(易错题精选)初中数学三角形难题汇编附答案

合集下载

(专题精选)初中数学三角形难题汇编及答案

(专题精选)初中数学三角形难题汇编及答案
【解析】
【分析】
根据题意画出图形,利用勾股定理解答即可.
【详解】
设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:
两式相加得:
根据勾股定理得到斜边
故选:D.
【点睛】
考查勾股定理,画出图形,根据勾股定理列出方程是解题的关键.
15.如图,AD∥BC,∠C =30°,∠ADB:∠BDC= 1:2,则∠DBC的度数是( )
A. B.1C. D.2
【答案】C
【解析】
【分析】
根据 ,根据三角形中线的性质及面积求解方法得到 , ,故可求解.
【详解】
∵点 为 中点
∴ = 4.5

∴ = 3
∵ = =
∴ 4.5-3=
故选C.
【点睛】
此题主要考查三角形的面积求解,解题的关键是熟知中线的性质.
13.下列几组线段中,能组成直角三角形的是()
∵AC是∠DAB的平分线,E是AB的中点,
∴E′在AD上,且E′是AD的中点,
∵AD=AB,
∴AE=AE′,
∵F是BC的中点,
∴E′F=AB=5.
故选C.
10.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4B.5C.6D.7

初三《三角函数》经典习题汇编(易错题、难题)

初三《三角函数》经典习题汇编(易错题、难题)

初三《三角函数》经典习题汇编(易错题、

难题)

初三《三角函数》经典题汇编(易错题、难题)

概述

本文档以初三数学学科的《三角函数》为主题,整理了一些经

典的题,主要包括易错题和难题。这些题旨在帮助学生加深对三角

函数的理解和应用能力。

题目列表

1. 题目:已知直角三角形的一条直角边为5,斜边为13,求另

一条直角边的长度。

难度:易错题

答案:12

2. 题目:已知角A的正弦值为1/2,求角A的度数。

难度:易错题

答案:30°

3. 题目:已知角B的余弦值为3/5,求角B的度数。

难度:易错题

答案:53.13°

4. 题目:已知角C的正切值为2,求角C的度数。

难度:难题

答案:63.43°

5. 题目:已知直角三角形的一条直角边为8,角A的正弦值为3/4,求斜边的长度。

难度:难题

答案:10

6. 题目:已知角A的弧度为π/6,求角A的正弦值。

难度:难题

答案:1/2

7. 题目:已知角B的弧度为5π/6,求角B的正切值。

难度:难题

答案:√3

结论

通过解答这些经典习题,学生可以巩固对三角函数的基本概念和相关计算方法的掌握。这些题目既包括易错题,帮助学生强化知识记忆,又包括难题,提高学生的解题能力。建议学生针对这些题目进行练习,加深对三角函数的理解和应用能力,从而在考试中取得好成绩。

(易错题精选)初中数学三角形难题汇编含解析(1)

(易错题精选)初中数学三角形难题汇编含解析(1)

(易错题精选)初中数学三角形难题汇编含解析(1)

一、选择题

1.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,以A 为圆心,任意长为半径画弧分别交

AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12

MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=o ;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=

A .1

B .2

C .3

D .4

【答案】D

【解析】

【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.

【详解】

题干中作图方法是构造角平分线,①正确;

∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线 ∴∠CAD=∠DAB=30°

∴∠ADC=60°,②正确

∵∠DAB=∠B=30°

∴△ADB 是等腰三角形

∴点D 在AB 的垂直平分线上,③正确

在Rt △CDA 中,设CD=a ,则AD=2a

在△ADB 中,DB=AD=2a

∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22

BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确

故选:D

【点睛】

本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.

2.下列长度的三条线段能组成三角形的是()

A.2, 2,5B.1,3,3C.3,4,8D.4,5,6

(易错题精选)初中数学三角形难题汇编含答案(1)

(易错题精选)初中数学三角形难题汇编含答案(1)

(易错题精选)初中数学三角形难题汇编含答案(1)

一、选择题

1.下列条件中,不能判断一个三角形是直角三角形的是()

A.三条边的比为2∶3∶4 B.三条边满足关系a2=b2﹣c2

C.三条边的比为1∶1D.三个角满足关系∠B+∠C=∠A

【答案】A

【解析】

【分析】

根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.

【详解】

A、三条边的比为2:3:4,22+32≠42,故不能判断一个三角形是直角三角形;

B、三条边满足关系a2=b2-c2,即a2+c2=b2,故能判断一个三角形是直角三角形;

C、三条边的比为1:1,12+12=)2,故能判断一个三角形是直角三角形;

D、三个角满足关系∠B+∠C=∠A,则∠A为90°,故能判断一个三角形是直角三角形.

故选:A.

【点睛】

此题考查勾股定理的逆定理的应用.解题关键在于掌握判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.

2.等腰三角形两边长分别是 5cm 和 11cm,则这个三角形的周长为()

A.16cm B.21cm 或 27cm C.21cm D.27cm

【答案】D

【解析】

【分析】

分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】

解:当5是腰时,则5+5<11,不能组成三角形,应舍去;

当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm.

故选D.

【点睛】

本题主要考查了等腰三角形的性质, 三角形三边关系,掌握等腰三角形的性质, 三角形三边关系是解题的关键.

(易错题精选)初中数学三角形难题汇编含答案

(易错题精选)初中数学三角形难题汇编含答案
B、72+242=252,152+202≠242,故B不正确;
C、72+242=252,152+202=252,故C正确;
D、72+202≠252,242+152≠252,故D不正确,
故选C.
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.
【详解】
解:∵OP平分∠AOB,∠AOB=60°,
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE= CP=1,
∴PE= ,
∴OP=2PE=2 ,
∵PD⊥OA,点M是OP的中点,
B中,三边之比为3:4:5,设这三条边长为:3x、4x、5x,满足: ,是直角三角形;
C中,三边之比为8:16:17,设这三条边长为:8x、16x、17x, ,不满足勾股定理逆定理,不是直角三角形
故选:C
【点睛】
本题考查直角三角形的判定,常见方法有2种;
(1)有一个角是直角的三角形;
(2)三边长满足勾股定理逆定理.

三角形难题汇编含答案

三角形难题汇编含答案
在Rt△CEF中,设BE=EF=x,则CE= ,
由勾股定理,得: ,
解得: ;
∴ .
故选:C.
【点睛】
本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE的长度.
6.如图,点 是 的内心, 、 是 上的点,且 , ,若 ,则 ()
17.如图,在 中, , ,点 在 上, , ,则 的长为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据 ,可得∠B=∠DAB,即 ,在Rt△ADC中根据勾股定理可得DC=1,则BC=BD+DC= .
【详解】
解:∵∠ADC为三角形ABD外角
∴∠ADC=∠B+∠DAB

∴∠B=∠DAB

在Rt△ADC中,由勾股定理得:
12.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()
A.2 B. C.4 D.3
【答案】B
【解析】
【分析】
如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.
【详解】
如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;
【点睛】
本题考查角平分线的作图原理和平行四边形的性质.

(专题精选)初中数学三角形难题汇编及答案解析

(专题精选)初中数学三角形难题汇编及答案解析
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,
∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.
故选:B.
【点睛】
C.三个边长之比为8:16:17的三角形D.三个角度之比为1:1:2的三角形
【答案】C
【解wk.baidu.com】
【分析】
三角形内角和180°,根据比例判断A、D选项中是否有90°的角,根据勾股定理的逆定理判断B、C选项中边长是否符合直角三角形的关系.
【详解】
A中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形;
∴AC⊥BD,AO=CO,BO=DO=6,
∴AO= ,
∴AC=16,BD=12,
∴菱形面积= =96,
故选:D.
【点睛】
本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.
11.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()
A.25°B.40°C.25°或40°D.50°
D、4+5=9>6,能组成三角形,此选项正确.
故选:D.

(专题精选)初中数学三角形难题汇编含答案

(专题精选)初中数学三角形难题汇编含答案

(专题精选)初中数学三角形难题汇编含答案

一、选择题

1.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()

A.28°B.22°C.32°D.38°

【答案】B

【解析】

【分析】

延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.

【详解】

解:如图,延长AB交CF于E,

∵∠ACB=90°,∠A=30°,

∠ABC=60°,

∵∠1=38°,

∴∠AEC=∠ABC-∠1=22°,

∵GH∥EF,

∴∠2=∠AEC=22°,

故选B.

【点睛】

本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.

2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()

A .8cm

B .10cm

C .12cm

D .14cm

【答案】B

【解析】

【分析】 根据“AAS”证明 ΔABD ≌ΔEBD .得到AD =DE ,AB =BE ,根据等腰直角三角形的边的关系,求其周长.

【详解】

∵ BD 是∠ABC 的平分线,

∴ ∠ABD =∠EBD .

又∵ ∠A =∠DEB =90°,BD 是公共边,

∴ △ABD ≌△EBD (AAS),

∴ AD =ED ,AB =BE ,

∴ △DEC 的周长是DE +EC +DC

=AD +DC +EC

=AC +EC =AB +EC

=BE +EC =BC

=10 cm.

初中数学三角形难题汇编附答案

初中数学三角形难题汇编附答案
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′= = =5.故选B.
14.如图, 、 分别是 边 、 上的点, ,点 为 中点,设 的面积为 , 的面积为 ,若 ,则 ()
∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,
∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.
故选:B.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
6.如图,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE, CE,如图:在射线AD上取点F连接BF, CF,如图,依此规律,第n个图形中全等三角形的对数是()
A.BC = EFB.AC//DFC.∠C =∠FD.∠BAC =∠EDF
【答案】C
【解析】
【分析】
根据全等三角形的判定方法逐项判断即可.
【详解】
∵BE=CF,
∴BE+EC=EC+CF,
即BC=EF,且AC = DF,
由此发现:第n个图形中全等三角形的对数是 .
故选C.

最新初中数学三角形难题汇编及答案

最新初中数学三角形难题汇编及答案
【解析】
【分析】
根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.
【详解】
①∵EG∥BC,
∴∠CEG=∠ACB,
又∵CD是△ABC的角平分线,
∴∠CEG=∠ACB=2∠DCB,故正确;
②∵∠A=90°,
∴∠ADC+∠ACD=90°,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
故选C.
【点睛】
本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
15.如图,在 中, , ,点 在 上, , ,则 的长为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据 ,可得∠B=∠DAB,即 ,在Rt△ADC中根据勾股定理可得DC=1,则BC=BD+DC= .
∴AD=ED,AB=BE,
∴△DEC的周长是DE+EC+DC
=AD+DC+EC
=AC+EC=AB+EC
=BE+EC=BC
=10 cm.
故选B.
【点睛】
本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.

最新初中数学三角形难题汇编及答案解析

最新初中数学三角形难题汇编及答案解析

最新初中数学三角形难题汇编及答案解析

一、选择题

1.下列说法不能得到直角三角形的( )

A .三个角度之比为 1:2:3 的三角形

B .三个边长之比为 3:4:5 的三角形

C .三个边长之比为 8:16:17 的三角形

D .三个角度之比为 1:1:2 的三角形

【答案】C

【解析】

【分析】

三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.

【详解】

A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;

B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;

C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形

故选:C

【点睛】

本题考查直角三角形的判定,常见方法有2种;

(1)有一个角是直角的三角形;

(2)三边长满足勾股定理逆定理.

2.下列长度的三条线段能组成三角形的是( )

A .2, 2,5

B .

C .3,4,8

D .4,5,6

【答案】D

【解析】

【分析】

三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.

【详解】

根据三角形三边关系可知,三角形两边之和大于第三边.

新初中数学三角形难题汇编及答案解析

新初中数学三角形难题汇编及答案解析

新初中数学三角形难题汇编及答案解析

一、选择题

1.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()

A.4 B.5 C.6 D.7

【答案】B

【解析】

试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.

此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′=22

'

+=22

BC BD

+=5.故选B.

34

2.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()

A.8cm B.10cm C.12cm D.14cm

【答案】B

【解析】

【分析】

根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.

【详解】

∵ BD 是∠ABC 的平分线,

∴ ∠ABD =∠EBD .

又∵ ∠A =∠DEB =90°,BD 是公共边,

∴ △ABD ≌△EBD (AAS),

∴ AD =ED ,AB =BE ,

∴ △DEC 的周长是DE +EC +DC

=AD +DC +EC

=AC +EC =AB +EC

=BE +EC =BC

=10 cm.

故选B.

【点睛】

本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.

初中数学三角形难题汇编附答案

初中数学三角形难题汇编附答案

初中数学三角形难题汇编附答案

一、选择题

1.如图,4aBC的角平分线CD、8E相交于F, ZA=90°f EG//BC,且CG_LEG于G,下列

结论:®ZCEG=2ZDCB- Q)ZADC=ZGCD-③CA 平分N8CG;®ZDFB=-Z

2 CGE.其中正确的结论是()

A.②③

B.①②④

C.①③④

D.①②③④【答案】B

【解析】

【分析】

根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案. 【详解】

©VEG/7BC,

AZCEG=ZACB,

又「CD是AABC的角平分线,

AZCEG=ZACB=2ZDCB,故正确;

(2)VZA=90°,

:.ZADC+ZACD=90°,

:CD 平分NACB,

,ZACD=ZBCD,

:.ZADC+ZBCD=90°.

•••EG〃BC,且CGJ_EG,

AZGCB=90°, BPZGCD+ZBCD=90°,

AZADC=ZGCD,故正确;

③条件不足,无法证明CA平分NBCG,故错误;

④ 「ZEBC+ZACB=ZAEB, NDCB+NABONADC,

A ZAEB+ZADC=90°+- (ZABC+ZACB) =135%

2

,ZDFE=360o-135°-90o=135°,

AZDFB=45°=-ZCGE,,正确.

2

故选B.

【点睛】

本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.

2.把一副三角板如图甲放置,其中NACB=NDEC=90。,NA-45。,ZD=30°,斜边AB=6, DC=7,把三角板DCE绕着点C顺时针旋转15。得到A D I CE I(如图乙),此时AB与CD1交于点0,则线段AD1的长度为()

初中数学三角形难题汇编及答案

初中数学三角形难题汇编及答案
∵OB=OD∴∠ABD=∠ODB∵∠ABD+∠ODB=∠AOC=50°∴∠ABD=∠ODB=25°.
考点:圆的基本性质.
16.如图,经过直线AB外一点C作这条直线的垂线,作法如下:
(1)任意取一点K,使点K和点C在AB的两旁.
(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.
(3)分别以点D和点E为圆心,大于 的长为半径作弧,两弧相交于点F.
【答案】B
【解析】
【分析】
由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,即AB∥CE,
∴∠ABF=∠E,
∵DE=CD,
∴AB=DE,
在△ABF和△DEF中,
பைடு நூலகம்∵ ,
∴△ABF≌△DEF(AAS),
故答案为:B
【点睛】
本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.
6.如图,在菱形ABCD中,AB=10,两条对角线相交于点O,若OB=6,则菱形面积是( )
A.60B.48C.24D.96
【答案】D
【解析】
∴∠D=∠C=40°,∠C=∠B=30°,

初中数学三角形难题汇编含答案

初中数学三角形难题汇编含答案
A.15°B.17.5°C.20°D.22.5°
【答案】A
【解析】
【分析】
先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D= ∠A,然后把∠A的度数代入计算即可.
【详解】
解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,
∵AE平分∠BAD,
∴∠BAE=∠EAD=60°
∴△ABE是等边三角形,
∴AE=AB=BE,∠AEB=60°,
∵AB= BC,
∴AE=BE= BC,
∴AE=CE,故①正确;
∴∠EAC=∠ACE=30°
∴∠BAC=90°,
∴S△ABC= AB•AC,故②错误;
∵BE=EC,
∴E为BC中点,O为AC中点,
2.下列长度的三条线段能组成三角形的是()
A. B. C. D.
【答案】D
【解析】
【分析】
三角形的任何一边大于其他两边之差,小于两边之和,满足此关系的可组成三角形,其实只要最小两边的和大于最大边就可判断前面的三边关系成立.
【详解】
根据三角形三边关系可知,三角形两边之和大于第三边.
A、2+2=4<5,此选项错误;
【点睛】
此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.

初中数学三角函数难题汇编

初中数学三角函数难题汇编

1.已知等边△ABC内接于⊙O,点D是⊙O上任意一点,则sin∠ADB的值为()

A.1 B.C.D.

2.在Rt△ABC中,∠C=90°,BD是△ABC的角平分线,将△BCD沿着直线BD折叠,点C落在点C1处,如果AB=5,AC=4,那么sin∠ADC1的值是.3.观察下列等式

①sin30°=cos60°=

②sin45°=cos45°=

③sin60°=cos30°=

根据上述规律,计算sin2a+sin2(90°﹣a)=.

4.有四个命题:

①若45°<a<90°,则sina>cosa;

②已知两边及其中一边的对角能作出唯一一个三角形;

③已知x1,x2是关于x的方程2x2+px+p+1=0的两根,则x1+x2+x1x2的值是负数;

④某细菌每半小时分裂一次(每个分裂为两个),则经过2小时它由1个分裂为16个.

其中正确命题的序号是(注:把所有正确命题的序号都填上).

5.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为.

6.在Rt△ABC中,∠C=90°,BC:AC=3:4,则cosA=.

7.如果α是锐角,且sin2α十cos235°=1,那么α=度.

8.因为cos30°=,cos210°=﹣,所以cos210°=cos(180°+30°)=﹣cos30°=﹣;

因为cos45°=,cos225°=﹣,所以cos225°=cos(180°+45°)=﹣cos45°=﹣;猜想:一般地,当a为锐角时,有cos(180°+a)=﹣cosa,由此可知cos240°的值等于.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO=6,
∴AO= ,
∴AC=16,BD=12,
∴菱形面积= =96,
故选:D.
【点睛】
本题考查了菱形的性质,勾股定理,掌握菱形的对角线互相垂直平分是本题的关键.
5.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()
此三角形为直角三角形,
故AB=2BC=2×4=8cm,
故选B.
【点睛】
本题考查了三角形内角和定理,含30度角的直角三角形的性质,熟练掌握“直角三角形中30°的角所对的直角边等于斜边的一半”是解题的关键.
3.如图,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE, CE,如图:在射线AD上取点F连接BF, CF,如图,依此规律,第n个图形中全等三角形的对数是()
∴∠BAD=∠CAD.
在△ABD与△ACD中,
AB=AC,
∠BAD=∠CAD,
AD=AD,
∴△ABD≌△ACD.
∴图1中有1对三角形全等;
同理图2中,△ABE≌△ACE,
∴BE=EC,
∵△ABD≌△ACD.
∴BD=CD,
又DE=DE,
∴△BDE≌△CDE,
∴图2中有3对三角形全等;
同理:图3中有6对三角形全等;
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据两直线平行,同旁内角互补求出∠CGE=∠BCA=90°,然后根据等角的余角相等即可求出∠EFD=∠BCD;只有△ABC是等腰直角三角形时AD=CD,CG=EG;利用“角角边”证明△BCE和△BFE全等,然后根据全等三角形对应边相等可得BF=BC.
A. B. C. D.2
【答案】B
【解析】
如图,作点A关于OB的对称点点D,连接CD交OB于点P,此时PA+PC最小,作DN⊥x轴交于点N,
∵B(3, ),∴OA=3,AB= ,∴OB=2 ,∴∠BOA=30°,
∵在Rt△AMO中,∠MOA=30°,AO=3,∴AM=1.5,∠OAM=60°,∴∠ADN=30°,
故选C.
【点睛】
图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.
14.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4B.5C.6D.7
【答案】B
∴∠3=∠2﹣∠4=135°﹣80°=55°,
故选B.
【点睛】
本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.
6.如图,在 中, 的垂直平分线交 于 , 的中垂线交 于 , ,则 的度数为( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据线段垂直平分线的性质得到DA=DB,EA=EC,在由等边对等角,根据三角形内角和定理求解.
A.45°B.30 °C.15°D.60°
【答案】C
【解析】
【分析】
先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.
【详解】
解:∵ABCD是长方形,
∴∠BAD=90°,
∵∠BAF=60°,
∴∠DAF=30°,
∵长方形ABCD沿AE折叠,
∴△ADE≌△AFE,
∴∠DAE=∠EAF= ∠DAF=15°.
A.8cmB.10cmC.12cmD.14cm
【答案】B
【解析】
【分析】
根据“AAS”证明ΔABD≌ΔEBD.得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.
【详解】
∵BD是∠ABC的平分线,
∴∠ABD=∠EBD.
又∵∠A=∠DEB=90°,BD是公共边,
∴△ABD≌△EBD(AAS),
(易错题精选)初中数学三角形难题汇编附答案
一、选择题
1.如图,直线 ,点 、 分别在直线 、 上, ,若点C在直线b上, ,且直线a和b的距离为3,则线段 的长度为( )
A. B.ຫໍສະໝຸດ BaiduC.3D.6
【答案】D
【解析】
【分析】
过C作CD⊥直线a,根据30°角所对直角边等于斜边的一半即可得到结论.
【详解】
过C作CD⊥直线a,∴∠ADC=90°.
A.20°B.30°C.45°D.60°
【答案】B
【解析】
【分析】
根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.
【详解】
在△ABC中,∵∠B=30°,∠C=90°,
∴∠BAC=180°-∠B-∠C=60°,
由作图可知MN为AB的中垂线,
∴DA=DB,
①分别以 , 为圆心,以大于 的长为半径画弧,两弧分别相交于点 和 .
②作直线 交 于点 ,交 于点 ,连接 .若 ,则 的值为()
A. B. C. D.
【答案】D
【解析】
【分析】
根据垂直平分线的作法得出PQ是AB的垂直平分线,进而得出∠EAB=∠CAE=30°,即可得出AE的长.
【详解】
由题意可得出:PQ是AB的垂直平分线,
∵在Rt△AND中,∠ADN=30°,AD=2AM=3,∴AN=1.5,DN= ,
∴CN=3- -1.5=1,
∴CD2=CN2+DN2=12+( )2= ,∴CD= .
故选B.
点睛:本题关键在于先借助轴对称的性质确定出P点的位置,然后结合特殊角30°以及勾股定理计算.
12.如图,在 中, , ,按以下步骤作图:
8.如图,在平面直角坐标系中,等腰直角三角形 的顶点 、 分别在 轴、 轴的正半轴上, , 轴,点 在函数 的图象上,若 ,则 的值为()
A.1B. C. D.2
【答案】A
【解析】
【分析】
根据题意可以求得OA和AC的长,从而可以求得点C的坐标,进而求得k的
值,本题得以解决.
【详解】
等腰直角三角形 的顶点 、 分别在 轴、 轴的正半轴上, ,CA⊥x轴, ,
∴∠DAB=∠B=30°,
∴∠CAD=∠BAC-∠DAB=30°,
故选B.
【点睛】
本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.
17.如图,在 中, ,分别是以点A,点B为圆心,以大于 长为半径画弧,两弧交点的连线交 于点 ,交 于点 ,连接 ,若 ,则 ()
∵BE平分∠ABC,
∴∠EBC=∠EBF,
在△BCE和△BFE中,

∴△BCE≌△BFE(AAS),
∴BF=BC,故(4)正确,
综上所述,正确的有(1)(4)共2个.
故选:B.
【点睛】
本题主要考查了角平分线的性质,全等三角形的判定与性质,直角三角形的性质,等腰直角三角形的性质,综合题,但难度不大,熟记性质是解题的关键.
∵∠1=45°,∠BAC=105°,∴∠DAC=30°.
∵CD=3,∴AC=2CD=6.
故选D.
【点睛】
本题考查了平行线间的距离,含30°角的直角三角形的性质,正确的理解题意是解题的关键.
2.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cm
A.6B.8C. D.5
【答案】B
【解析】
【分析】
根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可.
【详解】
设∠A=x,
则∠B=2x,∠C=3x,
由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°,
解得x=30°,
即∠A=30°,∠C=3×30°=90°,
由此发现:第n个图形中全等三角形的对数是 .
故选C.
【点睛】
考查全等三角形的判定,找出数字的变化规律是解题的关键.
4.如图,在菱形ABCD中,AB=10,两条对角线相交于点O,若OB=6,则菱形面积是( )
A.60B.48C.24D.96
【答案】D
【解析】
【分析】
由菱形的性质可得AC⊥BD,AO=CO,BO=DO=6,由勾股定理可求AO的长,即可求解.
【解析】
试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′= = =5.故选B.
10.图中的三角形被木板遮住了一部分,这个三角形是( )
A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能
【答案】D
【解析】
从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,
故选D.
11.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3, ),点C的坐标为( ,0),点P为斜边OB上的一个动点,则PA+PC的最小值为( )
∴FB=FC,
∴∠FBC=∠FCB=25°,
∴∠CFB=180°-25°-25°=130°,
根据对称性可知:∠CFD=∠CFB=130°,
故选:A.
【点睛】
此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
16.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于 的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( )
15.如图,在菱形 中, , 的垂直平分线交对角线 于点 ,垂足为 ,连接 、 ,则 的度数是()
A. B. C. D.
【答案】A
【解析】
【分析】
首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题;
【详解】
∵四边形ABCD是菱形,
∴∠ACD=∠ACB= ∠BCD=25°,
∵EF垂直平分线段BC,
【详解】
如图所示:
∵DM是线段AB的垂直平分线,
∴DA=DB, ,
同理可得: ,
∵ , ,


故选:D
【点睛】
本题考查了线段的垂直平分线和三角形的内角和定理,解题的关键是掌握线段垂直平分线上的点到线段两端的距离相等.
7.如图,在 中, ,CD是高,BE平分∠ABC交CD于点E,EF∥AC交AB于点F,交BC于点G.在结论:(1) ;(2) ;(3) ;(4) 中,一定成立的有( )
【详解】
∵EF∥AC,∠BCA=90°,
∴∠CGE=∠BCA=90°,
∴∠BCD+∠CEG=90°,
又∵CD是高,
∴∠EFD+∠FED=90°,
∵∠CEG=∠FED(对顶角相等),
∴∠EFD=∠BCD,故(1)正确;
只有∠A=45°,即△ABC是等腰直角三角形时,AD=CD,CG=EG而立,故(2)(3)不一定成立,错误;
A.50°B.55°C.65°D.70°
【答案】B
【解析】
【分析】
如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.
【详解】
如图,延长l2,交∠1的边于一点,
∵11∥l2,
∴∠4=180°﹣∠1=180°﹣100°=80°,
由三角形外角性质,可得∠2=∠3+∠4,
A.nB.2n-1C. D.3(n+1)
【答案】C
【解析】
【分析】
根据条件可得图1中△ABD≌△ACD有1对三角形全等;图2中可证出△ABD≌△ACD,△BDE≌△CDE,△ABE≌△ACE有3对全等三角形;图3中有6对全等三角形,根据数据可分析出第n个图形中全等三角形的对数.
【详解】
∵AD是∠BAC的平分线,

, ,
点 的坐标为 ,
点 在函数 的图象上,

故选: .
【点睛】
本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键
是明确题意,利用数形结合的思想解答.
9.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()
∴AD=ED,AB=BE,
∴△DEC的周长是DE+EC+DC
=AD+DC+EC
=AC+EC=AB+EC
=BE+EC=BC
=10 cm.
故选B.
【点睛】
本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
∴AE=BE,
∵在△ABC中,∠C=90°,∠CAB=60°,
∴∠CBA=30°,
∴∠EAB=∠CAE=30°,
∴CE= AE=4,
∴AE=8.
故选D.
【点睛】
此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.
13.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()
相关文档
最新文档