勾股定理试题精选.doc
勾股定理测试题(精选)
勾股定理单元测试题一、选择题(40分)1)A :4,5,6B :1,1C :6,8,11D :5,12,23 2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :213、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :74、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25D :5 5、等边三角形的边长为2,则该三角形的面积为( )A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )A 、6B 、7C 、8D 、97、已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm28、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A 、14 B 、4 C 、14或4 D 、以上都不对9、三角形各边长度的平方比如选项中所示,其中不是直角三角形是( ) (A )1:1:2 (B )1:3:4 (C )9:25:26 (D )25:144:16910、在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则D CBA二、填空题(30分)1、若一个三角形的三边满足222c a b -=,则这个三角形是 。
2、小明的叔叔家承包了一个矩形养鱼池,已知它的面积为48m 2,对角线长为10 m ,为建栅栏将这个养鱼池围住,则需要这样的栅栏至少 m 。
3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
初二勾股定律试题及答案
初二勾股定律试题及答案
一、选择题
1. 直角三角形的两条直角边分别为3cm和4cm,那么斜边的长度是()。
A. 5cm
B. 7cm
C. 8cm
D. 9cm
答案:A
2. 如果一个三角形的三边长分别为3cm、4cm和5cm,那么这个三角形是()。
A. 直角三角形
B. 等腰三角形
C. 不是三角形
D. 等边三角形
答案:A
二、填空题
1. 一个直角三角形的两条直角边长分别为6cm和8cm,那么斜边的长度是_______cm。
答案:10cm
2. 已知直角三角形的一条直角边长为9cm,斜边长为15cm,求另一条直角边的长度。
答案:12cm
三、解答题
1. 一个梯子的底端离墙5米,顶端离地面8米,求梯子的长度。
答案:梯子的长度为 \sqrt{5^2 + 8^2} = \sqrt{89} 米。
2. 一块直角三角形的木板,其中一条直角边长为12cm,斜边长为
13cm,求另一条直角边的长度。
答案:另一条直角边的长度为 \sqrt{13^2 - 12^2} = 5cm。
四、应用题
1. 一个直角三角形的两条直角边长分别为a和b,斜边长为c。
已知a=9cm,b=12cm,求斜边c的长度。
答案:斜边c的长度为 \sqrt{9^2 + 12^2} = \sqrt{225} = 15cm。
2. 一个直角三角形的斜边长为17cm,其中一条直角边长为8cm,求另一条直角边的长度。
答案:另一条直角边的长度为 \sqrt{17^2 - 8^2} = \sqrt{225} = 15cm。
勾股定理测试题及答案
勾股定理测试题及答案一、选择题(每题2分,共10分)1. 直角三角形的两直角边长分别为3和4,斜边长为______。
A. 5B. 6C. 7D. 82. 如果一个三角形的三边长分别为3,4,5,那么这个三角形是______。
A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不是三角形3. 一个三角形的两边长分别为5和12,斜边长为13,那么这个三角形是______。
A. 直角三角形B. 等边三角形C. 等腰三角形D. 其他三角形4. 直角三角形的斜边长为10,一条直角边长为6,另一条直角边长为______。
A. 4B. 6C. 8D. 105. 如果一个三角形的三边长满足勾股定理,那么这个三角形一定是______。
A. 直角三角形B. 等边三角形C. 等腰三角形D. 锐角三角形二、填空题(每题2分,共10分)6. 若直角三角形的两条直角边分别为a和b,斜边为c,则a² + b²= ______。
7. 已知直角三角形的一条直角边长为9,斜边长为10,另一条直角边长为 ______。
8. 如果一个三角形的三边长分别为6,8和10,那么这个三角形是______ 。
9. 直角三角形的两条直角边分别为3和4,那么斜边长为 ______ 。
10. 如果一个三角形的三边长分别为7,24和25,那么这个三角形是______ 。
三、解答题(每题5分,共10分)11. 已知直角三角形的两条直角边分别为5和12,求斜边的长度。
12. 一个三角形的三边长分别为7,24和25,判断这个三角形是否为直角三角形,并说明理由。
四、证明题(每题10分,共20分)13. 证明:如果一个三角形的三边长分别为a,b和c,且满足a² + b² = c²,那么这个三角形是直角三角形。
14. 证明:在一个直角三角形中,斜边是最长边。
答案:1. A2. A3. A4. C5. A6. c²7. 78. 直角三角形9. 510. 直角三角形11. 斜边长度为1312. 是直角三角形,因为7² + 24² = 25²13. 证明略14. 证明略。
勾股定理测试题(含答案)初中数学
第14章《勾股定理》一、选择题1. 三角形三边长分别为6,8,10,那么它最短边上的高为……………()A. 4B. 5C. 6D. 82. 三角形各边(从小到大)长度的平方比如下,其中不是直角三角形的是………()A. 1:1:2B. 1:3:4C. 9:25:36D. 25:144:1693. 设一个直角三角形的两条直角边长为a、b,斜边上的高为h,斜边长为c,则以c+h,a+b,h为边的三角形的形状是…………………………………()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定4. △ABC中,∠A:∠B:∠C=1:2:3,则BC:AC:AB为……………………()A. 1:2:3B. 1:2:3C. 1:3:2D. 3:1:25. △ABC中,AB=15,AC=13。
高AD=12。
则△ABC的周长是……………()A. 42B. 32C. 42或32D. 37或33二、填空题1. 若有两条线段,长度分别为8 cm,17cm,第三条线段长满足__________条件时,这三条线段才能组成一个直角三角形。
2. 木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线长为68cm,这个桌面__________(填“合格”或“不合格”)。
3. 如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为________ cm。
(π取3)4. 如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于________ 。
三、计算题1. 如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A 到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?2. 已知直角三角形的三边长分别为3,4,x,求x2。
勾股定理基础练习题(含答案与解析)
勾股定理基础练习题(含答案与解析)勾股定理勾股定理基础练习题(含答案与解析)第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共15小题)1.在直角三角形中,有两边分别为3和4,则第三边是()A.1 B.5 C.D.5或2.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20 B.22 C.24 D.263.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算5.如图,在△ABC中,AD⊥BC于D,AB=17,BD=15,DC=6,则AC的长为()A.11 B.10 C.9 D.86.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A.6 B.7 C.8 D.97.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为()A.4 B.6 C.8 D.108.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()勾股定理基础练习题(含答案与解析)A.5m B.6m C.7m D.8m9.如图,已知,CD是Rt△ABC斜边上的高,∠ACB=90°,AC=4m,BC=3m,则线段CD的长为()A.5m B.C.D.10.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2 C.3cm2 D.4cm211.直角三角形的一直角边长是12,斜边长是15,则另一直角边是()A.8 B.9 C.10 D.1112.如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则AB边上的高长为()A.B.C.D.13.用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cm B.cm,cm,cm C.1cm,2cm,cm D.2cm,3cm,4cm14.将一个直角三角形的三边扩大3倍,得到的三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定15.下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5勾股定理基础练习题(含答案与解析)第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共13小题)16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S 的边长为cm.17.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.18.如图:5米长的滑梯AB开始在B点距墙面水平距离3米,当向后移动1米,A点也随着向下滑一段距离,则下滑的距离(大于,小于或等于)1米.19.如图,长方体长、宽、高分别为4cm,3cm,12cm,则BD′=.勾股定理基础练习题(含答案与解析)20.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是.21.2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为.22.把两个全等的直角三角形拼成如图图形,那么图中三角形面积之和与梯形面积之间的关系用式子可表示为,整理后即为.23.如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:三角形.勾股定理基础练习题(含答案与解析)24.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.25.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于.26.已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止当t=时,△PBQ是直角三角形.27.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.勾股定理基础练习题(含答案与解析)28.一个圆桶儿,底面直径为16cm,高为18cm,有一只小虫从底部点A处爬到上底B处,则小虫所爬的最短路径长是(π取3).评卷人得分三.解答题(共5小题)29.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?30.如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度和杯子的高度.勾股定理基础练习题(含答案与解析)31.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.32.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,问蜘蛛要沿着怎样的路线爬行,才能最快抓到苍蝇?这时蜘蛛走过的路程是多少厘米?33.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?勾股定理基础练习题(含答案与解析)本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
勾股定理
勾股定理一.选择题(共40小题)1.如图,正方形A、B、C的边长分别为直角三角形的三边长,若正方形A、B 的边长分别为3和5,则正方形C的面积为()A.16B.12C.15D.182.如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A.B.C.D.3.在Rt△ABC中,若斜边AB=3,则AC2+BC2等于()A.6B.9C.12D.184.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm,则图中所有正方形的面积的和是()A.64B.81C.128D.1925.如图,在△ABC中,若AB=AC=6,BC=4,D是BC的中点,则AD的长等于()A.4B.2C.2D.46.直角三角形的两边长分别为6和8,那么它的第三边长度为()A.8B.10C.8或2D.10或27.直角三角形的两条直角边为a和b,斜边为c.若b=1,c=2,则a的长是()A.1B.C.2D.8.如图,正方形ABCD中,DE⊥CE,垂足为E,且DE=3,CE=4,则阴影部分的面积是()A.16B.18C.19D.219.用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为49,小正方形的面积为4,若x,y表示直角三角形的两直角边长(x>y),给出下列四个结论:①x2+y2=49;②x﹣y=2;③2xy=45;④x+y=9.其中正确的结论是()A.①②③B.①②③④C.①③D.②④10.如图图中,不能用来证明勾股定理的是()A.B.C.D.11.如图,“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,是我国古代数学的骄傲,巧妙地利用面积关系证明了勾股定理.已知小正方形的面积是1,直角三角形的两直角边分别为a、b且ab=6,则图中大正方形的边长为()A.5B.C.4D.312.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.8,15,17C.5,12,15D.,,13.由下列条件不能判定△ABC为直角三角形的是()A.a=,b=,c=B.∠A+∠B=∠CC.∠A:∠B:∠C=1:3:2D.(b+c)(b﹣c)=a214.以下列各组线段为边作三角形,不能构成直角三角形的是()A.6,7,8B.1,1,C.6,8,10D.7,24,25 15.三角形的三边长a、b、c满足a2﹣c2=b2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.不能确定16.若三角形的三边长分别为3、4、5,则它最短边上的高为()A.2.4B.2.5C.3D.417.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD 的值是()A.0.72B.2.0C.1.125D.不能确定18.已知△ABC中,∠A、∠B、∠C对应的比例如下,其中能判定△ABC是直角三角形的是()A.2:3:4B.4:3:5C.1:2:3D.1:2:2 19.下列各组数中,是勾股数的是()A.1,2,3B.1,,C.2,3,4D.5,12,13 20.如果3,a,5是勾股数,则a的值是()A.4B.C.4或D.4或34 21.下列四组数据中是勾股数的有()①5、7、8②、3③9、12、15④n2+1,n2﹣12n(n>1)A.1组B.2组C.3组D.4组22.如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A.13米B.12米C.5米D.米23.如图,要在距离地面5米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑到符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.1米,L3=7.8米,L4=10米四种备用材料中,拉线AC最好选用()A.L1B.L2C.L3D.L424.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5 m B.12 m C.13 m D.18 m25.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是()cm.A.25B.20C.24D.1026.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm27.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为()A.14cm B.15cm C.24cm D.25cm28.如图,直线m∥n,等腰直角三角板ABC的顶点A在直线m上,则∠α等于()A.42°B.83°C.24°D.30°29.如图,△ABC是腰长为2的等腰直角三角形,△BCD是直角三角形,且∠D=30°,则两个三角形重叠部分(△OBC)的面积是()A.3﹣B.2﹣C.1D.1+30.如图,一块直尺与缺了一角的等腰直角三角形如图摆放,若∠1=115°,则下列结论:①∠2=60°②∠2=∠4③∠2与∠3互余④∠2与∠4互补其中正确的个数是()A.4B.3C.2D.131.把一块等腰直角三角尺和直尺如图放置,如果∠1=35°,则∠2的度数为()A.35°B.10°C.20°D.15°32.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°33.如图,直线l1∥l2,等腰直角△ABC的直角顶点C落在直线l2上,若∠1=15°,则∠2的度数是()A.20°B.25°C.30°D.35°34.如图,一系列等腰直角三角形(编号分别为①、②、③、④、…)组成了一个螺旋形,其中第1个三角形的直角边长为1,则第n个等腰直角三角形的面积为()A.2n﹣3B.2n﹣2C.2n﹣1D.2n35.如图,等腰直角三角板的顶点A在直线b上.若a∥b,∠2=34°,则∠1度数为()A.34°B.56°C.10°D.5°36.若点M(3,﹣2)与点N(x、y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为()A.(4,﹣2)B.(3,﹣1)C.(3,﹣1)或(3,﹣3)D.(4,﹣2)或(2,﹣2)37.点(3,﹣1)到原点的距离为()A.2B.3C.1D.38.P1(x1,y1),P2(x2,y2)是平面直角坐标系中的任意两点,我们把|x1﹣x2|+|y1﹣y2|叫做P1,P2两点间的“直角距离”,记作d(P1,P2).比如:点P(2,﹣4),Q(1,0),则d(P,Q)=|2﹣1|+|﹣4﹣0|=5,已知Q(2,1),动点P (x,y)满足d(P,Q)=3,且x、y均为整数,则满足条件的点P有()个.A.4B.8C.10D.1239.在平面直角坐标系中,点P(﹣x,2x)到原点O的距离等于5,则x的值是()A.±1B.1C.D.±40.如图,在平面直角坐标系第一象限有一点P,其横坐标为3,在x轴上有一点A(﹣1,0).已知PA两点间的距离为,则P的纵坐标为()A.2B.﹣2C.D.1勾股定理参考答案与试题解析一.选择题(共40小题)1.如图,正方形A、B、C的边长分别为直角三角形的三边长,若正方形A、B 的边长分别为3和5,则正方形C的面积为()A.16B.12C.15D.18【分析】先根据勾股定理求出DE,再根据正方形的面积公式求出即可.【解答】解:∵正方形A、B的边长分别为3和5,∴DF=5,EF=3,由勾股定理得:DE==4,所以正方形C的面积为42=16,故选:A.【点评】本题考查了正方形的性质和勾股定理,能根据勾股定理求出DE的长是解此题的关键.2.如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A.B.C.D.【分析】由含30°角的直角三角形的性质和勾股定理求出OA1,即可得出结果.【解答】解:∵∠OAA1=90°,OA=,∠AOA1=30°,∴AA1=OA1,由勾股定理得:OA2+AA12=OA12,即()2+(OA1)2=OA12,解得:OA1=2,∵∠A1OA2=30°,∴A1A2的长=,故选:B.【点评】本题考查了勾股定理、含30°角的直角三角形的性质;熟练掌握勾股定理,通过计算得出规律是解决问题的关键.3.在Rt△ABC中,若斜边AB=3,则AC2+BC2等于()A.6B.9C.12D.18【分析】利用勾股定理将AC2+BC2转化为AB2,再求值.【解答】解:∵Rt△ABC中,AB为斜边,∴AC2+BC2=AB2,∴AB2+AC2=AB2=32=9.故选:B.【点评】本题考查了勾股定理;熟练掌握勾股定理,由勾股定理得出AC2+BC2=AB2是解决问题的关键.4.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm,则图中所有正方形的面积的和是()A.64B.81C.128D.192【分析】根据正方形的面积公式,连续运用勾股定理,利用四个小正方形的面积和等于最大正方形的面积进而求出即可.【解答】解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=82=64(cm2),则所有正方形的面积的和是:64×3=192(cm2).故选:D.【点评】本题主要考查了勾股定理,根据数形结合得出正方形之间面积关系是解题关键.5.如图,在△ABC中,若AB=AC=6,BC=4,D是BC的中点,则AD的长等于()A.4B.2C.2D.4【分析】根据等腰三角形的性质得到AD⊥BC,BD=BC=2,根据勾股定理计算即可.【解答】解:∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=2,∴AD==4,故选:A.【点评】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.6.直角三角形的两边长分别为6和8,那么它的第三边长度为()A.8B.10C.8或2D.10或2【分析】分8为直角边、8为斜边两种情况,根据勾股定理计算.【解答】解:当8为直角边时,斜边==10,当8为斜边时,另一条直角边==2,故选:D.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.7.直角三角形的两条直角边为a和b,斜边为c.若b=1,c=2,则a的长是()A.1B.C.2D.【分析】直接利用勾股定理得出a的值.【解答】解:∵直角三角形的两条直角边为a和b,斜边为c,∴a2+b2=c2,∵b=1,c=2,∴a==.故选:D.【点评】此题主要考查了勾股定理,正确应用勾股定理是解题关键.8.如图,正方形ABCD中,DE⊥CE,垂足为E,且DE=3,CE=4,则阴影部分的面积是()A.16B.18C.19D.21【分析】根据勾股定理得出CD,进而利用正方形的面积和三角形面积公式解答即可.【解答】解:∵DE⊥CE,垂足为E,且DE=3,CE=4,∴由勾股定理可得:CD=,∴阴影部分的面积=,故选:C.【点评】此题考查勾股定理,关键是根据勾股定理得出CD.9.用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为49,小正方形的面积为4,若x,y表示直角三角形的两直角边长(x>y),给出下列四个结论:①x2+y2=49;②x﹣y=2;③2xy=45;④x+y=9.其中正确的结论是()A.①②③B.①②③④C.①③D.②④【分析】根据正方形的性质、直角三角形的性质、直角三角形面积的计算公式及勾股定理解答.【解答】解:①∵△ABC为直角三角形,∴根据勾股定理:x2+y2=AB2=49,故本选项正确;②由图可知,x﹣y=CE==2,故本选项正确;③由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,列出等式为4××xy+4=49,即2xy=45;故本选项正确;④由2xy=45①,又∵x2+y2=49②,∴①+②得,x2+2xy+y2=49+45,整理得,(x+y)2=94,x+y=≠9,故本选项错误.∴正确结论有①②③.故选:A.【点评】本题考查了勾股定理及正方形和三角形的边的关系,此图被称为“弦图”,熟悉勾股定理并认清图中的关系是解题的关键.10.如图图中,不能用来证明勾股定理的是()A.B.C.D.【分析】根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.【解答】解:A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;D、不能利用图形面积证明勾股定理,故此选项正确.故选:D.【点评】此题主要考查了勾股定理的证明方法,根据图形面积得出是解题关键.11.如图,“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,是我国古代数学的骄傲,巧妙地利用面积关系证明了勾股定理.已知小正方形的面积是1,直角三角形的两直角边分别为a、b且ab=6,则图中大正方形的边长为()A.5B.C.4D.3【分析】根据ab的值求得直角三角形的面积,进而得出大正方形的面积.【解答】解:∵ab=6,∴直角三角形的面积是ab=3,∵小正方形的面积是1,∴大正方形的面积=1+4×3=13,∴大正方形的边长为,故选:B.【点评】本题考查了勾股定理,还要注意图形的面积和a,b之间的关系.12.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.8,15,17C.5,12,15D.,,【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、82+152=172,能构成直角三角形,故符合题意;C、52+122≠152,不能构成直角三角形,故不符合题意;D、()2+()2≠()2,不能构成直角三角形,故不符合题意.故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.13.由下列条件不能判定△ABC为直角三角形的是()A.a=,b=,c=B.∠A+∠B=∠CC.∠A:∠B:∠C=1:3:2D.(b+c)(b﹣c)=a2【分析】根据勾股定理的逆定理可分析出A、D的正误;根据三角形内角和定理可分析出B、C的正误.【解答】解:A、∵()2+()2≠()2,故不能判定△ABC是直角三角形;B、∵∠A+∠B=∠C,A+∠B+∠C=180°,∴∠C=90°,故能判定△ABC为直角三角形;C、∵∠A:∠B:∠C=1:3:2,∴∠B=180°×=90°,故能判定△ABC为直角三角形;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故能判定△ABC为直角三角形.故选:A.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要验证两小边的平方和是否等于最长边的平方即可.也考查了三角形内角和定理.14.以下列各组线段为边作三角形,不能构成直角三角形的是()A.6,7,8B.1,1,C.6,8,10D.7,24,25【分析】先求出两小边的平方和,再求出最大边的平方,看看是否相等即可.【解答】解:A、∵62+72≠82,∴以6,7,8为边的三角形不是直角三角形,故本选项符合题意;B、∵12+12=()2,∴以1,1,为边的三角形是直角三角形,故本选项不符合题意;C、∵62+82=102,∴以6,8,10为边的三角形是直角三角形,故本选项不符合题意;D、∵72+242=252,∴以7,24,25为边的三角形是直角三角形,故本选项不符合题意;故选:A.【点评】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:勾股定理的逆定理是:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.15.三角形的三边长a、b、c满足a2﹣c2=b2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.不能确定【分析】根据勾股定理的逆定理判断出三角形的形状即可.【解答】解:因为三角形的三边长a、b、c满足a2﹣c2=b2,即a2=c2+b2,所以此三角形是直角三角形,故选:C.【点评】本题考查了勾股定理逆定理,根据勾股定理的逆定理判断出三角形的形状是解题的关键.16.若三角形的三边长分别为3、4、5,则它最短边上的高为()A.2.4B.2.5C.3D.4【分析】根据勾股定理的逆定理得出三角形是直角三角形,即可得出选项.【解答】解:∵三角形三边长分别是3,4,5,∴32+42=52,∴此三角形是直角三角形,它的最短边上的高为4,故选:D.【点评】本题考查了勾股定理的逆定理的应用,能得出三角形是直角三角形是解此题的关键.17.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD 的值是()A.0.72B.2.0C.1.125D.不能确定【分析】先根据勾股定理的逆定理证明△ABC是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高CD.【解答】解:∵AB=1.5,BC=0.9,AC=1.2,∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,∴AB2=BC2+AC2,∴∠ACB=90°,∵CD是AB边上的高,∴S=,△ABC1.5CD=1.2×0.9,CD=0.72,故选:A.【点评】该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题;解题的方法是运用勾股定理首先证明△ABC为直角三角形;解题的关键是灵活运用三角形的面积公式来解答.18.已知△ABC中,∠A、∠B、∠C对应的比例如下,其中能判定△ABC是直角三角形的是()A.2:3:4B.4:3:5C.1:2:3D.1:2:2【分析】根据三角形的内角和公式分别求得各角的度数,从而判断其形状.【解答】解:A、设三个角分别为2x,3x,4x,根据三角形内角和定理得三个角分别为:40°,60°,80°,所以不是直角三角形;B、设三个角分别为3x,4x,5x,根据三角形内角和定理得三个角分别为:45°,60°,75°,所以不是直角三角形;C、设三个角分别为x,2x,3x,根据三角形内角和定理得三个角分别为:30°,60°,90°,所以是直角三角形;D、设三个角分别为x,2x,2x,根据三角形内角和定理得三个角分别为:36°,72°,72°,所以不是直角三角形.故选:C.【点评】本题考查勾股定理的逆定理,通过设适当的参数,根据三角形内角和定理建立方程求出三个内角的度数后判断.19.下列各组数中,是勾股数的是()A.1,2,3B.1,,C.2,3,4D.5,12,13【分析】根据勾股定理的逆定理分别对各组数据进行检验即可.【解答】解:A、∵12+22=5≠32=9,∴不是勾股数;B、∵12+()2=3≠()2=3,但和不是正整数,∴不是勾股数;C、∵22+32=13≠42=16,∴不是勾股数;D、∵52+122=169=132=169,∴是勾股数.故选:D.【点评】此题考查了勾股数,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.20.如果3,a,5是勾股数,则a的值是()A.4B.C.4或D.4或34【分析】满足a2+b2=c2的三个正整数,称为勾股数,依此得到a.【解答】解:∵3,a,5是勾股数,∴a=4,故选:A.【点评】此题考查了勾股数,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.21.下列四组数据中是勾股数的有()①5、7、8②、3③9、12、15④n2+1,n2﹣12n(n>1)A.1组B.2组C.3组D.4组【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【解答】解:①8、5、7 不是勾股数,因为72+52≠82;②、、3 不是勾股数,因为、不是整数;③9、12、15 是勾股数,因为92+122=152;④n2+1、n2﹣1、2n(n>1)不是勾股数,因为2n、n2﹣1、n2+1不一定是整数.故选:A.【点评】本题考查了勾股数的概念:满足a2+b2=c2的三个正整数,称为勾股数.说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3、4、5;6、8、10;5、12、13;…22.如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A.13米B.12米C.5米D.米【分析】根据题意画出图形,构造出直角三角形,利用勾股定理求解.【解答】解:如图所示,过D点作DE⊥AB,垂足为E,∵AB=13,CD=8,又∵BE=CD,DE=BC,∴AE=AB﹣BE=AB﹣CD=13﹣8=5,∴在Rt△ADE中,DE=BC=12,∴AD2=AE2+DE2=122+52=144+25=169,∴AD=13(负值舍去),答:小鸟飞行的最短路程为13m.故选:A.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.23.如图,要在距离地面5米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑到符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.1米,L3=7.8米,L4=10米四种备用材料中,拉线AC最好选用()A.L1B.L2C.L3D.L4【分析】先利用勾股定理计算出AC,然后进行无理数估算后进行判断.【解答】解:在Rt△ACD中,∵AD=5,CD=5,∴AC=,∴拉线AC最好选用L2.故选:B.【点评】本题考查了勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.24.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5 m B.12 m C.13 m D.18 m【分析】旗杆的长=BC+AB,利用勾股定理求出AB即可解决问题;【解答】解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,AB==13m,所以旗杆折断之前高度为BC+AB=13m+5m=18m.故选:D.【点评】本题考查的是勾股定理的正确应用,解题的关键是理解题意,灵活运用所学知识解决问题;25.如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是()cm.A.25B.20C.24D.10【分析】分三种情况讨论:把左侧面展开到水平面上,连结AB,如图1;把右侧面展开到正面上,连结AB,如图2;把向上的面展开到正面上,连结AB,如图3,然后利用勾股定理分别计算各情况下的AB,再进行大小比较.【解答】解:把左侧面展开到水平面上,连结AB,如图1,AB===5(cm)把右侧面展开到正面上,连结AB,如图2,AB==25(cm);把向上的面展开到正面上,连结AB,如图3,AB===5(cm).∵>>25所以一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离为25cm.故选:A.【点评】本题考查了平面展开﹣最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.26.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为8dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=82+[(2+3)×3]2=172,解得x=17.故选:B.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.27.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为()A.14cm B.15cm C.24cm D.25cm【分析】把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=24,CB′=7,然后利用勾股定理计算出AB′即可.【解答】解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=24,CB′=7,在Rt△ACB′,AB′==25,所以它爬行的最短路程为25cm.故选:D.【点评】本题考查了平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.28.如图,直线m∥n,等腰直角三角板ABC的顶点A在直线m上,则∠α等于()A.42°B.83°C.24°D.30°【分析】先求出∠1,再根据两直线平行,同位角相等可得∠α=∠1.【解答】解:如图,∠1=180°﹣45°﹣52°=83°,∵直线m∥n,∴∠α=∠1=83°.故选:B.【点评】本题考查了平行线的性质,平角的定义,要求正确观察图形,熟练掌握平行线的性质.29.如图,△ABC是腰长为2的等腰直角三角形,△BCD是直角三角形,且∠D=30°,则两个三角形重叠部分(△OBC)的面积是()A.3﹣B.2﹣C.1D.1+【分析】过O作OE⊥BC于E,设BE=x,求出OE和DC,根据相似得出比例式求出x,再根据三角形的面积公式求出即可.【解答】解:∵在Rt△DCB中,∠DCB=90°,∠D=30°,BC=2,∴DC=BC=2,过O作OE⊥BC于E,∵∠ABC=90°,∴OE∥AB,∴∠BOE=30°,△OEC∽△ABC,∴设BE=x,则OE=BE=x,=,∴=,解得:x=﹣1,即OE=x=3﹣,∴阴影部分的面积S=(3﹣)=3﹣,故选:A.【点评】本题考查了解直角三角形、相似三角形的性质和判定等知识点,能求出OE的长是解此题的关键.30.如图,一块直尺与缺了一角的等腰直角三角形如图摆放,若∠1=115°,则下列结论:①∠2=60°②∠2=∠4③∠2与∠3互余④∠2与∠4互补其中正确的个数是()A.4B.3C.2D.1【分析】过三角板的顶点作平行线,利用平行线的性质和对顶角以及三角形内角和解答即可.【解答】解:因为∠1=115°,所以∠4=180°﹣115°=65°,由对顶角性质得∠3+∠1+45°=180°,所以∠3=20°;过E作EF∥CD∥AB,则∠FEH=∠3=20°,所以∠GEF=70°=∠2,即①、②错误,所以∠2+∠3=90°,∠2+∠4=135°,即③正确,④错误.故选:D.【点评】此题考查平行线的性质,关键是利用平行线的性质和对顶角以及三角形内角和解答.31.把一块等腰直角三角尺和直尺如图放置,如果∠1=35°,则∠2的度数为()A.35°B.10°C.20°D.15°【分析】由平分线及等腰直角三角形的性质,可得出∠1=∠3、∠2=∠4、∠3+∠4=45°,进而即可求出∠2的度数.【解答】解:∵∠1=∠3,∠2=∠4,∠3+∠4=45°,∴∠2=45°﹣∠1=10°.故选:B.【点评】本题考查了等腰直角三角形以及平行线的性质,利用“两直线平行,同位角相等”找出∠1=∠3、∠2=∠4是解题的关键.32.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°【分析】根据平行线的性质和等腰直角三角形的性质解答即可.【解答】解:∵l1∥l2,∴∠1+∠CAB=∠2,∵Rt△ACB中,∠C=90°,AC=BC,∴∠CAB=45°,∴∠2=20°+45°=65°,故选:C.【点评】本题考查的是等腰直角三角形,根据平行线的性质和等腰直角三角形的性质解答是解答此题的关键.33.如图,直线l1∥l2,等腰直角△ABC的直角顶点C落在直线l2上,若∠1=15°,则∠2的度数是()A.20°B.25°C.30°D.35°【分析】过A作AE∥直线l1,推出直线l1∥直线l2∥AE,根据平行线的性质得出∠2=∠EAC,∠1=∠EAB,即可求出答案.【解答】解:过A作AE∥直线l1,因为直线l1∥l2,所以直线l1∥直线l2∥AE,所以∠2=∠EAC,∠1=∠EAB=15°,因为∠BAC=45°,所以∠2=∠EAC=45°﹣15°=30°,故选:C.【点评】本题考查了平行线的性质的应用,解题时注意:两直线平行,内错角相等.34.如图,一系列等腰直角三角形(编号分别为①、②、③、④、…)组成了一个螺旋形,其中第1个三角形的直角边长为1,则第n个等腰直角三角形的面积为()A.2n﹣3B.2n﹣2C.2n﹣1D.2n【分析】分别写出几个直角三角形的直角边的长,找到规律,从而写出第n个等腰三角形的直角边的长,从而求得直角三角形的面积即可.【解答】解:第①个直角三角形的边长为1=()0,第②个直角三角形的边长为=()1,第③个直角三角形的边长为2=()2,第④个直角三角形的边长为2=()3,…第n个直角三角形的边长为()n﹣1,面积为:×()n﹣1×()n﹣1=2n﹣2.故选:B.【点评】此题考查了等腰三角形及图形的变化类问题,要结合图形熟练运用勾股定理计算几个具体值,从中发现规律.35.如图,等腰直角三角板的顶点A在直线b上.若a∥b,∠2=34°,则∠1度数为()A.34°B.56°C.10°D.5°【分析】根据平行线的性质和等腰直角三角形的性质解答即可.【解答】解:如图,∵a∥b,∠ABC=90°,∴∠2+∠4=90°,∠3=∠4,∠4=56°,∴∠3=56°,∴∠1=∠3=56°,故选:B.【点评】此题考查等腰直角三角形的性质,关键是根据平行线的性质和等腰直角三角形的性质解答.36.若点M(3,﹣2)与点N(x、y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为()A.(4,﹣2)B.(3,﹣1)C.(3,﹣1)或(3,﹣3)D.(4,﹣2)或(2,﹣2)【分析】利用平行于x轴的直线上点的坐标特征得到y=﹣2,再利用MN=1得到|x﹣3|=1,然后去绝对值求出x即可得到N点坐标.【解答】解:∵点M(3,﹣2)与点N(x、y)在同一条平行于x轴的直线上,MN=1,∴y=﹣2,|x﹣3|=1,∴x=2或4,∴N点的坐标为(2,﹣2)或(4,﹣2).故选:D.【点评】本题考查了两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.理解与坐标轴平行的直线上点的坐标特征.37.点(3,﹣1)到原点的距离为()A.2B.3C.1D.【分析】直接利用两点间的距离公式计算即可.【解答】解:点(3,﹣1)到原点的距离==.故选:D.【点评】本题考查了两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.38.P1(x1,y1),P2(x2,y2)是平面直角坐标系中的任意两点,我们把|x1﹣x2|+|y1﹣y2|叫做P1,P2两点间的“直角距离”,记作d(P1,P2).比如:点P(2,﹣4),Q(1,0),则d(P,Q)=|2﹣1|+|﹣4﹣0|=5,已知Q(2,1),动点P (x,y)满足d(P,Q)=3,且x、y均为整数,则满足条件的点P有()个.A.4B.8C.10D.12【分析】由条件可得到|x﹣2|+|y﹣1|=3,分四种情况:①x﹣2=±3,y﹣1=0,②x﹣2=±2,y﹣1=±1,③x﹣2=±1,y﹣1=±2,④x﹣2=0,y﹣1=±3,进行讨论即可求解.【解答】解:依题意有|x﹣2|+|y﹣1|=3,①x﹣2=±3,y﹣1=0,解得,;②x﹣2=±2,y﹣1=±1,解得,,,;③x﹣2=±1,y﹣1=±2,解得,,,;④x﹣2=0,y﹣1=±3,解得,.故满足条件的点P有12个.故选:D.【点评】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.39.在平面直角坐标系中,点P(﹣x,2x)到原点O的距离等于5,则x的值是()A.±1B.1C.D.±【分析】根据两点间的距离公式列出关于x的方程,求出x的值即可.【解答】解:∵点P(﹣x,2x)到原点O的距离等于5,∴x2+4x2=25,解得x=±.故选:D.【点评】本题考查的是两点间的距离公式,熟记两点间的距离公式是解答此题的关键.40.如图,在平面直角坐标系第一象限有一点P,其横坐标为3,在x轴上有一点A(﹣1,0).已知PA两点间的距离为,则P的纵坐标为()。
第17章 单元测试题《勾股定理》
八年级(下)《勾股定理》单元测试题班级 姓名一、选择题(3×10=30分)1、一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )A 、4B 、8C 、10D 、122、如图中字母A 所代表的正方形的面积为( )A 、4B 、8C 、16D 、643、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( )A 、钝角三角形B 、直角三角形C 、锐角三角形D 、等腰三角形4、一直角三角形的一条直角边长是7cm ,另一条直角边与斜边长的和是49cm ,则斜边的长( )A 、18cmB 、20cmC 、24cmD 、25cm5、在△ABC 中,AB=12cm , BC=16cm , AC=20cm , 则△ABC 的面积是( )A 、96cm 2B 、120cm 2C 、160cm 2D 、200cm 26、直角三角形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长是( )A 、120B 、121C 、132D 、123※7、适合下列条件的△ABC 中, 直角三角形的个数为( )①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320,∠B=580;④;25,24,7===c b a ⑤.4,2,2===c b aA 、2个B 、3个C 、4个D 、5个※8、如图:有一圆柱,它的高等于cm 8,底面直径等于cm 4(3=π)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程大约( )A 、10cmB 、12cmC 、19mD 、20cm9、如图,等腰三角形ABC 的一腰长为13,底边长为10,则它的面积为( )A.65B.60C.120D.13010、在△ABC 中,若1,2,122+==-=n c n b n a ,则△ABC 是( ). A 直角三角形 B 、钝角三角形 C 、等腰三角形 D 、锐角三角形二、填空题(4×8=32分)11、等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为____________。
数学勾股定理试题附解析
数学勾股定理试题附解析一、选择题1.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是()A.B.C.D.2.以线段a、b、c 的长为边长能构成直角三角形的是()A.a=3,b=4,c=6B.a=1,b=2,c=3C.a=5,b=6,c=8D.a=3,b=2,c=53.若△ABC中,AB=AC=25,BC=4,则△ABC的面积为()A.4 B.8 C.16 D.54.ABC三边长为a、b、c,则下列条件能判断ABC是直角三角形的是()A.a=7,b=8,c=10 B.a=41,b=4,c=5C.a=3,b=2,c=5D.a=3,b=4,c=65.在Rt△ABC中,∠C=90°,AC=3,BC=4,则点C到AB的距离是()A.34B.35C.45D.1256.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A.12cm B.14cm C.20cm D.24cm7.如图,正方体的棱长为4cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A .9B .210C .326+D .128.在直角三角形ABC 中,90C ∠=︒,两直角边长及斜边上的高分别为,,a b h ,则下列关系式成立的是( )A .222221a b h +=B .222111a b h +=C .2h ab =D .222h a b =+9.已知一个直角三角形的两边长分别为3和5,则第三边长是( )A .5B .4C .34D .4或3410.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( )A .0.6米B .0.7米C .0.8米D .0.9米二、填空题11.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.12.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.13.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________14.如图,在矩形ABCD中,AB=6,AD=8,矩形内一动点P使得S△PAD=13S矩形ABCD,则点P到点A、D的距离之和PA+PD的最小值为_____.15.如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=6,AD=BC=10,点E为射线AD上的一个动点,若△ABE与△A′BE关于直线BE对称,当△A′BC为直角三角形时,AE 的长为______.16.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论中正确有_____________ (填序号)①△BPQ是等边三角形②△PCQ是直角三角形③∠APB=150°④∠APC=135°17.四边形ABCD中AB=8,BC=6,∠B=90°,AD=CD=52ABCD的面积是_______.18.如图,E为等腰直角△ABC的边AB上的一点,要使AE=3,BE=1,P为AC上的动点,则PB+PE的最小值为____________.19.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.20.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.23.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.24.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .(1)根据题意用尺规作图补全图形(保留作图痕迹);(2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.②若线段2AD EC =,求m n的值.25.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD .(1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.26.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.27.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由;②请证明△ABC 为“类勾股三角形”.28.如图,在边长为2正方形ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.29.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.30.如图,在△ABC 中,D 是边AB 的中点,E 是边AC 上一动点,连结DE,过点D 作DF ⊥DE 交边BC 于点F(点F 与点B 、C 不重合),延长FD 到点G,使DG=DF,连结EF 、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG ≌△BDF ;(2)请你连结EG,并求证:EF=EG ;(3)设AE=x ,CF=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(4)求线段EF 长度的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.【详解】A 中,根据勾股定理等于大正方形边长的平方,它就是正方形的面积,故正确; B 中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正确;C 中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D 中,根据A 可得,C 可得,结合完全平方公式可以求得,错误.故选D.【点睛】本题考查勾股定理.在A 、B 、C 选项的等式中需理解等式的各个部分表示的几何意义,对于D 选项是由A 、C 选项联立得出的. 2.B解析:B【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】A 、222346+≠,C 、222568+≠,D 、222325+≠,故错误; B 、2221233+==,能构成直角三角形,本选项正确.故选B.【点睛】本题考查了勾股定理的知识点,解题的关键是熟练的掌握勾股定理的定理与运算. 3.B解析:B【分析】作AD⊥BC,则D为BC的中点,即BD=DC=2,根据勾股定理可以求得AD,则根据S=12×BC×AD可以求得△ABC的面积.【详解】解:作AD⊥BC,则D为BC的中点,则BD=DC=2,∵AB=2522AB BD,∴△ABC的面积为S=12×BC×AD=12×4×4=8,故选:B.【点睛】本题考查了勾股定理的运用,三角形面积的计算,本题中正确的运用勾股定理求AD是解题的关键.4.B解析:B【分析】根据勾股定理逆定理对每个选项一一判断即可.【详解】A、∵72+82≠102,∴△ABC不是直角三角形;B、∵52+42=41)2,∴△ABC是直角三角形;C、∵223252,∴△ABC不是直角三角形;D、∵32+42≠62,∴△ABC不是直角三角形;故选:B.【点睛】本题主要考查勾股定理逆定理,熟记定理是解题关键.5.D解析:D【解析】在Rt△ABC中∠C=90°,AC=3,BC=4,根据勾股定理求得AB=5,设点C到AB的距离为h,即可得12h×AB=12AC×BC,即12h×5=12×3×4,解得h=125,故选D.6.D解析:D【分析】将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:22201612-=cm∴则该圆柱底面周长为24cm.故选:D.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.7.B解析:B【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB22(24)2210++=.故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.8.B解析:B【分析】设斜边为c ,根据勾股定理得出22a b +【详解】解:设斜边为c ,根据勾股定理得出22a b + ∵12ab=12ch , ∴22a b +,即a 2b 2=a 2h 2+b 2h 2, ∴22222a b a b h =22222a h a b h +22222b h a b h, 即21a +21b =21h . 故选:B .【点睛】 本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题关键.9.D解析:D【详解】解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x ,则由勾股定理得到:x 2253-;②当5是此直角三角形的直角边时,设另一直角边为x ,则由勾股定理得到:x 2253+34故选:D10.B解析:B【解析】试题解析:依题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定(米).故选B .二、填空题11.(21009,0).【分析】根据等腰直角三角形的性质得到OA 1=1,OA 2=1,OA 3=2,OA 4=3,…OA 2019=2018,再利用1A 、2A 、3A …,每8个一循环,再回到y 轴的正半轴的特点可得到点A 2019在x 轴的正半轴上,即可确定点A 2019的坐标.【详解】∵等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=1,OA 2,OA 3=)2,…,OA 2019=)2018,∵A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴,∴2019÷8=252…3,∴点A 2019在x 轴正半轴上.∵OA 2019=)2018,∴点A 2019的坐标为(2018,0)即(21009,0).故答案为:(21009,0).【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的2倍.也考查了直角坐标系中各象限内点的坐标特征. 12.9625【分析】将△B´CF 的面积转化为求△BCF 的面积,由折叠的性质可得CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´CF ,CE ⊥AB ,可证得△ECF 是等腰直角三角形,EF =CE ,∠EFC =45°,由等面积法可求CE 的长,由勾股定理可求AE 的长,进而求得BF 的长,即可求解.【详解】根据折叠的性质可知,CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´CF ,CE ⊥AB , ∴∠DCE +∠B´CF =∠ACE +∠BCF , ∵∠ACB =90°,∴∠ECF =45°,且CE ⊥AB ,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∵S△ABC=12AC•BC=12AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=10,∴CE=245,∴EF=245,∵AE=22AC CE-=2224186-=55⎛⎫⎪⎝⎭,∴BF=AB−AE−EF=10-185-245=85,∴S△CBF=12×BF×CE=12×85×245=9625,∴S△CB´F=96 25,故填:96 25.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等知识,根据折叠的性质求得相等的角是解决本题的关键.13.310或10【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt△ACO中,由勾股定理,得AO2=AC2-OC2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,∴10;(2)顶角是锐角时,如图2所示:在Rt△ACD中,由勾股定理,得AD2=AC2-DC2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt△BCD中,由勾股定理,得BC2=DB2+DC2=12+32=10,∴BC=10;综上可知,这个等腰三角形的底的长度为310或10.【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.14.82【分析】根据S△PAD=13S矩形ABCD,得出动点P在与AD平行且与AD的距离是4的直线l上,作A关于直线l的对称点E,连接DE,BE,则DE的长就是所求的最短距离.然后在直角三角形ADE中,由勾股定理求得DE的值,即可得到PA+PD的最小值.【详解】设△PAD中AD边上的高是h.∵S△PAD=13S矩形ABCD,∴12AD•h=13AD•AB,∴h=23AB=4,∴动点P在与AD平行且与AD的距离是4的直线l上,如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.在Rt△ADE中,∵AD=8,AE=4+4=8,DE22228882AE AD++=即PA +PD 的最小值为82 .故答案82.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.15.2或18【分析】分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可.【详解】解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△CB A′,∴CE=BC=10,在RT △CB A′中,A′C=22BC BA -'=22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E 为AD 延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o∴∠A"BC=∠DCE,在△A"BC 与△DCE 中,"={""A CDECD A B A BC DCE∠∠=∠=∠∴△A"BC ≌△DCE,DE= A"C,在RT △ A"BC 中,22"BC BA -22106-∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.16.①②③【解析】【详解】解:∵△ABC 是等边三角形,60ABC ∴∠=,∵△BQC ≌△BPA ,∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,∴△BPQ 是等边三角形,①正确.∴PQ =BP =4,2222224325,525PQ QC PC +=+===,222PQ QC PC ∴+=,90PQC ∴∠=,即△PQC 是直角三角形,②正确.∵△BPQ 是等边三角形,60PBQ BQP ∴∠=∠=,∵△BQC ≌△BPA ,∴∠APB =∠B QC ,6090150BPA BQC ∴∠=∠=+=,③正确.36015060150APC QPC QPC ∴∠=---∠=-∠,90PQC PQ QC ∠=≠,,45QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.17.49【解析】连接AC ,在Rt △ABC 中,∵AB =8,BC =6,∠B =90°,∴AC 10.在△ADC 中,∵AD =CD =AD 2+CD 2=(2+(2=100.∵AC 2=102=100,∴AD 2+CD 2=AC 2,∴∠ADC =90°,∴S 四边形ABCD =S △ABC +S △ACD =12AB •BC +12AD •DC =12×8×6+12×24+25=49.点睛:本题考查的是勾股定理及勾股定理的逆定理,不规则几何图形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.18.5【解析】试题分析:作点B 关于AC 的对称点F ,构建直角三角形,根据最短路径可知:此时PB +PE 的值最小,接下来要求出这个最小值,即求EF 的长即可,因此要先求AF 的长,证明△ADF ≌△CDB ,可以解决这个问题,从而得出EF =5,则PB +PE 的最小值为5.解:如图,过B 作BD ⊥AC ,垂足为D ,并截取DF =BD ,连接EF 交AC 于P ,连接PB 、AF ,则此时PB +PE 的值最小,∵△ABC 是等腰直角三角形,∴AB =CB ,∠ABC =90°,AD =DC ,∴∠BAC =∠C =45°,∵∠ADF =∠CDB ,∴△ADF ≌△CDB ,∴AF =BC ,∠FAD =∠C =45°,∵AE =3,BE =1,∴AB =BC =4,∴AF =4,∵∠BAF =∠BAC +∠FAD =45°+45°=90°,∴由勾股定理得:EF 22AF AE +2243+,∵AC 是BF 的垂直平分线,∴BP =PF ,∴PB +PE =PF +PE =EF =5,故答案为5.点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解.19.78【解析】 试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD ∥BC ,∠B=90°,再根据折叠性质得∠DAC=∠D′AC ,而∠DAC=∠ACB ,则∠D′AC=∠ACB ,所以AE=EC ,设BE=x ,则EC=4-x ,AE=4-x ,然后在Rt △ABE 中利用勾股定理可计算出BE 的长即可.试题解析:∵四边形ABCD 为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,∴∠DAC=∠D′AC,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x ,则EC=4﹣x ,AE=4﹣x ,在Rt△A BE 中,∵AB 2+BE 2=AE 2,∴32+x 2=(4﹣x )2,解得x=78, 即BE 的长为78. 20.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,222251213AC CG AG =+=+=13CE AB AC ==∴=由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.三、解答题21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.22.(1)证明见解析;(2)5;(3)CD2+CE2=BC2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.(3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD2+CE2=2(AP2+CP2),再判断出CD2+CE2=2AC2.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=12∠ADE=12×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE 为等腰直角三角形,AP ⊥DE ,∴AP =EP =DP .∵CD 2=(CP +PD )2=(CP +AP )2=CP 2+2CP •AP +AP 2,CE 2=(EP ﹣CP )2=(AP ﹣CP )2=AP 2﹣2AP •CP +CP 2,∴CD 2+CE 2=2AP 2+2CP 2=2(AP 2+CP 2),∵在Rt △APC 中,由勾股定理可知:AC 2=AP 2+CP 2,∴CD 2+CE 2=2AC 2.∵△ABC 为等腰直角三角形,由勾股定理可知:∴AB 2+AC 2=BC 2,即2AC 2=BC 2,∴CD 2+CE 2=BC 2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD ,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.23.(1)132)83;(3)5.5秒或6秒或6.6秒【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒, 90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E , 则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=, 27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.24.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-()()2222222m n m m m n m n =+-++- 222222222222m n m m n m m m n m n =+-++++--0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ====2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.25.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE =【分析】(1)根据题意画出图形即可;(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可; (3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.【详解】解:(1)如图所示;(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,∴∠PAD=α,AB=AD ,∵90BAC ∠=︒,∴902DAC α∠=︒-,又∵AB=AC ,∴AD=AC ,∴∠ADC=1[180(902)]2α⨯︒-︒-=45α︒+; (3)如图,连接BE ,由(2)知:∠ADC=45α︒+,∵∠ADC=∠AED+∠EAD ,且∠EAD=α,∴∠AED=45°,∵点B 与点D 关于直线AP 对称,即AP 垂直平分BD ,∴∠AED=∠AEB=45°,BE=DE ,∴∠BED=90°,∴△BED 是等腰直角三角形,∴22222BD BE DE DE =+=,∴2BD DE =. 【点睛】本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.26.(1)CD=8;(2)t=4;(3)12-=t v t (26t ≤<) 【分析】(1)作AE ⊥BC 于E ,根据等腰三角形三线合一的性质可得BE=12BC ,然后利用勾股定理求出AE ,再用等面积法可求出CD 的长;(2)①过B 作BF ⊥AC 于F ,易得BF=CD ,分别讨论Q 点在AF 和FC 之间时,根据△BQF ≌△CPD ,得到PD=QF ,建立方程即可求出t 的值;(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】解:(1)如图,作AE⊥BC于E,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t ,QF=AF-AQ=6-2t由PD=QF 得6-t=6-2t ,解得t=0,∵t >0,∴此种情况不符合题意,舍去;当Q 点在FC 之间时,如图所示,此时PD=6-t ,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤< 所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.27.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a,AD=CD=a,DB=AB-AD=c-a,DG=BG=12(c-a),AG=12(a+c),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt△ABC是类勾股三角形,∴ab+a2=c2,在Rt△ABC中,∠C=90°,根据勾股定理得,a2+b2=c2,∴ab+b2=a2+b2,∴ab=a2,∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;②如图3,在AB边上取点D,连接CD,使∠ACD=∠A图3作CG⊥AB于G,∴∠CDB=∠ACD+∠A=2∠A,∵∠B=2∠A,∴∠CDB=∠B,∴CD=CB=a,∵∠ACD=∠A,∴AD=CD=a,∴DB=AB﹣AD=c﹣a,∵CG⊥AB,∴DG=BG=12(c﹣a),∴AG=AD+DG=a+12(c﹣a)=12(a+c),在Rt△ACG中,CG2=AC2﹣AG2=b2﹣[12(c+a)]2,在Rt △BCG 中,CG 2=BC 2﹣BG 2=a 2﹣[12(c ﹣a )]2, ∴b 2﹣[12(a +c )]2=a 2﹣[12(c ﹣a )]2, ∴b 2=ac +a 2,∴△ABC 是“类勾股三角形”.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,勾股定理,新定义“类勾股三角形”,分类讨论的数学思想,解本题的关键是理解新定义.28.(1)①见解析;②()22012x y x x -=<<-;(2)见解析 【解析】【分析】(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.【详解】(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,∴CB=CD ,∠BCE =∠DCE =45°,又∵CE=CE ,∴△CBE ≌△CDE (SAS ),∴EB=ED ,∠CBE =∠1,∵∠BEC =90°,∠BCF =90°,∴∠EBC +∠EFC =180°,∵∠EFC +∠2=180°,∴∠EBC =∠2,∴∠1=∠2.∴ED=EF ,∴BE=EF .②解:∵正方形ABCD的边长为2,∴对角线AC =2.将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩,∴△PBG ≌△EBG (SAS ).∴PG=EG =2-x -y ,∵∠PCG =∠GCB +∠BCP =45°+45°=90°,∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--,化简,得()22012x y x x-=<<-. (2)如图3,作法如下:①延长BE 交AD 于点M ,②连接MO 并延长交BC 于点N ,③连接DN 交AC 于点Q ,④连接DE 、BQ ,则四边形BEDQ 为菱形.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q的位置是解决(2)题的关键.29.(1)AB=45;(2)见解析;(3)CD+CF的最小值为47.【分析】(1)根据勾股定理可求AB的长;(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示DE,CE的长,即可证CE=2DE;(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC =43,∠ABO=∠ABC=30°,∠OAB=∠CAB=60°,根据“SAS”可证△ACF≌△BMD,可得CF=DM,则当点D在CM上时,CF+CD的值最小,根据直角三角形的性质可求CN,BN的长,根据勾股定理可求CM的长,即可得CF+CD的最小值.【详解】(1)∵点A(0,4),B(m,0),且m=8,∴AO=4,BO=8,在Rt△ABO中,AB=2245+=AO BO(2)如图,过点D作DF⊥AO,∵DE=DO,DF⊥AO,∴EF=FO,∵m=4,∴AO=BO=4,∴∠ABO=∠OAB=45°,∵点C,O关于直线AB对称,。
勾股定理专题训练试题精选(一)附答案
勾股定理专题训练试题精选(一)一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.24. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为三角形,则正方形ABCD的边长为()11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+1012.A.132 B.121 C.120 D.以上答案都不对(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形A.2n﹣2B.2n﹣1C.2n D.2n+115. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确对于两人的证法,下列哪一个判断是正确的()16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个17.A.1B .C .D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0根, △ABC内一点P到三边的距离都相等. 则PC为()18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S3219. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个20. 设直角三角形的A.2B.3C.4D.5三边长分别为a、b、c, 若c﹣b=b﹣a>0,则=()21. (1999•A.4B.6C.8D.温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.A.16 B.18 C.12D.1223. 在△ABC中,∠A=15°,AB=12,则△ABC的面积等于()24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.9625. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE26. 如图, 在正方形网格中, cosα的值为()A.1B.C.D.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 129. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A.B重合)BE+CF=EF.上述结论中始终正确的有()A.1个B.2个C.3个D.4个30. 如图, △ABC中, AC=BC, ∠ACB=90°, AE平分∠BAC交BC于E, BD⊥AE于D, DM⊥AC于M, 连CD. 下列结论: ①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个勾股定理专题训练试题精选(一)参考答案与试题解析一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线. 菁优网版权所有专题:几何图形问题.分析:根据直角三角形斜边上的中线的性质可得DG=AG, 根据等腰三角形的性质可得∠GAD=∠GDA, 根据三角形外角的性质可得∠CGD=2∠GAD, 再根据平行线的性质和等量关系可得∠ACD=∠CGD, 根据等腰三角形的性质可得CD=DG, 再根据勾股定理即可求解.解答:解: ∵AD∥BC, DE⊥BC,∴DE⊥AD, ∠CAD=∠ACB, ∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中, DE= =2 .故选:C.故选: C.故选:C.点评:综合考查了勾股定理, 等腰三角形的判定与性质和直角三角形斜边上的中线, 解题的关键是证明CD=DG=3.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.考点:等腰直角三角形;等腰三角形的判定与性质. 菁优网版权所有专题:几何图形问题.分析:利用AD=DB=DE, 求出∠AEC=90°, 在直角等腰三角形中求出AC的长.解答:解: ∵AD=DE,∴∠DAE=∠DEA,∵DB=DE,∴∠B=∠DEB,∴∠AEB=∠DEA+∠DEB= ×180°=90°,∴∠AEC=90°,∵∠C=45°, AE=1,∴AC= .故选:D.故选: D.故选:D.点评:本题主要考查等腰直角三角形的判定与性质, 解题的关键是利用角的关系求出∠AEC是直角.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.2考点:等腰直角三角形. 菁优网版权所有分析:由已知可得Rt△ABC是等腰直角三角形, 得出AD=BD= AB=1, 再由Rt△BCD是等腰直角三角形得出CD=BD=1.解答:解: ∵∠ACB=90°, CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD= AB=1, ∠CDB=90°,∴CD=BD=1.故选:C.故选: C.故选:C.点评:本题主要考查了等腰直角三角形, 解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.4. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.考点:等腰直角三角形;垂线段最短;平行线之间的距离. 菁优网版权所有分析:利用等腰直角三角形的特点知道AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°, ∠DCE=90°.利用勾股定理得出DE的表达式, 利用函数的知识求出DE的最小值.解答:解: 在等腰RT△ACD和等腰RT△CBE中AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°∴∠DCE=90°∴AD2+CD2=AC2, CE2+BE2=CB2∴CD2= AC2, CE2= CB ,∵DE2=DC2+EC2,∴DE===∴当CB=1时, DE的值最小, 即DE=1.故选:B.故选: B.故选:B.点评:此题考察了等腰直角三角形的特点及二次函数求最值的方法.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°考点:等腰直角三角形;平行线的性质. 菁优网版权所有专题:计算题.分析:根据等腰直角三角形性质求出∠ACB, 求出∠ACE的度数, 根据平行线的性质得出∠2=∠ACE, 代入求出即可.解答:解: ∵∠BAC=90°, AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∴∠2=∠ACE=65°,故选B.点评:本题考查了三角形的内角和定理、等腰直角三角形、平行线的性质, 关键是求出∠ACE的度数.6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.考点:等腰直角三角形;圆周角定理. 菁优网版权所有专题:证明题.分析:连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50 m, 从而求得⊙O的直径AD=100 m.解答:解: 连接OB.∵∠ACB=45°, ∠ACB= ∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中, OA=OB(⊙O的半径), AB=100m,∴由勾股定理得, AO=OB=50 m,∴AD=2OA=100m;故选B.点评:本题主要考查了等腰直角三角形、圆周角定理.利用圆周角定理求直径的长时, 常常将直径置于直角三角形中, 利用勾股定理解答.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB考点:勾股定理;等腰直角三角形;相似三角形的判定与性质. 菁优网版权所有专题:计算题;证明题;压轴题.分析:过点B作BM∥AD, 根据AB∥CD, 求证四边形ADMB是平行四边形, 再利用∠ADC+∠BCD=90°, 求证△MBC为Rt△, 再利用勾股定理得出MC2=MB2+BC2, 在利用相似三角形面积的比等于相似比的平方求出MC即可.解答:解: 过点B作BM∥AD,∵AB∥CD, ∴四边形ADMB是平行四边形,∴AB=DM, AD=BM,又∵∠ADC+∠BCD=90°,∴∠BMC+∠BCM=90°, 即△MBC为Rt△,∴MC2=MB2+BC2,∵以AD.AB.BC为斜边向外作等腰直角三角形,∴△AED∽△ANB, △ANB∽△BFC,= , = ,即AD2= , BC2= ,∴MC2=MB2+BC2=AD2+BC2= += = ,∵S1+S3=4S2,∴MC2=4AB2, MC=2AB,CD=DM+MC=AB+2AB=3AB.故选B.点评:此题涉及到相似三角形的判定与性质, 勾股定理, 等腰直角三角形等知识点, 解答此题的关键是过点B作BM∥AD, 此题的突破点是利用相似三角形的性质求得MC=2AB, 此题有一定的拔高难度, 属于难题.8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.考点:等腰直角三角形;勾股定理. 菁优网版权所有专题:计算题;规律型.分析:先根据勾股定理及等腰三角形的性质求出A2A3及A3A4的长, 找出规律即可解答.解答:解: ∵△A1A2B是直角三角形, 且A1A2=A2B=a, A2A3⊥A1B,∴A1B= = a,∵△A1A2B是等腰直角三角形,∴A2A3⊥A1B,∴A2A3=A1A3= A1B= = ,同理, A4A5= ×= ,∴线段An+1An+2的长为.故选B.故选B.点评:此题属规律性题目, 涉及到等腰三角形及直角三角形的性质, 解答此题的关键是求出A2A3及A3A4的长找出规律.灵活运用等腰直角三角形的性质, 得到等腰直角三角形的斜边是直角边的倍, 从而准确得出结论.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.考点:勾股定理;矩形的性质. 菁优网版权所有专题:压轴题.分析:过E作EG⊥CD于G, 利用矩形的判定可得, 四边形AEGD是矩形, 则AE=DG, EG=AD, 于是可求MG=DG ﹣DM=1, 在Rt△EMG中, 利用勾股定理可求EM.解答:解: 过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG, EG=AD,∴EG=AD=BC=7, MG=DG﹣DM=3﹣2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中, EM= = = =5 .故选B.点评:本题考查了矩形的判定、勾股定理等知识, 是基础知识要熟练掌握.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为的等边三角形,则正方形ABCD的边长为()考点:勾股定理;全等三角形的判定与性质;等边三角形的性质;正方形的性质. 菁优网版权所有分析:根据正方形的各边相等和等边三角形的三边相等, 可以证明△ABE≌△ADF, 从而得到等腰直角三角形CEF, 求得CF=CE=1.设正方形的边长是x, 在直角三角形ADF中, 根据勾股定理列方程求解.解答:解: ∵AB=AD, AE=AF,∴Rt △ABE≌Rt△ADF.∴BE=DF.∴CE=CF=1.设正方形的边长是x.在直角三角形ADF中, 根据勾股定理, 得x2+(x﹣1)2=2,解, 得x= (负值舍去).即正方形的边长是.故选A.点评:此题综合运用了正方形的性质、等边三角形的性质、全等三角形的判定和性质以及勾股定理.11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+10考点:等腰直角三角形. 菁优网版权所有分析:所求正方形的边长即为AB的长, 在等腰Rt△ACF、△CDE中, 已知了CE、DE、CF的长均为10, 根据等腰直角三角形的性质, 即可求得AC、CD的长, 由AB=AC+CD+BD即可得解.解答:解: 如图;连接AB, 则AB必过C.D;Rt△ACF中, AC=AF, CF=10;则AC=AF=5;同理可得BD=5;Rt△CDE中, DE=CE=10, 则CD=10 ;所以AB=AC+CD+BD=20 ;故选C.点评:理清题意, 熟练掌握直角三角形的性质是解答此题的关键.A.132 B.121 C.120 D.以上答案都不对12.(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()考点:勾股定理. 菁优网版权所有分析:假设另外两边后, 根据勾股定理适当变形, 即可解答.解答:解: 设另外两边是a、b(a>b)则根据勾股定理, 得:a2﹣b2=121∵另外两边的长都是自然数∴(a+b)(a﹣b)=121=121×1即另外两边的和是121,故三角形的周长是132.故选A.故选A.点评:注意熟练进行因式分解和因数分解, 根据另外两边的长都是自然数分析结论.A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等考点:勾股定理;角平分线的性质;等边三角形的判定;直角三角形斜边上的中线. 菁优网版权所有专题:计算题;证明题.分析:A.根据等腰三角形的性质求解;B.根据直角三角形的面积计算方法求斜边的高;C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C.根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D.求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.解答:解: A.等腰三角形底角相等, 若底角为60°, 则顶角为180°﹣60°﹣60°=60°, 若顶角为60°, 则底角为=60°, 所以有一个角为60°的等腰三角形即为等边三角形, 故A选项正确;B.直角三角形中斜边的中线等于斜边的一半, 只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C.在直角三角形中, 最大的边为斜边, 根据勾股定理可知斜边长的平方的等于两直角边长平方的和, 故C选项正确;D.过三角形角平分线的交点作各边的垂线, 则三角形分成3对小三角形, 其中各顶点所在的两个直角三角形全等, 即过角平分线作的高线相等, 故D选项正确;即B选项中命题为假命题,故选B.故选B.点评:本题考查了全等三角形的证明, 考查了直角三角形中勾股定理的运用, 考查了等腰三角形的性质, 考查了直角三角形中斜边上的中线等于斜边长一半的性质.14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1考点:等腰直角三角形. 菁优网版权所有专题:规律型.分析:根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积, 找出规律即可.解答:解: ∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC= = , AD= =2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n ﹣2.故选A.故选A.点评:此题属规律性题目, 解答此题的关键是分别计算出图中所给的直角三角形的面积, 找出规律即可.15. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠对于两人A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确的证法,下列哪一个判断是正确的()考点:勾股定理;实数大小比较;三角形三边关系. 菁优网版权所有专题:压轴题;阅读型.分析:分别对甲乙两个证明过程进行分析即可得出结论.解答:解: 甲的证明中说明+ 的值大于5, 并且证明小于5, 一个大于5的值与一个小于5的值一定是不能相等的.乙的证明中利用了勾股定理, 根据三角形的两边之和大于第三边.故选A.故选A.点评:本题解决的关键是正确理解题目中的证明过程, 阅读理解题是中考中经常出现的问题.16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个考点:勾股定理;等腰三角形的判定. 菁优网版权所有专题:探究型.分析:先根据勾股定理求出AB的长, 再根据等腰三角形的性质分别找出以AB为腰和以AB为底边的等腰三角形即可.解答:解: ∵A.B是4×5网格中的格点,∴AB= = ,同理可得, AC=BD=AC= ,∴所求三角形有:△ABD, △ABC, △ABE.故选B.点评:本题考查的是勾股定理及等腰三角形的性质, 先根据勾股定理求出AB的长是解答此题的关键.17.A.1B.C.D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0的两个根, △ABC内一点P到三边的距离都相等. 则PC为()考点:勾股定理;解一元二次方程-因式分解法;三角形的内切圆与内心. 菁优网版权所有专题:压轴题.分析:根据AC、BC的长分别是方程x2﹣7x+12=0的两个根, 根据根与系数的关系求出.解答:解: 根据“AC, BC的长分别是方程x2﹣7x+12=0的两个根”可以得出:AC+BC=7, AC•BC=12,AB2=AC2+BC2=25,AB=5,△ABC内一点P到三边的距离都相等, 即P为△ABC内切圆的圆心,设圆心的半径为r, 根据三角形面积表达式:三角形周长×内切圆的半径÷2=三角形的面积,可得出, AC•BC÷2=(AC+BC+AB)×r÷2,12÷2=(7+5)×r÷2,r=1,根据勾股定理PC= = ,故选B.故选B.点评:本题中考查了勾股定理和一元二次方程根与系数的关系. 本题中三角形内心与三角形周长和面积的关系式是本题中的一个重点.18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S32考点:勾股定理. 菁优网版权所有专题:压轴题.分析:依据半圆的面积公式, 以及勾股定理即可解决.解答:解: 设直角三角形三边分别为a, b, c, 则三个半圆的半径分别为, ,由勾股定理得a2+b2=c2, 即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1.S2.S3之间的关系是S1+S2=S3故选C.故选C.点评:根据勾股定理, 然后变形, 得出三个半圆之间的关系.19. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个考点:等腰直角三角形. 菁优网版权所有专题:压轴题.分析:利用等腰直角三角形的性质来作图, 要注意分不同的直角顶点来讨论.解答:解: 此题应分三种情况:①以AB为腰, 点A为直角顶点;可作△ABC1.△ABC2, 两个等腰直角三角形;②以AB为腰, 点B为直角顶点;可作△BAC3.△BAC4, 两个等腰直角三角形;③以AB为底, 点C为直角顶点;可作△ABC5.△ABC6, 两个等腰直角三角形;综上可知, 可作6个等腰直角三角形, 故选C.点评:等腰直角三角形两腰相等, 顶角为直角, 据此可以构造出等腰直角三角形.关键是以AB为腰和以AB为底来讨论.A.2B.3C.4D.520. 设直角三角形的三边长分别为a、b、c,若c﹣b=b﹣a>0, 则=()考点:勾股定理. 菁优网版权所有分析:根据已知条件判断c是斜边, 并且得到c+a=2b, 然后根据勾股定理得到c2﹣a2=b2, 然后因式分解可以求出c﹣a, 代入要求的式子可以求出结果了.解答:解: ∵c﹣b=b﹣a>0∴c>b>a, c+a=2b根据勾股定理得, c2﹣a2=b2, (c+a)(c﹣a )=b2,∴c﹣a= b∴=4故选C.故选C.点评:此题主要利用了勾股定理和因式分解解题, 题目式子的值不能直接求出, 把它的分子分母分别用b表示才能求出.A.4B.6C .8D.21. (1999•温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()考点:勾股定理. 菁优网版权所有分析:由CD的长, 可求得AD的值, 进而可在Rt△ABD中, 由勾股定理求得BD的长.解答:解: 如图;△ABC中, AB=AC=10, DC=2;∴AD=AC﹣DC=8;Rt△ABD中, AB=10, AD=8;由勾股定理, 得:BD= =6;故选B.点评:此题主要考查了等腰三角形的性质及勾股定理的应用.22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.考点:勾股定理. 菁优网版权所有专题:计算题.分析:作AE⊥BC, DF⊥BC, 构建直角△AEB和直角△DFC, 根据勾股定理计算BE, CF, DF, 计算EF的值, 并根据EF求AD.解答:解: 如图, 过点A, D分别作AE, DF垂直于直线BC, 垂足分别为E, F.由已知可得BE=AE= , CF= , DF=2 ,于是EF=4+ .过点A作AG⊥DF, 垂足为G.在Rt△ADG中, 根据勾股定理得AD= = = = = .故选D.点评:本题考查了勾股定理的正确运用, 本题中构建直角△ABE和直角△CDF是解题的关键.A.16 B.18 C.12D.1223. 在△ABC中,∠C=90°,∠A=15°,AB=12,则△ABC的面积等于()考点:勾股定理;三角形的面积. 菁优网版权所有专题:计算题.分析:作∠ABD=∠A=15°, 则∠BDC=30°;设BC=x, 则BD=2x, CD= x, 计算AC=AD+CD=(2+ )x, BC=x, AB=12, 根据勾股定理计算AC, BC的长度, △ABC的面积为根据•BC•AC计算可得.解答:解: 如图, 作∠ABD=∠A=15°BD交AC于D, 则∠DBC=75°﹣15°=60°在Rt△BCD中, 因为∠BDC=90°﹣∠DBC=30°所以BD=2BC, CD= BC设BC=x,所以BD=2x, CD= x因为∠A=∠ABD, 所以AD=BD=2x所以AC=AD+DC=(2+)x在Rt △ABC中AC2+BC2=AB2∴∴,故选B.点评:本题考查了勾股定理在直角三角形中的运用, 考查了直角三角形面积的计算, 本题中设BC=x, 根据直角△ABC求x的值, 是解题的关键.24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.96考点:勾股定理;相似三角形的判定与性质. 菁优网版权所有分析:先利用勾股定理求出AB的长, 再根据相似三角形对应边成比例求出DE、BD的长, 然后代入面积公式即可求解.解答:解: ∵∠BDE=∠C=90°, ∠B=∠B∴△BDE∽△BCA∴BE: BA=BD: BC∵AC=BE=15, BC=20∴AB==25∴15: 25=BD: 20∴BD=12∴DE=9∴S△BDE=×12×9=54;S△ABC=×15×20=150∴四边形ACED的面积=S△ABC﹣S△BDE=150﹣54=96故选D.故选D.点评:此题主要考查了学生对相似三角形的性质及勾股定理的运用.25. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE考点:勾股定理;对顶角、邻补角;三角形内角和定理;等腰三角形的性质;圆周角定理. 菁优网版权所有专题:证明题;压轴题.分析:根据等腰三角形的性质证出∠BO2E=2∠BDE, 即可得出答案B错误, 假设A成立证出C也正确, 即可判断A、C都错误, 即可选出选项.解答:解: A.∵∠ABC+∠EDA=180°, ∠ADB=90°,∴∠EDB+∠ABC=90°.∵∠BDE+∠EDC=90°, 且∠EDC=∠BCA.∴∠ABC=∠BCA.∴AB=AC. 正确, 故本选项错误;B.∵O2B=O2D,∴∠DBO2=∠EDB,∴∠BO2E=2∠BDE,∵BE=BD,∴∠BDE=∠E,∴∠BO2E=2∠E, 正确, 故本选项错误;C.∵AC=AB,∴∠C=∠ABC,∵∠BO2E=2∠BDE, ∠ABC=∠BO2E+∠E,∴∠ABC=3∠E,∵BC为⊙O2的直径,∴∠CDB=90°,∴4∠E=90°,∠E=22.5°∴∠C=∠ABC=67.5°,∴∠A=180°﹣2×67.5°=45°,在Rt△ABD中由勾股定理得:AB= BD= BE, 正确, 故本选项错误;D.故本选项正确;故选D.故选D.点评:本题主要考查了勾股定理, 三角形的内角和定理, 等腰三角形的性质, 圆周角定理, 对顶角, 邻补角等知识点, 综合运用性质进行证明是解此题的关键.26. 如图, 在正方形网格中, cosα的值为()A .1B .C .D.考点:勾股定理;锐角三角函数的定义. 菁优网版权所有专题:网格型.分析:cosα的值可以转化为直角三角形的边的比的问题, 先根据勾股定理求出AB的长, 再在Rt△ABC中根据三角函数的定义求解.解答:解: 在Rt△ABC中, BC=3, AC=4,则AB= =5,则cosα= = .故选D.点评:本题考查勾股定理和锐角三角函数的概念:在直角三角形中, 正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()考点:勾股定理;解一元二次方程-因式分解法. 菁优网版权所有专题:分类讨论.分析:先解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4, 所以另一条边是6, 再分两种情况考虑:①若8为斜边, 则用勾股定理得第三条边长是2 ;②若8和6是两条直角边, 再用勾股定理求斜边得10.解答:解: 根据题意得解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4,所以另一条边是6,①若8为斜边, 则用勾股定理得第三条边长是=2 ;②若8和6是两条直角边, 则此直角三角形的第三条边长是=10.故选:D.故选: D.故选:D.点评:本题考查了勾股定理、解方程. 解题的关键是要注意分情况讨论.28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 1考点:勾股定理的证明. 菁优网版权所有分析:根据勾股定理可得大正方形ABCD的边长, 再根据和差关系得到小正方形EFGH的边长, 根据正方形的面积公式可得大正方形ABCD和小正方形EFGH的面积, 进一步即可求解.解答:解: 如图, 设大正方形的边长为xcm,由勾股定理得32+42=x2,解得:x=5,则大正方形ABCD的面积为: 52=25;∵小正方形的边长为: 4﹣3=1,∴小正方形EFGH的面积为: 12=1.则大正方形ABCD和小正方形EFGH的面积比是25:1.故选:D.故选: D.故选:D.点评:本题考查勾股定理及正方形的面积公式, 比较容易解答, 关键是求出大小正方形的边长.29. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;。
勾股定理测试题及答案
勾股定理测试题及答案一、选择题(每题2分,共10分)1. 勾股定理适用于哪种三角形?A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形答案:B2. 如果直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个直角三角形的斜边长度为13,一条直角边为5,另一条直角边的长度是多少?A. 12B. 10C. 8D. 6答案:A4. 勾股定理的公式是什么?A. a + b = cB. a * b = cC. a^2 + b^2 = c^2D. a^2 - b^2 = c^2答案:C5. 如果一个三角形的三边长分别为7、24和25,那么这个三角形是直角三角形吗?A. 是B. 不是答案:A二、填空题(每题2分,共10分)6. 直角三角形中,如果一条直角边长为x,另一条直角边长为y,斜边长为z,根据勾股定理,我们有________。
答案:x^2 + y^2 = z^27. 如果一个直角三角形的两条直角边长分别为6和8,那么斜边的长度是________。
答案:108. 在一个直角三角形中,如果斜边的长度是20,一条直角边长为15,另一条直角边的长度是________。
答案:5√3 或25√3/39. 勾股定理的发现归功于古希腊数学家________。
答案:毕达哥拉斯10. 勾股定理在数学中也被称为________定理。
答案:毕达哥拉斯定理三、解答题(每题5分,共20分)11. 一个直角三角形的斜边长度为17,一条直角边长为8,求另一条直角边的长度。
答案:根据勾股定理,另一条直角边的长度为√(17^2 - 8^2) =√(289 - 64) = √225 = 15。
12. 如果一个直角三角形的两条直角边长分别为9和12,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(9^2 + 12^2) = √(81 + 144) = √225 = 15。
13. 一个直角三角形的斜边长度为25,一条直角边长为15,求另一条直角边的长度。
(完整版)勾股定理综合测考试试题
1 / 3勾股定理全章综合测试题(120分)一。
选择题(每小题3分,共30分)1. △ABC 中, AD ⊥BC 于D ,AB=3,BD=2,DC=1,则AC 等于( ) A. 6. B.6 C.5 D.42.(如图)在Rt △ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°, BD=2,AB=32,则AC 的长是( ) A.3 B. 23 C. 3 D.323 3.△ABC 中,∠B=30°,∠C=45°,AB=8, 则AC 等于( ) A .4 B.24 C.34 D.64 4.等腰三角形一腰上的高是a, 且这条高与底边的夹角为60°,则这个三角形的面积为( )A.22a B.23a C.2321a D.2331a 5. △ABC 在下列条件中不是直角三角形的是( )A.a ﹕b ﹕c=1﹕3﹕2B.222c a b -= C.∠C=2∠A-∠B D. ∠A ﹕∠B ﹕∠C=1﹕2﹕36.一个直角三角形斜边的平方等于两条直角边乘积的2倍,则这个三角形中有一个角是( )A.15°B.30°C. 45°D. 75°7.直角三角形两条直角边上的中线长分别是4和7,则这个直角三角形的面积是( )A .133 B. 64 C.136 D.以上都不对8.在直角三角形中,两直角边分别为a ﹑b ,斜边为c ,斜边上的高为h ,则( )A.c b a 111=+ B. 2222h b a =+ C.22111b a h +=D.bah =1 9.已知三角形三内角之比为1﹕2﹕3,它的最长边为10,则此三角形的面积为( ) A.20 B.103 C.35 D.2325 10. (如图)在△ABC 中,AC=8,BC=6,在△ABE 中,DE 为AB 边上的高, DE=12,60=∆ABE S ,则△ABC 的面积为( )A.24B.48C.64D.72二.填空题((每小题3分,共30分)11.在RT △ABC 中,∠C=90°,三内角A 、B 、C 的对边分别为a 、b 、c ,当∠A=30°时, a ﹕b ﹕c= ;当∠A=45°时, a ﹕b ﹕c= ;12.直角三角形的两直角边长为8和10,则斜边上的高为 。
勾股定理测试题(含答案)
勾股定理测试题(一)一、选择题1、下列各组数中不能作为直角三角形的三边长的是 ( A ) A. 1.5, 2, 3; B. 7, 24, 25; C. 6 ,8, 10; D. 9, 12, 15.2、适合下列条件的△ABC 中, 是直角三角形的个数为 ( A ) ①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580; ④ ;25,24,7===c b a ⑤.4,2,2===c b aA. 2个;B. 3个;C. 4个;D. 5个.3、已知直角三角形两直角边的长为A 和B ,则该直角三角形的斜边的长度为(D ) A 、A +B B 、2AB C 、B -A D 、22B A +4、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( D ) A 、6厘米 B 、8厘米 C 、1380厘米 D 、1360厘米5、若等腰三角形腰长为10cm ,底边长为16 cm,那么它的面积为 (A )A. 48 cm 2B. 36 cm 2C. 24 cm 2D.12 cm 26、如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面 成30°夹角,这棵大树在折断前的高度为( B ) A .10米 B .15米 C .25米 D .30米7、若一个直角三角形的一条直角边长是7cm ,另一条直角边比斜边短1cm ,则斜边长为 ( D ) A.18 cm B.20 cm C.24 cm D.25 cm8、一部电视机屏幕的长为58厘米,宽为46厘米,则这部电视机大小规格(实际30°6北南 A东第12题图测量误差忽略不计)( B )A.34英寸(87厘米)B. 29英寸(74厘米)C. 25英寸(64厘米)D.21英寸(54厘米)9、一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( C )A .60B .30C .24D .1210、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( C ) A .8cm B .10cm C .12cm D .14cm11、已知Rt △ABC 中,∠C =90°,若14=+b a cm ,10=c cm ,则Rt △ABC 的面积为( A ).A.24cm 2B.36cm 2C.48cm 2D.60cm 212、已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( D )A 、25海里B 、30海里C 、35海里D 、40海里 二、填空题13、在△ABC 中,∠C =90°,若 a =5,b =12,则 c = . 【13】 14、在△ABC 中,∠C =90°,若c =10,a ∶ b =3∶4,则S Rt△AB = 【24】A DBC第9题15、如图,从电线杆离地面3米处向地面拉一条长为5米的拉线,这条拉线在地面的固定点距离电线杆底部有 米。
初二勾股定理试题及答案
初二勾股定理试题及答案一、选择题1. 下列选项中,哪一项是勾股定理的表达式?A. a + b = cB. a² + b² = c²C. a × b = cD. a ÷ b = c答案:B2. 如果直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 7C. 8D. 9答案:A3. 一个直角三角形的斜边长为10,一条直角边长为6,那么另一条直角边的长度是多少?A. 8B. 4C. 6D. 10答案:A二、填空题1. 已知直角三角形的两条直角边长分别为6和8,根据勾股定理,斜边的长度为______。
答案:102. 如果一个直角三角形的斜边长为13,其中一条直角边长为5,那么另一条直角边的长度是______。
答案:12三、解答题1. 一个直角三角形的两条直角边长分别为9和12,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(9² + 12²) = √(81 + 144) = √225 = 15。
2. 一个直角三角形的斜边长为17,其中一条直角边长为8,求另一条直角边的长度。
答案:设另一条直角边的长度为x,根据勾股定理,有x² + 8² =17²,即x² + 64 = 289,解得x² = 225,所以x = √225 = 15。
四、证明题1. 证明:如果直角三角形的两条直角边长分别为a和b,斜边长为c,那么a² + b² = c²。
答案:设直角三角形的两条直角边分别为a和b,斜边为c。
在三角形中,我们可以构造一个边长为a和b的正方形,以及一个边长为c的正方形。
在这两个正方形中,我们可以画出四个相同的直角三角形,每个三角形的直角边长分别为a和b,斜边长为c。
这样,我们可以将这四个三角形拼成一个边长为a+b的正方形,其面积为(a+b)²。
(完整版)勾股定理测试题及参考答案
勾股定理测试题一、选择题(每小题4分,共40分)1.以下列各组数为边长能组成直角三角形的是( )A .567,,B .1084,,C .91517,,D .72425,,2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( )(A )4 cm (B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A)25(B )14 (C )7 (D )7或254.已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A 。
直角三角形B.等腰三角形C 。
等腰直角三角形D.等腰三角形或直角三角形5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,则梯子顶端A 下落了( )米EA BCDA .0.5B .1C .1.5D .2DCBA5米3米7.一只蚂蚁沿如图所示折线从A点爬到D点,共爬行了()(图中方格边长为1cm)A.12cm B.10cmC.14cm D.以上答案都不对8.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a元计算,那么共需要资金().(A)50a元(B)600a元(C)1200a元(D)1500a元9.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()米A.8米B.10米C.12米D.14米10.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,B C/交AD于E,AD=8,AB=4,则DE的长为().A.3 B.4 C.5 D.6二、填空题(每小题4分,共16分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC中,斜边AB=2,则222AB AC BC++=______。
勾股定理试题精选
勾股定理精选试题一 选择题1 直角三角形的周长为24,斜边长为10,则其面积为( ).A .96B .49C .24D .482.如图(4),C 是AB 上一点,BC =2AC =2 cm ,以AC ,BC 为边在AB 的同侧作等边△ACD 与等边△BCE ,则DE 长为( )A .23B .33C .3D .3DCBAE图(4)3.下列条件:①三角形的一个外角与相邻内角相等 ②∠A =21∠B =31∠C ③ AC ∶BC ∶AB =1∶3∶2 ④AC =n 2-1,BC =2n ,AB =n 2+1(n >1)能判定 △ABC 是直角三角形 的条件个数为 ( ) A .1 B .2 C .3 D .4 4.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为 ( )A .10B .410C .13D .2135.已知a ,b ,c 为△ABC 三边,且满足a 2c 2-b 2c 2=a 4-b 4,则它的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形 6 已知 ∠MON= 20°点A 、D 分别在射线OM、ON上 OA=34OD=38 点C 是AM 上任意一点,点B 是OD 上任意一点则 AB + BC + CD 的最小值是 ( ) A 10 B 11 C 12 D 137 已知 梯形ABCD 中,AD ∥BC ∠B +∠C= 90° AD = 1 BC = 3 点E 、 F 分别是AD 、BC 的中点 则 EF 的值为 ( )A 1B 2C 3D 4二 填空题1.如图,有圆柱,其高为12cm ,底面半径为3cm ,在圆柱下 底面A 点处有一只蚂蚁,•它想得到上底面B 处的食物,则蚂蚁经过的最短距离为______cm .( 取3)2.已知│x-12│+(y-13)2和z 2-10z+25互为相反数,则以x 、y 、z•为三边的三角形是________三角形. 3.直角三角形的两边为3、4,其第三边的平方为______.4.如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯 米. 5.如图,两阴影部分都是正方形,如果两正方形面积之比为1∶2,那么,两正方形的面积分别为 . 6.将三个正方形A 、B 、C ,如图拼接,当这三个正方形的面积S A 、S B 、S C 之间满足: 时,中间所形成的三角形是直角三角形.( 4 )( 5 )( 6 ) 7 已知 ∠AOB=45° 角内有一定点POP = 10 在角的两边上有两个动点Q 、R (与点O 不重合) 则 △PQR的周长的最小值=______8.如图1,有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,如图2,其中,三个正方形围成的三角形是直角三角形.再经过一次“生长”后,变成图3;“生长”10次后, 4.如果继续“生长”下去,它将变得更加“枝繁叶茂”.108CB A 5m13m图1 图2 图3 图4(1)随着不断的“生长”,形成的图形中所有正方形的面积和也随之变化.若生长n 次后,变成的图中所有正方形的面积用S n 表示,则S n = ; (2)S 0= ,S 1= ,S 2= ,S 3= ; (3)S 0+S 1+S 2+…+S 10= .三 解答题1 若直角三角形的两直角边的比为3 :4,斜边长20 ,求此三角形的面积2 在直角三角形中,两直角边a 与 b 满足 a+b=17 ab=60 求斜边的长3 已知 直角三角形的周长为30cm , 斜边长13cm, 求此三角形的面积4 已知 三角形的三边 a 、 b 、c 满足 222c b a +++50 = 6a + 8b + 10c 判断三角形的形状5 若三角形的三边a 、b 、c 满足 442222b ac b c a -=- 判断三角形的形状6 已知 四边形ABCD 中 ,AB=8 BC = 6 CD = 26AD = 24 ∠B = 90° 求四边形ABCD 的面积7 已知 △ABC 中 AB = 5 AC = 3 中线AD = 2 求 BC 的长8(本小题6分)四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
第18章《勾股定理》基础测试题(一).doc
第18章《勾股定理》基础测试题(-)班级: ____________ 姓名: ____________ 得分:一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是() A 、6, 12, 13 B 、 3, 4, 7 C 、 15, 17, 8 D 、8, 15, 16 2、 要登上某建筑物,靠墙有一架梯子,底端离建筑物5///,顶端离地面12///,则梯子的长度为( ) A 、12/?7 B 、\3ni C 、14m D 、15m3、直角三角形的两条直角边长分别为&加和&加,则连接这两条直角边中点线段的长为( )A 、3cmB 、4cmC 、5cmD 、12cm4、 一艘小船早晨8: 00出发,以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时 的速度向南航行,上午10: 00两小船相距( )海里.A 、15B 、12C 、13D 、20 5、一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )二. 填空题(共6小题,每小题4分,满分24分) B 、8 C 、106、在△ABC 中, Z4CB 二90。
,AC=\2, BC=5, AM=AC, BN 二BC 、 则MN 的长为( 4、2 B 、2.6A 、4 笫6ACB第11题7.已知在Rt/\ABC中,ZC=90°. ____ (1)若。
=3, b=4,则;(2)若°=6,尸10,则b= ____________ .8、已知甲乙在同一地点出发,甲往东走了4千米,乙往南走了3千米,这时甲、乙两人相距千米.9、如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路=他们仅仅少走了__________ 步路(假设2步为1米),却踩伤了花草.10.某养殖厂有一个长2米.宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米.11、如图,隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA=50m, CB=40m,那么A、B两点间的距离是__________________ m •12、如果直角三角形的斜边与一条直角边的长分别是13c税和5c/77,那么这个直角三角形的面积是2cm .三、解答题(共4小题,满分52分)塑料薄膜,试求需要多少平方米塑料薄膜?13、如图,要修建一个育苗棚,棚高肛1.8加,棚宽a=2.4 m,棚的长为12加,现要在棚顶上覆盖a14、如图,铁路上A、B两点相距25如?,C、D为两村庄,DA丄AB于A, CB丄AB于B,己知DA=\5km f CB二\0血,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在多少千米处?15、在△ABC 中,ZC=90°, AC=2A cm. BC=2.S cm.(1)求这个三角形的斜边AB的长和斜边上的高CD的长;(2〉求斜边被分成的两部分4D和BD的长.16、在两千多年前我国古算术上记载有“勾三股四弦五”,你知道它的意思吗?它的意思是说:如果一个直角三角形的两条直角边长分别为3和4个长度单位,那么它的斜边的长一定是5个长度单位,而且3、4、5这三个数有这样的关系:32+42=52.(1〉请你动动脑筋,能否验证这个事实呢?该如何考虑呢?(2)请你观察下列图形,直角三角形ABC的两条直角边的长分别为AC=7, BC=4,请你研究参考答案与评分标准一、选择题(共6小题,每小题4分,满分24分)1、下列各组数为勾股数的是()A、6, 12, 13B、 3, 4, 7C、15, 17, 8D、 8, 15, 16考点:勾股定理的逆定理;勾股数。
勾股定理试题
第一章 勾股定理姓名__________班级__________一、填空:1、下列各数中:-41,7,3.14159,π,310,-34,0,0.⋅3,38,16,2.121122111222…其中有理数有___________________________;无理数有_________________________________。
2、△ABC ,∠C =90°,a =9,b =12,则c =__________。
3、△ABC ,AC =6,BC =8,当AB =__________时,∠C =90°。
4、若x 2=(-7)2,则x =__________。
若2+x =2,则2x+5的平方根是__________。
5、直角三角形两直角边长分别为3 和4,则斜边上的高为__________。
6、若x <0,则2x =______;33x =________。
7、若x =(35-)3,则1--x =__________。
若a <0,则(3a -)-3=___________。
8、已知0≤x ≤3,化简2x +2)3(-x =__________。
若|x -2|+3-y =0,则x·y =______。
9、如果a <0,那么2a =________,(a -)2=________。
10、若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________。
11、a 是10的整数部分,b 是5的整数部分,则a 2+b 2=____________。
12、)13(++y x +|2x -y -5|=0,则x =________,y =________。
13、大于-317且小于310的整数有________________。
14、如图,在高3米,斜坡长为5米的楼梯表面铺地毯, 地毯的长至少需________米。
15、若一个三角形的三边长分别为3,4,x ,则使此三角形是直角三角形的x 2的值是__________。
勾股定理经典题型
勾股定理已知两边求第三边例1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.例2.已知直角三角形的两边长为3、2,则另一条边长是________________.例3.在一个直角三角形中,若斜边长为5cm,直角边的长为3cm,则另一条直角边的长为 .例4. 一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?利用列方程求线段的长例5. 把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好.例6. 如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C 点与A 点重合,则EB 的长是 .例7. 如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收 购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?例8. 如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上 建一个小商店(C 点),使之与该校A 及车站D 的距离 相等,求商店与车站之间的距离.综合其它考点的应用 例9. 如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm例10. 在直角ΔABC 中,斜边长为2,周长为2+6,求ΔABC 的面积.FED C B AA D EB CA B例11. 已知:如图,△ABC 中,AB >AC ,AD 是BC 边上的高.求证:AB 2-AC 2=BC(BD-DC).例12. 如图∠B=90º,AB =16cm ,BC =12cm ,AD =21cm,CD=29cm求四边形ABCD 的面积.例13. 小明想测量学校旗杆的高度,他采用如下的方法:先将旗杆上的绳子接长一些,让它垂到地面还多1下端拉直,使它刚好接触地面,测得绳下端离旗杆底部5你能帮它计算一下旗杆的高度.判别一个三角形是否是直角三角形例14. 在△ABC 中,2:1:1::=c b a ,那么△ABC 是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理精选试题
一 选择题
1 直角三角形的周长为24,斜边长为10,则其面积为( ).
A .96
B .49
C .24
D .48
2.如图(4),C 是AB 上一点,BC =2AC =2 cm ,以AC ,BC 为边在AB 的同侧作等边△ACD 与等边△BCE ,则DE 长为( )
A .23
B .33
C .
3
D .3
D
C
B
A
E
图(4)
3.下列条件:①三角形的一个外角与相邻内角相等 ②∠A =21∠B =3
1∠C ③ AC ∶BC ∶
AB =1∶3∶2 ④ AC =n 2-1,BC =2n ,AB =n 2+1(n >1)能判定 △ABC 是直角三角形 的条件个数为 ( ) A .1 B .2
C .3
D .4
4.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为 ( )
A .10
B .410
C .13
D .213
5.已知a ,b ,c 为△ABC 三边,且满足a 2c 2-b 2c 2=a 4-b 4,则它的形状为( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形 6 已知 ∠MON= 20°点A 、D 分别在射线OM、ON上 OA=34 OD=38 点C 是AM 上任意一点,点B 是OD 上任意一点
则 AB + BC + CD 的最小值是 ( ) A 10 B 11 C 12 D 13
7 已知 梯形ABCD 中,AD ∥BC ∠B +∠C= 90° AD = 1 BC = 3 点E 、 F 分别是AD 、
BC 的中点 则 EF 的值为 ( )
A 1
B 2
C 3
D 4
二 填空题
1.如图,有圆柱,其高为12cm ,底面半径为3cm ,在圆柱下 底面A 点处有一只蚂蚁,•它想得到上底面B 处的食物,则蚂蚁经过的最短距离为______cm .( 取3)
2.已知│x-12│+(y-13)2
和z 2
-10z+25互为相反数,则以x 、y 、z•为三边的三角形是________三角形.
3.直角三角形的两边为3、4,其第三边的平方为______.
4.如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯 米. 5.如图,两阴影部分都是正方形,如果两正方形面积之比为1∶2,那么,两正方形的面积分别为 .
6.将三个正方形A 、B 、C ,如图拼接,当这三个正方形的面积S A 、S B 、S C 之间满足: 时,中间所形成的三角形是直角三角形.
( 4 ) ( 5 ) ( 6 )
7 已知 ∠AOB= 45° 角内有一定点P OP = 10 在角的两边上有两个动点Q 、R (与点O 不重合) 则 △PQR 的周长的最小值=______
5m
13m
8.如图1,有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,如图2,其中,三个正方形围成的三角形是直角三角形.再经过一次“生长”后,变成图3;“生长”10次后, 4.如果继续“生长”下去,它将变得更加“枝繁叶茂”.
图1 图2 图3
(1)随着不断的“生长”,形成的图形中所有正方形的面积和也随之变化.若生长n 次
后,变成的图中所有正方形的面积用S n 表示,则S n = ; (2)S 0= ,S 1= ,S 2= ,S 3= ; (3)S 0+S 1+S 2+…+S 10= .
三 解答题
1 若直角三角形的两直角边的比为3 :4,斜边长20 ,求此三角形的面积
2 在直角三角形中,两直角边a 与 b 满足 a+b=17 ab=60 求斜边的长
3 已知 直角三角形的周长为30cm , 斜边长13cm, 求此三角形的面积 4
已知 三角形的三边 a 、 b 、c 满足 2
2
2
c b a +++50 = 6a + 8b + 10c 判断三角形的形状
5 若三角形的三边a 、b 、c 满足 4
42222b a c b c a -=- 判断三角形的形状
6 已知 四边形ABCD 中 ,AB=8 BC = 6 CD = 26 AD = 24 ∠B = 90° 求四边形ABCD 的面积
7 已知 △ABC 中 AB = 5 AC = 3 中线AD = 2 求 BC 的长
8(本小题6分)四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
9、(本小题6分)折叠长方形ABCD 的一边AD ,点D 落在BC 边的D’处,AE 是折痕,若AB=8cm ,CD ′= 4cm ,求AD 的长?
10.如图,有一个长方体,它的长、宽、高分别等于3cm 、2cm 、12cm , 在长方体下底面的A 点有一只蚂蚁,它想吃到上底面的B 点处的一滴蜂蜜,需要爬行的最短路程是多少?
11 在一次夏令营活动中,小明从营地A 点出发,沿北偏东60°方向走了m 3500到达B 点,然后再沿北偏西30°方向走了500m 到达目的地C 点。
(1)求A 、C 两点之间的距离。
(2)确定目的地C 在营地A 的什么方向。
A B C
D D ′ E
12.(10分)阅读下面材料,并解决问题:
(1)如图(10),等边△ABC 内有一点P 若点P 到顶点A ,B ,C 的距离分别为3,4,5则∠APB =__________,由于P A ,PB 不在一个三角形中,为了解决本题我们可以将△ABP 绕顶点A 旋转到△ACP ′处,此时△ACP ′≌__________这样,就可以利用全等三角形知
识,将三条线段的长度转化到一个三角形中从而求出∠APB 的度数.(PA=3 PB=4 PC=5)
C
A
P
P '
图(10)
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(11),△ABC 中,∠CAB =90°,AB =AC ,E 、F 为BC 上的点且∠EAF =45°,求证:EF 2=BE 2+FC 2 .
F C
B
A
E
图(11)
13(本小题10分)已知,点P 是正方形ABCD 内的一点,连PA 、PB 、PC. (1)如图1将△PA B 绕点B 顺时针旋转90°到△P ′CB 的位置.若PA=2,PB=4,∠APB=135°,求PC 长.
(2)如图2,若PA 2+PC 2=2PB 2
,请说明点P 必在对角线AC 上.
14 若x 、y 为正实数,且41,422+++=+y x y x 的最小值是多少?
图2
A
B
D
图1
D
C
答案
一1 C 2 C。