浙江省嘉兴、舟山2019年中考数学试题word版含答案
2019年浙江省舟山市中考数学试卷-解析版
2019年浙江省舟山市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. −2019的相反数是( )A. 2019B. −2019C. 12019D. −120192. 2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( )A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1063. 如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A.B. C. D.4. 2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( )A. 签约金额逐年增加B. 与上年相比,2019年的签约金额的增长量最多C. 签约金额的年增长速度最快的是2016年D. 2018年的签约金额比2017年降低了22.98%5. 如图是一个2×2的方阵,其中每行、每列的两数和相等,则a 可以是( )A. tan60°B. −1C. 0D. 12019 6. 已知四个实数a ,b ,c ,d ,若a >b ,c >d ,则( )A. a +c >b +dB. a −c >b −dC. ac >bdD. a c >bd7. 如图,已知⊙O 上三点A ,B ,C ,半径OC =1,∠ABC =30°,切线PA交OC 延长线于点P ,则PA 的长为( )A. 2B. √3C. √2D. 128. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A. {4x +6y =383x +5y =48 B. {4y +6x =483y +5x =38 C. {4x +6y =485x +3y =38D. {4x +6y =483x +5y =389.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA′′B′′C′′,则点C的对应点C′′的坐标是()A. (2,−1)B. (1,−2)C. (−2,1)D. (−2,−1)10.小飞研究二次函数y=−(x−m)2−m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=−x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当−1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A. ①B. ②C. ③D. ④二、填空题(本大题共6小题,共24.0分)11.分解因式:x2−5x=______.12.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为_____.13.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,−a,−b的大小关系为_____(用“<”号连接).14.在x2+______+4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.AB2,则15.如图,在△ABC中,若∠A=45°,AC2−BC2=√55tanC=______.16.如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为______cm;连接BD,则△ABD的面积最大值为______cm2.三、解答题(本大题共8小题,共66.0分)17.小明解答“先化简,再求值:1x+1+2x2−1,其中x=√3+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.18.如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.19.如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=kx的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O′A′B′当这个函数图象经过△O′A′B′一边的中点时,求a的值.20.在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).21.在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.22.某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,√3≈1.73)23.某农作物的生长率p与温度t(℃)有如下关系:如图,当10≤t≤25时可近似用函数p=150t−15刻画;当25≤t≤37时可近似用函数p=−1160(t−ℎ)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p之间满足已学过的函数关系,部分数据如下:生长率p0.20.250.30.35提前上市的天数m(天)051015求:①m关于的函数表达式;②用含t的代数式表示m.③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温20℃时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若欲加温到25<t≤37,由于要采用特殊方法,成本增加到400元/天.问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)24.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=ℎ,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P′,画正方形P′Q′M′N′,使点Q′,M′在BC边上,点N′在△ABC内,然后连结BN′,并延长交AC于点N,画NM⊥BC于点M,NP⊥NM 交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.答案和解析1.【答案】A【解析】解:因为a的相反数是−a,所以−2019的相反数是2019.故选:A.根据相反数的意义,直接可得结论.本题考查了相反数的意义.理解a的相反数是−a,是解决本题的关键.2.【答案】C【解析】解:380000=3.8×105故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.【答案】C【解析】解:A、错误.签约金额2017,2018年是下降的.B、错误.与上年相比,2016年的签约金额的增长量最多.C、正确.≈9.3%.D、错误.下降了:244.5−221.6244.5故选:C.两条折线图一一判断即可.本题考查折线统计图,解题的关键是理解题意读懂图象信息,属于中考常考题型.5.【答案】D3+20,【解析】解:由题意可得:a+|−2|=√8则a+2=3,解得:a=1,故a可以是12019.故选:D.直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.6.【答案】A【解析】解:∵a >b ,c >d , ∴a +c >b +d . 故选:A .直接利用不等式的基本性质分别化简得出答案.此题主要考查了不等式的性质,正确掌握不等式的基本性质是解题关键. 7.【答案】B【解析】解:连接OA , ∵∠ABC =30°,∴∠AOC =2∠ABC =60°, ∵PA 是⊙O 的切线, ∴∠OAP =90°, ∵OA =OC =1,∴AP =OAtan60°=1×√3=√3, 故选:B .连接OA ,根据圆周角定理求出∠AOP ,根据切线的性质求出∠OAP =90°,解直角三角形求出AP 即可.本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径. 8.【答案】D【解析】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: {4x +6y =483x +5y =38. 故选:D .直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.此题主要考查了二元一次方程组的应用,正确得出等式是解题关键. 9.【答案】A【解析】 【分析】本题考查旋转变化、轴对称变化,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意可以写出点C 的坐标,然后根据与y 轴对称和与原点对称的点的特点即可得到点C″的坐标,本题得以解决. 【解答】解:∵已知菱形OABC 的顶点A(1,2) ,B(3,3) ∴点C 的坐标为(2,1),∴点C′的坐标为(−2,1), ∴点C′′的坐标为(2,−1), 故选:A .10.【答案】C【解析】解:二次函数y =−(x −m)2−m +1(m 为常数) ①∵顶点坐标为(m,−m +1)且当x =m 时,y =−m +1 ∴这个函数图象的顶点始终在直线y =−x +1上 故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得−(x−m)2−m+1=0,其中m≤1解得:x1=m−√−m+1,x2=m+√−m+1∵顶点坐标为(m,−m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|−m+1|=|m−(m−√−m+1)|解得:m=0或1当m=1时,二次函数y=−(x−1)2,此时顶点为(1,0),与x轴的交点也为(1,0),不构成三角形,舍去;∴存在m=0,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴x1+x22>m∵二次函数y=−(x−m)2−m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且a=−1<0∴y1>y2故结论③错误;④当−1<x<2时,y随x的增大而增大,且a=−1<0∴m的取值范围为m≥2.故结论④正确.故选:C.根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.11.【答案】x(x−5)【解析】解:x2−5x=x(x−5).故答案为:x(x−5).直接提取公因式x分解因式即可.此题考查的是提取公因式分解因式,关键是找出公因式.12.【答案】23【解析】解:树状图如图所示:共有6个等可能的结果,甲被选中的结果有4个,∴甲被选中的概率为46=23;故答案为:23.画出树状图,共有6个等可能的结果,甲被选中的结果有4个,由概率公式即可得出结果.本题考查了树状图法求概率以及概率公式;画出树状图是解题的关键.13.【答案】b<−a<a<−b【解析】【分析】本题考查了有理数的大小比较,掌握有理数的大小比较法则是:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小是本题的关键.根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案.【解答】解:∵a>0,b<0,a+b<0,∴|b|>a,∴−b>a,b<−a,∴四个数a,b,−a,−b的大小关系为b<−a<a<−b.故答案为:b<−a<a<−b14.【答案】±4x【解析】解:要使方程有两个相等的实数根,则△=b2−4ac=b2−16=0得b=±4故一次项为±4x故答案为±4x要使方程有两个相等的实数根,即△=0,则利用根的判别式即可求得一次项的系数即可.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2−4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】√5【解析】解:如图,过B作BD⊥AC于D,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2−BC2=(AD+DC)2−(DC2+BD2)=AD2+DC2+2AD⋅DC−DC2−BD2=2AD⋅DC=2BD⋅DC,∵AC2−BC2=√55AB2,∴2BD⋅DC=√55×2BD2,∴DC=√55BD,∴tanC=BDDC =√55BD=√5.故答案为√5.过B作BD⊥AC于D,易证△ABD是等腰直角三角形,那么AD=BD.根据勾股定理得出AB2=AD2+DB2=2BD2,BC2=DC2+BD2,那么AC2−BC2=(AD+DC)2−(DC2+BD2)=2BD⋅DC,代入AC2−BC2=√55AB2,得出DC=√55BD,进而根据正切函数的定义即可求解.本题考查了解直角三角形,等腰直角三角形的判定与性质,勾股定理,锐角三角函数定义,难度适中.证明出AC2−BC2=(AD+DC)2−(DC2+BD2)=2BD⋅DC,是解题的关键.16.【答案】(24−12√2)(24√3+36√2−12√6)【解析】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4√3cm,AB=8√3cm,ED=DF=6√2cm如图,当点E沿AC方向下滑时,得△E′D′F′,过点D′作D′N⊥AC于点N,作D′M⊥BC于点M∴∠MD′N=90°,且∠E′D′F′=90°∴∠E′D′N=∠F′D′M,且∠D′NE′=∠D′MF′=90°,E′D′=D′F′∴△D′NE′≌△D′MF′(AAS)∴D′N=D′M,且D′N⊥AC,D′M⊥CM∴CD′平分∠ACM即点E沿AC方向下滑时,点D′在射线CD上移动,∴当E′D′⊥AC时,DD′值最大,最大值=√2ED−CD=(12−6√2)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12−6√2)=(24−12√2)cm 如图,连接BD′,AD′,∵S△AD′B=S△ABC+S△AD′C−S△BD′C∴S△AD′B=12BC×AC+12×AC×D′N−12×BC×D′M=24√3+12(12−4√3)×D′N当E′D′⊥AC时,S△AD′B有最大值,∴S△AD′B最大值=24√3+12(12−4√3)×6√2=(24√3+36√2−12√6)cm2.故答案为:(24−12√2),(24√3+36√2−12√6)过点D′作D′N⊥AC于点N,作D′M⊥BC于点M,由直角三角形的性质可得BC=4√3cm,AB=8√3cm,ED=DF=6√2cm,由“AAS”可证△D′NE′≌△D′MF′,可得D′N=D′M,即点D′在射线CD上移动,且当E′D′⊥AC时,DD′值最大,则可求点D运动的路径长,由三角形面积公式可求S△AD′B=12BC×AC+12×AC×D′N−12×BC×D′M=24√3+12(12−4√3)×D′N,则E′D′⊥AC时,S△AD′B有最大值.本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定点D的运动轨迹是本题的关键.17.【答案】解:步骤①②有误,原式=+==,当x=+1时,原式==.【解析】本题考查的是分式的化简求值,掌握异分母分式的减法法则是解题的关键.18.【答案】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB//CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.【解析】根据SAS即可证明△ABE≌△CDF可得AE=CF.本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.19.【答案】解:(1)过点A作AC⊥OB于点C,∵△OAB是等边三角形,OB,∴∠AOB=60°,OC=12∵B(4,0),∴OB=OA=4,∴OC=2,AC=2√3.把点A(2,2√3)代入y=k,得k=4√3.x∴反比例函数的解析式为y=4√3;x(2)分两种情况讨论:①点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=√3,B′E=1.∴O′E=3,把y=√3代入y=4√3,得x=4,x∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH=√3,O′H=1.,得x=4,把y=√3代入y=4√3x∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.【解析】(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键.20.【答案】解:(1)由勾股定理得:CD=AB=CD′=√5,BD=AC=BD′′=√13,AD′=BC=AD′′=√10;画出图形如图1所示;(2)如图2所示.【解析】本题考查了平行四边形的判定与性质、勾股定理、平行线分线段成比例定理;熟练掌握勾股定理好平行线分线段成比例定理是解题的关键.(1)由勾股定理得:CD=AB=CD′=√5,BD=AC=BD′′=√13,AD′=BC=AD′′=√10;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.21.【答案】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×24=240(人),50答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【解析】(1)因为有50名居民,所以中位数落在第四组,中位数为75;=240(人);(2)A小区500名居民成绩能超过平均数的人数:500×2450(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B 小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.本题考查的是频数直方图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB//CG//DE,∴∠DCG=180°−∠CDE=110°,∴∠BCG=∠BCD−∠GCD=30°,∴∠ABC=180°−∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CD×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×sin50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH−DE≈0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.【解析】(1)过点C作CG⊥AM于点G,证明AB//CG//DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D 作DH ⊥AM 于点H ,过点C 作CK ⊥DH 于点K ,如图3,通过解直角三角形求得求得DH ,最后便可求得结果.此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是正确构造直角三角形.23.【答案】解:(1)把(25,0.3)代入p =−1160(t −ℎ)2+0.4得:0.3=−1160(25−ℎ)2+0.4 解得:ℎ=29或ℎ=21,∵25≤t ≤37∴ℎ=29.(2)①由表格可知,m 是p 的一次函数,设m =kp +b把(0.2,0),(0.3,10)代入得{0=0.2×k +b 10=0.3×k +b解得{k =100b =−20∴m =100p −20.②当10≤t ≤25时,p =150t −15∴m =100(150t −15)−20=2t −40;当25≤t ≤37时,p =−1160(t −ℎ)2+0.4∴m =100[−1160(t −ℎ)2+0.4]−20=−58(t −29)2+20 ∴m ={2t −40, 10≤t ≤25−58(t −29)2+20 ,25≤t ≤37 ③当20≤t ≤25时,增加的利润为:600m +[100×30−200(30−m)]=800m −3000=1600t −35000当t =25时,增加的利润的最大值为1600×25−35000=5000元;当25<t ≤37时,增加的利润为:600m +[100×30−400(30−m)]=1000m −9000=−625(t −29)2+11000 ∴当t =29时,增加的利润的最大值为11000元.综上,当t =29时,提前20天上市,增加的利润最大,最大值为11000元.【解析】(1)把(25,0.3)代入p =−1160(t −ℎ)2+0.4中,便可求得h ;(2)①由表格可知,m 是p 的一次函数,由待定系数法可解;②分别求出当10≤t ≤25时和当25≤t ≤37时的函数解析式即可;③分别求出当20≤t ≤25时,增加的利润和当25<t ≤37时,增加的利润,然后比较两种情况下的最大值,即可得结论.本题综合考查了待定系数法求二次函数和一次函数的解析式以及一次函数和二次函数的实际应用,难度较大.24.【答案】(1)解:如图1中,∵PN//BC,∴△APN∽△ABC,∴PNBC =AEAD,即PNa=ℎ−PNℎ,解得PN=aℎa+ℎ(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN//M′N′,∴△BN′M′∽△BNM,∴M′N′MN =BN′BN,同理可得:P′N′PN =BN′BN∴M′N′MN =P′N′PN,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形(4)如图,过点N作ND⊥ME于点D∵MN=EN,ND⊥ME,∴∠NEM=∠MNE,ED=DM∵∠BMN=∠QEM=90°∴∠EQM+∠EMQ=90°,∠EMQ+∠EMN=90°∴∠EMN=∠EQM,且MN=QN,∠QEM=∠NDM=90°∴△QEM≌△MDN(AAS)∴EQ=DM=12EM,∵∠BMN=∠QEM=90°∴∠BEQ+∠NEM=90°,∠BME+∠NME=90°∴∠BEQ=∠BME,且∠MBE=∠MBE∴△BEQ∽△BME∴BQBE =BEBM=EQEM=12,∴BM=2BE,BE=2BQ∴BM=4BQ ∴QM=3BQ=MN,BN=5BQ∴MNBN=3BQ5BQ=35∴BN=53MN=53(aℎa+ℎ)【解析】(1)理由相似三角形的性质构建方程即可解决问题;(2)根据题意画出图形即可;(3)首先证明四边形PQMN是矩形,再证明MN=PN即可;(4)过点N作ND⊥ME于点D,由等腰三角形的性质可得∠NEM=∠MNE,ED=DM,由“AAS”可证△QEM≌△MDN,可得EQ=DM=12EM,通过证明△BEQ∽△BME,可得BM=2BE,BE=2BQ,即可求BN的长.本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.。
2019年浙江省嘉兴市中考数学试卷及答案
浙江省嘉兴市2019年中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,请选出各题中唯的正确选项,不选、多选、错选,均不得分)1.(4分)(2019年浙江嘉兴)﹣3的绝对值是()A.﹣3 B. 3 C. D.考点:绝对值.专题:计算题.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣3|=3.故﹣3的绝对值是3.故选B.点评:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2019年浙江嘉兴)如图,AB∥CD,EF分别为交AB,CD于点E,F,∠1=50°,则∠2的度数为()A.50° B.120°C.130°D. 150°考点:平行线的性质.分析:根据对顶角相等可得∠3=∠1,再根据两直线平行,同旁内角互补解答.解答:解:如图,∠3=∠1=50°(对顶角相等),∵AB∥CD,∴∠2=180°﹣∠3=180°﹣50°=130°.故选C.点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.3.(4分)(2019年浙江嘉兴)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A. 6 B.7 C.8 D.9考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选C.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(4分)(2019年浙江嘉兴)2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为()A. 3.844×108B.3.844×107C.3.844×109D.38.44×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 400 000有9位,所以可以确定n=9﹣1=8.解答:解:384 400 000=3.844×108.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(4分)(2019年浙江嘉兴)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况考点:扇形统计图.分析:利用扇形统计图的特点结合各选项利用排除法确定答案即可.解答:解:A、能够看出各项消费占总消费额的百分比,故选项正确;B、不能确定各项的消费金额,故选项错误;C、不能看出消费的总金额,故选项错误;D、不能看出增减情况,故选项错误.故选A.点评:本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.6.(4分)(2019年浙江嘉兴)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B. 4 C. 6 D.8考点:垂径定理;勾股定理.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8,故选D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.7.(4分)(2019年浙江嘉兴)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6 D.(2a2)3=6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,故选项错误;B、原式=a2÷a=a,故选项正确;C、原式=﹣a3•a2=﹣a5,故选项错误;D、原式=8a6,故选项错误.故选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.8.(4分)(2019年浙江嘉兴)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A. 1.5 B. 2 C. 2.5 D. 3考点:圆锥的计算.分析:半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.解答:解:设圆锥的底面半径是r,则得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.故选D.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9.(4分)(2019年浙江嘉兴)如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG 延长线恰好经过点D,则CD的长为()A.2cm B.2cm C.4cm D. 4cm考点:翻折变换(折叠问题).分析:先证明EG是△DCH的中位线,继而得出DG=HG,然后证明△ADG≌△AHG,得出∠BAH=∠HAG=∠DAG=30°,在Rt△ABH中,可求出AB,也即是CD的长.解答:解:∵点E,F分别是CD和AB的中点,∴EF⊥AB,∴EF∥BC,∴EG是△DCH的中位线,∴DG=HG,由折叠的性质可得:∠AGH=∠ABH=90°,∴∠AGH=∠AGD=90°,在△AGH和△AGD中,,∴△ADG≌△AHG(SAS),∴AD=AH,∠DAG=∠HAG,由折叠的性质可得:∠BAH=∠HAG,∴∠BAH=∠HAG=∠DAG=∠BAD=30°,在Rt△ABH中,AH=AD=4,∠BAH=30°,∴HB=2,AB=2,∴CD=AB=2.故选B.点评:本题考查了翻折变换、三角形的中位线定理,解答本题的关键是判断出∠BAH=∠HAG=∠DAG=30°,注意熟练掌握翻折变换的性质.10.(4分)(2019年浙江嘉兴)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或﹣或考点:二次函数的最值.专题:分类讨论.分析:根据对称轴的位置,分三种情况讨论求解即可.解答:解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时,二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选C.点评:本题考查了二次函数的最值问题,难点在于分情况讨论.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2019年浙江嘉兴)方程x2﹣3x=0的根为0或3.考点:解一元二次方程-因式分解法.分析:根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.解答:解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.点评:本题考查了解一元二次方程的方法,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.(5分)(2019年浙江嘉兴)如图,在直角坐标系中,已知点A(﹣3,﹣1),点B(﹣2,1),平移线段AB,使点A落在A1(0,﹣1),点B落在点B1,则点B1的坐标为(1,1).考点:坐标与图形变化-平移.分析:根据网格结构找出点A1、B1的位置,然后根据平面直角坐标系写出点B1的坐标即可.解答:解:如图,点B1的坐标为(1,1).故答案为:(1,1).点评:本题考查了坐标与图形变化﹣平移,熟练掌握网格结构准确找出点的位置是解题的关键.13.(5分)(2019年浙江嘉兴)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为7tanα米(用含α的代数式表示).考点:解直角三角形的应用-仰角俯角问题.分析:根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.解答:解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=7tanα(米).故答案为:7tanα.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.14.(5分)(2019年浙江嘉兴)有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两个人同坐2号车的概率为.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个人同坐2号车的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有4种等可能的结果,两个人同坐2号车的只有1种情况,∴两个人同坐2号车的概率为:.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.(5分)(2019年浙江嘉兴)点A(﹣1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1﹣y2>0(填“>”或“<”).考点:一次函数图象上点的坐标特征.分析:根据k<0,一次函数的函数值y随x的增大而减小解答.解答:解:∵直线y=kx+b的k<0,∴函数值y随x的增大而减小,∵点A(﹣1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,﹣1<3,∴y1>y2,∴y1﹣y2>0.故答案为:>.点评:本题考查了一次函数图象上点的坐标特征,主要利用了一次函数的增减性.16.(5分)(2019年浙江嘉兴)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是①③⑤.考点:圆的综合题;垂线段最短;平行线的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;切线的判定;轴对称的性质;相似三角形的判定与性质.专题:推理填空题.分析:(1)由点E与点D关于AC对称可得CE=CD,再根据DF⊥DE即可证到CE=CF.(2)根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD 的最小值就可求出EF的最小值.(3)连接OC,易证△AOC是等边三角形,AD=OD,根据等腰三角形的“三线合一”可求出∠ACD,进而可求出∠ECO=90°,从而得到EF与半圆相切.(4)利用相似三角形的判定与性质可证到△DBF是等边三角形,只需求出BF就可求出DB,进而求出AD长.(5)首先根据对称性确定线段EF扫过的图形,然后探究出该图形与△ABC的关系,就可求出线段EF扫过的面积.解答:解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF”正确.②当CD⊥AB时,如图2所示.∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4.∴结论“线段EF的最小值为2”错误.(3)当AD=2时,连接OC,如图3所示.∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA=30°.∴∠ECO=90°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切”正确.④当点F恰好落在上时,连接FB、AF,如图4所示.∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴=.∵FC=EF,∴FH=FD.∴FH=DH.∵DE∥BC,∴∠FHC=∠FDE=90°.∴BF=BD.∴∠FBH=∠DBH=30°.∴∠FBD=60°.∵AB是半圆的直径,∴∠AFB=90°.∴∠FAB=30°.∴FB=AB=4.∴DB=4.∴AD=AB﹣DB=4.∴结论“AD=2”错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影部分.∴S阴影=2S△ABC=2×AC•BC=AC•BC=4×4=16.∴EF扫过的面积为16.∴结论“EF扫过的面积为16”正确.故答案为:①、③、⑤.点评:本题考查了等边三角形的判定与性质、平行线的判定与性质、相似三角形的判定与性质、切线的判定、轴对称的性质、含30°角的直角三角形、垂线段最短等知识,综合性强,有一定的难度.三、解答题(本题有8小题,第17~20题每小题8分,第21题10分,第22,23题每小题8分,第24题14分,共80分)17.(8分)(2019年浙江嘉兴)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)考点:实数的运算;整式的混合运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项化为最简二次根式,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算即可得到结果.解答:解:(1)原式=2+4﹣4×=2+4﹣2=4;(2)原式=x2+4x+4﹣x2+3x=7x+4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)(2019年浙江嘉兴)解方程:=0.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x+1﹣3=0,解得:x=2,经检验x=2是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.19.(8分)(2019年浙江嘉兴)某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:学生孝敬父母情况统计表:选项频数频率A m 0.15B 60 pC n 0.4D 48 0.2(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)用D选项的频数除以D选项的频率即可求出被调查的学生人数;(2)用被调查的学生人数乘以A选项的和C频率求出m和n,用B选项的频数除以被调查的学生人数求出p,再画图即可;(3)用该校的总人数乘以该校全体学生中选择B选项频率即可.解答:解:(1)这次被调查的学生有48÷0.2=240(人);(2)m=240×0.15=36,n=240×0.4=96,p==0.25,画图如下:(3)若该校有1600名学生,则该校全体学生中选择B选项的有1600×0.25=400(人).点评:此题考查了条形统计图和频数、频率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.20.(8分)(2019年浙江嘉兴)已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFED为菱形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.解答:(1)证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时,四边形BFED为菱形,理由:∵△DOE≌△BOF,∴BF=DE,又∵BF∥DE,∴四边形EBFD是平行四边形,∵BO=DO,∠EOD=90°,∴EB=DE,∴四边形BFED为菱形.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识,得出BE=DE是解题关键.21.(10分)(2019年浙江嘉兴)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A 型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.22.(12分)(2019年浙江嘉兴)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.考点:二次函数的应用;反比例函数的应用.分析:(1)①利用y=﹣200x2+400x=﹣200(x﹣1)2+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;(2)求出x=11时,y的值,进而得出能否驾车去上班.解答:解:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.点评:此题主要考查了反比例函数与二次函数综合应用,根据图象得出正确信息是解题关键.23.(12分)(2019年浙江嘉兴)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.考点:四边形综合题.分析:(1)利用“等对角四边形”这个概念来计算.(2)①利用等边对等角和等角对等边来证明;②举例画图;(3)(Ⅰ)当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,利用勾股定理求解;(Ⅱ)当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,求出线段利用勾股定理求解.解答:解:(1)如图1∵等对角四边形ABCD,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣70°﹣80°﹣80°=130°;(2)①如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD,②不正确,反例:如图3,∠A=∠C=90°,AB=AD,但CB≠CD,(3)(Ⅰ)如图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,∵∠ABC=90°,∠DAB=60°,AB=5,∴AE=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2(Ⅱ)如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,∵DE⊥AB,∠DAB=60°AD=4,∴AE=2,DE=2,∴BE=AB﹣AE=5﹣2=3,∵四边形BFDE是矩形,∴DF=BE=3,BF=DE=2,∵∠BCD=60°,∴CF=,∴BC=CF+BF=+2=3,∴AC===2.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.24.(14分)(2019年浙江嘉兴)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.(1)当m=时,求S的值.(2)求S关于m(m≠2)的函数解析式.(3)①若S=时,求的值;②当m>2时,设=k,猜想k与m的数量关系并证明.考点:二次函数综合题.专题:综合题.分析:(1)首先可得点A的坐标为(m,m2),再由m的值,确定点B的坐标,继而可得点E的坐标及BE、OE的长度,易得△ABE∽△CBO,利用对应边成比例求出CO,根据轴对称的性质得出DO,继而可求解S的值;(2)分两种情况讨论,(I)当0<m<2时,将BE•DO转化为AE•BO,求解;(II)当m >2时,由(I)的解法,可得S关于m的函数解析式;(3)①首先可确定点A的坐标,根据===k,可得S△ADF=k•S△BDF•S△AEF=k•S△BEF,从而可得===k,代入即可得出k的值;②可得===k,因为点A的坐标为(m,m2),S=m,代入可得k与m的关系.解答:解:(1)∵点A在二次函数y=x2的图象上,AE⊥y轴于点E且AE=m,∴点A的坐标为(m,m2),当m=时,点A的坐标为(,1),∵点B的坐标为(0,2),∴BE=OE=1.∵AE⊥y轴,∴AE∥x轴,∴△ABE∽△CBO,∴==,∴CO=2,∵点D和点C关于y轴对称,∴DO=CO=2,∴S=BE•DO=×1×2=;(2)(I)当0<m<2时(如图1),∵点D和点C关于y轴对称,∴△BOD≌△BOC,∵△BEA∽△BOC,∴△BEA∽△BOD,∴=,即BE•DO=AE•BO=2m.∴S=BE•DO=×2m=m;(II)当m>2时(如图2),同(I)解法得:S=BE•DO=AE•OB=m,由(I)(II)得,S关于m的函数解析式为S=m(m>0且m≠2).(3)①如图3,连接AD,∵△BED的面积为,∴S=m=,∴点A的坐标为(,),∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∴k===;②k与m之间的数量关系为k=m2,如图4,连接AD,∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∵点A的坐标为(m ,m2),S=m,∴k===m2(m>2).点评:本题考查了二次函数的综合,涉及了三角形的面积、比例的性质及相似三角形的判定与性质、全等三角形的性质,解答本题的关键是熟练数形结合思想及转化思想的运用,难度较大.21。
2019年浙江省嘉兴市中考数学试卷-解析版
2019年浙江省嘉兴市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−2019的相反数是()A. 2019B. −2019C. 12019D. −120192.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1063.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.4.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A. 签约金额逐年增加B. 与上年相比,2019年的签约金额的增长量最多C. 签约金额的年增长速度最快的是2016年D. 2018年的签约金额比2017年降低了22.98%5.如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A. tan60°B. −1C. 0D. 120196.已知四个实数a,b,c,d,若a>b,c>d,则()A. a+c>b+dB. a−c>b−dC. ac>bdD. ac >bd7.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A. 2B. √3C. √2D. 128. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A. {4x +6y =383x +5y =48 B. {4y +6x =483y +5x =38 C. {4x +6y =485x +3y =38D. {4x +6y =483x +5y =389. 如图,在直角坐标系中,已知菱形OABC 的顶点A(1,2),B(3,3).作菱形OABC 关于y 轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O 的中心对称图形OA′′B′′C′′,则点C 的对应点C′′的坐标是( ) A. (2,−1) B. (1,−2) C. (−2,1) D. (−2,−1)10. 小飞研究二次函数y =−(x −m)2−m +1(m 为常数)性质时如下结论:①这个函数图象的顶点始终在直线y =−x +1上;②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形; ③点A(x 1,y 1)与点B(x 2,y 2)在函数图象上,若x 1<x 2,x 1+x 2>2m ,则y 1<y 2;④当−1<x <2时,y 随x 的增大而增大,则m 的取值范围为m ≥2. 其中错误结论的序号是( )A. ①B. ②C. ③D. ④二、填空题(本大题共6小题,共24.0分)11. 分解因式:x 2−5x =______. 12. 从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为_____. 13. 数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,−a ,−b 的大小关系为_____(用“<”号连接). 14. 如图,在⊙O 中,弦AB =1,点C 在AB 上移动,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为______. 15. 在x 2+______+4=0的括号中添加一个关于x 的一次项,使方程有两个相等的实数根.16.如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为______cm;连接BD,则△ABD的面积最大值为______cm2.三、解答题(本大题共8小题,共66.0分)17.小明解答“先化简,再求值:1x+1+2x2−1,其中x=√3+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.18.如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.19.如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=kx的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O′A′B′当这个函数图象经过△O′A′B′一边的中点时,求a的值.20.在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).21.在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1______ 7940%277B75.1777645%211(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.22.某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,√3≈1.73)23.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′在BC边上,N′在△ABC内,连结BN′并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=3时,猜想∠QEM的度数,并尝试证明.4请帮助小波解决“温故”、“推理”、“拓展”中的问题.24.某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数p=150t−15刻画;当25≤t≤37时可近似用函数p=−1160(t−ℎ)2+0.4刻画.(1)求h的值.生长率p0.20.250.30.35提前上市的天数m(天)051015②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).答案和解析1.【答案】A【解析】解:因为a的相反数是−a,所以−2019的相反数是2019.故选:A.根据相反数的意义,直接可得结论.本题考查了相反数的意义.理解a的相反数是−a,是解决本题的关键.2.【答案】C【解析】解:380000=3.8×105故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.【答案】C【解析】解:A、错误.签约金额2017,2018年是下降的.B、错误.与上年相比,2016年的签约金额的增长量最多.C、正确.≈9.3%.D、错误.下降了:244.5−221.6244.5故选:C.两条折线图一一判断即可.本题考查折线统计图,解题的关键是理解题意读懂图象信息,属于中考常考题型.5.【答案】D3+20,【解析】解:由题意可得:a+|−2|=√8则a+2=3,解得:a=1,故a可以是12019.故选:D.直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.6.【答案】A【解析】解:∵a >b ,c >d , ∴a +c >b +d . 故选:A .直接利用不等式的基本性质分别化简得出答案.此题主要考查了不等式的性质,正确掌握不等式的基本性质是解题关键. 7.【答案】B【解析】解:连接OA , ∵∠ABC =30°,∴∠AOC =2∠ABC =60°, ∵PA 是⊙O 的切线, ∴∠OAP =90°, ∵OA =OC =1,∴AP =OAtan60°=1×√3=√3, 故选:B .连接OA ,根据圆周角定理求出∠AOP ,根据切线的性质求出∠OAP =90°,解直角三角形求出AP 即可.本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径. 8.【答案】D【解析】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: {4x +6y =483x +5y =38. 故选:D .直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.此题主要考查了二元一次方程组的应用,正确得出等式是解题关键. 9.【答案】A【解析】 【分析】本题考查旋转变化、轴对称变化,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意可以写出点C 的坐标,然后根据与y 轴对称和与原点对称的点的特点即可得到点C″的坐标,本题得以解决. 【解答】解:∵已知菱形OABC 的顶点A(1,2) ,B(3,3) ∴点C 的坐标为(2,1),∴点C′的坐标为(−2,1), ∴点C′′的坐标为(2,−1), 故选:A .10.【答案】C【解析】解:二次函数y =−(x −m)2−m +1(m 为常数) ①∵顶点坐标为(m,−m +1)且当x =m 时,y =−m +1 ∴这个函数图象的顶点始终在直线y =−x +1上 故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得−(x−m)2−m+1=0,其中m≤1解得:x1=m−√−m+1,x2=m+√−m+1∵顶点坐标为(m,−m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|−m+1|=|m−(m−√−m+1)|解得:m=0或1当m=1时,二次函数y=−(x−1)2,此时顶点为(1,0),与x轴的交点也为(1,0),不构成三角形,舍去;∴存在m=0,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴x1+x22>m∵二次函数y=−(x−m)2−m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且a=−1<0∴y1>y2故结论③错误;④当−1<x<2时,y随x的增大而增大,且a=−1<0∴m的取值范围为m≥2.故结论④正确.故选:C.根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.11.【答案】x(x−5)【解析】解:x2−5x=x(x−5).故答案为:x(x−5).直接提取公因式x分解因式即可.此题考查的是提取公因式分解因式,关键是找出公因式.12.【答案】23【解析】解:树状图如图所示:共有6个等可能的结果,甲被选中的结果有4个,∴甲被选中的概率为46=23;故答案为:23.画出树状图,共有6个等可能的结果,甲被选中的结果有4个,由概率公式即可得出结果.本题考查了树状图法求概率以及概率公式;画出树状图是解题的关键.13.【答案】b<−a<a<−b【解析】【分析】本题考查了有理数的大小比较,掌握有理数的大小比较法则是:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小是本题的关键.根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案.【解答】解:∵a>0,b<0,a+b<0,∴|b|>a,∴−b>a,b<−a,∴四个数a,b,−a,−b的大小关系为b<−a<a<−b.故答案为:b<−a<a<−b14.【答案】12【解析】解:连接OD,如图,∵CD⊥OC,∴∠CDO=90°,∴CD=√OD2−OC2=√r2−OC2,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时OC=√r2−(12AB)2,∴CD的最大值为√r2−(r2−14AB2)=12AB=12×1=12,故答案为:12.连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据勾股定理求出OC,代入求出即可.本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C的位置是解此题的关键.15.【答案】±4x【解析】解:要使方程有两个相等的实数根,则△=b2−4ac=b2−16=0得b=±4故一次项为±4x故答案为±4x要使方程有两个相等的实数根,即△=0,则利用根的判别式即可求得一次项的系数即可.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2−4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.16.【答案】(24−12√2)(24√3+36√2−12√6)【解析】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4√3cm,AB=8√3cm,ED=DF=6√2cm如图,当点E沿AC方向下滑时,得△E′D′F′,过点D′作D′N⊥AC于点N,作D′M⊥BC于点M∴∠MD′N=90°,且∠E′D′F′=90°∴∠E′D′N=∠F′D′M,且∠D′NE′=∠D′MF′=90°,E′D′=D′F′∴△D′NE′≌△D′MF′(AAS)∴D′N=D′M,且D′N⊥AC,D′M⊥CM∴CD′平分∠ACM即点E沿AC方向下滑时,点D′在射线CD上移动,∴当E′D′⊥AC时,DD′值最大,最大值=√2ED−CD=(12−6√2)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12−6√2)=(24−12√2)cm 如图,连接BD′,AD′,∵S△AD′B=S△ABC+S△AD′C−S△BD′C∴S△AD′B=12BC×AC+12×AC×D′N−12×BC×D′M=24√3+12(12−4√3)×D′N当E′D′⊥AC时,S△AD′B有最大值,∴S△AD′B最大值=24√3+12(12−4√3)×6√2=(24√3+36√2−12√6)cm2.故答案为:(24−12√2),(24√3+36√2−12√6)过点D′作D′N⊥AC于点N,作D′M⊥BC于点M,由直角三角形的性质可得BC=4√3cm,AB=8√3cm,ED=DF=6√2cm,由“AAS”可证△D′NE′≌△D′MF′,可得D′N=D′M,即点D′在射线CD上移动,且当E′D′⊥AC时,DD′值最大,则可求点D运动的路径长,由三角形面积公式可求S△AD′B=12BC×AC+12×AC×D′N−12×BC×D′M=24√3+12(12−4√3)×D′N,则E′D′⊥AC时,S△AD′B有最大值.本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定点D的运动轨迹是本题的关键.17.【答案】解:步骤①②有误,原式=+==,当x=+1时,原式==.【解析】本题考查的是分式的化简求值,掌握异分母分式的减法法则是解题的关键.18.【答案】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB//CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.【解析】根据SAS即可证明△ABE≌△CDF可得AE=CF.本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.19.【答案】解:(1)过点A作AC⊥OB于点C,∵△OAB是等边三角形,OB,∴∠AOB=60°,OC=12∵B(4,0),∴OB=OA=4,∴OC=2,AC=2√3.,得k=4√3.把点A(2,2√3)代入y=kx∴反比例函数的解析式为y=4√3;x(2)分两种情况讨论:①点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=√3,B′E=1.∴O′E=3,,得x=4,把y=√3代入y=4√3x∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH=√3,O′H=1.把y=√3代入y=4√3,得x=4,x∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.【解析】(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键.20.【答案】解:(1)由勾股定理得:CD=AB=CD′=√5,BD=AC=BD′′=√13,AD′=BC=AD′′=√10;画出图形如图1所示;(2)如图2所示.【解析】本题考查了平行四边形的判定与性质、勾股定理、平行线分线段成比例定理;熟练掌握勾股定理好平行线分线段成比例定理是解题的关键.(1)由勾股定理得:CD=AB=CD′=√5,BD=AC=BD′′=√13,AD′=BC=AD′′=√10;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.21.【答案】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;=240(人),(2)500×2450答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【解析】(1)因为有50名居民,所以中位数落在第四组,中位数为75;=240(人);(2)A小区500名居民成绩能超过平均数的人数:500×2450(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B 小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB//CG//DE,∴∠DCG=180°−∠CDE=110°,∴∠BCG=∠BCD−∠GCD=30°,∴∠ABC=180°−∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CD×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×sin50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH−DE≈0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.【解析】(1)过点C作CG⊥AM于点G,证明AB//CG//DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,如图3,通过解直角三角形求得求得DH,最后便可求得结果.此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是正确构造直角三角形.23.【答案】(1)解:如图1中,∵PN//BC,∴△APN∽△ABC,∴PNBC =AEAD,即PN6=4−PN4,解得PN=125.(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN//M′N′,∴△BN′M′∽△BNM,∴M′N′MN =BN′BN,同理可得:P′N′PN =BN′BN,∴M′N′MN =P′N′PN,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形.(4)解:如图3中,结论:∠QEM=90°.理由:由tan∠NBM=MNBM =34,可以假设MN=3k,BM=4k,则BN=5k,BQ=k,BE=2k,∴BQBK =k2k=12,BEBM=2k4k=12,∴BQBE =BEBM,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.【解析】(1)理由相似三角形的性质构建方程即可解决问题.(2)根据题意画出图形即可.(3)首先证明四边形PQMN是矩形,再证明MN=PN即可.(4)证明△BQE∽△BEM,推出∠BEQ=∠BME,由∠BME+∠EMN=90°,可得∠BEQ+∠NEM=90°,即可解决问题.本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.24.【答案】解:(1)把(25,0.3)代入p=−1160(t−ℎ)2+0.4得,0.3=−1160(25−ℎ)2+0.4,解得:ℎ=29或ℎ=21,∵ℎ>25,∴ℎ=29;(2)①由表格可知,m是p的一次函数,∴m=100p−20;②当10≤t≤25时,p=150t−15,∴m=100(150t−15)−20=2t−40;当25≤t≤37时,p=−1160(t−ℎ)2+0.4,∴m=100[−1160(t−ℎ)2+0.4]−20=−58(t−29)2+20;(3)(Ⅰ)当20≤t≤25时,由(20,200),(25,300),得w=20t−200,∴增加利润为600m+[200×30−w(30−m)]−40t2−600t−4000,∴当t=25时,增加的利润的最大值为6000元;(Ⅱ)当25≤t≤37时,w=300,增加的利润为600m+[200×30−w(30−m)]=900×(−58)×(t−29)2+15000=−11252(t−29)2+15000;∴当t=29时,增加的利润最大值为15000元,综上所述,当t=29时,提前上市20天,增加的利润最大值为15000元.【解析】(1)把(25,0.3)代入p=−1160(t−ℎ)2+0.4,解方程即可得到结论;(2)①由表格可知,m是p的一次函数,于是得到m=100p−20;②当10≤t≤25时,p=150t−15,求得m=100(150t−15)−20=2t−40;当25≤t≤37时,根据题意即可得到m=100[−1160(t−ℎ)2+0.4]−20=−58(t−29)2+20;(3)(Ⅰ)当20≤t≤25时,(Ⅱ)当25≤t≤37时,w=300,根据二次函数的性质即可得到结论.本题考查二次函数的实际应用,借助二次函数解决实际问题,此题涉及数据较多,认真审题很关键.二次函数的最值问题要利用性质来解,注意自变量的取值范围.。
2019年浙江省舟山市中考数学试卷含答案
线 BC 方向滑动.当点 E 从点 A 滑动到点 C 时,点 D 运动的路径长为
连接 BD,则△ABD 的面积最大值为
cm2.
cm;
三、解答题(本题有 8 小题,第 17~19 题每题 6 分,第 20、21 题每题 8 分,第 22、23 题每题 10 分,第 24 题 12 分,共 66 分)友情提示:做解答题,别忘了写出必要的 过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.
线于点 P,则 PA 的长为
()
A.2
B. 3
C. 2
D. 1
2
8.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我
国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹
x 两,牛每头 y 两,根据题意可列方程组为
()
A.
4x 3x
6y 5y
则点 C 的对应点 C 的坐标是
()
数学试卷 第 2 页(共 8 页)
A.(2,-1)
B.(1,-2)
C.(-2,1)
D.(-2,-1)
10.小飞研究二次函数 y=(x﹣m)2 m 1(m 为常数)性质时如下结论:①这个函数
图象的顶点始终在直线 y= x 1上;②存在一个 m 的值,使得函数图象的顶点与 x
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
--------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ---------------
2019年浙江省舟山市中考数学试卷(含解析)完美打印版
2019年浙江省舟山市中考数学试卷一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)﹣2019的相反数是()A.2019B.﹣2019C.D.﹣2.(3分)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A.38×104B.3.8×104C.3.8×105D.0.38×1063.(3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.4.(3分)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%5.(3分)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1C.0D.120196.(3分)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>7.(3分)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC延长线于点P,则P A的长为()A.2B.C.D.8.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.9.(3分)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y 轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)10.(3分)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:x2﹣5x=.12.(4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.13.(4分)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).14.(4分)在x2++4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.15.(4分)如图,在△ABC中,若∠A=45°,AC2﹣BC2=AB2,则tan C=.16.(4分)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC =12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为cm;连接BD,则△ABD的面积最大值为cm2.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)小明解答“先化简,再求值:+,其中x=+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.18.(6分)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.19.(6分)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.20.(8分)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).21.(8分)在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左往右第四组的成绩如下【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.22.(10分)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD =140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE =70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,≈1.73)23.(10分)某农作物的生长率p与温度t(℃)有如下关系:如图,当10≤t≤25时可近似用函数p=t ﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p之间满足已学过的函数关系,部分数据如下:求:①m关于p的函数表达式;②用含t的代数式表示m.③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温20℃时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若欲加温到25<t ≤37,由于要采用特殊方法,成本增加到400元/天.问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)24.(12分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB 上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.2019年浙江省舟山市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)﹣2019的相反数是()A.2019B.﹣2019C.D.﹣【分析】根据相反数的意义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.(3分)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A.38×104B.3.8×104C.3.8×105D.0.38×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:380000=3.8×105故选:C.3.(3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.4.(3分)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%【分析】两条折线图一一判断即可.【解答】解:A、错误.签约金额2017,2018年是下降的.B、错误.与上年相比,2016年的签约金额的增长量最多.C、正确.D、错误.下降了:≈9.3%.故选:C.5.(3分)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1C.0D.12019【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【解答】解:由题意可得:a+|﹣2|=+20,则a+2=3,解得:a=1,故a可以是12019.故选:D.6.(3分)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>【分析】直接利用等式的基本性质分别化简得出答案.【解答】解:∵a>b,c>d,∴a+c>b+d.故选:A.7.(3分)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC延长线于点P,则P A的长为()A.2B.C.D.【分析】连接OA,根据圆周角定理求出∠AOP,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.【解答】解:连接OA,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵过点A作⊙O的切线交OC的延长线于点P,∴∠OAP=90°,∵OA=OC=1,∴AP=OA tan60°=1×=,故选:B.8.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:D.9.(3分)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y 轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【分析】根据题意可以写出点C的坐标,然后根据与y轴对称和与原点对称的点的特点即可得到点C″的坐标,本题得以解决.【解答】解:∵点C的坐标为(2,1),∴点C′的坐标为(﹣2,1),∴点C″的坐标的坐标为(2,﹣1),故选:A.10.(3分)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【解答】解:二次函数y=﹣(x﹣m)2﹣m+1(m为常数)①∵顶点坐标为(m,﹣m+1)且当x=m时,y=﹣m+1∴这个函数图象的顶点始终在直线y=﹣x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得﹣(x﹣m)2﹣m+1=0,其中m≤1解得:x1=m﹣,x2=m+∵顶点坐标为(m,﹣m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|﹣m+1|=|m﹣(m﹣)|解得:m=0或1∴存在m=0或1,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴∵二次函数y=﹣(x﹣m)2﹣m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且﹣1<0∴y1>y2故结论③错误;④当﹣1<x<2时,y随x的增大而增大,且﹣1<0∴m的取值范围为m≥2.故结论④正确.故选:C.二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:x2﹣5x=x(x﹣5).【分析】直接提取公因式x分解因式即可.【解答】解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).12.(4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.【分析】画出树状图,共有6个等可能的结果,甲被选中的结果有4个,由概率公式即可得出结果.【解答】解:树状图如图所示:共有6个等可能的结果,甲被选中的结果有4个,∴甲被选中的概率为=;故答案为:.13.(4分)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b <﹣a<a<﹣b(用“<”号连接).【分析】根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案.【解答】解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b14.(4分)在x2+±4x+4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.【分析】要使方程有两个相等的实数根,即△=0,则利用根的判别式即可求得一次项的系数即可.【解答】解:要使方程有两个相等的实数根,则△=b2﹣4ac=b2﹣16=0得b=±4故一次项为±4x故答案为±4x15.(4分)如图,在△ABC中,若∠A=45°,AC2﹣BC2=AB2,则tan C=.【分析】过B作BD⊥AC于D,易证△ABD是等腰直角三角形,那么AD=BD.根据勾股定理得出AB2=AD2+DB2=2BD2,BC2=DC2+BD2,那么AC2﹣BC2=(AD+DC)2﹣(DC2+BD2)=2BD•DC,代入AC2﹣BC2=AB2,得出DC=BD,进而根据正切函数的定义即可求解.【解答】解:如图,过B作BD⊥AC于D,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2﹣BC2=(AD+DC)2﹣(DC2+BD2)=AD2+DC2+2AD•DC﹣DC2﹣BD2=2AD•DC=2BD•DC,∵AC2﹣BC2=AB2,∴2BD•DC=×2BD2,∴DC=BD,∴tan C===.故答案为.16.(4分)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC =12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm;连接BD,则△ABD的面积最大值为(24+36﹣12)cm2.【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC=4cm,AB =8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD 上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,由三角形面积公式可求S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N,则E'D'⊥AC时,S△AD'B有最大值.【解答】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm如图,连接BD',AD',∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C∴S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N当E'D'⊥AC时,S△AD'B有最大值,∴S△AD'B最大值=24+(12﹣4)×6=(24+36﹣12)cm2.故答案为:(24﹣12),(24+36﹣12)三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)小明解答“先化简,再求值:+,其中x=+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.【分析】根据分式的减法法则进行化简,代入计算即可.【解答】解:步骤①②有误,原式=+==,当x=+1时,原式==.18.(6分)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.【分析】根据SAS即可证明△ABE≌△CDF可得AE=CF.【解答】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.19.(6分)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.【分析】(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.【解答】解:(1)过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC=OB,∵B(4,0),∴OB=OA=4,∴OC=2,AC=2.把点A(2,2)代入y=,得k=4.∴反比例函数的解析式为y=;(2)分两种情况讨论:①点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=,B′E=1.∴O′E=3,把y=代入y=,得x=4,∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH=,O′H=1.把y=代入y=,得x=4,∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.20.(8分)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【分析】(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.【解答】解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.21.(8分)在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左往右第四组的成绩如下【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.【分析】(1)因为有50名居民,所以中位数落在第四组,中位数为75;(2)A小区500名居民成绩能超过平均数的人数:500×=200(人);(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.22.(10分)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD =140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE =70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,≈1.73)【分析】(1)过点C作CG⊥AM于点G,证明AB∥CG∥DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,如图3,通过解直角三角形求得求得DH,最后便可求得结果.【解答】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠DCG=140°﹣110°=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=1.5×cos70°≈0.51(米),在Rt△BCN中,CN=1.2×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×sin50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.23.(10分)某农作物的生长率p与温度t(℃)有如下关系:如图,当10≤t≤25时可近似用函数p=t ﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p之间满足已学过的函数关系,部分数据如下:求:①m关于p的函数表达式;②用含t的代数式表示m.③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温20℃时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若欲加温到25<t ≤37,由于要采用特殊方法,成本增加到400元/天.问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)【分析】(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4中,便可求得h;(2)①由表格可知,m是p的一次函数,由待定系数法可解;②分别求出当10≤t≤25时和当25≤t≤37时的函数解析式即可;③分别求出当20≤t≤25时,增加的利润和当25<t≤37时,增加的利润,然后比较两种情况下的最大值,即可得结论.【解答】解:(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4得:0.3=(25﹣h)2+0.4解得:h=29或h=21,∵25≤t≤37∴h=29.(2)①由表格可知,m是p的一次函数,设m=kp+b把(0.2,0),(0.3,10)代入得解得∴m=100p﹣20.②当10≤t≤25时,p=t﹣∴m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,p=﹣(t﹣h)2+0.4∴m=100[﹣(t﹣h)2+0.4]﹣20=(t﹣29)2+20∴m=③当20≤t≤25时,增加的利润为:600m+[100×30﹣200(30﹣m)]=800m﹣3000=1600t﹣35000当t=25时,增加的利润的最大值为1600×25﹣35000=5000元;当25<t≤37时,增加的利润为:600m+[100×30﹣400(30﹣m)]=1000m﹣9000=﹣625(t﹣29)2+11000∴当t=29时,增加的利润的最大值为11000元.综上,当t=29时,提前20天上市,增加的利润最大,最大值为11000元.24.(12分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB 上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.【分析】(1)理由相似三角形的性质构建方程即可解决问题;(2)根据题意画出图形即可;(3)首先证明四边形PQMN是矩形,再证明MN=PN即可;(4)过点N作ND⊥ME于点D,由等腰三角形的性质可得∠NEM=∠MNE,ED=DM,由“AAS”可证△QEM≌△MDN,可得EQ=DM=EM,通过证明△BEQ∽△BME,可得BM=2BE,BE=2BQ,即可求BN的长.【解答】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴,即,解得PN=(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴,同理可得:∴,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形(4)如图,过点N作ND⊥ME于点D∵MN=EN,ND⊥ME,∴∠NEM=∠MNE,ED=DM∵∠BMN=∠QEM=90°∴∠EQM+∠EMQ=90°,∠EMQ+∠EMN=90°∴∠EMN=∠EQM,且MN=QN,∠QEM=∠NDM=90°∴△QEM≌△MDN(AAS)∴EQ=DM=EM,∵∠BMN=∠QEM=90°∴∠BEQ+∠NEM=90°,∠BME+∠NME=90°∴∠BEQ=∠BME,且∠MBE=∠MBE∴△BEQ∽△BME∴=,∴BM=2BE,BE=2BQ∴BM=4BQ∴QM=3BQ=MN,BN=5BQ∴∴BN=MN=()。
浙江省嘉兴、舟山市2019年中考数学试卷解析版
2,任意
画△ ABC ,在 AB 上任取一点 P',画正方形 P'Q'M 'N',使 Q',M '在 BC 边上, N'在△ ABC 内,连结 BN'并延 长交 AC 于点 N,画 NM ⊥BC 于点 M ,NP⊥ NM 交 AB 于点 P, PQ⊥ BC 于点 Q,得到四边形 PPQMN .小 波把线段 BN 称为“波利亚线” . ( 3)推理:证明图 2 中的四边形 PQMN 是正方形.
1.73)
23.( 10 分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展. ( 1)温故:如图 1,在△ ABC 中, AD⊥ BC 于点 D,正方形 PQMN 的边 QM 在 BC 上,顶点 P,N 分别在
AB , AC 上,若 BC= 6, AD= 4,求正方形 PQMN 的边长. ( 2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图
PA 的长为(
)
A.2
B.
C.
D.
8.( 3 分)中国清代算书《御制数理精蕴》中有这样一题: “马四匹、牛六头,共价四十八两(我国古代货币
单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹
x 两,牛每头 y 两,根据题意可
列方程组为(
)
A.
B.
C.
D.
9.( 3 分)如图,在直角坐标系中,已知菱形 OABC 的顶点 A( 1, 2), B( 3, 3).作菱形 OABC 关于 y 轴的
( 4)拓展:在( 2)的条件下,在射线 BN 上截取 NE= NM ,连结 EQ, EM(如图 3).当 tan∠ NBM = 时,
【2019年中考真题系列】2019年浙江省舟山市中考数学真题试卷含答案(解析版)
浙江省舟山市2019年中考数学试卷(解析版)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】根据相反数的意义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.【点评】本题考查了相反数的意义.理解a的相反数是﹣a,是解决本题的关键.2.(3分)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A.38×104B.3.8×104C.3.8×105D.0.38×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:380000=3.8×105故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.(3分)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%【分析】两条折线图一一判断即可.【解答】解:A、错误.签约金额2017,2018年是下降的.B、错误.与上年相比,2016年的签约金额的增长量最多.C、正确.D、错误.下降了:≈9.3%.故选:C.【点评】本题考查折线统计图,解题的关键是理解题意读懂图象信息,属于中考常考题型.5.(3分)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1 C.0 D.12019【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【解答】解:由题意可得:a+|﹣2|=+20,则a+2=3,解得:a=1,故a可以是12019.故选:D.【点评】此题主要考查了实数运算,正确化简各数是解题关键.6.(3分)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>【分析】直接利用等式的基本性质分别化简得出答案.【解答】解:∵a>b,c>d,∴a+c>b+d.故选:A.【点评】此题主要考查了等式的性质,正确掌握等式的基本性质是解题关键.7.(3分)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC 延长线于点P,则PA的长为()A.2 B.C.D.【分析】连接OA,根据圆周角定理求出∠AOP,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.【解答】解:连接OA,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵过点A作⊙O的切线交OC的延长线于点P,∴∠OAP=90°,∵OA=OC=1,∴AP=OAtan60°=1×=,故选:B.【点评】本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径.8.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:D.【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.9.(3分)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【分析】根据题意可以写出点C的坐标,然后根据与y轴对称和与原点对称的点的特点即可得到点C″的坐标,本题得以解决.【解答】解:∵点C的坐标为(2,1),∴点C′的坐标为(﹣2,1),∴点C″的坐标的坐标为(2,﹣1),故选:A.【点评】本题考查旋转变化、轴对称变化,解答本题的关键是明确题意,利用数形结合的思想解答.10.(3分)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【解答】解:二次函数y=﹣(x﹣m)2﹣m+1(m为常数)①∵顶点坐标为(m,﹣m+1)且当x=m时,y=﹣m+1∴这个函数图象的顶点始终在直线y=﹣x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得﹣(x﹣m)2﹣m+1=0,其中m≤1解得:x=m﹣,x=m+∵顶点坐标为(m,﹣m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|﹣m+1|=|m﹣(m﹣)|解得:m=0或1∴存在m=0或1,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴∵二次函数y=﹣(x﹣m)2﹣m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且﹣1<0∴y1>y2故结论③错误;④当﹣1<x<2时,y随x的增大而增大,且﹣1<0∴m的取值范围为m≥2.故结论④正确.故选:C.【点评】本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:x2﹣5x=x(x﹣5).【分析】直接提取公因式x分解因式即可.【解答】解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).【点评】此题考查的是提取公因式分解因式,关键是找出公因式.12.(4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.【分析】画出树状图,共有6个等可能的结果,甲被选中的结果有4个,由概率公式即可得出结果.【解答】解:树状图如图所示:共有6个等可能的结果,甲被选中的结果有4个,∴甲被选中的概率为=;故答案为:.【点评】本题考查了树状图法求概率以及概率公式;画出树状图是解题的关键.13.(4分)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b 的大小关系为b<﹣a<a<﹣b(用“<”号连接).【分析】根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案.【解答】解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b【点评】本题考查了有理数的大小比较,掌握有理数的大小比较法则是:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小是本题的关键.14.(4分)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据勾股定理求出OC,代入求出即可.【解答】解:连接OD,如图,∵CD⊥OC,∴∠COD=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时OC=,∴CD的最大值为=AB=1=,故答案为:.【点评】本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C的位置是解此题的关键.15.(4分)在x2+±4x+4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.【分析】要使方程有两个相等的实数根,即△=0,则利用根的判别式即可求得一次项的系数即可.【解答】解:要使方程有两个相等的实数根,则△=b2﹣4ac=b2﹣16=0得b=±4故一次项为±4x故答案为±4x【点评】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0 时,方程有两个相等的实数根;③当△<0 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.16.(4分)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF 重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm;连接BD,则△ABD的面积最大值为(24+36﹣12)cm2.【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC=4cm,AB=8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,由三角形面积公式可求S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N,则E'D'⊥AC时,S△AD'B有最大值.【解答】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC 于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm如图,连接BD',AD',∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C∴S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N当E'D'⊥AC时,S△AD'B有最大值,∴S△AD'B最大值=24+(12﹣4)×6=(24+36﹣12)cm2.故答案为:(24﹣12),(24+36﹣12)【点评】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定点D的运动轨迹是本题的关键.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.17.(6分)小明解答“先化简,再求值:+,其中x=+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.【分析】1【解答】解:1【点评】本题考查的是分式的化简求值,掌握异分母分式的减法法则是解题的关键.18.(6分)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE =CF”成立,并加以证明.【分析】根据SAS即可证明△ABE≌△CDF可得AE=CF.【解答】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.【点评】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.19.(6分)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.【分析】(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.【解答】解:(1)过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC=OB,∵B(4,0),∴OB=OA=4,∴OC=2,AC=2.把点A(2,2)代入y=,得k=4.∴反比例函数的解析式为y=;(2)分两种情况讨论:①点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=,B′E=1.∴O′E=3,把y=代入y=,得x=4,∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH=,O′H=1.把y=代入y=,得x=4,∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.【点评】本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键.20.(8分)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【分析】(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.【解答】解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.【点评】本题考查了平行四边形的判定与性质、勾股定理、平行线分线段成比例定理;熟练掌握勾股定理好平行线分线段成比例定理是解题的关键.21.(8分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A 75.1 7579 40% 277B 75.1 77 76 45% 211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.【分析】(1)因为有50名居民,所以中位数落在第四组,中位数为75;(2)A小区500名居民成绩能超过平均数的人数:500×=240(人);(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【点评】本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(10分)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米(精确到0.1米)?(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34, 1.73)【分析】(1)过点C作CG⊥AM于点G,证明AB∥CG∥DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,如图3,通过解直角三角形求得求得DH,最后便可求得结果.【解答】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠GCD=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CP×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×cos50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.【点评】此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是正确构造直角三角形.23.(10分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC 边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.【分析】(1)理由相似三角形的性质构建方程即可解决问题.(2)根据题意画出图形即可.(3)首先证明四边形PQMN是矩形,再证明MN=PN即可.(4)证明△BQE∽△BEM,推出∠BEQ=∠BME,由∠BME+∠EMN=90°,可得∠BEQ+∠NEM=90°,即可解决问题.【解答】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得PN=.(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴=,同理可得:=,∴=,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形.(4)解:如图3中,结论:∠QEM=90°.理由:由tan∠NBM==,可以假设MN=3k,BM=4k,则BN=5k,BQ=k,BE =2k,∴==,==,∴=,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.【点评】本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.24.(12分)某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:生长率p 0.2 0.25 0.3 0.35提前上市的天数m(天)0 5 10 15①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【分析】(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4,解方程即可得到结论;(2)①由表格可知,m是p的一次函数,于是得到m=100p﹣20;②当10≤t≤25时,p=t﹣,求得m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,根据题意即可得到m=100[﹣(t﹣h)2+0.4]﹣20=﹣(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,(Ⅱ)当25≤t≤37时,w=300,根据二次函数的性质即可得到结论.【解答】解:(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4得,0.3=﹣(25﹣h)2+0.4,解得:h=29或h=21,∵h>25,∴h=29;(2)①由表格可知,m是p的一次函数,2019年中考真题系列,精心整理,含答案∴m=100p﹣20;②当10≤t≤25时,p =t ﹣,∴m=100(t ﹣)﹣20=2t﹣40;当25≤t≤37时,p =﹣(t﹣h)2+0.4,∴m=100[﹣(t﹣h)2+0.4]﹣20=﹣(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,由(20,200),(25,300),得w=20t﹣200,∴增加利润为600m+[200×30﹣w(30﹣m)]﹣40t2﹣600t﹣4000,∴当t=25时,增加的利润的最大值为6000元;(Ⅱ)当25≤t≤37时,w=300,增加的利润为600m+[200×30﹣w(30﹣m)]=900×(﹣)×(t﹣29)2+15000=﹣(t﹣29)2+15000;∴当t=29时,增加的利润最大值为15000元,综上所述,当t=29时,提前上市20天,增加的利润最大值为15000元.【点评】本题考查二次函数的实际应用,借助二次函数解决实际问题,此题涉及数据较多,认真审题很关键.二次函数的最值问题要利用性质来解,注意自变量的取值范围.第21页(共21页)。
2019年浙江省舟山市中考数学试卷及答案(解析版)
浙江省舟山市2019年初中毕业生学业考试数 学(满分120分,考试时间120分钟)卷Ⅰ(选择题)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.2019-的相反数是( )A .2019B .2019-C .12019D .12019-2.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380 000千米,实现人类探测器首次在月球背面软着陆.数据380 000用科学记数法表示为 ( )A .43810⨯B .43.810⨯ C .53.810⨯ D .60.3810⨯ 3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )ABCD4.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确..的是 ( )A .签约金额逐年增加B .与上年相比,2019年的签约金额的增长量最多C .签约金额的年增长速度最快的是2016年D .2018年的签约金额比2017年降低了22.98%5.如图是一个22⨯的方阵,其中每行、每列的两数和相等,则a 可以是( )A .60tan ︒B .1-C .0D .20191 6.已知四个实数a ,b ,c ,d ,若a b >,a b >,则( )A .a c b d ++>B .a c b d -->C .ac bd >D .a b c d > 7.如图,已知e O 上三点A ,B ,C ,半径1OC =,30ABC ∠︒=,切线P A 交OC 延长线于点P ,则P A 的长为( )A .2BCD .128.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .46383548x y x y +=⎧⎨+=⎩B .46483538x y y x +=⎧⎨+=⎩C .46485338x y x y +=⎧⎨+=⎩D .46483538x y x y +=⎧⎨+=⎩9.如图,在直角坐标系中,已知菱形OABC 的顶点1,2A (),33B (,).作菱形OABC 关于y 轴的对称图形'''OA B C ,再作图形OA 'B 'C '关于点O 的中心对称图形OA B C """,则点C 的对应点C "的坐标是( )A .21(,-)B .12(,-)C .21(-,)D .21(-,-)10.小飞研究二次函数21y x m m +--=(﹣)(m 为常数)性质时如下结论:①这个函数图象的顶点始终在直线1y x -+=上;②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;③点11A x y (,)与点22B x y (,)在函数图象上,若12x x <,122x x m +>,则12y y <;④当12x -<<时,y 随x 的增大而增大,则m 的取值范围为m ≥2.其中错误结论的序号是( ) A .①B .②C .③D .④ 卷Ⅰ(非选择题)二、填空题(共6小题,每小题4分,满分24分) 11.分解因式:25x x -= .12.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为 .13.数轴上有两个实数a ,b ,且0a >,0b <,0a b +<,则四个数a ,b ,a -,b -的大小关系为 (用“<”号连接).14.如图,在e O 中,弦1AB =,点C 在AB 上移动,连结OC ,过点C 作CD OC ⊥交e O 于点D ,则CD 的最大值为 .15.在2x + 40+=的括号中添加一个关于x 的一次项,使方程有两个相等的实数根.16.如图,一副含30︒和45︒角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为 cm ;连接BD ,则ABD △的面积最大值为 cm 2.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.17.小明解答“先化简,再求值:21211x x ++-,其中1x =.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.18.如图,在矩形ABCD 中,点E ,F 在对角线BD .请添加一个条件,使得结论“AE CF =”成立,并加以证明.19.如图,在直角坐标系中,已知点40B (,),等边三角形OAB 的顶点A 在反比例函数ky x =的图象上.(1)求反比例函数的表达式.(2)把OAB △向右平移a 个单位长度,对应得到'''O A B △当这个函数图象经过'''O A B △一边的中点时,求a 的值.20.在66 的方格纸中,点A ,B ,C 都在格点上,按要求画图:(1)在图1中找一个格点D ,使以点A ,B ,C ,D 为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB 三等分(保留画图痕迹,不写画法).21.在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A 、B 两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A 小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75 75 79 79 79 79 80 80 8182828383848484【信息三】A 、B 两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺): 小区 平均数 中位数众数 优秀率 方差 A 75.1 # 79 40% 277 B75.1777645%211根据以上信息,回答下列问题: (1)求A 小区50名居民成绩的中位数.(2)请估计A 小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A ,B 两小区参加测试的居民掌握垃圾分类知识的情况.22.某挖掘机的底座高0.8AB =米,动臂 1.2BC =米, 1.5CD =米,BC 与CD 的固定夹角140BCD ∠︒=.初始位置如图1,斗杆顶点D 与铲斗顶点E 所在直线DE 垂直地面AM 于点E ,测得70CDE ∠︒=(示意图2).工作时如图3,动臂BC 会绕点B 转动,当点A ,B ,C 在同一直线时,斗杆顶点D 升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC 与AB 的夹角ABC ∠的度数. (2)问斗杆顶点D 的最高点比初始位置高了多少米(精确到0.1米)?(参考数据:500.77sin ︒≈,500.64700.94cos sin ︒≈︒≈,,700.34cos ︒≈ 1.73≈)23.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展. (1)温故:如图1,在ABC △中,AD BC ⊥于点D ,正方形PQMN 的边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,若6BC =,4AD =,求正方形PQMN 的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画ABC △,在AB 上任取一点'P ,画正方形''''P Q M N ,使'Q ,'M 在BC 边上,'N 在ABC △内,连结'BN 并延长交AC 于点N ,画NM BC ⊥于点M ,NP NM ⊥交AB 于点P ,PQ BC ⊥于点Q ,得到四边形PPQMN .小波把线段BN 称为“波利亚线”.(3)推理:证明图2中的四边形PQMN 是正方形.(4)拓展:在(2)的条件下,在射线BN 上截取NE NM =,连结EQ ,EM (如图3).当34tan NBM ∠=时,猜想QEM ∠的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.24.(12分)某农作物的生长率p与温度t(℃)有如下关系:如图1,当1025t≤≤时可近似用函数11505p t t--=刻画;当25≤t≤37时可近似用函数20.4p t h-+=(﹣)刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:生长率p0.20.250.30.35提前上市的天数m(天)051015①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).浙江省舟山市2019年初中毕业生学业考试数学答案解析1.【答案】A【解析】2019-的相反数表示为()20192019.--=【考点】相反数2.【答案】C【解析】科学记数法10n a ⨯,要求||110.a ≤< 【考点】科学计数法 3.【答案】B【解析】主视方向分两层,下一层两个正方形,上一层一个正方形,并在左侧. 【考点】三视图4.【答案】C【解析】2016年增长了381.340.9340.4-=亿元,2019年增长了200.7亿元.2016年增长速最快.【考点】统计图,折线统计图,增长率 5.【答案】D【解析】212a +=+,得1a =【考点】列阵求和,解方程,立方根,零次幂,绝对值. 6.【答案】A【解析】由a >b ,c d >得,a c b c ++>,b c b d ++>得.a c b d ++> 【考点】不等式及其性质. 7.【答案】B【解析】连接OA ,则260,AOC ABC ∠=∠=︒90,OAP ∠=︒得22,PO OA ==AP =.【考点】圆周角定理,圆的切线,勾股定理,30︒角的直角三角形性质8.【答案】D【解析】4匹马6头牛共计48两:4648x y +=;3匹马5头牛共计38两:3538x y +=. 【考点】列二元一次方程组解应用题 9.【答案】A【解析】由格点和菱形特点可得()2,1C ,关于y 轴对称点()'2,1C -,'C 关于原点O中心对称点()"2,1.C -【考点】轴对称,中心对称及性质,菱形的性质. 10.【答案】C【解析】解:二次函数21y x m m ---+=()(m 为常数) ①∵顶点坐标为1m m -+(,)且当x m =时,1y m -+=∴这个函数图象的顶点始终在直线1y x -+=上 故结论①正确;②假设存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形令0y =,得210x m m ---+()=,其中1m ≤解得:x m =,x m =∵顶点坐标为1m m -+(,),且顶点与x 轴的两个交点构成等腰直角三角形∴|||1m m m +--=(| 解得:0m =或1∴存在0m =或1,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形 故结论②正确; ③∵122x x m +> ∴122x x m +> ∵二次函数21y x m m --+-=()(m 为常数)的对称轴为直线x m = ∴点A 离对称轴的距离小于点B 离对称轴的距离 ∵12x x <,且10-< ∴12y y > 故结论③错误;④当12x -<<时,y 随x 的增大而增大,且10-< ∴m 的取值范围为2m ≥.【考点】一次函数、二次函数的性质,等腰直角三角形. 11.【答案】x (x ﹣5)【解析】考虑提取公因式x ,得:255x x x x --=(). 【考点】因式分解 12.【答案】23【解析】画树状图.42.63P == 【考点】画树状图求概率.13.【答案】b a a b --<<<【解析】由0,a >b 0,<0,a b +<得.a b <借助数轴可以比较大小,得b a a b --<<<. 【考点】有理数大小的比较,有理数的加法法则,相反数的意义. 14.【答案】12【解析】解:连接OD ,如图, ∵CD OC ⊥, ∴90COD ∠︒=,∴CD 当OC 的值最小时,CD 的值最大,而OC AB ⊥时,OC最小,此时OC , ∴CD 111222AB ⨯==1=, 【考点】垂径定理,勾股定理,弦心距.15.【答案】±4x【解析】答案不唯一,解:要使方程有两个相等的实数根,则224160b ac b --△===得4b ±=故一次项为4x ±【考点】根的判别式16.【答案】2412243612-+-(),()【解析】解:∵12AC cm =,30A ∠︒=,45DEF ∠︒=∴BC =,AB cm =,ED DF ==如图,当点E 沿AC 方向下滑时,得''E D F △,过点D '作'D N AC ⊥于点N ,作'D M BC ⊥于点M∴'90MD N ︒=,且'''90E D F ∠︒= ∴''''E D N F D M ∠∠=,且''''90D NE D MF ∠∠︒==,''''E D D F = ∴''''D NE D MF AAS △≌△()∴''D N D M =,且''D N AC D M CM ⊥⊥,∴'CD 平分ACM ∠即点E 沿AC 方向下滑时,点D '在射线CD 上移动,∴当''E D AC ⊥时,'DD 值最大,最大值12CD cm --=(∴当点E 从点A 滑动到点C 时,点D运动的路径长21224cm ⨯--=(如图,连接'BD ,'AD ,∵'''AD B ABC AD C BD C S S S S +-△△△△=∴'1111''12'2222AD B S BC AC AC D BC D M D N ⨯+⨯⨯-⨯⨯-⨯N △==(当''E D AC ⊥时,'AD B S △有最大值,∴'AD B S △最大值21122cm ⨯=(. 【考点】特殊角的直角三角形,运动点的轨迹线路,勾股定理,不规则图形面积的计算.17.【答案】步骤①、②有误.原式()()()()()()211.1111111x x x x x x x x x -+=+==+-+-+--当1x =时,原式==【解析】错误第1步:分式的加减是利用分式的基本性质进行通分,分子分母同乘以一个不等于0的数或式,分式的值不变.【考点】分式的加减,求代数式的值.18.【答案】添加的条件是BE =DF (答案不唯一)证明:∵四边形ABCD 是矩形,∴AB CD AB CD ∥,=,∴ABD BDC ∠∠=,又∵BE DF =(添加),∴ABE CDF SAS △≌△(),∴AE CF =【解析】答案不唯一,如,BE DF =AE CF ∥等.【考点】矩形的性质,全等三角形的判定和性质.19.【答案】解:(1)如图1,过点A 作AC OB ⊥于点C ,∵OAB △是等边三角形,∴60AOB ∠︒=,12OC OB =,∵40B (,),∴4OB OA ==,∴2OC AC =,=把点2A (代入ky x =,得k =∴反比例函数的解析式为y (2)如图2,分两种情况讨论:①点D 是A B ''的中点,过点D 作DE x ⊥轴于点E由题意得4A B ''=,60A B E ∠''︒=,在Rt DEB '△中,2B D '=,DE 1B E '=.∴3O E '=,把y代入y4x=,∴4OE=,∴1a OO'==;②如图3,点F是A O''的中点,过点F作FH x⊥轴于点H 由题意得460AO AO B''∠'''︒=,=,在Rt FO H'△中,1FH O H'=.把y y,得4x=,∴4OH=,∴3a OO'==,综上所述,a的值为1或3【解析】(1)求点的坐标:一般过点坐标轴的垂线,求出点到两坐标轴的距离即可.(2)分两种情况,即双曲线过''A O的中点或'B'A的中点两种可能.【考点】反比例函数的图像和性质,正三角形的性质,平移.20.【答案】解:(1)由勾股定理得:'CD AB CD==''BD AC BD=='''AD BC AD==画出图形如图1所示;(2)如图2所示【解析】(1)分别过三角形的顶点作对边的平行线,就可以找到.(2)利用平行线等分线段的方法.【考点】格点图形,平行四边形的判定三等分线段.21.【答案】(1)75(分)(2)500×2450=240(人),(3)①从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同; ②从方差看,B 小区居民对垃圾分类知识掌握的情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数分三个不同层次的评价:A 层次:能从1个统计量进行分析。
2019舟山市中考数学试卷(word+详解+准图)
2019年舟山市中考数学试卷一、选择题:本大题共 小题,每小题 分,合计分. 1.(2019年浙江省舟山)-2 019的相反数是 ····················································· ( )A .2 019B .-2 019C .12019D .12019{答案}A2.(2019年浙江省舟山)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380 000千米,实现人类探测器首次在月球背面软着陆.数据380 000用科学记数法表示为 ···················· ( )A .38×104B .3.8×104C .3.8×105D .0.38×106{答案}C{解析}本题考查了科学记数法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.380 000用科学记数法表示时a =3.8,此时小数点向左移动了5位,所以n =5.∴380 000=3.8×105,因此本题选C .3.(2019年浙江省舟山)右图是由四个相同的小正方体组成的立体图形,它的俯视图为 ······························································································ ( ){答案}B4.(2019年浙江省舟山)2019年5月26日第5届中国国际大数据产业博览会召开,某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是 ······························ ( )A .签约金额逐年增加B .与上一年相比,2019年的签约金额的增长量最多C .签约金额的年增长速度最快的是2016年D .2018年的签约金额比2017年降低了22.98%{答案}C{解析}本题考查了数据整理中的折线统计图,折线统计图能看出数据的变化过程和趋势.观察折线统计图,2016年到2017年折线呈下降趋势,选项A 不正确;与上一年相比,2019签约金额的增长量为422.33-221.63=200.7(亿元),2016签约金额的增长量为381.35-40.9=340.45(亿元),而某市在五届数博会上的产业签约金额统计图签约金额(亿元)年份2015 2016 2017 2018 2019 100200 300 400 500 40.9 381.35244.61221.63422.33主视方向A .B .C .D .200.7<340.45,选项B 不正确;由折线统计图知,签约金额的增长是2016年、2019年,而200.7<340.45,所以签约金额的年增长速度最快的是2016年,选项C 正确;∵(244.61-221.63)÷244.61≈9%,选项D 不正确.因此本题选C .5.(2019年浙江省舟山)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a 可以是 ············································································································· ( )A .tan 60°B .-1D .12 019{答案}D{解析}本题考查了一元一次方程的应用.因为2×2的方阵中每行的两数和相等02=2a +-,即2+1=a +2,解得a =1.∵12019=1,因此本题选D .6.(2019年浙江省舟山)已知四个实数a ,b ,c ,d ,若a >b ,c >d ,则 ·················· ( )A .a +c >b +dB .a -c >b -dC .ac >bdD .a c >bd{答案}A{解析}本题考查了不等式的基本性质.∵a >b ,c >d ,∴a +c >b +d .选项A 正确;∵c >d ,∴-c <-d .又∵a >b ,∴a -c 与b -d 的大小关系不确定;由于不知a ,b ,c ,d 的正负性,所以ac 与bd 、a c 与bd的大小关系都不确定,选项C 、选项D 都不正确,,因此本题选A .7.(2019年浙江省舟山)如图,已知⊙O 上三点A ,B ,C ,半径QC =1,∠ABC =30°,切线PA交OC 延长线于点P ,则PA 的长为 ······························································ ( )A .2BCD .12{答案}B{解析}本题考查了切线的性质、圆周角定理、勾股定理.如答图,连接OA ,∵∠ABC =30°,∠AOC =2∠ABC ,∴∠AOC =60°.∵AP 是⊙O 的切线,∴OA ⊥AP .∴∠P =30°.∵半径OC =1,∴OA =1.在Rt △AOP 中,tan ∠P =AO AP,∴tan 30°=1AP .∴AP B .8.(2019年浙江省舟山)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为 ································ ( )A.46383548x yx y+=⎧⎨+=⎩,.B.46483538y xy x+=⎧⎨+=⎩,.C.46485338x yx y+=⎧⎨+=⎩,.D.46483538x yx y+=⎧⎨+=⎩,.{答案}D{解析}本题考查了二元一次方程组的应用.由相等关系“马四匹、牛六头,共价四十八两”得4x+6y=48;由相等关系“马三匹、牛五头,共价三十八两”得3x+5y=38.因此本题选D.9.(2019年浙江省舟山)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是·······················································()A.(2,-1)B.(1,-2)C.(-2,1)D.(-2,-1){答案}A{解析}本题考查了轴对称、中心对称的意义、点的坐标定义,先按题意分别画出四边形OA′B′C′,四边形OA″B″C″,再根据点的坐标的意义确定出点C″的坐标.如答图所示,因此本题选A.10.(2019年浙江省舟山)小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时,有如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当-1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是 ·························································()A.①B.②C.③D.④{答案}C{解析}本题考查了二次函数的性质.∵y=-(x-m)2-m+1,∴顶点坐标为(m,-m+1).在y =-x+1,当x=m时,y=-m+1.∴函数y=-(x-m)2-m+1的顶点始终在直线y=-x+1上,①正确.∵在y=-(x-m)2-m+1中,当y=0时,0=-(x-m)2-m+1,解得x=m象的顶点与x轴的两个交点坐标为M(m0),N(,0),∴MN=m(m-=P,则P(m,1-m).由对称性知,PM=PN.若△PMN是等腰直角三角形,则∠MPN =90°.设抛物线的对称轴交x 轴于点Q ,则点Q 为MN 的中点,PQ =1-m ,MN =2PQ.∴2(1-m ).解得m =0,此时二次函数为y =-x 2+1,顶点及与x 轴的两个交点构成等腰直角三角形,选项B 正确;当m =0时,此时二次函数为y =-x 2+1,若点A 、B 在对称轴右侧,则y 随x 的增大而减小.此时0<x 1<x 2,x 1+x 2>0,即满足x 1<x 2,x 1+x 2>2m ,但y 1>y 2,选项C 不正确;当-1<x <2时,y 随x 的增大而增大,∴此时x 的值应在对称轴直线x =m 的左侧(含顶点),∴m ≥2,选项D 正确.因此本题选D .二、填空题:本大题共 小题,每小题 分,合计分. 11.(2019年浙江省舟山)分解因式:x 2-5x =________.{答案}x (x -5)12.(2019年浙江省舟山)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为________.{答案}23{解析}本题考查了等可能条件下的概率,根据等可能条件下的概率公式P =mn进行计算.∵从甲、乙、丙三人中任选两人甲被选中,∴所有可能出现的结果是:①甲、乙;②甲、丙;③乙、丙,∴n =3,m =2.∴P (甲被选中)=23.13.(2019年浙江省舟山)数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,-a ,-b 的大小关系为________(用“<“号连接).{答案}b <-a <a <-b{解析}本题考查了实数的大小比较,数轴,相反数,有理数加法等知识点.∵a >0,b <0,∴-a <0,-b >0.∵a >0,b <0,a +b <0,∴由“异号两数相加,取绝对值较大加数的符号”可知,b >a ,∴b 与-b 到原点的距离大于a 与-a 到原点的距离.在数轴上表示如下:∴b <-a <a <-b .14.(2019年浙江省舟山)在x 2+(________)+4=0的括号中添加一个关于x 的一次项,使方程有两个相等的实数根.{答案}±4x (写出一个即可){解析}本题考查了一元二次方程的根的判别式.设一次项系数为b .根据题意得b 2-4×1×4=0.解得b =±4,∴一次项为±4x ,故添加4x (或-4x )15.(2019年浙江省舟山)如图,在△ABC 中,若∠A =45°,AC 2-BC 2AB 2,则tan C =________.{答案{解析}本题考查了等腰直角三角形的性质,锐角三角函数,勾股定理,一元二次方程的解法.如答图,过点B 作BD ⊥AC 于点D .∵∠A =45°,∴△ABD 是等腰直角三角形.设AD =BD =x ,CD =y ,则AC =x +y .在Rt △ABD 中,由勾股定理得AB .在Rt △BCD 中,由勾股定理得BC 2baa -b-=BD 2+CD 2=x 2+y 2.∵AC 2-BC 2AB 2,∴222()()x y x y +-+2).整理得xy .在Rt △BCD 中,tan C =BDCD=x y.16.(2019年浙江省舟山)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在一个平面上,边AC 与EF 重合,AC =12 cm .当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为________cm ;连结BD ,则△ABD 的面积最大值为________cm 2.{答案}24-,{解析}本题考查了,,如答图所示.当DE ⊥AC 时,点D 运动到最远处.点E 从点A 运动点C 的过程中,点D 从点D ′运动到最远处,又从最远处运动点D ′.∴点D 运动的路径长为线段线段D ′D 是长的2倍.∵AC =6,∴CD ′=AD ′=EF =6.∵∠DEC =∠ACF =∠EDF =90°,∴CEDF是矩形.又∵DE =DF ,∴四边形CEDF 是正方形.∴CD =EF =6.∵∠ACD ′=45°,∴点D ′在CD 上.∴D ′D =CD -CD ′=6-D运动的路径长为=24-.如答图所示.当点D 运动到最远处时,△ABD 的面积最大.∵AC =12,∠BAC =30°,∴BC=CEDF 是正方形,∴CF =DF=BF=S 四边形ABFD =S △ABC +S 梯形ACFD =S △ABD +S △BDF ,∴12×12+12(12+S △ABD +12×(S △ABD=.三、解答题:本大题共 小题,合计分.17.(2019年浙江省舟山)小明解答“先化简,再求值:21211x x ++-,其中x1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.{答案}解:解答过程中第①、②步有误.原式=1(1)(1)x x x -+-+2(1)(1)x x +-=1(1)(1)x x x ++-=11x -.当x1.18.(2019年浙江省舟山)如图,在矩形ABCD 中,点E ,F 在对角线BD 上.请添加一个条件,使得结论“AE =CF ”成立,并加以证明.{答案}解:添加条件:BE =DF (或DE =BF 或AE ∥CF 或∠AEB =∠DFC 或∠DAE =∠BCF 或∠AED =∠CFB 或∠BAE =∠DCF 等).选择BE =DF .证明:在矩形ABCD 中,AB ∥CD ,AB =CD ,∴∠ABE =∠CDF .∵BE =DF ,∴△ABE ≌△CDF (SAS ).∴AE =CF .19.(2019年浙江省舟山)如图,在直角坐标系中,已知点B (4,0),等边三角形OAB 的顶点A 在反比例函数y =kx的图象上. (1)求反比例函数的表达式;(2)把△OAB 向右平移a 个单位长度,对应得到△O ′A ′B ′.当这个函数图象经过△O ′A ′B ′一边的中点时,求a 的值.{答案}解:(1)如答图1,过点A 作AC ⊥OB 于点C .∵△OAB 是等边三角形,∴∠AOB =60°,OC =12OB .∵B (4,0),∴OB =OA =4.∴OC =2,AC=2,y =k x得,k=y(2)(I )如答图2,点D 是A ′B ′的中点,过点D 作DE ⊥x 轴于点E .由题意得A ′B ′=4,∠A ′B ′E=60°.在Rt △DEB ′中,B ′D =2,DEB ′E =1.∴O ′E =3.把yyx =4.∴OE =4.∴.a =OO ′=1.(Ⅱ)如答图3,点F 是A ′O ′的中点,过点F 作FH ⊥x 轴于点H .由题意得A ′O ′=4,∠A ′O ′B ′=60°.在Rt △FO ′H 中,FHO ′H =1.把yyx =4.∴OH =4..a =OO ′=3.综上所述,a =1或3.20.(2019年浙江省舟山)在6×6的方格纸中,点A ,B ,C 都在格点上,按要求画图: (1)在图1中找一个格点D ,使以点A ,B ,C ,D 为顶点的四边形是平行四边形; (2)在图2中仅用无刻度的直尺,把线段AB 三等分(保留画图痕迹,不写画法).{答案}解:(1)如答图1所示.21.(2019年浙江省舟山)在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查,其中A 、B 两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:[信息一]A 小区50名居民成绩的频数直方图如下(每一组含前一个边界值,不含后一个边界值):75 75 79 79 79 79 80 80 8182828383848484[80分及以上为优小区 平均数 中位数 众数 优秀率 方差 A 75.1 ______ 79 40% 277 B75.1777645%211(1)求A 小区50名居民成绩的中位数;(2)请估计A 小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A 、B 两小区居民掌握垃圾分类知识的情况.{答案}解:(1)50个成绩的最中间两个数据是第25、26个.由于直方图表示的成绩从左到右按由小到大的顺序排序,而4+8+12=24<25,4+8+12+16=40>26,∴第25、26个成绩都在第4小组.由信息二中的表格可知,第25、26个成绩都为75(分),∴中位数为75分.图1C AB图2CAB答图1CAB2D 3D 1答图2CAB48 10 12 16 成绩(分)频数 A 小区50名居民成绩的频数直方图(2)由信息三中的表格可知,A 小区500名居民成绩的平均数为75.1分,由信息一中的直方图可知,样本中成绩超过75.1分是第4、5两组,由信息二中的表格可知,第4组共有14人.又∵第5组共有10人,∴样本的成绩超过平均数的百分比为141050+×100%=48%,∴估计A 小区500名居民中能超过平均数的有48%×500=240(名).(3)答案不唯一,如:①从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数。
2019年浙江省舟山市中考数学试卷-答案
浙江省舟山市2019年初中毕业生学业考试数学答案解析1.【答案】A【解析】2019-的相反数表示为()20192019.--=【考点】相反数2.【答案】C【解析】科学记数法10n a ⨯,要求||110.a ≤<【考点】科学计数法3.【答案】B【解析】主视方向分两层,下一层两个正方形,上一层一个正方形,并在左侧.【考点】三视图4.【答案】C【解析】2016年增长了381.340.9340.4-=亿元,2019年增长了200.7亿元.2016年增长速最快.【考点】统计图,折线统计图,增长率5.【答案】D【解析】212a +=+,得1a =【考点】列阵求和,解方程,立方根,零次幂,绝对值.6.【答案】A【解析】由a >b ,c d >得,a c b c ++>,b c b d ++>得.a c b d ++>【考点】不等式及其性质.7.【答案】B【解析】连接OA ,则260,A O C A B C ∠=∠=︒90,O A P ∠=︒得22,PO OA ==AP【考点】圆周角定理,圆的切线,勾股定理,30︒角的直角三角形性质8.【答案】D【解析】4匹马6头牛共计48两:4648x y +=;3匹马5头牛共计38两:3538x y +=.【考点】列二元一次方程组解应用题9.【答案】A【解析】由格点和菱形特点可得()2,1C ,关于y 轴对称点()'2,1C -,'C 关于原点O 中心对称点()"2,1.C -【考点】轴对称,中心对称及性质,菱形的性质.10.【答案】C 【解析】解:二次函数21y x m m ---+=()(m 为常数) ①∵顶点坐标为1m m -+(,)且当x m =时,1y m -+= ∴这个函数图象的顶点始终在直线1y x -+=上故结论①正确;②假设存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形令0y =,得210x m m ---+()=,其中1m ≤解得:x m =,x m =∵顶点坐标为1m m -+(,),且顶点与x 轴的两个交点构成等腰直角三角形∴|||1m m m +--=(| 解得:0m=或1 ∴存在0m=或1,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形 故结论②正确;③∵122x x m +> ∴122x x m +> ∵二次函数21y x m m --+-=()(m 为常数)的对称轴为直线x m = ∴点A 离对称轴的距离小于点B 离对称轴的距离∵12x x <,且10-<∴12y y >故结论③错误;④当12x -<<时,y 随x 的增大而增大,且10-< ∴m 的取值范围为2m ≥.【考点】一次函数、二次函数的性质,等腰直角三角形.11.【答案】x (x ﹣5)【解析】考虑提取公因式x ,得:255x x x x --=().【考点】因式分解12.【答案】23【解析】画树状图.42.63P == 【考点】画树状图求概率.13.【答案】b a a b --<<<【解析】由0,a >b 0,<0,a b +<得.a b <借助数轴可以比较大小,得b a a b --<<<.【考点】有理数大小的比较,有理数的加法法则,相反数的意义.14.【答案】12【解析】解:连接OD ,如图,∵CD OC ⊥,∴90COD ∠︒=,∴CD当OC 的值最小时,CD 的值最大,而OC AB ⊥时,OC 最小,此时OC ,∴CD 111222AB ⨯==1=, 【考点】垂径定理,勾股定理,弦心距.15.【答案】±4x【解析】答案不唯一,解:要使方程有两个相等的实数根,则224160b ac b --△===得4b ±=故一次项为4x ±【考点】根的判别式16.【答案】2412243612-+-(),()【解析】解:∵12AC cm =,30A ∠︒=,45DEF ∠︒=∴BC =,AB =,ED DF ==如图,当点E 沿AC 方向下滑时,得''E D F △,过点D '作'D N AC ⊥于点N ,作'DMB C ⊥于点M∴'90MD N ︒=,且'''90E D F ∠︒= ∴''''E D N F D M ∠∠=,且''''90D NE D MF ∠∠︒==,''''E D D F = ∴''''D NE D MF AAS △≌△()∴''D N D M =,且''D N AC D M CM ⊥⊥,∴'CD 平分ACM ∠即点E 沿AC 方向下滑时,点D '在射线CD 上移动,∴当''E D AC ⊥时,'DD 值最大,最大值12CD cm --=(∴当点E 从点A滑动到点C 时,点D 运动的路径长21224cm ⨯--=(如图,连接'BD ,'AD ,∵'''AD B ABC AD C BD CS S S S +-△△△△=∴'1111''12'2222AD B S BC AC AC D BC D M D N ⨯+⨯⨯-⨯⨯-⨯N △==(当''E D AC ⊥时,'AD B S △有最大值,∴'AD B S △最大值21122cm ⨯=(. 【考点】特殊角的直角三角形,运动点的轨迹线路,勾股定理,不规则图形面积的计算. 17.【答案】步骤①、②有误.原式()()()()()()211.1111111x x x x x x x x x -+=+==+-+-+--当1x 时,原式==【解析】错误第1步:分式的加减是利用分式的基本性质进行通分,分子分母同乘以一个不等于0的数或式,分式的值不变.【考点】分式的加减,求代数式的值.18.【答案】添加的条件是BE =DF (答案不唯一)证明:∵四边形ABCD 是矩形,∴AB CD AB CD ∥,=,∴ABDBDC ∠∠=, 又∵BE DF =(添加),∴ABE CDF SAS △≌△(), ∴AE CF =【解析】答案不唯一,如,BE DF =AE CF ∥等.【考点】矩形的性质,全等三角形的判定和性质.19.【答案】解:(1)如图1,过点A 作AC OB ⊥于点C ,∵OAB △是等边三角形,∴60AOB ∠︒=,12OC OB =,∵40B (,), ∴4OB OA==,∴2OC AC =,=把点2A (代入k y x =,得k =∴反比例函数的解析式为y ; (2)如图2,分两种情况讨论:①点D 是A B ''的中点,过点D 作DE x ⊥轴于点E由题意得4A B ''=,60A B E ∠''︒=,在Rt DEB '△中,2B D '=,DE 1B E '=.∴3O E '=,把y 代入y 4x =, ∴4OE =, ∴1a OO '==; ②如图3,点F 是A O ''的中点,过点F 作FH x ⊥轴于点H由题意得460AOAO B ''∠'''︒=,=,在Rt FO H '△中,1FH O H '=.把y y ,得4x =, ∴4OH =,∴3a OO '==,综上所述,a 的值为1或3【解析】(1)求点的坐标:一般过点坐标轴的垂线,求出点到两坐标轴的距离即可. (2)分两种情况,即双曲线过''A O 的中点或'B'A 的中点两种可能.【考点】反比例函数的图像和性质,正三角形的性质,平移.20.【答案】解:(1)由勾股定理得:'CD AB CD ==''BD AC BD ==,'''AD BC AD ==画出图形如图1所示;(2)如图2所示【解析】(1)分别过三角形的顶点作对边的平行线,就可以找到.(2)利用平行线等分线段的方法.【考点】格点图形,平行四边形的判定三等分线段.21.【答案】(1)75(分)(2)500×2450=240(人), (3)①从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同; ②从方差看,B 小区居民对垃圾分类知识掌握的情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数分三个不同层次的评价:A 层次:能从1个统计量进行分析。
2019年浙江省嘉兴、舟山中考数学试题(word版,含答案).docx
2019 年浙江省初中毕业生学业考试(嘉兴卷)数学试题卷考生须知:1.全卷满分120 分,考试时间120 分钟 . 试题卷共 6 页,有三大题,共24 小题 .2.全卷答案必须做在答题纸卷I 、卷 II的相应位置上,做在试题卷上无效.温馨提示:本次考试为开卷考,请仔细审题,答题前仔细阅读答题纸上的“注意事项.卷 I(选择题)一、选择题(本题有10 小题,每题 3 分,共 30 分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.2019的相反数是()A. 2019B.2019C.1D.1 201920192.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆 . 数据380000用科学记数法表示为()A. 38 104B. 3.8 104C. 3.8 105D. 0.38 1063.右图是由四个相同的小正方形组成的立体图形,它的俯视图为()A. B. C. D.(第 3 题)4.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确..的是()A.签约金额逐年增加B.与上年相比, 2019 年的签约金额的增长量最多C. 签约金额的年增长速度最快的是2016 年D.2018 年的签约金额比 2017 年降低了 22.98%5.右图是一个2× 2 的方阵,其中每行、每列的两数和相等,则 a 可以是()A.tan60B.1C.0D.120196.已知四个实数 a ,b, c ,d,若a b , c d ,则()A. a c b dB. a c b dC.ac bda b D.dc7.如图,已知⊙ O上三点 A, B, C,半径 OC=1,∠ ABC=30°,切线 PA交 OC延长线于点 P,则 PA的长为()A.2B.3C.21 D.28.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两( 我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?x 两,牛每头y两,根据题”设马每匹意可列方程组为()A.4x 6y 38B.4y 6x 48C.4x 6y 48D.4x 6y 48 3x 5y 48 3 y 5x 385x 3y 383x 5 y 389.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形 OA B C ,再作图形 OA B C 关于点 O 的中心对称图形OA B C ,则点 C 的对应点 C 的坐标是()A.(2,1)B.(1, 2)C.( 2,1)D.( 2, 1)10.小飞研究二次函数y( x m)2m 1( m 为常数)性质时如下结论:①这个函数图象的顶点始终在直线y x 1上;②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;③点 A( x1 , y1 ) 与点 B( x2 , y2 ) 在函数图象上,若x1x2, x1x2 2m ,则 y1y2;④当 1 x 2 时, y 随x的增大而增大,则m 的取值范围为m2其中错误结论的序号是()A. ①B.②C.③D.④卷Ⅱ(非选择题)二、填空题( 本题有 6 小题,每题 4 分,共 24 分)11.分解因式:x25x =.12.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.13.数轴上有两个实数 a ,b,且 a >0,b<0, a +b<0,则四个数 a ,b,a, b 的大小关系为(用“<”号连接).14.如图,在⊙ O中,弦AB 1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O 于点 D,则 CD的最大值为.15.在x 2( ) 4 0的括号中添加一个关于x 的一次项,使方程有两个相等的实数...根16.如图,一副含 30°和 45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合, AC12cm .当点 E 从点 A 出发沿 AC 方向滑动时,点 F 同时从点 C 出发沿射线 BC 方向滑动.当点 E 从点 A 滑动到点 C 时,点 D 运动的路径长为cm ;连接BD,则△ABD的面积最大值为cm2.三、解答题( 本题有 8 小题,第 17~19题每题6分,第20、21题每题8分,第22、23题每题 10 分,第 24 题 12 分,共 66 分)友情提示:做解答题, 别忘了写出必要的过程;作图( 包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.1217.小明解答“先化简,再求值:,其中2x 1 x1x 3 1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.18.如图,在矩形ABCD 中 , 点 E , F 在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.(第 18 题)19.如图,在直角坐标系中,已知点 B (4,0),等边三角形 OAB 的顶点 A 在反比例函数 y k的图象上x(1)求反比例函数的表达式.(2)把△OAB 向右平移 a 个单位长度,对应得到△O A B当这个函数图象经过△O A B一边的中点时,求a的值.20.在 6 × 6 的方格纸中,点 A , B, C 都在格点上,按要求画图:(1)在图 1 中找一个格点 D,使以点 A , B,C, D 为顶点的四边形是平行四边形.(2)在图 2 中仅用无刻度的直尺,把线段AB 三等分(保留画图痕迹,不写画法).图 1(第 20题)图 221.在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中 A、 B 两小区分别有 500 名居民参加了测试,社区从中各随机抽取 50名居民成绩进行整理得到部分信息:【信息一】 A 小区 50名居民成绩的频数直方图如下( 每一组含前一个边界值,不含后一个边界值 ) :【信息二】上图中 , 从左往右第四组的成绩如下(第 21 题)【信息三】 A、B 两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优)()根据以上信息, 回答下列问题:(1)求 A 小区 50 名居民成绩的中位数.(2)请估计 A 小区 500 名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析 A ,B 两小区参加测试的居民掌握垃圾分类知识的情况.22 .某挖掘机的底座高AB BCD =140°.初始位置如图0.8米,动臂 BC 1.2 米,1, 斗杆顶点D与铲斗顶点CDE1.5 米,所在直线BC 与 CD 的固定夹角∠DE 垂直地面 AM 于点E ,测得∠CDE =70°(示意图2) .工作时如图3,动臂BC会绕点B转动,当点 A , B ,C 在同一直线时,斗杆顶点D升至最高点( 示意图4) .(1) 求挖掘机在初始位置时动臂BC 与AB 的夹角∠ABC的度数.(2) 问斗杆顶点D的最高点比初始位置高了多少米( 精确到0.1 米 )?(考数据:sin 500.77 , cos500.64 ,sin 700.94 , cos700.34 ,3 1.73 )23.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1) 温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC 上,顶点P ,N分别在AB ,AC 上,若BC 6 ,AD 4 ,求正方形PQMN的边长.(2)操作:能画出这类正方形吗 ?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P ,画正方形P Q M N ,使 Q ,M在BC边上,N在△ ABC 内,连结 BN并延长交 AC于点 N,画NM⊥BC于点M,NP⊥NM交 AB 于点P ,PQ⊥ BC 于点Q,得到四边形P PQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图 2中的四边形PQMN 是正方形.(4)拓展:在 (2)的条件下,于波利业线 BN上截取 NE NM ,连结EQ ,EM(如图3) .当tan NBM 3时,猜想∠ QEM 的度数,并尝试证明.4请帮助小波解决“温故”、“推理”、“拓展”中的问题.(第 23 题)24.某农作物的生长率p与温度t ( C )有如下关系:如图1,当 10≤t≤ 25时可近似用函数 p 1 t1刻画;505当 25≤t≤37时可近似用函数p1(t h)20.4刻画.160(1)求 h 的值.(2) 按照经验,该作物提前上市的天数m (天)与生长率p满足函数关系:生长率 p0.20.250.30.35提前上市的天数m (天)051015①请运用已学的知识,求m关于 p的函数表达式;②请用含t 的代数式表示m(3) 天气寒冷,大棚加温可改变农作物生长速度.在 (2)的条件下,原计划大棚恒温20℃时,每天的成本为200 元,该作物30天后上市时,根据市场调查:每提前一天上市售出( 一次售完) ,销售额可增加600 元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度t( C )之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).7、我们各种习气中再没有一种象克服骄傲那麽难的了。
2019年浙江省嘉兴市中考数学试题(含解析)
2019年浙江省嘉兴市中考试题解析(满分120分,考试时间120分钟)一、选择题(本大题共10题,每小题3分,共30) 1.(2019浙江嘉兴,1,3分) 2019-的相反数是( ) A .2019- B .12019-C .2019D .12019【答案】C【解析】解:因为a 的相反数是a -,所以2019-的相反数是2019.故选:C . 【知识点】相反数2. (2019浙江嘉兴,2,3分) 2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A .43810⨯ B .43.810⨯C .53.810⨯D .60.3810⨯【答案】C【解析】解:5380000 3.810=⨯故选:C . 【知识点】科学记数法-表示较大的数3. (2019浙江嘉兴,3,3分). 如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )【答案】B【解析】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B .【知识点】简单组合体的三视图4. (2019浙江嘉兴,4,3分) 2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( )A .签约金额逐年增加B .与上年相比,2019年的签约金额的增长量最多C .签约金额的年增长速度最快的是2016年D .2018年的签约金额比2017年降低了22.98% 【答案】C【解析】解:A 、错误.签约金额2017,2018年是下降的. B 、错误.与上年相比,2016年的签约金额的增长量最多. C 、正确. D 、错误.下降了:244.5221.69.3%244.5-≈.故选:C .【知识点】折线统计图5. (2019浙江嘉兴,5,3分)如图是一个22⨯的方阵,其中每行、每列的两数和相等,则a 可以是( )A .tan60︒B .1-C .0D .20191【答案】D【解析】解:由题意可得:03|2|82a +-=+, 则23a +=, 解得:1a =, 故a 可以是20191. 故选:D .【知识点】零指数幂;实数的运算;特殊角的三角函数值6.(2019浙江嘉兴,6,3分)已知四个实数a ,b ,c ,d ,若a b >,c d >,则( ) A .a c b d +>+ B .a c b d ->-C .ac bd >D .a b c d> 【答案】A【解析】解:a b >Q ,c d >,a cb d ∴+>+.故选:A .【知识点】不等式的性质7. (2019浙江嘉兴,7,3分)如图,已知O e 上三点A ,B ,C ,半径1OC =,30ABC ∠=︒,切线PA 交OC 延长线于点P ,则PA 的长为( )A .2B .3C .2D .12【答案】B【解析】解:连接OA ,30ABC ∠=︒Q ,260AOC ABC ∴∠=∠=︒,Q 过点A 作O e 的切线交OC 的延长线于点P ,90OAP ∴∠=︒, 1OA OC ==Q ,tan 60133AP OA ∴=︒=⨯=,故选:B .【知识点】切线的性质;圆周角定理8. (2019浙江嘉兴,8,3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .46383548x y x y +=⎧⎨+=⎩B .46483538y x y x +=⎧⎨+=⎩C .46485338x y x y +=⎧⎨+=⎩D .46483538x y x y +=⎧⎨+=⎩【答案】D【解析】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩. 故选:D .【知识点】由实际问题抽象出二元一次方程组9.(2019浙江嘉兴,9,3分)如图,在直角坐标系中,已知菱形OABC 的顶点(1,2)A ,(3,3)B .作菱形OABC 关于y 轴的对称图形OA B C ''',再作图形OA B C '''关于点O 的中心对称图形OA B C '''''',则点C 的对应点C ''的坐标是( )A .(2,1)-B .(1,2)-C .(2,1)-D .(2,1)--【答案】A【解析】解:Q 点C 的坐标为(2,1), ∴点C '的坐标为(2,1)-, ∴点C ''的坐标的坐标为(2,1)-,故选:A .【知识点】菱形的判定与性质;作图10. (2019浙江嘉兴,10,3分)小飞研究二次函数2()1(y x m m m =---+为常数)性质时如下结论: ①这个函数图象的顶点始终在直线1y x =-+上;②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形; ③点1(A x ,1)y 与点2(B x ,2)y 在函数图象上,若12x x <,122x x m +>,则12y y <;④当12x -<<时,y 随x 的增大而增大,则m 的取值范围为2m …. 其中错误结论的序号是( ) A .① B .② C .③ D .④【答案】C【解析】解:二次函数2()1(y x m m m =---+为常数) ①Q 顶点坐标为(,1)m m -+且当x m =时,1y m =-+ ∴这个函数图象的顶点始终在直线1y x =-+上故结论①正确;②假设存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形 令0y =,得2()10x m m ---+=,其中1m „ 解得:1x m m =--+,1x m m =+-+Q 顶点坐标为(,1)m m -+,且顶点与x 轴的两个交点构成等腰直角三角形|1||(1)|m m m m ∴-+=---+解得:0m =或1∴存在0m =或1,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形故结论②正确; ③122x x m +>Q ∴122x x m +> Q 二次函数2()1(y x m m m =---+为常数)的对称轴为直线x m =∴点A 离对称轴的距离小于点B 离对称轴的距离12x x <Q ,且10-< 12y y ∴>故结论③错误;④当12x -<<时,y 随x 的增大而增大,且10-< m ∴的取值范围为2m ….故结论④正确. 故选:C .【知识点】一次函数的图象;二次函数的图象;抛物线与x 轴的交点;二次函数图象与系数的关系;等腰直角三角形二、填空题(本大题共6小题,每小题4分,共24分)11. (2019浙江嘉兴,11,4分)分解因式:25x x -= .【答案】(5)x x -【解析】解:25(5)x x x x -=-.故答案为:(5)x x -.【知识点】因式分解-提公因式法 12. (2019浙江嘉兴,12,4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为 . 【答案】23【解析】解:树状图如图所示:共有6个等可能的结果,甲被选中的结果有4个, ∴甲被选中的概率为4263=;【知识点】概率13. (2019浙江嘉兴,13,4分)数轴上有两个实数a ,b ,且0a >,0b <,0a b +<,则四个数a ,b ,a -,b -的大小关系为 (用“<”号连接). 【答案】b a a b <-<<-【解析】解:0a >Q ,0b <,0a b +<, ||b a ∴>,b a ∴->,b a <-,∴四个数a ,b ,a -,b -的大小关系为b a a b <-<<-.故答案为:b a a b <-<<-【知识点】实数大小比较14. (2019浙江嘉兴,14,4分)如图,在O e 中,弦1AB =,点C 在AB 上移动,连结OC ,过点C 作CD OC ⊥交O e 于点D ,则CD 的最大值为 .【答案】12【解析】解:连接OD ,如图,CD OC ⊥Q , 90COD ∴∠=︒,2222CD OD OC r OC ∴=-=-,当OC 的值最小时,CD 的值最大,而OC AB ⊥时,OC 最小,此时221()2OC r AB =-,CD ∴的最大值为2221111()14222r r AB AB --==⨯=,【知识点】垂径定理;勾股定理15. (2019浙江嘉兴,15,4分)在2x + 40+=的括号中添加一个关于x 的一次项,使方程有两个相等的实数根.【答案】4x ±【解析】解:要使方程有两个相等的实数根,则△224160b ac b =-=-= 得4b =± 故一次项为4x ± 故答案为4x ±【知识点】根的判别式16.(2019浙江嘉兴,16,4分)如图,一副含30︒和45︒角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为 cm ;连接BD ,则ABD ∆的面积最大值为 .2cm .【答案】(24122)-,(243362126)+- 【解析】解:12AC cm =Q ,30A ∠=︒,45DEF ∠=︒ 43BC cm ∴=,83AB cm =,62ED DF cm ==如图,当点E 沿AC 方向下滑时,得△E D F ''',过点D '作D N AC '⊥于点N ,作D M BC '⊥于点M90MD N '∴∠=︒,且90E D F '''∠=︒E D NF D M ''''∴∠=∠,且90D NE D MF ''''∠=∠=︒,E D D F ''''=∴△D NE ''≅△()D MF AAS ''D N D M ''∴=,且D N AC '⊥,D M CM '⊥ CD '∴平分ACM ∠即点E 沿AC 方向下滑时,点D '在射线CD 上移动,∴当E D AC ''⊥时,DD '值最大,最大值2(1262)ED CD cm =-=-∴当点E 从点A 滑动到点C 时,点D 运动的路径长2(1262)(24122)cm =⨯-=-如图,连接BD ',AD ',AD B ABC AD C BD C S S S S '''∆=+-V V V Q1111243(1243)2222AD B S BC AC AC D N BC D M D N ''''∴=⨯+⨯⨯-⨯⨯=+-⨯V 当E D AC ''⊥时,AD B S 'V 有最大值,AD B S '∴V 最大值21243(1243)62(243362126)2cm =+-⨯=+-.故答案为:(24122)-,(243362126)+-【知识点】轨迹;全等三角形的判定和性质;等腰直角三角形的性质;角平分线的性质;三角形的面积三、解答题(本大题共6小题,满分66分,各小题都必须写出解答过程) 17. (2019浙江嘉兴,17,6分)小明解答“先化简,再求值:21211x x ++-,其中31x =+.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.【思路分析】根据分式的运算法则,按要求完成即可. 【解题过程】解:1【知识点】分式的化简求值18. (2019浙江嘉兴,18,6分)如图,在矩形ABCD 中,点E ,F 在对角线BD .请添加一个条件,使得结论“AE CF =”成立,并加以证明.【思路分析】根据SAS 即可证明ABE CDF ∆≅∆可得AE CF =. 【解题过程】解:添加的条件是BE DF =(答案不唯一). 证明:Q 四边形ABCD 是矩形,//AB CD ∴,AB CD =, ABD BDC ∴∠=∠,又BE DF =Q (添加), ()ABE CDF SAS ∴∆≅∆,AE CF ∴=.【知识点】矩形的性质;全等三角形的判定与性质19.(2019浙江嘉兴,19,6分)如图,在直角坐标系中,已知点(4,0)B ,等边三角形OAB 的顶点A 在反比例函数ky x=的图象上. (1)求反比例函数的表达式.(2)把OAB ∆向右平移a 个单位长度,对应得到△O A B '''当这个函数图象经过△O A B '''一边的中点时,求a 的值.【思路分析】(1)过点A 作AC OB ⊥于点C ,根据等边三角形的性质得出点A 坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论:①反比例函数图象过AB 的中点;②反比例函数图象过AO 的中点.分别过中点作x 轴的垂线,再根据30︒角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a 的值即可.【解题过程】解:(1)过点A 作AC OB ⊥于点C ,OAB ∆Q 是等边三角形,60AOB ∴∠=︒,12OC OB =,(4,0)B Q ,4OB OA ∴==, 2OC ∴=,23AC =.把点(2A ,23)代入ky x=,得43k =. ∴反比例函数的解析式为43y x=; (2)分两种情况讨论:①点D 是A B ''的中点,过点D 作DE x ⊥轴于点E . 由题意得4A B ''=,60A B E ∠''=︒,在Rt DEB ∆'中,2B D '=,3DE =,1B E '=.3O E ∴'=,把3y =代入43y x=,得4x =, 4OE ∴=, 1a OO ∴='=;②如图3,点F 是A O ''的中点,过点F 作FH x ⊥轴于点H . 由题意得4AO ''=,60AO B ∠'''=︒, 在Rt △FO H '中,3FH =,1O H '=. 把3y =代入43y x=,得4x =, 4OH ∴=, 3a OO ∴='=,综上所述,a 的值为1或3.【知识点】反比例函数的图象;待定系数法求反比例函数解析式;等边三角形的性质;坐标与图形变化-平移20. (2019浙江嘉兴,20,8分)在66⨯的方格纸中,点A ,B ,C 都在格点上,按要求画图: (1)在图1中找一个格点D ,使以点A ,B ,C ,D 为顶点的四边形是平行四边形. (2)在图2中仅用无刻度的直尺,把线段AB 三等分(保留画图痕迹,不写画法).【思路分析】(1)由勾股定理得:5CD AB CD '===,13BD AC BD ''===,10AD BC AD '''===;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可. 【解题过程】解:(1)由勾股定理得: 5CD AB CD '===,13BD AC BD ''===, 10AD BC AD '''===;画出图形如图1所示;(2)如图2所示.【知识点】平行线分线段成比例;平行四边形的判定与性质;作图21.(2019浙江嘉兴,21,8分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:7575797979798080 8182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.【思路分析】(1)因为有50名居民,所以中位数落在第四组,中位数为75; (2)A 小区500名居民成绩能超过平均数的人数:2450024050⨯=(人); (3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B 小区居民对垃圾分类知识掌握的情况比A 小区稳定;从中位数看,B 小区至少有一半的居民成绩高于平均数. 【解题过程】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75, 故答案为75; (2)2450024050⨯=(人), 答:A 小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同; 从方差看,B 小区居民对垃圾分类知识掌握的情况比A 小区稳定; 从中位数看,B 小区至少有一半的居民成绩高于平均数.【知识点】用样本估计总体;频数(率)分布直方图;统计量的选择;中位数22. (2019浙江嘉兴,22,10分)某挖掘机的底座高0.8AB =米,动臂 1.2BC =米, 1.5CD =米,BC 与CD 的固定夹角140BCD ∠=︒.初始位置如图1,斗杆顶点D 与铲斗顶点E 所在直线DE 垂直地面AM 于点E ,测得70CDE ∠=︒(示意图2).工作时如图3,动臂BC 会绕点B 转动,当点A ,B ,C 在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC 与AB 的夹角ABC ∠的度数. (2)问斗杆顶点D 的最高点比初始位置高了多少米(精确到0.1米)?(参考数据:sin500.77︒≈,cos500.64︒≈,sin700.94︒≈,cos700.34︒≈,3 1.73)≈【思路分析】(1)过点C 作CG AM ⊥于点G ,证明////AB CG DE ,再根据平行线的性质求得结果; (2)过点C 作CP DE ⊥于点P ,过点B 作BQ DE ⊥于点Q ,交CG 于点N ,如图2,通过解直角三角形求得DE ,过点D 作DH AM ⊥于点H ,过点C 作CK DH ⊥于点K ,如图3,通过解直角三角形求得求得DH ,最后便可求得结果.【解题过程】解:(1)过点C 作CG AM ⊥于点G ,如图1,AB AM ⊥Q ,DE AM ⊥,////AB CG DE ∴,180110DCG CDE ∴∠=︒-∠=︒, 30BCG BCD GCD ∴=∠-∠=︒, 180150ABC BCG ∴∠=︒-∠=︒;(2)过点C 作CP DE ⊥于点P ,过点B 作BQ DE ⊥于点Q ,交CG 于点N ,如图2,在Rt CPD ∆中,cos700.51DP CP =⨯︒≈(米), 在Rt BCN ∆中,cos30 1.04CN BC =⨯︒≈(米),所以, 2.35DE DP PQ QE DP CN AB =++=++=(米),如图3,过点D 作DH AM ⊥于点H ,过点C 作CK DH ⊥于点K ,在Rt CKD ∆中,cos50 1.16DK CD =⨯︒≈(米), 所以, 3.16DH DK KH =+=(米), 所以,0.8DH DE -=(米),所以,斗杆顶点D 的最高点比初始位置高了0.8米. 【知识点】解直角三角形的应用23. (2019浙江嘉兴,23,10分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在ABC ∆中,AD BC ⊥于点D ,正方形PQMN 的边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,若6BC =,4AD =,求正方形PQMN 的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画ABC ∆,在AB 上任取一点P ',画正方形P Q M N '''',使Q ',M '在BC 边上,N '在ABC ∆内,连结BN '并延长交AC 于点N ,画NM BC ⊥于点M ,NP NM ⊥交AB 于点P ,PQ BC ⊥于点Q ,得到四边形PPQMN .小波把线段BN 称为“波利亚线”.(3)推理:证明图2中的四边形PQMN 是正方形.(4)拓展:在(2)的条件下,在射线BN 上截取NE NM =,连结EQ ,EM (如图3).当3tan 4NBM ∠=时,猜想QEM ∠的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.【思路分析】(1)理由相似三角形的性质构建方程即可解决问题. (2)根据题意画出图形即可.(3)首先证明四边形PQMN 是矩形,再证明MN PN =即可.(4)证明BQE BEM ∆∆∽,推出BEQ BME ∠=∠,由90BME EMN ∠+∠=︒,可得90BEQ NEM ∠+∠=︒,即可解决问题.【解题过程】解:(1)如图1中,//PN BC Q , APN ABC ∴∆∆∽,∴PN AEBC AD=,即464PN PN -=, 解得125PN =.(2)能画出这样的正方形,如图2中,正方形PNMQ 即为所求.(3)证明:如图2中,由画图可知:90QMN PQM NPQ BM N ∠=∠=∠=∠''=︒,∴四边形PNMQ 是矩形,//MN M N '', ∴△BN M BNM ''∆∽, ∴M N BN MN BN'''=, 同理可得:P N BN PN BN'''=, ∴M N P N MN PN''''=, M N P N ''=''Q , MN PN ∴=,∴四边形PQMN 是正方形.(4)解:如图3中,结论:90QEM ∠=︒.理由:由3tan 4MN NBM BM ∠==,可以假设3MN k =,4BM k =,则5BN k =,BQ k =,2BE k =, ∴122BQ k BK k ==,2142BE k BM k ==, ∴BQ BE BE BM=, QBE EBM ∠=∠Q , BQE BEM ∴∆∆∽, BEQ BME ∴∠=∠,NE NM =Q ,NEM NME ∴∠=∠, 90BME EMN ∠+∠=︒Q ,90BEQ NEM ∴∠+∠=︒, 90QEM ∴∠=︒.【知识点】正方形的性质和判定;相似三角形的判定和性质24. (2019浙江嘉兴,24,12分)某农作物的生长率p 与温度(C)t ︒有如下关系:如图1,当1025t 剟时可近似用函数11505p t =-刻画;当2537t 剟时可近似用函数21()0.4160p t h =--+刻画.(1)求h 的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系:生长率p0.2 0.25 0.3 0.35 提前上市的天数m (天)51015①请运用已学的知识,求m 关于p 的函数表达式; ②请用含t 的代数式表示m .(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20C ︒时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w (元)与大棚温度(C)t ︒之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【思路分析】(1)把(25,0.3)代入21()0.4160p t h =--+,解方程即可得到结论; (2)①由表格可知,m 是p 的一次函数,于是得到10020m p =-;②当1025t 剟时,11505p t =-,求得11100()20240505m t t =--=-;当2537t 剟时,根据题意即可得到2215100[()0.4]20(29)201608m t h t =--+-=--+; (3)(Ⅰ)当2025t 剟时,(Ⅱ)当2537t 剟时,300w =,根据二次函数的性质即可得到结论. 【解题过程】解:(1)把(25,0.3)代入21()0.4160p t h =--+得,210.3(25)0.4160h =--+, 解得:29h =或21h =,25h >Q ,29h ∴=;(2)①由表格可知,m 是p 的一次函数, 10020m p ∴=-;②当1025t 剟时,11505p t =-, 11100()20240505m t t ∴=--=-; 当2537t 剟时,21()0.4160p t h =--+, 2215100[()0.4]20(29)201608m t h t ∴=--+-=--+; (3)(Ⅰ)当2025t 剟时, 由(20,200),(25,300),得20200w t =-,∴增加利润为2600[20030(30)]406004000m w m t t +⨯-----, ∴当25t =时,增加的利润的最大值为6000元;(Ⅱ)当2537t 剟时,300w =, 增加的利润为2251125600[20030(30)]900()(29)15000(29)1500082m w m t t +⨯--=⨯-⨯-+=--+;∴当29t =时,增加的利润最大值为15000元,综上所述,当29t =时,提前上市20天,增加的利润最大值为15000元. 【知识点】二次函数的实际应用;二次函数的最值问题。
2019年浙江省舟山市中考数学试卷原卷附解析
2019年浙江省舟山市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个密闭不透明的盒子里有若干个白球,在不允许将球全部倒出来的情况下,为估计白球的个数,小刚向其中放人 8 个黑球,摇匀后从中随机模出一个球记下颜色,再把它放回盒中,不断重复,共模球 400 次,其中 88次摸到黑球,估计盒中大约有白球( )A .28 个B .30 个C . 36 个D . 42 个 2.下列图形不相似的是( ) A . 所有的圆B .所有的正方形C .所有的等边三角形D .所有的菱形 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AD=4,DB=2,则DE ∶BC 的值为( )A .32B .21C .43D .53 4.如图,Rt △OAC 中,∠OAC=90°,OA=6,AC=4,扇形OAB 的半径为OA ,交⌒AB 的长等于3,则图中阴影部分的面积为( ) OC 于点B ,如A .15B .6C .4D .3 各点中,在反比例函数2y x=-图象上的是( ) 5.下列A .(21), B .233⎛⎫⎪⎝⎭, C .(21)--,D .(12)-, 6.如图,△OAP 、△ABQ 均是等腰直角三角形,点 P 、Q 在函数4(0)y x x=>的图象上,直角顶点 A .B 均在x 轴上,则点B 的坐标为( )A 21,0)B 51,0)C . (3,0)D .(1-,0)7.已知点P (x ,y )在第二象限,且12x +=,23y -=,则点P 的坐标为( )A .(-3,5)B .(1,-l )C .(-3,-l )D .(1,5)8.在A 33-),B (22,-2),C (-222 D 23-)四个点中,在第四象限的点的个数为( )B C D EA.1个B.2个C.3个D.4个9.如图,要使 a∥b,则∠2 与∠3 满足条件()A.∠2=∠3 B.∠2+∠3=90°C.∠2+∠3=180°D.无法确定10.下列每组数分别是三根小木棒的长度,首尾顺次相接能组成三角形的是()A.10 cm , 2 cm , 15 cm B.15 cm , 9 cm , 25 cmC.6 cm , 9 cm, 15 cm D.5 cm , 5 cm , 5 cm11.某市气象预报称:“明天本市的降水概率为70%”,这句话指的是()A.明天本市70%的时间下雨,30%的时间不下雨B.明天本市70%的地区下雨,30%的地区不下雨C.明天本市一定下雨D.明天本市下雨的可能性是70%12.如图所示,在图①中,Rt△OAB绕其直角顶点0每次旋转90°,旋转3次得到右边的图形,在图②中,四边形OABC绕0点每次旋转120°,旋转2次得到右边的图形.以下四个图形中,不能通过上述方式得到的是()13.如图足球是由32块黑白相间的牛皮缝制而成的,黑皮可看做正五边形,白皮可看做正六边形,设白皮有x块,则黑皮有(32-x)块,每块白皮有六条边,共6x条边,因每块黑皮有三条边和白皮连在一起,故黑皮有3x条边,要求出白皮黑皮的块数,列出的方程正确的是()A.3x=32-x B.3x=5(32-x)C.6x=32-x D.5x=3(32-x)二、填空题14.若圆锥的母线长为3 cm,底面半径为2 cm,则圆锥的侧面展开图的面积.15.如图,AB⊥BC,BC⊥CD,当时,Rt△ABC≌Rt△DCB(只需写出一个条件).16.如图,∠1与∠2是两条直线被AC所截形成的内错角,那么这两条直线为与.17.如图,在△ABC中,已知∠BAC=80°,∠B=40°,AD是△ABC的角平分线,那么∠ADB= .18.若一个三角形的两条高在这个三角形的外部,那么这个三角形的形状是___________三角形.19.利用平方差公式计算(2+1)(22+1)(24+1)(28+1)+1= .20.如图所示,在△ABC中,∠B=35°,∠C=60°,AE是∠BAC的平分线,AD⊥BC于D,则∠DAE的度数为.21.某件商品原价为a 元,先涨价20%后,又降价20%,现价是元.22.当 x= 0.5 时,||23xx= .三、解答题23.如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:(1)三面涂有颜色的概率;(2)两面涂有颜色的概率;(3)各个面都没有颜色的概率.24.如图,把四边形 ABCD 放大到原来的两倍.25.如图所示,在一块长为32m ,宽为l5m 的矩形草地上,在中间要设计一横二竖的等宽的供居民散步的小路,要使小路的面积是草地面积的去,请问小路的宽应是多少?26.在容器里有 1 5℃的水 4 升,现在要把 5 升水注入里面,使容器里混合后的水的温度(即平均温度)不低于 25℃,且不高于30℃,试问注入 5 升水的温度应在什么范围内?27.如图,一块三角形模具的阴影部分已破损.(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A B C '''?请简要说明理由.(2)作出模具A B C '''△的图形.(要求:尺规作图,保留作图痕迹,不写作法和证明) A28.人们发现某种蟋蟀在1min 时间内所叫次数 x(次)与当地温度 T(℃)之间的关系可近似地表示成T= ax+b,下面是该种蟋蟀1min 所叫次数与温度变化情况对照表:(2)如果蟋蟀1min 时间内叫了 63 次,那么估计该地当时的温度大约是多少?29.在“跳蚤市场”活动中初一(1)班的销售额为n元,初一(2)班的销售额是初一(1)班的的2倍少28元,初一(3)班的销售额比初一(1)班的一半多42元,问三个班一共销售商品多少元?30.2006年某市全年完成生产总值264亿元,比2005年增长23%,问:(1)2005年该市全年生产总值是多少亿元?(精确到1亿元)(2)预计该市2008年生产总值可达到386.5224亿元,则2006 ~2008年该市生产总值的年平均=)1.21= 1.22【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.A4.D5.D6.B7.A8.C9.C10.D11.DD13.B二、填空题14.6π15.答案不唯一,如AB=CD16.AB ,CD17.100°18.钝角19.21620.12.5°21.0.96a22.-1三、解答题23.解:(1)因为三面涂有颜色的小正方体有8个,∴P (三面涂有颜色)81648==(或0.125); (2)因为两面涂有颜色的小正方体有24个,∴P (两面涂有颜色)243648==(或0.375); (3)因为各个面都没有涂颜色的小正方体共有8个,∴P (各个面都没有颜色)=81648=如图中四边形A 1B 1C 1D 1.25.lm26.33°~42°27.(1)只要度量残留的三角形模具片的B C ∠∠,的度数和边BC 的长, 因为两角及其夹边对应相等的两个三角形全等;(2)略28. (1)17a =,3b =;(2) 12℃ 29.(3.5n+14)元30.(1)2005年该市生产总值为264(123%)215÷+≈(亿元);(2)该市2006~2008年生产总值平均年增长率为386.5224 1.2110.2121%264=-==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年浙江省初中毕业生学业考试(嘉兴卷)
数学
一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、
多选、错选,均不得分)
1.2019
-的相反数是()
.A2019.B2019
-.C
1
2019
.D
1
2019
-
2.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()
.A4
3810
⨯.B4
3.810
⨯.C5
3.810
⨯.D6
0.3810
⨯
3.右图是由四个相同的小正方形组成的立体图形,它的俯视图为()
4
.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业
签约金额的折线统计图如图.下列说法正确的是()
.A签约金额逐年增加
.B与上年相比,2019年的签约金额的增长量最多
.C签约金额的年增长速度最快的是2016年
.D2018年的签约金额比2017年降低了22.98%
5.右图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是
()
.A tan60.B1-.C0.D2019
1
6.已知四个实数a,b,c,d,若a b
>,c d
>,则()
.A a c b d
+>+.B a c b d
->-.C ac bd
>.D
a b
c d
>
7.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于
点P,则PA的长为()
.A2.B.C.D
1
2
8.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国
古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()
(第3题)
.A.B.C.D
.A
46383548
x y x y +=⎧⎨
+=⎩ .B
46483538
y x y x +=⎧⎨
+=⎩ .C
46485338
x y x y +=⎧⎨
+=⎩ .D
46483538
x y x y +=⎧⎨
+=⎩ 9.如图,在直角坐标系中,已知菱形OABC 的顶点(1,2)A ,(3,3)B .作菱形OABC 关于y 轴的对称图形OA B C ''',再作图形OA B C '''关于点O 的中心对称图形OA B C '''''',则点C 的对应点C ''的坐标是( )
.A (2,1)- .B (1,2)-
.C (2,1)- .D (2,1)--
10.小飞研究二次函数2
()1y x m m =---+(m 为常数)性质时如下结论: ①这个函数图象的顶点始终在直线1y x =-+上;
②存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形; ③点11(,)A x y 与点22(,)B x y 在函数图象上,若12x x <,122x x m +>,则12y y <; ④当12x -<<时,y 随x 的增大而增大,则m 的取值范围为2m ≥ 其中错误结论的序号是( )
.A ①
.B ② .C ③ .D ④
卷Ⅱ(非选择题)
二、填空题 (本题有6小题,每题4分,共24分)
11.分解因式:2
5x x -= .
12.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为 .
13.数轴上有两个实数a ,b ,且a >0,b <0,a +b <0,则四个数a ,b ,a -,b -的大小关系为 (用“<”号连接).
14.如图,在⊙O 中,弦1AB =,点C 在AB 上移动,连结OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为 . 15.在2
(
)40x ++=的括号中添加一个关于x 的一次项,使方程有两个相等的实数根
16.如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为 cm ;连接BD ,则△ABD 的面积最大值为 2cm .
三、解答题 (本题有8 小题,第 17~19 题每题6分,第 20、21 题每题8分,第 22、23 题每题 10分,第 24题 12分,共 66分)
17.小明解答“先化简,再求值:
211
x x ++-,其中
1x =.”的过程如图.请指出解答过程中错误
步骤的序号,并写出正确的解答过程.
18.如图,在矩形ABCD中,点E,F 在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.19.如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A
在反比例函数k
y
x
=的图象上
(1)求反比例函数的表达式.
(2)把△OAB向右平移a个单位长度,对应得到△O A B
'''当
这个函数图象经过△O A B
'''一边的中点时,求a的值.
20.在6×6 的方格纸中,点A,B,C 都在格点上,按要求画图:
(1)在图1 中找一个格点D,使以点A,B,C,D 为顶点的四边形是平行四边形.
(2)在图2 中仅用无刻度的直尺,把线段AB 三等分(保留画图痕迹,不写画法).
21.在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B 两小区分别有500 名居民参加了测试,社区从中各随机抽取50 名居民成绩进行整理得到部分信息:
【信息一】A 小区50 名居民成绩的频数直方图如下(每一组含前一个边界值,
不含后一个边界值):
【信息二】上图中,从左往右
(第20
题)
图2
图1
(第18
题)
第四组的成绩如下
【信息三】A 、B 两小区各 50 名居民成绩的平均数、中位数、众数、优秀率(80 分及以上为优秀)、方差等数据
如下(部分空缺):
根据以上信息,回答下列问题:
(1)求A 小区 50 名居民成绩的中位数.
(2)请估计A 小区 500 名居民成绩能超过平均数的人数.
(3)请尽量从多个角度,选择合适的统计量分析 A ,B 两小区参加测试的居民掌握垃圾分类知识的情况.
22.某挖掘机的底座高0.8AB =米,动臂 1.2BC =米, 1.5CD =米,BC 与CD 的固定夹角∠BCD =140°.初始位置如图 1,斗杆顶点D 与铲斗顶点E 所在直线DE 垂直地面AM 于点E ,测得∠CDE =70°(示意图 2).工作时如图 3,动臂BC 会绕点B 转动,当点 A ,B ,C 在同一直线时,斗杆顶点D 升至最高点(示意图 4). (1)求挖掘机在初始位置时动臂BC 与AB 的夹角∠ABC 的度数. (2)问斗杆顶点D 的最高点比初始位置高了多少米(精确到 0.1米)?
(考数据:sin 500.77≈,cos500.64≈,sin 700.94≈,cos700.34≈
)
23.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.
(1)温故:如图 1,在△ABC 中,AD ⊥BC 于点D ,正方形PQMN 的边QM 在BC 上,顶点 P ,N 分别在
AB ,
AC 上,若 6BC =,4AD =,求正方形 PQMN 的边长.
(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图 2,任意画△ABC ,在AB 上任取一点P ',画正方形 P Q M N '''',使Q ',M '在BC 边上,N ' 在△ABC 内,连结BN ' 并延长交AC 于点N ,画NM ⊥BC 于点M ,NP ⊥NM 交AB 于点P ,PQ ⊥BC 于点Q ,得到四边形 P PQMN .小波把线段
BN 称为“波利亚线”.
(3)推理:证明图2 中的四边形 PQMN 是正方形.
(4)拓展:在(2)的条件下,于波利业线BN 上截取 NE NM -,连结 EQ ,EM (如图 3).当 3
tan 4
NBM ∠=时,猜想∠QEM 的度数,并尝试证明.
请帮助小波解决“温故”、“推理”、“拓展”中的问题.
24.某农作物的生长率p 与温度 t (C )有如下关系:如图 1,当10≤t ≤25 时可近似用函数11
505
p t =
-刻画; 当25≤t ≤37 时可近似用函数21
()0.4160
p t h =-
-+ 刻画. (1)求h 的值.
(2)按照经验,该作物提前上市的天数m (天)与生长率p 满足函数关系:
②请用含t 的代数式表示m
(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为 200元,
该作物 30 天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600元.因此给大棚
继续加温,加温后每天成本w(元)与大棚温度t(C)之间的关系如图 2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).。