2018年新课标全国Ⅰ卷理科数学试题 精品
2018年普通高等学校招生全国统一考试 理科数学 (新课标Ⅰ卷) 精校版
2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷) 理 科 数 学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设121i z i i -=++,则z =( )A .0B .12 C .1 D .22.已知集合{}2|20A x x x =-->,则A =R ( )A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <-> D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( )A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12- B .10- C .10 D .12 5.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =- B .y x =- C .2y x = D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点 M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217 B .25 C .3 D .2 8.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .8 9.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-, B .[)0+∞, C .[)1-+∞, D .[)1+∞, 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( ) A .12p p = B .13p p = C .23p p = D .123p p p =+此卷只装订不密封 班级姓名准考证号考场号座位号好教育云平台 高考真题汇编卷 第3页(共10页)好教育云平台 高考真题汇编卷 第4页(共10页)11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( )A .32 B .3 C .23 D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233 C .324 D .32二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
(完整word版)2018高考全国1卷理科数学试卷及答案,推荐文档
绝密★启用前2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共12小题,每小题5份,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i iiz 211++-=,则=z A.0 B.21C.1D.2 2. 已知集合{}02|2>--=x x x A ,则=A C R A. {}21|<<-x x B.{}21|≤≤-x x C.{}{}2|1|>-<x x x x Y D.{}{}2|1|≥-≤x x x x Y3.某地区经过一年的新农村建设,农村的经济收入增加了一杯,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和,若4233S S S +=,21=a ,则=5a A.-12 B.-10 C.10 D.125.设函数()()ax x a x x f +-+=231,若()x f 为奇函数,则曲线()x f y =在点()0,0处的切线方程为A.x y 2-=B.x y -=C.x y 2=D.x y = 6.在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=EBA.AC AB 4143-B.AC AB 4341- C.AC AB 4143+ D.AC AB 4341+7.某圆柱的高为2,地面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A.172B.52C.3D.28.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅FN FMA.5B.6C.7D.89.已知函数()()()a x x f x g x x x e x f x ++=⎩⎨⎧>≤=,0,ln 0,,若()x g 存在2个零点,则a 的取值范围是A.[)0,1-B.[)+∞,0C.[)+∞-,1D.[)+∞,110.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成。
2018年全国卷一 理科数学(精品解析版)
20.(12 分)某工厂的某种产品成箱包装,每箱 200 件,每一箱产品在交付用户之前要对产品作 检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取 20 件作检验,再根 据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为 p(0 p 1) , 且各件产品是否为不合格品相互独立. (1)记 20 件产品中恰有 2 件不合格品的概率为 f ( p) ,求 f ( p) 的最大值点 p0 .
A.
3
AB
1
AC
C.
4 3
4
AB
4 1
4
AC
B.
1
AB
3
AC
4
D.
1 4
AB
4 3
4
AC
7.某圆柱的高为 2,底面周长为 16,其三视图如图。圆柱表面上的点 M 在正视图上的对应点为 A ,
圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短
C.1 )
B.x 1 x 2
D. 2
C.x | x 1 x | x 2
D.x | x 1 x | x 2
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地 区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如 下饼图:
建设前经济收入构成比例
18.(12 分)如图,四边形 ABCD 为正方形, E, F 分别为 AD, BC 的中点,以 DF 为折痕把△DFC 折起,使点 C 到达点 P 的位置,且 PF BF . (1)证明:平面 PEF 平面 ABFD ; (2)求 DP 与平面 ABFD 所成角的正弦值.
2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷I )理科数学注意事项:1 •答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2 •回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1•设z 口2i,则|z|1 A • 0iB • 1C • 1D •222 •已知集合 A {x|x2x 20},则e R AA • {x| 1 x 2}B • {x| 1 w x w 2}C{x |x1} U{x|x2}D •{x|x w 1} U{x|x> 2}3•某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:連谀后经济收入构咸比制则下面结论中不正确的是A •新农村建设后,种植收入减少B •新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4•记S n 为等差数列{a n }的前n 项和.若3S 3 S 2 S 4, a i = 2,则=取值范围是点,此点取自I ,n,川的概率分别记为 p 1, p 2, P 3,则A . P 1 P 2B . P 1 P 3C . P 2P 3A .12 B .5.设函数f (x)切线方程为10 C . 10 x 3(a 1)x 2ax .若f(x)为奇函数,则曲线y f (x)在点(0,0)处的A . y 2x C . y 2x6. 在△ ABC 3 uu A . AB43 uuC . 3 AB 4AD 中, 1 uuu-AC 4 1 uuu AC4 为BC 边上的中线,E 为AD 的中点,则1 uu -AB 4 1 un AB 4 D . y x uir EB3 uuu 3 AC4 3 uuu -AC 4 7. 某圆柱的高为 2,底面周长为16,其三视图如右图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的 点N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到的路径中,最短路径的长度为A . 2.17 C . 3 &设抛物线C : y 2= 4x 的焦点为2F ,过点(-2,0)且斜率为2的直线与C 交于M , N3两点,则 uuir uuuFM ?FN9.已知函数f(x)xe , In x, x w 0,x 0,g(x)f(x)若g(x)存在2 个零点,则a 的A . [ 1,0)10 .下图来自古希腊数学家希波克拉底所研究的几何图形 半圆的直径分别为直角三角形B . [0,[1, [1,)所围成的区域记为I,黑色部分记为n,其余部分记为川.此图由三个半圆构成,三个ABC 的斜边BC ,直角边 AB , AC . △ ABC 的三边.在整个图形中随机取一RCD . P 1P 2 P 32x11.已知双曲线C: —- y2 = 1 , O为坐标原点,F为C的右焦点,过F的直线与C的3两条渐近线的交点分别为M , N.若A OMN为直角三角形,则|MN =3 -A. B. 3 C. 2、3 D. 4212•已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A.沁4B.2、3 3 2----- C .-------------------------3 4D.二2、填空题:本题共4小题, 每小题5分,共20分。
2018高考全国1卷理科数学试卷及答案
2018高考全国1卷理科数学试卷及答案2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设 $z=\frac{1-i+2i}{1+i}$,则 $z=$A.0B.1C.1/2D.22.已知集合 $A=\{x|x-x-2>0\}$,则 $C_R A=$A。
$\{x|-1<x<2\}$B。
$\{x|-1\leq x\leq 2\}$C。
$\{x|x2\}$D。
$\{x|x\leq -1\}\cup\{x|x\geq 2\}$3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记 $S_n$ 为等差数列 $\{a_n\}$ 的前 $n$ 项和,若$3S_3=S_2+S_4$,$a_1=2$,则 $a_5=$A。
$-12$B。
$-10$C。
10D。
125.设函数 $f(x)=x+(a-1)x+ax$,若 $f(-x)$ 为奇函数,则曲线 $y=f(x)$ 在点 $(3,32)$ 处的切线方程为A。
$y=-2x$B。
$y=-x$XXXD。
$y=x$6.在 $\triangle ABC$ 中,$AD$ 为 $BC$ 边上的中线,$E$ 为 $AD$ 的中点,则 $EB=\frac{1}{3}AB-\frac{1}{4}AC$A。
$\frac{3}{11}AB-\frac{8}{11}AC$B。
$\frac{4}{11}AB-\frac{7}{11}AC$C。
$\frac{7}{11}AB-\frac{4}{11}AC$D。
(完整)2018高考全国1卷理科数学试卷及答案,推荐文档
.
y0
14. 记 Sn 为数列 an的前 n 项和,若 Sn 2an 1,则 S6
.
15. 从 2 位女生,4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则不同的选法 共有
种.(用数字填写答案)
16. 已知函数 f x 2sin x sin 2x ,则 f x的最小值是
.
三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤。第 17--21 题为必考 题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。
C. 3 AB 1 AC 44
B. 1 AB 3 AC 44
D. 1 AB 3 AC 44
A 7.某圆柱的高为 2,地面周长为 16,其三视图如右图,圆柱表面
B
上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左
视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径
中,最短路径的长度为
(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检 验?
21.(12 分)
已知函数 f x 1 x a ln x .
x
(1) 讨论 f x的单调性;
(2) 若
绝密★启用前
2018 年普通高等学校招生全国统一考试
(全国一卷)理科数学
1、选择题,本题共 12 小题,每小题 5 份,在每小题给出的四个选项中,只有一项是符合
题目要求的1。i 1. 设 z 2i ,则 z
1 i 1 A.0 B. C.1 D. 2 2
2. 已知集合 A x | x2 x 2 0 ,则CR A
则下面结论中不正确的是 A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
2018新课标全国卷Ⅰ高考理科数学试卷含答案
2018新课标I 理一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设z =1-i 1+i+2i ,则|z |= A .0 B .12C .1D .2 【解析】因z =1-i 1+i+2i =-i +2i =i ,故|z |=1,故选C . 2.已知集合A ={x | x 2-x -2>0},则∁R A =A .{x | -1<x <2}B .{x | -1≤x ≤2}C .{x | x <-1或x >2}D .{x |x ≤-1或x ≥2}【解析】解不等式x 2-x -2>0得,x <-1或x >2,故A ={ x <-1或x >2},故可以求得∁R A ={x | -1≤x ≤2},故选B .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A . 新农村建设后,种植收入减少B . 新农村建设后,其他收入增加了一倍以上C . 新农村建设后,养殖收入增加了一倍D . 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解析】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,故种植收入增加了,故A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,故B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,故增加了一倍,故C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%+28%=58%>50%,故超过了经济收入的一半,故D 正确;故选A .4.记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=A . -12B . -10C . 10D . 12详解:法一 设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4,∴3⎝⎛⎭⎫3a 1+3×22d =2a 1+d +4a 1+4×32d ,解得d =-32a 1.∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 法二 设等差数列{a n }的公差为d ,∵3S 3=S 2+S 4,∴3S 3=S 3-a 3+S 3+a 4,∴S 3=a 4-a 3,∴3a 1+3×22d =d .∵a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 5.设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为A .y =-2xB .y =-xC .y =2xD .y =x【解析】因函数f (x )是奇函数,故a -1=0,解得a =1,故f (x )=x 3+x ,f ′(x )=3x 2+1,故f ′(0)=1,f (0)=0,故曲线y =f (x )在点(0,0)处的切线方程为y -f (0)=f ′(0)x ,化简可得y =x ,故选D .6.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=A .34AB →-14AC → B .14AB →-34AC → C .34AB →+14AC →D .14AB →+34AC → 【解析】根据向量的运算法则,可得BE →=12BA →+12BD →=12BA →+14BC →=12BA →+14(BA →+AC →)=12BA →+14BA →+14AC →=34BA →+14AC →,故EB →=34AB →-14AC →,故选A .7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D . 2【解析】根据圆柱的三视图以及其本身的特征,可以确定点M 和点N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,故所求的最短路径的长度为25,故选B .8.设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=A . 5B . 6C . 7D . 8【解析】过点(-2,0)且斜率为23的直线的方程为y =23(x +2),由⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,得x 2-5x +4=0,解得x =1或x =4,故⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4.不妨设M (1,2),N (4,4),易知F (1,0),故FM →=(0,2),FN →=(3,4),故FM →·FN →=8.9.已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( ) A .[-1,0) B .[0,+∞) C .[-1,+∞) D .[1,+∞)【解析】函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1.10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角△ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A . p 1=p 2B . p 1=p 3C . p 2=p 3D . p 1=p 2+p 3【解】不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,故区域Ⅰ的面积即△ABC 的面积,为S 1=12×2×2=2,区域Ⅲ的面积S 3=π×(2)22-S 1=π-2.区域Ⅱ的面积为S 2=π·⎝⎛⎭⎫222-S 3=2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2,故p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A .11.已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若ΔOMN 为直角三角形,则|MN |=A . 32B . 3C .2 3D . 4【解析】根据题意,可知其渐近线的斜率为±33,且右焦点为F (2,0),从而得到∠FON =30°,故直线MN 的倾斜角为60°或120°,根据双曲线的对称性,设其倾斜角为60°,可以得出直线MN 的方程为y =3(x -2),分别与两条渐近线y =33x 和y =-33x 联立,求得M (3,3),N (32,32),故|MN |=3,故选B .12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A .334B .233C .324D .32【解析】如图,依题意,平面α与棱BA ,BC ,BB 1所在直线所成角都相等,容易得到平面AB 1C 符合题意,进而所有平行于平面AB 1C 的平面均符合题意.由对称性,知过正方体ABCD -A 1B 1C 1D 1中心的平面面积应取最大值,此时截面为正六边形EFGHIJ .正六边形EFGHIJ 的边长为22,将该正六边形分成6个边长为22的正三角形.故其面积为6×34×(22)2=334. 二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试 理科数学 (新课标Ⅰ卷) 精校版
18.
答案:
(1)略;(2) .
解答:
(1) 分别为 的中点,则 ,∴ ,
又 , ,∴ 平面 ,
平面 ,∴平面 平面 .
(2) , ,∴ ,
又 , ,∴ 平面 ,∴ ,
设 ,则 , ,∴ ,
过 作 交 于 点,
由平面 平面 ,
∴ 平面 ,连结 ,
则 即为直线 与平面 所成的角,
A. B. C. D.
11.已知双曲线 , 为坐标原点, 为 的右焦点,过 的直线与 的两条渐近线的交点分别为 , .若 为直角三角形,则 ()
A. B.3C. D.4
12.已知正方体的棱长为1,每条棱所在直线与平面 所成的角都相等,则ห้องสมุดไป่ตู้截此正方体所得截面面积的最大值为()
A. B. C. D.
二、填空题(本题共4小题,每小题5分,共20分)
13.若 满足约束条件 ,则 的最大值为________.
14.记 为数列 的前 项和.若 ,则 ________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)
16.已知函数 ,则 的最小值是________.
三、解答题(共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。)
A.5B.6C.7D.8
9.已知函数 , ,若 存在2个零点,则 的取值范围是()
A. B. C. D.
10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形 的斜边 ,直角边 , , 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 , , ,则()
2018年普通高等学校招生全国统一考试(全国新课标Ⅰ卷) 理科数学试题及详解
2018年普通高等学校招生全国统一考试(全国新课标1卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则() A . B . C . D1.答案:C解答:121i z i i i-=+=+,∴1z =,∴选C.2.已知集合,则()A .B .C .D .2.答案:B解答:{|2A x x =>或1}x <-,则{|12}R CA x x =-≤≤.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是() A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.答案:A解答:假设建设前收入为a ,则建设后收入为2a ,所以种植收入在新农村建设前为60%a ,新农村建设后为37%2a ⋅;其他收入在新农村建设前为4%a ⋅,新农1i2i 1i z -=++||z =0121{}220A x x x =-->A =R ð{}12x x -<<{}12x x -≤≤}{}{|1|2x x x x <->}{}{|1|2x x x x ≤-≥村建设后为5%2a ⋅,养殖收入在新农村建设前为30%a ⋅,新农村建设后为30%2a ⋅故不正确的是A.4.记为等差数列的前项和.若,,则() A . B . C . D .4.答案:B 解答: 11111132433(3)24996732022a d a d a d a d a d a d ⨯⨯+⨯=+++⨯⇒+=+⇒+=6203d d ⇒+=⇒=-,∴51424(3)10a a d =+=+⨯-=-.5.设函数.若为奇函数,则曲线在点处的切线方程为A .B .C .D .5.答案:D解答:∵()f x 为奇函数,∴()()f x f x -=-,即1a =,∴3()f x x x =+,∴'(0)1f =,∴切线方程为:y x =,∴选D.6.在中,为边上的中线,为的中点,则()A .B .C .D . 6.答案:A解答:11131()22244EB AB AE AB AD AB AB AC AB AC =-=-=-⋅+=-.7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A .B .C .3D .27.答案:B解答:三视图还原几何体为一圆柱,如图,将侧面展开,最短路径为,M N 连线的距离,所以MN == B.n S {}n a n 3243S S S =+12a ==5a 12-10-101232()(1)f x x a x ax =+-+()f x ()y f x =(0,0)2y x =-y x =-2y x =y x =ABC △AD BC E AD EB =3144AB AC -1344AB AC -3144AB AC +1344AB AC +M A N B MN 172528.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=() A .5 B .6C .7D .88.答案:D解答:由题意知直线MN 的方程为2(2)3y x =+,设1122(,),(,)M x y N x y ,与抛物线方程联立有22(2)34y x y x⎧=+⎪⎨⎪=⎩,可得1112x y =⎧⎨=⎩或2244x y =⎧⎨=⎩,∴(0,2),(3,4)FM FN ==,∴03248FM FN ⋅=⨯+⨯=.9.已知函数.若g (x )存在2个零点,则a 的取值范围是()A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)9.答案:C解答:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如下:要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,∴选C.10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则()A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 310.答案:A解答:取2AB AC ==,则BC =23FM FN ⋅e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++ABC△∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-,区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.11.已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若为直角三角形,则|MN |=()A .B .3C .D .411.答案:B解答:渐近线方程为:2203x y -=,即3y x =±,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴NM k =MN方程为2)y x =-.联立2)y x y x ⎧=⎪⎨⎪=-⎩∴3(,2N,即ON =,∴3MON π∠=,∴3MN =, 故选B.12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()ABC12.答案:A解答:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN 的面积162S ==. 2213x y -=OMN △32二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试 理科数学 (新课标Ⅰ卷) 精编精校版
好教育云平台 高考真题精编版 第1页(共10页)好教育云平台 高考真题精编版 第2页(共10页) 2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷) 理 科 数 学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121i z i i -=++,则z =( ) A .0 B .12 C .1 D2.已知集合{}2|20A x x x =-->,则A =R ð( ) A .{}|12x x -<< B .{}|12x x -≤≤ C .{}{}|1|2x x x x <-> D .{}{}|1|2x x x x -≤≥ 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12- B .10- C .10 D .12 5.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =- B .y x =- C .2y x = D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点 M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A. B .25 C .3 D .2 8.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .8 9.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-, B .[)0+∞, C .[)1-+∞, D .[)1+∞, 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( ) A .12p p = B .13p p = C .23p p = D .123p p p =+ 此卷只装订不密封 班级姓名准考证号考场号座位号好教育云平台 高考真题精编版 第3页(共10页)好教育云平台 高考真题精编版 第4页(共10页) 11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( )A .32 B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )ABCD二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
2018年全国统一高考数学试卷及全解析(理科)(新课标Ⅰ)
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国1卷理科数学试题及答案详细解析word版精校版
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
2018年新课标全国Ⅰ卷理科数学试题 精品
绝密★启用前2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N= ()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)错误!未找到引用源。
(B)- 错误!未找到引用源。
(C)错误!未找到引用源。
(D)- 错误!未找到引用源。
(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A)1+ 错误!未找到引用源。
+ 错误!未找到引用源。
+…+ 错误!未找到引用源。
(B )1+ 错误!未找到引用源。
+ 错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2018年普通高等学校招生全国统
一考试(新课标Ⅰ卷)
数学(理科)
注意事项:
1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共50分)
一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小
题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N= ()
(A){0,1,2}(B){-1,0,1,2}
(C){-1,0,2,3} (D){0,1,2,3}
(2)设复数z满足(1-i)z=2 i,则z= ()
(A)-1+i (B)-1-i (C)1+i (D)1-i
(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()
(A)错误!未找到引用源。
(B)- 错误!未找到引用源。
(C)错误!未找到引用源。
(D)- 错误!未找到引用源。
(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。
直线l满足l ⊥m,l ⊥n,lβ,则()
(A)α∥β且l ∥α(B)α⊥β且l⊥β
(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l
(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=
(A)-4 (B)-3 (C)-2 (D)-1
(6)执行右面的程序框图,如果输入的N=10,那么输出
的s=
(A)1+ 错误!未找到引用源。
+ 错误!未找到引用源。
+…+ 错误!未找到引用源。
(B )1+ 错误!未找到引用源。
+ 错误!未找到引用源。
+…+ 错误!未找到引用源。
(C )1+ 错误!未找到引用源。
+ 错误!未找到引用源。
+…+ 错误!未找到引用源。
(D )1+ 错误!未找到引用源。
+ 错误!未找到引用源。
+…+ 错误!未找到引用源。
(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为
(A) (B) (C) (D)
(8)设ɑ=log 36,b=log 510,c=log 714,则 (A )c >b >a (B )b >c >a (C )a >c >b (D)a >b >c
(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的
最小值为1,则a=
x ≥1,
x+y ≤3,
y ≥a(x-3)
.
{
(A) 错误!未找到引用源。
(B) 错误!未找到引用源。
(C)1 (D)2
(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A)∑xα∈Rf(xα)=0
(B)函数y=f(x)的图像是中心对称图形
(C)若xα是f(x)的极小值点,则f(x)在区间(-∞,xα)单调递减
(D)若xn是f(x)的极值点,则f1(xα)=0
(11)设抛物线y2=3px(p≥0)的焦点为F,点M在C上,|MF|=5若以MF为直径的园过点(0,3),则C的方程为
(A)y2=4x或y2=8x (B)y2=2x或y2=8x
(C)y2=4x或y2=16x (D)y2=2x或y2=16x
(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是
(A)(0,1)(B)(1-错误!未找到引用源。
,1/2)( C)(1-错误!未找到引用源。
,1/3)(D)[ 1/3, 1/2)
第Ⅱ卷
本卷包括必考题和选考题,每个试题考生都必修作答。
第22题~第24题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
(13)已知正方形ABCD的边长为2,E为CD的中点,则
=_______.
(14)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为错误!未找到引用源。
,则n=________. (15)设θ为第二象限角,若tan(θ+错误!未找到引用源。
)= ,则sinθ+conθ=_________.
(16)等差数列{a n}的前n项和为S n ,已知S10=0,S15=25,则nS n 的最小值为________.
三.解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB。
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面积的最大值。
(18)如图,直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=错误!未找到引用源。
/2AB。
(Ⅰ)证明:BC1//平面A1CD1
(Ⅱ)求二面角D-A1C-E的正弦值
(19)(本小题满分12分)
经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,没1t亏损300元。
根据历史资料,得到销售季度内市场需求量的频率分布直方图,如有图所示。
经销商为下一个销售季度购进了130t该农产品。
以x(单位:t,100≤x≤15 0)表示下一个销售季度内经销该农产品的利润。
(Ⅰ)将T表示为x的函数
(Ⅱ)根据直方图的需求量分组中,以各组的区间中点值代表改组的各个值求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x)则取x=105,且x=105的概率等于需求量落入[100,110]的T的数学期望。
(20)(本小题满分12分)
平面直角坐标系xOy中,过椭圆M:x2/a2+y2/b2=1(a>b>0)右焦点y-错误!未找到引用源。
=0交m,f ,A,B两点,P为Ab的中点,且OP 的斜率为1/2
(Ι)求M的方程
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形的最大值
(21)(本小题满分12分)
已知函数f(x)=ex-ln(x+m)
(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(Ⅱ)当m≤2时,证明f(x)>0
请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,做答时请写清题号。
(22)(本小题满分10分)选修4-1几何证明选讲
如图,CD为△ABC外接圆的切线,AB的延长线教直线CD
于点D,E、F分别为弦AB与弦AC上的点,
且BC-AE=DC-AF,B、E、F、C四点共圆。
(1)证明:CA是△ABC外接圆的直径;
(2)若DB=BE=EA,求过B、E、F、C四点的圆
的面积与△ABC外接圆面积的比值。
(23)(本小题满分10分)选修4——4;坐标系与参数方程
已知动点p,Q都在曲线c
x=2cosβ(β为参数)上,对应参数分别为β
=α
y=2sinβ
与α=2πM为(①<α<2π)M为PQ的中点。
(Ⅰ)求M的轨迹的参数方程
(Ⅱ)将M到坐标原点的距离d表示为a的函数,并判断M的轨迹是否过坐标原点。
(24)(本小题满分10分)选修4——5;不等式选讲设a,b,c均为正数,且a+b+c=Ⅱ,证明:
(Ⅰ)ab+bc+ac小于等于1/3
(Ⅱ)a2/a-b2/b-c/c2≥1。