ln x 2②,则点A 的坐标为(0,1-ln x 1),点B 的坐标为(0,-1+ln x 2), 由此可得|AB |=2-ln x 1-ln x 2=2-ln(x 1·x 2)=2.联立①②两式可解得交点P 的横坐标x P =2-ln (x 1x 2)x 1+x 2=2x 1+x 2,所以S △PAB =12|AB |·|x P |=12×2×2x 1+x 2=2x 1+1x 1≤1,当且仅当x 1=1x 1,即x 1=1时,等号成立.而0<x 1<1,所以0<S △PAB <1,故选A.12.B6、B7 已知a >b >1.若log a b +log b a =52,a b =b a,则a =________,b =________.12.4 2 设t =log a b ,则log b a =1t .∵a >b >1,∴0<t <1.由t +1t =52,化简得t 2-52t+1=0,解得t =12,故b =a ,所以a b=aa,b a =(a )a =a 12a ,则a =12a ,即a 2-4a =0,得a =4,b =2.B8 幂函数与函数的图像7.B8,B12 函数y =2x 2-e |x |在的图像大致为( )图127.D 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =2x 2-e x.令f (x )=2x 2-e x ,则f ′(x )=4x -e x,则f ′(0)<0,f ′(1)>0,则f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.8.B7,B8,E1 若a >b >1,0<c <1,则( ) A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c8.C 根据幂函数性质,选项A 中的不等式不成立;选项B 中的不等式可化为bc -1<ac-1,此时-1<c -1<0,根据幂函数性质,该不等式不成立;选项C 中的不等式可以化为a b >log a clog b c=log c b log c a =log a b ,此时a b >1,0<log a b <1,故此不等式成立;选项D 中的不等式可以化为lg c lg a <lg c lg b ,进而1lg a >1lg b,进而lg a <lg b ,即a <b ,故在已知条件下选项D 中的不等式不成立.12.B8 已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则(x i +y i )=( )A .0B .mC .2mD .4m12.B 由f(-x)=2-f(x)得f(x)的图像关于点(0,1)对称,∵y=x +1x =1+1x 的图像也关于点(0,1)对称,∴两函数图像的交点必关于点(0,1)对称,且对于每一组对称点(x i ,y i )和(x′i ,y′i )均满足x i +x′i =0,y i +y′i =2,∴=0+2·m2=m.B9 函数与方程19.B6、B9、B12 已知函数f (x )=a x +b x(a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x.①方程f (x )=2,即2x +2-x =2,亦即(2x )2-2×2x+1=0, 所以(2x -1)2=0,于是2x=1,解得x =0. ②由条件知f (2x )=22x+2-2x=(2x +2-x )2-2=2-2.因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0, 所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a xln a +b xln b ,又由0<a <1,b >1知ln a <0,ln b >0, 所以g ′(x )=0有唯一解x 0=log b a -ln a ln b.令h (x )=g ′(x ),则h ′(x )=(a xln a +b xln b )′=a x(ln a )2+b x (ln b )2, 从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0.因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾.若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.15.B9 已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.15.(3,+∞) 画出函数f (x )的图像如图所示,根据已知得m >4m -m 2,又m >0,解得m >3,故实数 m 的取值范围是(3,+∞).B10 函数模型及其应用 B11 导数及其运算21.B11,B12,E8 设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a,此时,当x ∈(0,12a)时,f ′(x )<0,f (x )单调递减;当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1e x -1,s (x )=e x -1-x ,则s ′(x )=ex -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又s (1)=0,所以当x >1时,s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a>1.由(1)有f (12a )<f (1)=0,而g (12a )>0,所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).B12 导数的应用14.B3,B12 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________.14.①2 ②(-∞,-1) 由(x 3-3x )′=3x 2-3=0,得x =±1,作出函数y =x 3-3x 和y =-2x 的图像,如图所示.①当a =0时,由图像可得f (x )的最大值为f (-1)=2.②由图像可知当a ≥-1时,函数f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >a 3-3a ,所以a <-1.17.G1、G7、B12 现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A 1B 1C 1D 1,下部的形状是正四棱柱ABCD A 1B 1C 1D 1(如图15所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?图1517.解:(1)由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3),正四棱柱ABCD A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3). 所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m),PO 1=h (m),则0<h <6,O 1O =4h .连接O 1B 1. 因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以2a 22+h 2=36,即a 2=2(36-h 2). 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数;当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值. 因此,当PO 1=2 3 m 时,仓库的容积最大.19.B6、B9、B12 已知函数f (x )=a x +b x(a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值. 19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x.①方程f (x )=2,即2x +2-x =2,亦即(2x )2-2×2x+1=0, 所以(2x -1)2=0,于是2x=1,解得x =0. ②由条件知f (2x )=22x+2-2x=(2x +2-x )2-2=2-2.因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0, 所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a xln a +b xln b ,又由0<a <1,b >1知ln a <0,ln b >0, 所以g ′(x )=0有唯一解x 0=log b a -ln a ln b.令h (x )=g ′(x ),则h ′(x )=(a xln a +b xln b )′=a x(ln a )2+b x (ln b )2, 从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0.因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数.下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾.若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b =1,故ln a +ln b =0,所以ab =1.7.B8,B12 函数y =2x 2-e |x |在的图像大致为( )图127.D 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =2x 2-e x.令f (x )=2x 2-e x ,则f ′(x )=4x -e x,则f ′(0)<0,f ′(1)>0,则f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.21.B12 已知函数f (x )=(x -2)e x+a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.21.解:(1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ). (i)设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.(ii)设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a2(b -2)+a (b -1)2=a (b2-32b )>0, 故f (x )存在两个零点.(iii)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1.故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞) 时,f ′(x )>0.因此f (x )在(1,ln(-2a ))单调递减,在(ln(-2a ),+∞)单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.综上,a 的取值范围为(0,+∞).(2)证明:不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.由于f (2-x 2)=-x 2e2-x 2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e2-x 2-(x 2-2)e x 2. 设g (x )=-x e2-x-(x -2)e x,则g ′(x )=(x -1)(e 2-x-e x).所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0, 从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.15.B4、B12 已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.15.y =-2x -1 设x >0,则-x <0.∵x <0时,f (x )=ln(-x )+3x ,∴f (-x )=ln x -3x ,又∵f (-x )=f (x ),∴当x >0时,f (x )=ln x -3x ,∴f ′(x )=1x-3,即f ′(1)=-2,∴曲线y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),整理得y =-2x -1.21.B12、B14、B7 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0),因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎪⎨⎪⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|. 当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A . 21.B11,B12,E8 设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a,此时,当x ∈(0,12a)时,f ′(x )<0,f (x )单调递减;当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1e x -1,s (x )=e x -1-x ,则s ′(x )=ex -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又s (1)=0,所以当x >1时,s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a>1.由(1)有f (12a )<f (1)=0,而g (12a )>0,所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).16.B12 若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.16.1-ln 2 曲线y =ln x +2的切线为y =1x 1·x +ln x 1+1(其中x 1为切点横坐标),曲线y =ln(x +1)的切线为y =1x 2+1·x +ln(x 2+1)-x 2x 2+1(其中x 2为切点横坐标). 由题可知⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得⎩⎪⎨⎪⎧x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2. 21.B12 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0. (2)证明:当a ∈.由(1)知,f (x )+a 单调递增,对任意a ∈,使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )=e x a -a (x a +1)x 2a =e x a +f (x a )(x a +1)x 2a=e x ax a +2,于是h (a )=e x a x a +2.由e xx +2′=(x +1)e x(x +2)2>0(x >0),可知y =exx +2(x >0)单调递增, 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e24.因为y =e x x +2单调递增,对任意λ∈(12,e24],存在唯一的x a ∈(0,2],a =-f (x a )∈.综上,当a ∈.10.B12 若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 310.A 由函数图像上两点处的切线互相垂直,可知函数在这两点处的导数之积为-1,经检验,选项A 符合题意.20.B12,B14 已知f (x )=a (x -ln x )+2x -1x2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈成立.20.解:(1)f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,若x ∈(0,1),则f ′(x )>0,f (x )单调递增, 若x ∈(1,+∞),则f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3(x -2a)(x +2a).(i)当0<a <2时,2a>1. 当x ∈(0,1)或x ∈(2a,+∞)时,f ′(x )>0,f (x )单调递增.当x ∈(1,2a)时,f ′(x )<0,f (x )单调递减.(ii)当a =2时,2a=1,在区间(0,+∞)内,f ′(x )≥0,f (x )单调递增. (iii)当a >2时,0<2a<1.当x ∈(0,2a)或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x ∈2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <2时,f (x )在(0,1)上单调递增,在(1,2a)上单调递减,在(2a,+∞)上单调递增;当a =2时,f (x )在(0,+∞)上单调递增; 当a >2时,f (x )在(0,2a )上单调递增,在(2a,1)上单调递减,在(1,+∞)上单调递增.(2)证明:由(1)知,当a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-(1-1x -2x 2+2x 3)=x -ln x +3x +1x 2-2x3-1,x ∈. 设g (x )=x -ln x ,h (x )=3x +1x 2-2x3-1,x ∈,则f (x )-f ′(x )=g (x )+h (x ). 由g ′(x )=x -1x≥0, 可得g (x )≥g (1)=1,当且仅当x =1时取得等号. 又h ′(x )=-3x 2-2x +6x4. 设φ(x )=-3x 2-2x +6,则φ(x )在上单调递减. 因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得当x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )在(1,x 0)上单调递增,在(x 0,2)上单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32,即f (x )>f ′(x )+32对于任意的x ∈成立.20.B12 设函数f (x )=(x -1)3-ax -b ,x ∈R ,其中a ,b ∈R . (1)求f (x )的单调区间;(2)若f (x )存在极值点x 0,且f (x 1)=f (x 0),其中x 1≠x 0,求证:x 1+2x 0=3; (3)设a >0,函数g (x )=|f (x )|,求证:g (x )在区间上的最大值不小于14.20.解:(1)由f (x )=(x -1)3-ax -b ,可得f ′(x )=3(x -1)2-a . 下面分两种情况讨论:(i)当a ≤0时,有f ′(x )=3(x -1)2-a ≥0恒成立,所以f (x )的单调递增区间为(-∞,+∞).(ii)当a >0时,令f ′(x )=0,解得x =1+3a 3或x =1-3a3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:(1+3a3,+∞).(2)证明:因为f (x )存在极值点,所以由(1)知a >0,且x 0≠1.由题意,得f ′(x 0)=3(x 0-1)2-a =0,即(x 0-1)2=a 3,进而f (x 0)=(x 0-1)3-ax 0-b =-2a 3x 0-a 3-b .又f (3-2x 0)=(2-2x 0)3-a (3-2x 0)-b =8a 3(1-x 0)+2ax 0-3a -b =-2a 3x 0-a3-b =f (x 0),且3-2x 0≠x 0,由题意及(1)知,存在唯一实数x 1满足f (x 1)=f (x 0),且x 1≠x 0,因此x 1=3-2x 0, 所以x 1+2x 0=3.(3)证明:设g (x )在区间上的最大值为M ,max{x ,y }表示x ,y 两数的最大值.下面分三种情况讨论:(i)当a ≥3时,1-3a 3≤0<2≤1+3a3,由(1)知,f (x )在区间上单调递减,所以f (x )在区间上的取值范围为,因此M =max{|f (2)|,|f (0)|}=max{|1-2a -b |,|-1-b |}=max{|a -1+(a +b )|,|a -1-(a +b )|}=⎩⎪⎨⎪⎧a -1+(a +b ),a +b ≥0,a -1-(a +b ),a +b <0, 所以M =a -1+|a +b |≥2.(ii)当34≤a <3时,1-23a 3≤0<1-3a 3<1+3a 3<2≤1+23a 3.由(1)和(2)知f (0)≥f (1-23a 3)=f (1+3a 3),f (2)≤f (1+23a 3)=f (1-3a3), 所以f (x )在区间上的取值范围为, 因此M =max{|f(1+3a 3)|,|f (1-3a3)|=max ⎩⎨⎧⎭⎬⎫-2a 93a -a -b ,2a 93a -a -b = max ⎩⎨⎧⎭⎬⎫2a 93a +(a +b ),2a 93a -(a +b )=2a 93a +|a +b |≥29×34×3×34=14. (iii)当0<a <34时,0<1-23a 3<1+23a 3<2,由(1)和(2)知f (0)<f (1-23a3)=f (1+3a 3),f (2)>f (1+23a 3)=f (1-3a3). 所以f (x )在区间上的取值范围为,因此M =max{|f (0)|,|f (2)|}=max{|-1-b |,|1-2a -b |}=max{|1-a +(a +b )|,|1-a -(a +b )|}=1-a +|a +b |>14.综上所述,当a >0时,g (x )在区间上的最大值不小于14.03“复数与导数”模块(1)已知i 为虚数单位.若复数z 满足(z +i)2=2i ,求复数z .(2)求曲线y =2x 2-ln x 在点(1,2)处的切线方程. 解:(1)设复数z =a +b i ,a ,b ∈R ,由题意得a 2-(b +1)2+2a (b +1)i =2i ,解得⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-1,b =-2.故z =1或z =-1-2i. (2)由于(2x 2-ln x )′=4x -1x,则曲线在点(1,2)处的切线的斜率为3.因此,曲线在点(1,2)处的切线方程为y =3x -1. B13 定积分与微积分基本定理 B14 单元综合18.B14 设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e-1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. 18.解:(1)因为f (x )=x ea -x +bx ,所以f ′(x )=(1-x )ea -x+b .依题设,得⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1, 解得a =2,b =e. (2)由(1)知f (x )=x e 2-x+e x .由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +ex -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞). 综上可知,f ′(x )>0,x ∈(-∞,+∞), 故f (x )的单调递增区间为(-∞,+∞).21.B12、B14、B7 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x );(2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0),因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎪⎨⎪⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|. 当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A .15.B14 在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′yx 2+y 2,-xx 2+y 2;当P 是原点时,定义P 的“伴随点”为它自身.平面曲线C 上所有点的“伴随点”所构成的曲线C ′定义为曲线C 的“伴随曲线”.现有下列命题:①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”C ′关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是________(写出所有真命题的序号). 15.②③ ①设点A 的坐标为(x ,y ),则其“伴随点”为A ′⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,故A ′的“伴随点”的横坐标为-x x 2+y 2⎝ ⎛⎭⎪⎫y x 2+y 22+⎝ ⎛⎭⎪⎫-x x 2+y 22=-x ,同理可得纵坐标为-y ,故点A ′的“伴随点”是(-x ,-y ),故①错误.②设单位圆上的点P 的坐标为(cos θ,sin θ),则点P 的伴随点P ′的坐标为(sin θ,-cos θ),即P ′cos θ-π2,sin θ-π2,所以点P ′也在单位圆上,故②正确. ③设曲线C 上点A 的坐标为(x ,y ),则其关于x 轴对称的点A 1(x ,-y )也在曲线C 上,点A 的“伴随点”为A ′⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,点A 1的“伴随点”为A ′1⎝ ⎛⎭⎪⎫-yx 2+y 2,-x x 2+y 2,点A ′与A ′1关于y 轴对称,故③正确.④取y =1这条直线,则A (0,1),B (1,1),C (2,1)都在直线上,这三个点的“伴随点”分别是A ′(1,0),B ′⎝ ⎛⎭⎪⎫12,-12,C ′⎝ ⎛⎭⎪⎫15,-25,而A ′,B ′,C ′三个点不在同一直线上,故④错误.下面给出严格证明:设点P (x ,y )在直线l :Ax +By +C =0上,P 点的“伴随点”为P ′(x 0,y 0),则⎩⎪⎨⎪⎧x 0=y x 2+y 2,y 0=-x x 2+y 2,解得⎩⎪⎨⎪⎧x = -yx 2+y 20,y = x 0x 20+y 20.将其代入直线l 的方程可得A-y 0x 20+y 20+B x 0x 20+y 20+C =0, 化简得-Ay 0+Bx 0+C (x 20+y 20)=0.当C =0时,C (x 20+y 20)=0,P ′的轨迹是一条直线;当C ≠0时,C (x 20+y 20)不是一个常数,P ′的轨迹不是一条直线. 所以,直线的“伴随曲线”不一定是一条直线.20.B12,B14 已知f (x )=a (x -ln x )+2x -1x2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈成立.20.解:(1)f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,若x ∈(0,1),则f ′(x )>0,f (x )单调递增, 若x ∈(1,+∞),则f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3(x -2a)(x +2a).(i)当0<a <2时,2a>1. 当x ∈(0,1)或x ∈(2a,+∞)时,f ′(x )>0,f (x )单调递增.当x ∈(1,2a)时,f ′(x )<0,f (x )单调递减.(ii)当a =2时,2a=1,在区间(0,+∞)内,f ′(x )≥0,f (x )单调递增. (iii)当a >2时,0<2a<1.当x ∈(0,2a)或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x ∈2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <2时,f (x )在(0,1)上单调递增,在(1,2a)上单调递减,在(2a,+∞)上单调递增;当a =2时,f (x )在(0,+∞)上单调递增; 当a >2时,f (x )在(0,2a )上单调递增,在(2a,1)上单调递减,在(1,+∞)上单调递增.(2)证明:由(1)知,当a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-(1-1x -2x 2+2x 3)=x -ln x +3x +1x 2-2x3-1,x ∈. 设g (x )=x -ln x ,h (x )=3x +1x 2-2x3-1,x ∈,则f (x )-f ′(x )=g (x )+h (x ).。
2016年高考数学理科真题试卷及答案(word版)
2016年普通高等学校招生考试真题试卷数 学(理科)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A+B )=PA .+PB . S=4лR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=PA .+PB . 球的体积公式1+2+…+n 2)1(+n n V=334R π 12+22+…+n 2=6)12)(1(++n n n 其中R 表示球的半径 13+23++n 3=4)1(22+n n 第Ⅰ卷(选择题 共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列函数中,反函数是其自身的函数为A .[)+∞∈=,0,)(3x x x f B .[)+∞∞-∈=,,)(3x x x f C .),(,)(+∞-∞∈=x e x f x D .),0(,1)(+∞∈=x xx f 2.设l ,m ,n 均为直线,其中m ,n 在平面α内,“l ⊥α”是l ⊥m 且“l ⊥n ”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若对任意∈x R,不等式x ≥ax 恒成立,则实数a 的取值范围是A .a <-1B .a ≤1C . a <1D .a ≥14.若a 为实数,iai212++=-2i ,则a 等于 A .2 B .—2 C .22 D .—225.若}{8222<≤Z ∈=-x x A ,{}1log R 2>∈=x x B ,则)(C R B A ⋂的元素个数为A .0B .1C .2D .3 6.函数)3π2sin(3)(-=x x f 的图象为C , ①图象C 关于直线π1211=x 对称; ②函灶)(x f 在区间)12π5,12π(-内是增函数; ③由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C .以上三个论断中,正确论断的个数是A .0B .1C .2D .37.如果点P 在平面区域⎪⎩⎪⎨⎧≤-+≤+-≥+-02012022y x y x y x 上,点Q 在曲线1)2(22=++y x 上,那么Q P 的最小值为A .15-B .154- C .122- D .12-8.半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为A .)33arccos(-B .)36arccos(-C .)31arccos(- D .)41arccos(- 9.如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a br a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为A .3B .5C .25D .31+10.以)(x φ表示标准正态总体在区间(x ,∞-)内取值的概率,若随机变量ξ服从正态分布),(2σμN ,则概率)(σμξ<-P 等于 A .)(σμφ+-)(σμφ-B .)1()1(--φφC .)1(σμφ-D .)(2σμφ+ 11.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为A .0B .1C .3D .5二、填空题:本大题共4小题,每小题4分,共16分。
2016年高考数学理真题导数及其应用
2016年高考数学理试题分类汇编导数及其应用一、选择题1、(2016年四川高考)设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)2、(2016年全国I 高考)函数y =2x 2–e |x |在[–2,2]的图像大致为二、填空题1、(2016年全国II 高考)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .2、(2016年全国III 高考)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________。
三、解答题1、(2016年北京高考) 设函数()a x f x xebx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值;(2)求()f x 的单调区间.2、(2016年山东高考)已知()221()ln ,R x f x a x x a x -=-+∈. (I )讨论()f x 的单调性;(II )当1a =时,证明()3()'2f x f x +>对于任意的[]1,2x ∈成立.3、(2016年四川高考)设函数f (x )=ax 2-a -ln x ,其中a ∈R.(I )讨论f (x )的单调性;(II )确定a 的所有可能取值,使得f (x ) >-e 1-x+在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。
4、(2016年天津高考)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,(I)求)(x f 的单调区间;(II) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41错误!未找到引用源。
2016年高考文科数学真题+模拟新题分类汇编:B单元 函数与导数
B 单元 函数与导数B1 函数及其表示 10.B1[2016·全国卷Ⅱ] 下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x10.D [详细分析] y =10lg x =x ,定义域与值域均为(0,+∞),只有选项D 满足题意. 12.B1[2016·浙江卷] 设函数f (x )=x 3+3x 2+1.已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =________,b =________.12.-2 1 [详细分析] f (x )-f (a )=x 3-a 3+3(x 2-a 2)=(x -a )[x 2+ax +a 2+3(x +a )]=(x -a )[x 2+(a +3)x +a 2+3a ]=(x -a )(x -a )(x -b ),则x 2+(a +3)x +a 2+3a =x 2-(a +b )x +ab ,得到⎩⎪⎨⎪⎧a +3=-(a +b ),a 2+3a =ab ,解得⎩⎪⎨⎪⎧a =-2,b =1.5.B1[2016·江苏卷] 函数y =3-2x -x 2的定义域是________.5.[-3,1] [详细分析] 令3-2x -x 2≥0可得x 2+2x -3≤0,解得-3≤x ≤1,故所求函数的定义域为[-3,1].11.B1、B4[2016·江苏卷] 设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,25-x ,0≤x <1,其中a ∈R .若f (-52)=f (92),则f (5a )的值是________.11.-25 [详细分析] 因为f (x )的周期为2,所以f (-52)=f (-12)=-12+a ,f (92)=f(12)=110,即-12+a =110,所以a =35,故f (5a )=f (3)=f (-1)=-25.19.B1,I2,K4[2016·全国卷Ⅰ] 某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:图1-5记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(1)若n =19,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?19.解:(1)当x ≤19时,y =3800;当x >19时,y =3800+500(x -19)=500x -5700. 所以y 与x 的函数解析式为y =⎩⎪⎨⎪⎧3800,x ≤19,500x -5700,x >19(x ∈N ). (2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800元,20台的费用为4300元,10台的费用为4800元,因此这100台机器在购买易损零件上所需费用的平均数为1100×(3800×70+4300×20+4800×10)=4000(元). 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4000元,10台的费用为4500元,因此这100台机器在购买易损零件上所需费用的平均数为1100×(4000×90+4500×10)=4050(元). 比较两个平均数可知,购买1台机器的同时应购买19个易损零件. B2 反函数6.B2[2016·上海卷] 已知点(3,9)在函数f (x )=1+a x 的图像上,则f (x )的反函数f -1(x )=________________.6.log 2(x -1),x ∈(1,+∞) [详细分析] 将点(3,9)代入函数f (x )=1+a x 中,得a =2,所以y =f (x )=1+2x .用y 表示x 得x =log 2(y -1),所以f -1(x )=log 2(x -1),x ∈(1,+∞).B3 函数的单调性与最值 18.B3,B4[2016·上海卷] 设f (x ),g (x ),h (x )是定义域为R 的三个函数.对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )均是增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D [详细分析] 易得f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2必为周期是T 的函数,同理可得g (x ),h (x )均是周期为T 的函数,所以②正确;增函数减增函数不一定为增函数,因此①不一定成立.故答案为D.10.B3[2016·北京卷] 函数f (x )=xx -1(x ≥2)的最大值为________. 10.2 [详细分析] 因为函数f (x )=x x -1=1+1x -1在区间[2,+∞)上是减函数,所以当x =2时,函数f (x )有最大值f (2)=1+1=2.6.B3、B4[2016·天津卷] 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A .(-∞,12)B .(-∞,12)∪(32,+∞)C.(12,32) D.(32,+∞) 6.C [详细分析] 由f (x )是定义在R 上的偶函数且在区间(-∞,0)上单调递增,可知f (x )在区间(0,+∞)上单调递减,∴由f (2|a -1|)>f (-2),f (-2)=f (2),可得2|a -1|<2,即|a -1|<12,∴12<a <32.B4 函数的奇偶性与周期性 18.B3,B4[2016·上海卷] 设f (x ),g (x ),h (x )是定义域为R 的三个函数.对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )均是增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D [详细分析] 易得f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2必为周期是T 的函数,同理可得g (x ),h (x )均是周期为T 的函数,所以②正确;增函数减增函数不一定为增函数,因此①不一定成立.故答案为D.9.B4[2016·山东卷] 已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f (x +12)=f (x -12).则f (6)=( )A .-2B .-1C .0D .29.D [详细分析] ∵当x >12时,f (x +12)=f (x -12),∴x >1时,f (x )=f (x -1),即f (6)=f (1).∵当-1≤x ≤1时,f (-x )=-f (x ),∴f (1)=-f (-1).∵当x <0时,f (x )=x 3-1,∴f (6)=f (1)=-f (-1)=-[(-1)3-1]=2. 6.B3、B4[2016·天津卷] 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A .(-∞,12)B .(-∞,12)∪(32,+∞)C.(12,32) D.(32,+∞) 6.C [详细分析] 由f (x )是定义在R 上的偶函数且在区间(-∞,0)上单调递增,可知f (x )在区间(0,+∞)上单调递减,∴由f (2|a -1|)>f (-2),f (-2)=f (2),可得2|a -1|<2,即|a -1|<12,∴12<a <32.16.B4、B12[2016·全国卷Ⅲ] 已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.16.2x -y =0 [详细分析] 当x >0时,-x <0,∵当x ≤0时,f (x )=e -x -1-x ,∴f (-x )=e x -1+x .又∵f (-x )=f (x ),∴当x >0时,f (x )=e x -1+x ,f ′(x )=e x -1+1,即f ′(1)=2,∴过点(1,2)处的切线方程为y -2=2(x -1),整理得2x -y =0.14.B4[2016·四川卷] 若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f (-52)+f (2)=________.14.-2 [详细分析] 因为f (x )是周期为2的函数,所以f (x )=f (x +2). 又f (x )是奇函数,所以f (x )=-f (-x ),所以f (0)=0. 所以f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=-412=-2,f (2)=f (0)=0, 所以f ⎝⎛⎭⎫-52+f (2)=-2. B5 二次函数 6.A2、B5[2016·浙江卷] 已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.A [详细分析] 当b <0,且x =-b 2>0时,f (x )取得最小值-b 24,则f (x )的值域为[-b 24,+∞),则f (x )=-b2时,f (f (x ))的最小值与f (x )的最小值相等,故是充分条件;当b =0时,f (x )=x 2,f (f (x ))=x 4的最小值都是0,故不是必要条件.故选A.23.B5,B7[2016·上海卷] 已知a ∈R ,函数f (x )=log 2(1x+a ).(1)当a =1时,解不等式f (x )>1;(2)若关于x 的方程f (x )+log 2(x 2)=0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈[12,1],函数f (x )在区间[t ,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.23.解:(1)由log 2(1x +1)>1,得1x +1>2,解得x ∈(0,1).(2)log 2(1x+a )+log 2(x 2)=0有且仅有一解,等价于(1x +a )x 2=1有且仅有一解,等价于ax 2+x -1=0有且仅有一解.当a =0时,x =1,符合题意; 当a ≠0时,Δ=1+4a =0,得a =-14.综上,a =0或-14.(3)当0<x 1<x 2时,1x 1+a >1x 2+a ,则log 2(1x 1+a )>log 2(1x 2+a ),所以f (x )在(0,+∞)上单调递减,则函数f (x )在区间[t ,t +1]上的最大值与最小值分别为f (t ),f (t +1).f (t )-f (t +1)=log 2(1t +a )-log 2(1t +1+a )≤1,即at 2+(a +1)t -1≥0,对任意t ∈⎣⎡⎦⎤12,1恒成立.因为a >0,所以函数y =at 2+(a +1)t -1在区间⎣⎡⎦⎤12,1上单调递增,当t =12时,y 有最小值34a -12,由34a -12≥0,得a ≥23. 故a 的取值范围为⎣⎡⎭⎫23,+∞. B6 指数与指数函数4.B6,B7,C3[2016·北京卷] 下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-x B .y =cos xC .y =ln(x +1)D .y =2-x4.D [详细分析] 选项A 中函数y =11-x =-1x -1在区间(-1,1)上是增函数;选项B 中函数y =cos x 在区间(-1,0)上是增函数,在区间(0,1)上是减函数;选项C 中函数y =ln(x +1)在区间(-1,1)上是增函数;选项D 中函数y =2-x =(12)x 在区间(-1,1)上是减函数.8.B6,B7,B8,E1[2016·全国卷Ⅰ] 若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b8.B [详细分析] 当0<c <1时,函数y =log c x 单调递减,而a >b >0,所以log c a <log c b ,所以B 正确;当1>a >b >0时,有log a c >log b c ,所以A 错误;利用y =x c 在第一象限内是增函数即可得到a c >b c ,所以C 错误;利用y =c x 在R 上为减函数可得c a <c b ,所以D 错误.7.B6[2016·全国卷Ⅲ] 已知a =243,b =323,c =2513,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b7.A [详细分析] b =323<423=243=a ,c =523>423=243=a ,故b <a <c .7.B6[2016·浙江卷] 已知函数f (x )满足:f (x )≥|x |且f (x )≥2x ,x ∈R .( ) A .若f (a )≤|b |,则a ≤b B .若f (a )≤2b ,则a ≤b C .若f (a )≥|b |,则a ≥b D .若f (a )≥2b ,则a ≥b7.B [详细分析] f (x )的图像应该在图中实线的上方(包括边界),而-1<x 0<0,2x 0=|x 0|.不妨取f (x )的特例:f (x )=⎩⎪⎨⎪⎧-x ,x <x 0,2x ,x ≥x 0.若取a =1,b =-3,满足f (1)=2≤|-3|=3,则A 错.若取a =-1,b =0,满足f (-1)=1≥0,则C 错.若取a =-4,b =1,满足f (-4)=4≥21=2,则D 错.B 的逆否命题为:若a >b ,则f (a )>2b .当a >b 时,f (a )≥2a ,y =2x 是增函数,故2a >2b ,所以f (a )>2b ,逆否命题成立,故原命题成立.故选B.19.B6、B9、B12[2016·江苏卷(a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x +2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.B7 对数与对数函数 4.B6,B7,C3[2016·北京卷] 下列函数中,在区间(-1,1)上为减函数的是( )A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x4.D [详细分析] 选项A 中函数y =11-x =-1x -1在区间(-1,1)上是增函数;选项B 中函数y =cos x 在区间(-1,0)上是增函数,在区间(0,1)上是减函数;选项C 中函数y =ln(x +1)在区间(-1,1)上是增函数;选项D 中函数y =2-x =(12)x 在区间(-1,1)上是减函数.8.B6,B7,B8,E1[2016·全国卷Ⅰ] 若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b8.B [详细分析] 当0<c <1时,函数y =log c x 单调递减,而a >b >0,所以log c a <log c b ,所以B 正确;当1>a >b >0时,有log a c >log b c ,所以A 错误;利用y =x c 在第一象限内是增函数即可得到a c >b c ,所以C 错误;利用y =c x 在R 上为减函数可得c a <c b ,所以D 错误.10.B7,E6[2016·四川卷] 设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1图像上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)10.A [详细分析] 不妨设P 1,P 2两点的坐标分别为(x 1,y 1),(x 2,y 2),其中0<x 1<1<x 2.由题意可知,f ′(x )=⎩⎨⎧-1x ,0<x <1,1x ,x >1.由于l 1,l 2分别是点P 1,P 2处的切线, 所以l 1的斜率为-1x 1,l 2的斜率为1x 2.又l 1与l 2垂直,且0<x 1<x 2,所以-1x 1·1x 2=-1,即x 1·x 2=1,可以写出l 1与l 2的方程分别为l 1:y =-1x 1(x -x 1)-ln x 1,l 2:y =1x 2(x -x 2)+ln x 2.则点A 的坐标为(0,1-ln x 1),点B 的坐标为(0,-1+ln x 2),由此可得|AB |=2-ln x 1-ln x 2=2-ln(x 1·x 2)=2.联立⎩⎨⎧y =-1x 1(x -x 1)-ln x 1,y =1x 2(x -x 2)+ln x 2,解得交点P 的横坐标为2x 1+x 2,故S △P AB =12×2×2x 1+x 2=2x 1+1x 1≤1,当且仅当x 1=1x 1,即x 1=1时,等号成立.而0<x 1<1,所以0<S △P AB <1,故选A. 5.B7[2016·浙江卷] 已知a ,b >0,且a ≠1,b ≠1.若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0 D .(b -1)(b -a )>05.D [详细分析] log a b >1=log a a .若0<a <1,则b <a ,从而b <1,故(b -1)(b -a )>0;若a >1,则b >a ,从而b >1,故(b -1)(b -a )>0.故选D.4.B6,B7,C3[2016·北京卷] 下列函数中,在区间(-1,1)上为减函数的是( )A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x4.D [详细分析] 选项A 中函数y =11-x =-1x -1在区间(-1,1)上是增函数;选项B 中函数y =cos x 在区间(-1,0)上是增函数,在区间(0,1)上是减函数;选项C 中函数y =ln(x +1)在区间(-1,1)上是增函数;选项D 中函数y =2-x =(12)x 在区间(-1,1)上是减函数.8.B6,B7,B8,E1[2016·全国卷Ⅰ] 若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b8.B [详细分析] 当0<c <1时,函数y =log c x 单调递减,而a >b >0,所以log c a <log c b ,所以B 正确;当1>a >b >0时,有log a c >log b c ,所以A 错误;利用y =x c 在第一象限内是增函数即可得到a c >b c ,所以C 错误;利用y =c x 在R 上为减函数可得c a <c b ,所以D 错误.21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ;(3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x .21.解:(1)由题可知,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减. (2)证明:由(1)知,f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x<x .(3)证明:设g (x )=1+(c -1)x -c x ,则g ′(x )=c -1-c x ln c ,令g ′(x )=0,解得x 0=ln c -1ln cln c.当x <x 0时,g ′(x )>0,g (x )单调递增;当x >x 0时,g ′(x )<0,g (x )单调递减.因为c >1,由(2)知,1<c -1ln c<c ,所以0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0.所以当x ∈(0,1)时,1+(c -1)x >c x . 21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ;(3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x .21.解:(1)由题可知,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减. (2)证明:由(1)知,f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x<x .(3)证明:设g (x )=1+(c -1)x -c x ,则g ′(x )=c -1-c x ln c ,令g ′(x )=0,解得x 0=ln c -1ln cln c.当x <x 0时,g ′(x )>0,g (x )单调递增;当x >x 0时,g ′(x )<0,g (x )单调递减.因为c >1,由(2)知,1<c -1ln c<c ,所以0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0.所以当x ∈(0,1)时,1+(c -1)x >c x .10.B7,E6[2016·四川卷] 设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1图像上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)10.A [详细分析] 不妨设P 1,P 2两点的坐标分别为(x 1,y 1),(x 2,y 2),其中0<x 1<1<x 2.由题意可知,f ′(x )=⎩⎨⎧-1x ,0<x <1,1x ,x >1.由于l 1,l 2分别是点P 1,P 2处的切线, 所以l 1的斜率为-1x 1,l 2的斜率为1x 2.又l 1与l 2垂直,且0<x 1<x 2,所以-1x 1·1x 2=-1,即x 1·x 2=1,可以写出l 1与l 2的方程分别为l 1:y =-1x 1(x -x 1)-ln x 1,l 2:y =1x 2(x -x 2)+ln x 2.则点A 的坐标为(0,1-ln x 1),点B 的坐标为(0,-1+ln x 2),由此可得|AB |=2-ln x 1-ln x 2=2-ln(x 1·x 2)=2.联立⎩⎨⎧y =-1x 1(x -x 1)-ln x 1,y =1x 2(x -x 2)+ln x 2,解得交点P 的横坐标为2x 1+x 2,故S △P AB =12×2×2x 1+x 2=2x 1+1x 1≤1,当且仅当x 1=1x 1,即x 1=1时,等号成立.而0<x 1<1,所以0<S △P AB <1,故选A.23.B5,B7[2016·上海卷] 已知a ∈R ,函数f (x )=log 2(1x+a ).(1)当a =1时,解不等式f (x )>1;(2)若关于x 的方程f (x )+log 2(x 2)=0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈[12,1],函数f (x )在区间[t ,t +1]上的最大值与最小值的差不超过1,求a 的取值范围.23.解:(1)由log 2(1x +1)>1,得1x +1>2,解得x ∈(0,1).(2)log 2(1x+a )+log 2(x 2)=0有且仅有一解,等价于(1x +a )x 2=1有且仅有一解,等价于ax 2+x -1=0有且仅有一解.当a =0时,x =1,符合题意; 当a ≠0时,Δ=1+4a =0,得a =-14.综上,a =0或-14.(3)当0<x 1<x 2时,1x 1+a >1x 2+a ,则log 2(1x 1+a )>log 2(1x 2+a ),所以f (x )在(0,+∞)上单调递减,则函数f (x )在区间[t ,t +1]上的最大值与最小值分别为f (t ),f (t +1).f (t )-f (t +1)=log 2(1t +a )-log 2(1t +1+a )≤1,即at 2+(a +1)t -1≥0,对任意t ∈⎣⎡⎦⎤12,1恒成立.因为a >0,所以函数y =at 2+(a +1)t -1在区间⎣⎡⎦⎤12,1上单调递增,当t =12时,y 有最小值34a -12,由34a -12≥0,得a ≥23. 故a 的取值范围为⎣⎡⎭⎫23,+∞. B8 幂函数与函数的图像8.B6,B7,B8,E1[2016·全国卷Ⅰ] 若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c bC.a c<b c D.c a>c b8.B[详细分析] 当0<c<1时,函数y=log c x单调递减,而a>b>0,所以log c a<log c b,所以B正确;当1>a>b>0时,有log a c>log b c,所以A错误;利用y=x c在第一象限内是增函数即可得到a c>b c,所以C错误;利用y=c x在R上为减函数可得c a<c b,所以D错误.9.B8,B12[2016·全国卷Ⅰ] 函数y=2x2-e|x|在[-2,2]的图像大致为()图1-29.D[详细分析] 易知该函数为偶函数,只要考虑当x≥0时的情况即可,此时y=f(x)=2x2-e x,则f′(x)=4x-e x,f′(0)<0,f′(1)>0,f′(x)在(0,1)上存在零点,即f(x)在(0,1)上存在极值,据此可知,只可能为选项B,D中的图像.当x=2时,y=8-e2<1,故选D.12.B8[2016·全国卷Ⅱ] 已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(x m,y m),则()A.0 B.mC.2m D.4m当m为奇数时,=2×m-12+1=m.3.B8[2016·浙江卷] 函数y=sin x2的图像是()3.D [详细分析] 设y =f (x )=sin x 2,则f (-x )=sin(-x )2=sin x 2=f (x ),故f (x )为偶函数,A ,C 不符合.f (π2)=sin (π2)2=sin π24<1,则B 不符合,故选D.8.B6,B7,B8,E1[2016·全国卷Ⅰ] 若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b8.B [详细分析] 当0<c <1时,函数y =log c x 单调递减,而a >b >0,所以log c a <log c b ,所以B 正确;当1>a >b >0时,有log a c >log b c ,所以A 错误;利用y =x c 在第一象限内是增函数即可得到a c >b c ,所以C 错误;利用y =c x 在R 上为减函数可得c a <c b ,所以D 错误.9.B8,B12[2016·全国卷Ⅰ] 函数y =2x 2-e |x |在[-2,2]的图像大致为( )图1-29.D [详细分析] 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =f (x )=2x 2-e x ,则f ′(x )=4x -e x ,f ′(0)<0,f ′(1)>0,f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只可能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.B9 函数与方程15.B9[2016·山东卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.15.(3,+∞) [详细分析]由图可知,当方程f (x )=b 有三个不同的根时,有4m -m 2<m ,解得m >3或m <0(舍). 19.B6、B9、B12[2016·江苏卷] 已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x+2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.B10 函数模型及其应用 B11 导数及其运算 10.B11[2016·天津卷] 已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________.10.3 [详细分析] f ′(x )=2e x +(2x +1)e x =(2x +3)e x ,所以f ′(0)=3e 0=3.21.B11,B12,E8[2016·四川卷] 设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立.21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a .当x ∈(0,12a)时,f ′(x )<0,f (x )单调递减; 当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增. (2)证明:令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1e x -1>0.(3)由(2)知,当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a >1.由(1)有f (12a )<f (1)=0,而g (12a)>0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).20.B11、B12、B14[2016·山东卷] 设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 20.解:(1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞),则g ′(x )=1x -2a =1-2ax x.当a ≤0时,由于x ∈(0,+∞),所以g ′(x )>0,则函数g (x )单调递增;当a >0时,若x ∈(0,12a ),则g ′(x )>0,函数g (x )单调递增,若x ∈(12a,+∞),则g ′(x )<0,函数g (x )单调递减.所以当a ≤0时,g (x )的单调递增区间为(0,+∞);当a >0时,g (x )的单调递增区间为(0,12a ),单调递减区间为(12a,+∞). (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当0<a <12时,12a >1,由(1)知f ′(x )在(0,12a )内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈(1,12a)时,f ′(x )>0,所以f (x )在(0,1)内单调递减,在(1,12a)内单调递增.所以f (x )在x =1处取得极小值,不合题意.③当a =12时,12a=1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.④当a >12时,0<12a <1,当x ∈(12a,1)时,f ′(x )>0,f (x )单调递增.当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减, 所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 的取值范围为a >12.B12 导数的应用 9.B8,B12[2016·全国卷Ⅰ] 函数y =2x 2-e |x |在[-2,2]的图像大致为( )图1-29.D [详细分析] 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =f (x )=2x 2-e x ,则f ′(x )=4x -e x ,f ′(0)<0,f ′(1)>0,f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只可能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.6.B12[2016·四川卷] 已知a 为函数f (x )=x 3-12x 的极小值点,则a =( ) A .-4 B .-2 C .4 D .26.D [详细分析] 由已知得,f ′(x )=3x 2-12=3(x 2-4)=3(x +2)(x -2). 于是当x <-2或x >2时,f ′(x )>0;当-2<x <2时,f ′(x )<0.故函数f (x )在区间(-∞,-2),(2,+∞)上单调递增;在区间(-2,2)上单调递减. 于是当x =2时,f (x )取得极小值,故a =2.12.B12,C6,E3[2016·全国卷Ⅰ] 若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B .[-1,13]C .[-13,13 ]D .[-1,-13]12.C [详细分析] 方法一:对函数f (x )求导得f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53,因为函数f (x )在R 上单调递增,所以f ′(x )≥0,即-43cos 2x +a cos x +53≥0恒成立.设t =cos x ∈[-1,1],则g (t )=4t 2-3at -5≤0在[-1,1]上恒成立,所以有⎩⎪⎨⎪⎧g (-1)=4×(-1)2-3a ×(-1)-5≤0,g (1)=4×12-3a ×1-5≤0,解得-13≤a ≤13. 方法二:取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不满足f (x )在(-∞,+∞)单调递增,排除A ,B ,D ,故选C. 10.B12[2016·山东卷] 若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 310.A [详细分析] 由函数图像上两点处的切线互相垂直可知,函数在两点处的导数之积为-1.对于A ,y ′=(sin x )′=cos x ,存在x 1,x 2使cos x 1·cos x 2=-1.16.B4、B12[2016·全国卷Ⅲ] 已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.16.2x -y =0 [详细分析] 当x >0时,-x <0,∵当x ≤0时,f (x )=e -x -1-x ,∴f (-x )=e x -1+x .又∵f (-x )=f (x ),∴当x >0时,f (x )=e x -1+x ,f ′(x )=e x -1+1,即f ′(1)=2,∴过点(1,2)处的切线方程为y -2=2(x -1),整理得2x -y =0.21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ;(3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x .21.解:(1)由题可知,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减. (2)证明:由(1)知,f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x<x .(3)证明:设g (x )=1+(c -1)x -c x ,则g ′(x )=c -1-c x ln c ,令g ′(x )=0,解得x 0=ln c -1ln cln c.当x <x 0时,g ′(x )>0,g (x )单调递增;当x >x 0时,g ′(x )<0,g (x )单调递减.因为c >1,由(2)知,1<c -1ln c<c ,所以0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0.所以当x ∈(0,1)时,1+(c -1)x >c x .21.B12[2016·全国卷Ⅰ] 已知函数f (x )=(x -2)e x +a (x -1)2.(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.21.解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).(i)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.(ii)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e2,则f ′(x )=(x -1)(e x -e),所以f (x )在(-∞,+∞)单调递增.②若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x ∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a )),(1,+∞)单调递增,在(ln(-2a ),1)单调递减.③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1),(ln(-2a ),+∞)单调递增,在(1,ln(-2a ))单调递减.(2)(i)设a >0,则由(1)知,f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a (b 2-32b )>0,所以f (x )有两个零点.(ii)设a =0,则f (x )=(x -2)e x ,所以f (x )只有一个零点.(iii)设a <0,若a ≥-e2,则由(1)知,f (x )在(1,+∞)单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点.若a <-e2,则由(1)知,f (x )在(1,ln(-2a ))单调递减,在(ln(-2a ),+∞)单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点.综上,a 的取值范围为(0,+∞).20.B12,A2[2016·北京卷] 设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. 20.解:(1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0, 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.21.B11,B12,E8[2016·四川卷] 设函数f (x )=ax 2-a -ln x ,g (x )=1x -ee x ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立.21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a .当x ∈(0,12a)时,f ′(x )<0,f (x )单调递减; 当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增. (2)证明:令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1e x -1>0.(3)由(2)知,当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a >1.由(1)有f (12a )<f (1)=0,而g (12a)>0,所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).20.B12[2016·全国卷Ⅱ] 已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 20.解:(1)f (x )的定义域为(0,+∞).当a =4时,f (x )=(x +1)ln x -4(x -1),f ′(x )=ln x +1x -3,f ′(1)=-2,f (1)=0.故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0.设g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a(x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0.(i)当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增,因此g (x )>0.(ii)当a >2时,令g ′(x )=0,得x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1. 由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减,因此g (x )<0.综上,a 的取值范围是(-∞,2]. 20.B11、B12、B14[2016·山东卷] 设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 20.解:(1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞),则g ′(x )=1x -2a =1-2ax x.当a ≤0时,由于x ∈(0,+∞),所以g ′(x )>0,则函数g (x )单调递增;当a >0时,若x ∈(0,12a ),则g ′(x )>0,函数g (x )单调递增,若x ∈(12a,+∞),则g ′(x )<0,函数g (x )单调递减.所以当a ≤0时,g (x )的单调递增区间为(0,+∞);当a >0时,g (x )的单调递增区间为(0,12a ),单调递减区间为(12a,+∞). (2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当0<a <12时,12a >1,由(1)知f ′(x )在(0,12a)内单调递增,可得当x ∈(0,1)时,f ′(x )<0,。
江苏省2016届高考数学模拟试题分类汇编:04导数
导数第22课 导数的概念与运算(苏州期初)12. 已知函数x e x x f 11)(+-=,若直线 :1-=kx y 与曲线)(x f y =相切,则=k e -15.函数f (x )=x +sin x 的图象在点O (0,0) 处的切线方程是 ▲ . y =2x12.如图,在平面直角坐标系xOy 中,直线y =3x ,y =0,x =t (t >0)围成的△OAB的面积为S (t ),则S (t )在t =2时的瞬时变化率是 ▲ ..2 3(南通三模)9.已知两曲线f (x )=cos x ,g (x )=3sin x ,x ∈(0,π2)相交于点A .若两曲线在点A 处的切线与x 轴分别相交于B ,C 两点,则线段BC 的长为 ▲ .43(苏北三市三模)11.若点P ,Q 分别是曲线y=x +4x 与直线4x+y =0上的动点,则线段PQ长的最小值为 ▲ .7171716.若函数f (x )=lnx +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是______.(扬州期中) 11.若x 轴是曲线()ln 3f x x kx =-+的一条切线,则k = ▲ . 2e(盐城期中)14. 设函数2()||xaf x e e =-,若()f x 在区间(1,3)a --内的图象上存在两点,在这两点处的切线相互垂直,则实数a 的取值范围是 ▲ . 11(,)22-(无锡期末)12、过曲线1(0)y x x x=->上一点00(,)P x y 处的切线分别与x 轴,y 轴交于点A 、B ,O 是坐标原点,若OAB ∆的面积为13,则0x = 5(南通调研一)13.在平面直角坐标系xOy 中,直线l 与曲线)0(2>=x x y 和)0(3>=x x y 均相切,切点分别为),(11y x A 和),(22y x B ,则21x x 的值是 【答案】43.【命题立意】本题旨在考查导数的概念,函数的切线方程.考查运算能力,推理论证能力及xOyABy =3灵活运用数学知识能力,难度中等.【解析】由题设函数y =x 2在A (x 1,y 1)处的切线方程为:y =2x 1 x -x 12, 函数y =x 3在B (x 2,y 2)处的切线方程为y =3 x 22 x -2x 23.所以⎩⎨⎧2x 1=3x 22x 12=2x 23,解之得:x 1=3227,x 2=89. 所以x 1x 2=43.第23课 利用导数研究函数的性质(盐城期中) 4.函数()xf x e x =-的单调递增区间为 ▲ . (0,)+∞ (盐城期中)11.若函数2()ln (2)f x x ax a x =+-+在12x =处取得极大值,则正数a 的取值范围是 ▲ . (0,2)(南京期初)11.已知函数f (x )=13x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a的取值范围为▲________.(32,4)9.函数f (x )=x e x (e 为自然对数的底数)的最大值是 ▲ .1e14.已知函数y =x 3-3x 在区间[a ,a +1](a ≥0)上的最大值与最小值的差为2,则满足条件的实数a 的所有值是 ▲ .0和3-1(南京盐城一模)14.设函数32,,ln ,x x x e y a x x e ⎧-+<=⎨≥⎩的图象上存在两点,P Q ,使得POQ ∆是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是 ▲ . 1(0,]1e +(苏州期中)14.设()f x '和()g x '分别是函数()f x 和()g x 的导函数,若()()0f x g x ''⋅≤在区间I 上恒成立,则称函数()f x 和()g x 在区间I 上单调性相反。
专题02 导数-2016年高考+联考模拟理数试题分项版解析(解析版) 含解析
第一部分 2016高考题汇编导数1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =【答案】A考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等. 2.【2016年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( ) (A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞) 【答案】A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A x B x -++又1l 与2l 的交点为2111221121,ln 11x x P x x x ⎛⎫-+ ⎪++⎝⎭,11x >,21122112111211PABA B P x x S y y x x x ∆+∴=-⋅=<=++,01PAB S ∆∴<<.故选A . 考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围.【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.3.【2016高考新课标2理数】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = . 【答案】1ln2- 【解析】考点: 导数的几何意义.【名师点睛】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).注意:求曲线切线时,要分清在点P 处的切线与过P 点的切线的不同.4.【2016高考新课标3理数】已知()f x 为偶函数,当0x <错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B 单元 函数与导数B1 函数及其表示5.B1[2016·江苏卷] 函数y =3-2x -x 2的定义域是________.5.[-3,1] [详细分析] 令3-2x -x 2≥0可得x 2+2x -3≤0,解得-3≤x ≤1,故所求函数的定义域为[-3,1].11.B1、B4[2016·江苏卷] 设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,25-x ,0≤x <1,其中a ∈R .若f (-52)=f (92),则f (5a )的值是________.11.-25 [详细分析] 因为f (x )的周期为2,所以f (-52)=f (-12)=-12+a ,f (92)=f(12)=110,即-12+a =110,所以a =35,故f (5a )=f (3)=f (-1)=-25.B2 反函数5.B2[2016·上海卷] 已知点(3,9)在函数f (x )=1+a x 的图像上,则f (x )的反函数f -1(x )=________.5.log 2(x -1),x ∈(1,+∞) [详细分析] 将点(3,9)的坐标代入函数f (x )的解析式得a=2,所以f (x )=1+2x ,所以f -1(x )=log 2(x -1),x ∈(1,+∞).B3 函数的单调性与最值14.B3,B12[2016·北京卷] 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________.14.①2 ②(-∞,-1) [详细分析] 由(x 3-3x )′=3x 2-3=0,得x =±1,作出函数y =x 3-3x 和y =-2x 的图像,如图所示.①当a =0时,由图像可得f (x )的最大值为f (-1)=2.②由图像可知当a ≥-1时,函数f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >a 3-3a ,所以a <-1.13.B3、B4[2016·天津卷] 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.13.(12,32) [详细分析] 由f (x )是偶函数,且f (x )在区间(-∞,0)上单调递增,得f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-2),f (-2)=f (2),∴2|a -1|<2,即|a -1|<12,∴12<a <32.18.B3,B4[2016·上海卷] 设f (x ),g (x ),h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )中至少有一个增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D [详细分析] f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2.对于①,因为增函数减增函数不一定为增函数,所以f (x )不一定为增函数,同理g (x ),h (x )不一定为增函数,因此①为假命题.对于②,易得f (x )是以T 为周期的函数,同理可得g (x ),h (x )也是以T 为周期的函数,所以②为真命题.B4 函数的奇偶性与周期性 11.B1、B4[2016·江苏卷] 设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,25-x ,0≤x <1,其中a ∈R .若f (-52)=f (92),则f (5a )的值是________.11.-25 [详细分析] 因为f (x )的周期为2,所以f (-52)=f (-12)=-12+a ,f (92)=f(12)=110,即-12+a =110,所以a =35,故f (5a )=f (3)=f (-1)=-25.15.B4、B12[2016·全国卷Ⅲ] 已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.15.y =-2x -1 [详细分析] 设x >0,则-x <0.∵x <0时,f (x )=ln(-x )+3x ,∴f (-x )=ln x -3x ,又∵f (-x )=f (x ),∴当x >0时,f (x )=ln x -3x ,∴f ′(x )=1x-3,即f ′(1)=-2,∴曲线y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),整理得y =-2x -1.14.B4[2016·四川卷] 已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f -52+f (1)=________.14.-2 [详细分析] 因为f (x )是周期为2的函数,所以f (x )=f (x +2). 因为f (x )是奇函数,所以f (x )=-f (-x ), 所以f (1)=f (-1),f (1)=-f (-1),即f (1)=0. 又f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12,f 12=412=2, 所以f ⎝⎛⎭⎫-52=-2,从而f ⎝⎛⎭⎫-52+f (1)=-2. 9.B4[2016·山东卷] 已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,fx +12=fx -12.则f (6)=( )A .-2B .-1C .0D .29.D [详细分析] ∵当x >12时,f (x +12)=f (x -12),∴f (x )的周期为1,则f (6)=f (1).又∵当-1≤x ≤1时,f (-x )=-f (x ),∴f (1)=-f (-1).又∵当x <0时,f (x )=x 3-1,∴f (-1)=(-1)3-1=-2,∴f (6)=-f (-1)=2. 13.B3、B4[2016·天津卷] 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.13.(12,32) [详细分析] 由f (x )是偶函数,且f (x )在区间(-∞,0)上单调递增,得f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-2),f (-2)=f (2),∴2|a -1|<2,即|a -1|<12,∴12<a <32.18.B3,B4[2016·上海卷] 设f (x ),g (x ),h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )中至少有一个增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D [详细分析] f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2.对于①,因为增函数减增函数不一定为增函数,所以f (x )不一定为增函数,同理g (x ),h (x )不一定为增函数,因此①为假命题.对于②,易得f (x )是以T 为周期的函数,同理可得g (x ),h (x )也是以T 为周期的函数,所以②为真命题.B5 二次函数B6 指数与指数函数5.E1,C3,B6,B7[2016·北京卷] 已知x ,y ∈R ,且x >y >0,则( )A.1x -1y>0 B .sin x -sin y >0 C.12x -12y <0 D .ln x +ln y >05.C [详细分析] 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y <0,故结论不成立;选项B 中,当x =5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x 是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.19.B6、B9、B12[2016·江苏卷] 已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值;(2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x+2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.6.B6[2016·全国卷Ⅲ] 已知a =243,b =425,c =2513,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b6.A [详细分析] b =425=245<243=a ,c =523>423=243=a ,故b <a <c .12.B6、B7[2016·浙江卷] 已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b=________.12.4 2 [详细分析] 设t =log a b ,则log b a =1t .∵a >b >1,∴0<t <1.由t +1t =52,化简得t 2-52t +1=0,解得t =12,故b =a ,所以a b =a a ,b a =(a )a =a 12a ,则a =12a ,即a 2-4a=0,得a =4,b =2.B7 对数与对数函数5.E1,C3,B6,B7[2016·北京卷] 已知x ,y ∈R ,且x >y >0,则( )A.1x -1y>0 B .sin x -sin y >0 C.12x -12y <0 D .ln x +ln y >05.C [详细分析] 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y <0,故结论不成立;选项B 中,当x =5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x 是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.8.B7,B8,E1[2016·全国卷Ⅰ] 若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba cC .a log b c <b log a cD .log a c <log b c8.C [详细分析] 根据幂函数性质,选项A 中的不等式不成立;选项B 中的不等式可化为b c -1<a c -1,此时-1<c -1<0,根据幂函数性质,该不等式不成立;选项C 中的不等式可以化为a b >log a c log b c =log c b log c a =log a b ,此时ab >1,0<log a b <1,故此不等式成立;选项D 中的不等式可以化为lg c lg a <lg c lg b ,进而1lg a >1lg b ,进而lg a <lg b ,即a <b ,故在已知条件下选项D 中的不等式不成立. 21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0), 因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A .9.B7,E6[2016·四川卷] 设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1图像上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)9.A [详细分析] 不妨设P 1(x 1,y 1),P 2(x 2,y 2),其中0<x 1<1<x 2.由l 1,l 2分别是点P 1,P 2处的切线,且f ′(x )=⎩⎨⎧-1x,0<x <1,1x,x >1,得l 1的斜率k 1=-1x 1,l 2的斜率k 2=1x 2.又l 1与l 2垂直,且0<x 1<x 2,所以k 1·k 2=-1x 1·1x 2=-1⇒x 1·x 2=1,l 1:y =-1x 1(x -x 1)-ln x 1①,l 2:y =1x 2(x -x 2)+ln x 2②,则点A 的坐标为(0,1-ln x 1),点B 的坐标为(0,-1+ln x 2), 由此可得|AB |=2-ln x 1-ln x 2=2-ln(x 1·x 2)=2.联立①②两式可解得交点P 的横坐标x P =2-ln (x 1x 2)x 1+x 2=2x 1+x 2,所以S △P AB =12|AB |·|x P |=12×2×2x 1+x 2=2x 1+1x 1≤1,当且仅当x 1=1x 1,即x 1=1时,等号成立.而0<x 1<1,所以0<S △P AB <1,故选A.12.B6、B7[2016·浙江卷] 已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b=________.12.4 2 [详细分析] 设t =log a b ,则log b a =1t .∵a >b >1,∴0<t <1.由t +1t =52,化简得t 2-52t +1=0,解得t =12,故b =a ,所以a b =a a ,b a =(a )a =a 12a ,则a =12a ,即a 2-4a=0,得a =4,b =2.B8 幂函数与函数的图像 7.B8,B12[2016·全国卷Ⅰ] 函数y =2x 2-e |x |在[-2,2]的图像大致为( )图1-27.D [详细分析] 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =2x 2-e x .令f (x )=2x 2-e x ,则f ′(x )=4x -e x ,则f ′(0)<0,f ′(1)>0,则f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.8.B7,B8,E1[2016·全国卷Ⅰ] 若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba cC .a log b c <b log a cD .log a c <log b c8.C [详细分析] 根据幂函数性质,选项A 中的不等式不成立;选项B 中的不等式可化为b c -1<a c -1,此时-1<c -1<0,根据幂函数性质,该不等式不成立;选项C 中的不等式可以化为a b >log a c log b c =log c b log c a =log a b ,此时ab >1,0<log a b <1,故此不等式成立;选项D 中的不等式可以化为lg c lg a <lg c lg b ,进而1lg a >1lg b ,进而lg a <lg b ,即a <b ,故在已知条件下选项D 中的不等式不成立.12.B8[2016·全国卷Ⅱ] 已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则(x i +y i )=( )A .0B .mC .2mD .4m12.B [详细分析] 由f(-x)=2-f(x)得f(x)的图像关于点(0,1)对称,∵y =x +1x =1+1x的图像也关于点(0,1)对称, ∴两函数图像的交点必关于点(0,1)对称,且对于每一组对称点(x i ,y i )和(x′i ,y′i )均满足x i +x′i =0,y i +y′i =2,∴=0+2·m2=m.B9 函数与方程19.B6、B9、B12[2016·江苏卷] 已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x+2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.15.B9[2016·山东卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.15.(3,+∞) [详细分析] 画出函数f (x )的图像如图所示,根据已知得m >4m -m 2,又m >0,解得m >3,故实数 m 的取值范围是(3,+∞).B10 函数模型及其应用 B11 导数及其运算21.B11,B12,E8[2016·四川卷] 设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a ,此时,当x ∈(0,12a )时,f ′(x )<0,f (x )单调递减;当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又s (1)=0,所以当x >1时,s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1.由(1)有f (12a )<f (1)=0,而g (12a)>0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).B12 导数的应用14.B3,B12[2016·北京卷] 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________.14.①2 ②(-∞,-1) [详细分析] 由(x 3-3x )′=3x 2-3=0,得x =±1,作出函数y =x 3-3x 和y =-2x 的图像,如图所示.①当a =0时,由图像可得f (x )的最大值为f (-1)=2.②由图像可知当a ≥-1时,函数f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >a 3-3a ,所以a <-1.17.G1、G7、B12[2016·江苏卷] 形状是正四棱锥P - A 1B 1C 1D 1,下部的形状是正四棱柱ABCD - A 1B 1C 1D 1(如图1-5所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m17.解:(1)由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P - A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3), 正四棱柱ABCD - A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m),PO 1=h (m),则0<h <6,O 1O =4h .连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21,所以2a 22+h 2=36,即a 2=2(36-h 2).于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值.因此,当PO 1=2 3 m19.B6、B9、B12[2016·江苏卷] x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x+2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.7.B8,B12[2016·全国卷Ⅰ] 函数y =2x 2-e |x |在[-2,2]的图像大致为( )图1-27.D [详细分析] 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =2x 2-e x .令f (x )=2x 2-e x ,则f ′(x )=4x -e x ,则f ′(0)<0,f ′(1)>0,则f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.21.B12[2016·全国卷Ⅰ] 已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.21.解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). (i)设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.(ii)设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a (b 2-32b )>0,故f (x )存在两个零点.(iii)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1.故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞) 时,f ′(x )>0.因此f (x )在(1,ln(-2a ))单调递减,在(ln(-2a ),+∞)单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.综上,a 的取值范围为(0,+∞).(2)证明:不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.由于f (2-x 2)=-x 2e2-x 2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e2-x 2-(x 2-2)e x 2.设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x ).所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0, 从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2. 15.B4、B12[2016·全国卷Ⅲ] 已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.15.y =-2x -1 [详细分析] 设x >0,则-x <0.∵x <0时,f (x )=ln(-x )+3x ,∴f (-x )=ln x -3x ,又∵f (-x )=f (x ),∴当x >0时,f (x )=ln x -3x ,∴f ′(x )=1x-3,即f ′(1)=-2,∴曲线y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),整理得y =-2x -1.21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0), 因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A . 21.B11,B12,E8[2016·四川卷] 设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a,此时,当x ∈(0,12a )时,f ′(x )<0,f (x )单调递减;当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又s (1)=0,所以当x >1时,s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1.由(1)有f (12a )<f (1)=0,而g (12a)>0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).16.B12[2016·全国卷Ⅱ] 若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.16.1-ln 2 [详细分析] 曲线y =ln x +2的切线为y =1x 1·x +ln x 1+1(其中x 1为切点横坐标),曲线y =ln(x +1)的切线为y =1x 2+1·x +ln(x 2+1)-x 2x 2+1(其中x 2为切点横坐标).由题可知⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得⎩⎨⎧x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.21.B12[2016·全国卷Ⅱ] (1)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x+x +2>0.(2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -ax 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.21.解:(1)f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=x 2e x(x +2)2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0.(2)证明:g ′(x )=(x -2)e x +a (x +2)x 3=x +2x3[f (x )+a ].由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0,因此,存在唯一x a ∈(0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为 g (x a )=e x a -a (x a +1)x 2a =e x a +f (x a )(x a +1)x 2a =e x ax a +2, 于是h (a )=e x a x a +2.由e x x +2′=(x +1)e x (x +2)2>0(x >0),可知y =e xx +2(x >0)单调递增,所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24.因为y =e x x +2单调递增,对任意λ∈(12,e 24],存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ,所以h (a )的值域是(12,e 24].综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是(12,e 24].10.B12[2016·山东卷] 若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 310.A [详细分析] 由函数图像上两点处的切线互相垂直,可知函数在这两点处的导数之积为-1,经检验,选项A 符合题意.20.B12,B14[2016·山东卷] 已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.20.解:(1)f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,若x ∈(0,1),则f ′(x )>0,f (x )单调递增,若x ∈(1,+∞),则f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a (x -1)x 3(x -2a )(x +2a). (i)当0<a <2时,2a>1. 当x ∈(0,1)或x ∈(2a,+∞)时,f ′(x )>0,f (x )单调递增. 当x ∈(1,2a)时,f ′(x )<0,f (x )单调递减. (ii)当a =2时,2a =1,在区间(0,+∞)内,f ′(x )≥0,f (x )单调递增. (iii)当a >2时,0<2a<1. 当x ∈(0,2a)或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈2a,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <2时,f (x )在(0,1)上单调递增,在(1,2a)上单调递减,在(2a,+∞)上单调递增;当a =2时,f (x )在(0,+∞)上单调递增;当a >2时,f (x )在(0,2a)上单调递增,在(2a,1)上单调递减,在(1,+∞)上单调递增.(2)证明:由(1)知,当a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-(1-1x -2x 2+2x 3)=x -ln x +3x +1x 2-2x 3-1,x ∈[1,2].设g (x )=x -ln x ,h (x )=3x +1x 2-2x 3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ). 由g ′(x )=x -1x≥0, 可得g (x )≥g (1)=1,当且仅当x =1时取得等号. 又h ′(x )=-3x 2-2x +6x 4.设φ(x )=-3x 2-2x +6,则φ(x )在[1,2]上单调递减. 因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得当x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )在(1,x 0)上单调递增,在(x 0,2)上单调递减. 由h (1)=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32,即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.20.B12[2016·天津卷] 设函数f (x )=(x -1)3-ax -b ,x ∈R ,其中a ,b ∈R . (1)求f (x )的单调区间;(2)若f (x )存在极值点x 0,且f (x 1)=f (x 0),其中x 1≠x 0,求证:x 1+2x 0=3; (3)设a >0,函数g (x )=|f (x )|,求证:g (x )在区间[0,2]上的最大值不小于14.20.解:(1)由f (x )=(x -1)3-ax -b ,可得f ′(x )=3(x -1)2-a . 下面分两种情况讨论: (i)当a ≤0时,有f ′(x )=3(x -1)2-a ≥0恒成立,所以f (x )的单调递增区间为(-∞,+∞). (ii)当a >0时,令f ′(x )=0,解得x =1+3a 3或x =1-3a3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )的单调递减区间为(1-3a 3,1+3a 3),单调递增区间为(-∞,1-3a 3),(1+3a3,+∞). (2)证明:因为f (x )存在极值点,所以由(1)知a >0,且x 0≠1.由题意,得f ′(x 0)=3(x 0-1)2-a =0,即(x 0-1)2=a 3,进而f (x 0)=(x 0-1)3-ax 0-b =-2a 3x 0-a3-b .又f (3-2x 0)=(2-2x 0)3-a (3-2x 0)-b =8a 3(1-x 0)+2ax 0-3a -b =-2a 3x 0-a3-b =f (x 0),且3-2x 0≠x 0,由题意及(1)知,存在唯一实数x 1满足f (x 1)=f (x 0),且x 1≠x 0,因此x 1=3-2x 0, 所以x 1+2x 0=3.(3)证明:设g (x )在区间[0,2]上的最大值为M ,max{x ,y }表示x ,y 两数的最大值.下面分三种情况讨论:(i)当a ≥3时,1-3a 3≤0<2≤1+3a 3,由(1)知,f (x )在区间[0,2]上单调递减,所以f (x )在区间[0,2]上的取值范围为[f (2),f (0)],因此M =max{|f (2)|,|f (0)|}=max{|1-2a -b |,|-1-b |}=max{|a -1+(a +b )|,|a -1-(a +b )|}=⎩⎪⎨⎪⎧a -1+(a +b ),a +b ≥0,a -1-(a +b ),a +b <0, 所以M =a -1+|a +b |≥2.(ii)当34≤a <3时,1-23a 3≤0<1-3a 3<1+3a 3<2≤1+23a 3.由(1)和(2)知f (0)≥f (1-23a 3)=f (1+3a 3),f (2)≤f (1+23a 3)=f (1-3a 3),所以f (x )在区间[0,2]上的取值范围为[f (1+3a 3),f (1-3a3)], 因此M =max{|f(1+3a 3)|,|f (1-3a 3)|=max ⎩⎨⎧⎭⎬⎫-2a 93a -a -b ,2a 93a -a -b = max ⎩⎨⎧⎭⎬⎫2a 93a +(a +b ),2a 93a -(a +b )=2a 93a +|a +b |≥29×34×3×34=14. (iii)当0<a <34时,0<1-23a 3<1+23a 3<2,由(1)和(2)知f (0)<f (1-23a 3)=f (1+3a3),f (2)>f (1+23a 3)=f (1-3a3).所以f (x )在区间[0,2]上的取值范围为[f (0),f (2)],因此M =max{|f (0)|,|f (2)|}=max{|-1-b |,|1-2a -b |}=max{|1-a +(a +b )|,|1-a -(a +b )|}=1-a +|a +b |>14.综上所述,当a >0时,g (x )在区间[0,2]上的最大值不小于14.03[2016·浙江卷]“复数与导数”模块(1)已知i 为虚数单位.若复数z 满足(z +i)2=2i ,求复数z . (2)求曲线y =2x 2-ln x 在点(1,2)处的切线方程. 解:(1)设复数z =a +b i ,a ,b ∈R ,由题意得 a 2-(b +1)2+2a (b +1)i =2i ,解得⎩⎪⎨⎪⎧a =1,b =0或⎩⎪⎨⎪⎧a =-1,b =-2. 故z =1或z =-1-2i.(2)由于(2x 2-ln x )′=4x -1x,则曲线在点(1,2)处的切线的斜率为3.因此,曲线在点(1,2)处的切线方程为y =3x -1. B13 定积分与微积分基本定理 B14 单元综合18.B14[2016·北京卷] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求f (x )的单调区间.18.解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,得⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1,解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞), 故f (x )的单调递增区间为(-∞,+∞). 21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0), 因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1.令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A . 15.B14[2016·四川卷] 在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′yx 2+y 2,-x x 2+y 2;当P 是原点时,定义P 的“伴随点”为它自身.平面曲线C 上所有点的“伴随点”所构成的曲线C ′定义为曲线C 的“伴随曲线”.现有下列命题:①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆的“伴随曲线”是它自身;③若曲线C 关于x 轴对称,则其“伴随曲线”C ′关于y 轴对称; ④一条直线的“伴随曲线”是一条直线.其中的真命题是________(写出所有真命题的序号).15.②③ [详细分析] ①设点A 的坐标为(x ,y ),则其“伴随点”为A ′⎝⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,。