概率论与数理统计2.第二章练习题(答案)
概率论与数理统计第二章习题参考答案]
(1)设
X
服从二项分布,其分布律为 P{X
=
k}=
C
k n
pk (1−
)p n−k
K=0,1,2,……n,问 K 取何值时 P{X = k}最大?
(2)设 X 服从泊松分布,其分布率为 p{X = k} = λke−λ ,k=0,1,2……
k!
问 K 取何值时 P{X = k}最大?
(1)
解: M
=
N 试确定常数 a
(2)设随机变量 X 的分布律为 P{X = k} = b ⋅ ⎜⎛ 2 ⎟⎞k , k = 1,2.....
⎝3⎠
试确定常数 b
(3)设随机变量 X 的分布律为 P{X = k} = c ⋅ λk , k = 0,1,2......λ > 0 为常数,
k!
试确定常数 c
N
解:(1) ∑ P{X
6、设随机变量 X 的分布律为 P{X = k} = k , k = 1,2,3,4,5
15
其分布函数为 F (x) ,试求:
(1)
P⎨⎧ ⎩
1 2
<
X
<
5 2
⎫ ⎬ ⎭
,
(2) P{1 ≤ X ≤ 2},
(3) F ⎜⎛ 1 ⎟⎞ ⎝5⎠
解:(1)
P⎨⎧ ⎩
1 2
<
X
<
5⎫
2
⎬ ⎭
=
P{X
= 1}+
0
2
1
x
xdx+
0
1
(2−
x)dx=
2x
−
x2
/
2−1
0< x ≤1 1< x≤2
概率论与数理统计练习册答案
概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。
概率论与数理统计练习册-第二章答案
第二章 随机变量及其分布基础训练Ⅰ一、选择题1、下列表中( A )可以作为离散型随机变量的分布律。
A) X 1 -1 0 1 B) X 2 0 1 2P 1/4 1/2 1/4 P -1/4 3/4 1/2C) X 3 0 1 2 D) X 4 1 2 1P 1/5 2/5 3/5 P 1/4 1/4 1/2 2、常数b =( B )时,),2,1()1( =+=k k k bp k 为离散型随机变量的概率分布。
A )2B )1C )1/2D )33、设⎪⎩⎪⎨⎧≥<<≤=1,110,2/0,0)(x x x x x F ,则( D )A )是随机变量的密度函数 B) 不是随机变量的分布函数 C )是离散型随机变量的分布函数 D )是连续型随机变量的分布函数4、设)(1x F 和)(2x F 分别为随机变量21,X X 的分布函数,为使)()()(21x bF x aF x F -=是某一随机变量的分布函数,在下列给定的各组数值中应取( A )A )a =3/5,b =-2/5 B) a =2/3,b =2/3 C )a =-1/2,b =3/2 D )a =1/2,b =-3/25、设随机变量),(~2σμN X ,且}{}{c X P c X P >=≤,则=c ( B )A) 0 B)μ C) μ- D) σ二、填空题1、连续型随机变量取任何给定值的概率为 0 。
2、设离散型随机变量X 分布律为⎪⎪⎭⎫⎝⎛5.03.02.0210,则P (X ≤1.5) = 0.5 。
3、设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x Ax x x F ,则A = 1 ,X 落在(-1,1/2)内的概率为 1 / 4 。
4、设K 在(0, 5)上服从均匀分布,则方程02442=+++K Kx x 有实根的概率为0.6 。
5、随机变量X 的分布函数)(x F 是事件}{x X ≤的概率。
概率论与数理统计2.第二章练习题(答案)
第二章练习题(答案)一、单项选择题1.已知连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=ππx x b kx x x F ,10,0,0)( 则常数k 和b 分别为 ( A )(A )0,1==b k π (B )π1,0b k = (C )0,21==b k π (D )π21,0==b k . 2.下列函数哪个是某随机变量的分布函数 ( A )A. f (x )={xa e −x 22a,x ≥01, x <0(a >0); B. f (x )={12cosx, 0< x <π0, 其他C. f (x )={cosx, −π2< x <π20, 其他D. f (x )={sinx, −π2< x <π20, 其他3.若函数()f x 是某随机变量X 的概率密度函数,则一定成立的是 ( C ) A. ()f x 的定义域是[0,1] B. ()f x 的值域为[0,1] C. ()f x 非负 D. ()f x 在(,)-∞+∞内连续4. 设)1,1(~N X ,密度函数为)(x f ,则有( C ) A.{}{}00>=≤X P X P B. )()(x f x f -= C. {}{}11>=≤X P X P D. )(1)(x F x F --=5. 设随机变量()16,~μN X ,()25,~μN Y ,记()41-<=μX P p ,()52+>=μY P p ,则正确的是 ( A ).(A )对任意μ,均有21p p = (B )对任意μ,均有21p p < (C )对任意μ,均有21p p > (D )只对μ的个别值有21p p = 6. 设随机变量2~(10,)X N ,则随着的增加{10}P X ( C )A.递增B.递减C.不变D.不能确定7.设F 1(x )与F 2(x )分别为随机变量X 1、X 2的分布函数,为使F (x )=aF 1(x )-bF 2(x )是某一随机变量的分布函数,在下列给定的多组数值中应取 ( A )A . a =53, b =52-; B . a =32, b =32;C . 21-=a , 23=b ; D . 21=a , 23-=b .8.设X 1与X 2是任意两个相互独立的连续型随机变量,它们的概率密度函数分别为f 1(x )和f 2(x ),分布函数分别为F 1(x )和F 2(x ),则 ( D ) (A) f 1(x )+f 2(x ) 必为某个随机变量的概率密度; (B )f 1(x )•f 2(x ) 必为某个随机变量的概率密度; (C )F 1(x )+F 2(x ) 必为某个随机变量的分布函数; (D) F 1(x ) •F 2(x ) 必为某个随机变量的分布函数。
《概率论与数理统计》习题及答案 第二章
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论与数理统计习题解答(第2章)
概率论与数理统计习题解答(第2章)习 题 二(A )三、解答题1.一颗骰子抛两次,以X 表示两次中所得的最小点数(1) 试求X 的分布律; (2) 写出X 的分布函数.解: (1)分析:这里的概率均为古典概型下的概率,所有可能性结果共36种,如果X=1,则表明两次中至少有一点数为1,其余一个1至6点均可,共有1-612⨯C(这里12C 指任选某次点数为1,6为另一次有6种结果均可取,减1即减去两次均为1的情形,因为612⨯C 多算了一次)或1512+⨯C 种,故2{}36113615361-611212=+⨯=⨯==C C X P ,其他结果类似可得.(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤=+=+=+=+=<≤=+=+=+=<≤=+=+=<≤=+=<≤=<=6165}5{}4{}3{}2{}1{54 }4{}3{}2{}1{43 }3{}2{}1{32}2{}1{21}1{1 0 )(x x X P X P X P X P X P x X P X P X P X P x X P X P X P x X P X P x X P x x F ,,,,,,,⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=6 165363554 363243 36273236202136111 0 x x x x x x x ,,,,,,, 2.某种抽奖活动规则是这样的:袋中放红色球及白色球各5只,抽奖者交纳一元钱后得到一次抽奖的机会,然后从袋中一次取出5只球,若5只球同色,则获奖100元,否则无奖,以X 表示某抽奖者在一次抽取中净赢钱数,求X 的分布律.3解:注意,这里X 指的是赢钱数,X 取0-1或100-1,显然{}1261299510===C X P .3.设随机变量X 的分布律为;,2,1,0,!}{>===λλ k k ak X P k为常数,试求常数a .解:因为1!0==-∞=∑λλaek ak k,所以λ-=e a .4.设随机变量X 的分布律为(1) 求X 的分布函数;(2) 求}21{≤X P ,}2523{≤<X P ,}32{≤≤x P . 解: (1)⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤-<=⎪⎪⎩⎪⎪⎨⎧≥<≤=+-=<≤--=<=3x 132432141-1x 03x 132}2{}1{21}1{-1x 0)(,,,,,,,,x x x X P X P x X P x f ,4(2) {}41121=-==⎭⎬⎫⎩⎨⎧≤X p X P 、 {}2122523===⎭⎬⎫⎩⎨⎧≤<X P X P , {}{}{}{}{}{}43323232==+=====≤≤X P X P X X P X P .5.设随机变量X 的分布律为 ,2,1,21}{===k k X P k求: (1) P {X = 偶数} (2) P {X ≥ 5} (3) P {X = 3的倍数} 解:(1) {}3121121121lim 212121222242=⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=++++==∞→i i iX P 偶数,(2) {}{}16116151415=-=≤-=≥X P X P , (3) {}7121121121lim 21333313=-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-===∞→∞=∑i i i i X P 的倍数.6. 某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为0.5t 的泊松分布,而与时间间隔的起点无关(时间以小时计) (1) 求某一天中午12时至下午3时没有收到紧急呼救的概率.(2) 求某一天中午12时至下午5时至少收到5一次紧急呼救的概率. 解:(1) ()()5.15.0~P t P X = {}5.10-==e X P .(2) 5.25.0=t {}{}5.21011--==-=≥e x P x P .7. 某人进行射击,每次射击的命中率为0.02,独立射击400次,试求至少击中2次的概率.解:设射击的次数为X ,由题意知().20400~,B X , {}{},98.002.0111240010400k k k kC X P X P -=∑-=≤-=≥9972.028.01!81810=-=-≈-=∑e k k K ,其中8=400×0.02.8. 设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号.现进行5次独立试验,试求指示灯发出信号的概率. 解:设X 为事件A 在5次独立重复实验中出现的次数,().305~,B X 则指示灯发出信号的概率{}{})7.03.07.03.07.03.0(131********55005C C C X P X P p ++-=<-=≥=1631.08369.01=-=.9. 设顾客在某银行窗口等待服务的时间X (以分钟计)服从参数为5指数分布.某顾客在6窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥ 1}. 解:因为X 服从参数为5的指数分布,则51)(xex F --=,{}2)10(110-=-=>e F X P ,()25~-e B Y ,,则50,1,k ,)1()(}{5225=-==---k k k e e Ck Y P .0.516711}0{-1}1{52=--===≥-)(e Y P Y P10.设随机变量X的概率密度为⎪⎩⎪⎨⎧>≤=2||,02||,cos )(ππx x x a x f ,试求:(1) 系数a ;(2) X 落在区间)4,0(π内的概率. 解:(1) 由归一性知:⎰⎰-∞+∞-===222cos )(1ππaxdx a dx x f ,所以21=a . (2) .42|sin 21cos 21}40{404===<<⎰πππx xdx X P . 11.设连续随机变量X的分布函数为7⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x Ax x x F试求:(1) 系数A ;(2) X 落在区间(0.3,0.7)内的概率;(3) X 的概率密度.解 (1)由F (x )在x =1的连续性可得)1()(lim )(lim 11F x F x F x x ==-→+→,即A=1.(2){}=<<7.03.0X P 4.0)3.0()7.0(=-F F .(3)X 的概率密度⎩⎨⎧<<='=,010,2)()(x x x F x f .12.设随机变量X 服从(0,5)上的均匀分布,求x 的方程02442=+++X Xx x有实根的概率.解:因为X 服从(0,5)上的均匀分布,所以⎪⎩⎪⎨⎧<<=其他05051)(x x f若方程24422=+++X Xx x 有实根,则3216)4(2≥--=∆X X ,即12-≤≥X X ,所以有实根的概率为{}{}53510511252152==+=-≤+≥=⎰⎰-∞-x dx dx X P X P p813.设X ~N (3,4)(1) 求};3{},2{},104{},52{>>≤<-≤<X P X P X P X P (2) 确定c 使得};{}{c X P c X P ≤=>(3) 设d 满足9.0}{≥>d X P ,问d 至多为多少?解: (1) 因为4)(3~,N X 所以 )2()5(}52{F F X P -=≤<5328.016915.08413.01)5.0()1(=-+=-Φ-Φ={})4()10(104--=≤<-F F X P9996.019998.021)5.3(21)5.3()5.3(=-⨯=-Φ=--Φ-Φ={}{}212≤-=>X P X P {}221≤≤--=X P[])2()2(1---=F F [])5.2()5.0(1-Φ--Φ-=[])5.0()5.2(1Φ-Φ-=3023.01-=6977.0={}{}313≤-=>X P X P )3(1F -=)0(1Φ-=5.01-=5.0=. (2){}{}c X P c X P ≤-=>1,则{}21=≤c X P 21)23()(=-Φ==c c F ,经查表得21)0(=Φ,即023=-c ,得3=c ;由概率密度关于9x=3对称也容易看出。
概率论与数理统计统计课后习题答案(有过程)
概率论与数理统计统计课后习题答案(有过程)第一章习题解答1.解:(1)Ω={0,1,…,10};(2)Ω={,1,…,100n},其中n为小班人数;n(3)Ω={√,×√, ××√, ×××√,…},其中√表示击中,×表示未击中;(4)Ω={(x,y)}。
2.解:(1)事件AB表示该生是三年级男生,但不是运动员;(2)当全学院运动员都是三年级学生时,关系式是正确的;(3)全学院运动员都是三年级的男生,ABC=C成立;(4)当全学院女生都在三年级并且三年级学生都是女生时,=B成立。
3.解:(1)ABC;(2)AB;(3);(4);(5);(6)4.解:因,则P(ABC)≤P(AB)可知P(ABC)=0 所以A、B、C至少有一个发生的概率为P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=3×1/4-1/8+0 =5/85.解:(1)P(A∪B)= P(A)+P(B)-P(AB)=0.3+0.8-0.2=0.9 P(A)=P(A)-P(AB)=0.3-0.2=0.1(2)因为P(A∪B)= P(A)+P(B)-P(AB)≤P(A)+P(B)=α+β, 所以最大值maxP (A∪B)=min(α+β,1);又P(A)≤P(A∪B),P(B)≤P(A∪B),故最小值min P(A∪B)=max(α,β)6.解:设A表示事件“最小号码为5”,B表示事件“最大号码为5”。
223由题设可知样本点总数,。
2C52C411所以;7.解:设A表示事件“甲、乙两人相邻”,若n个人随机排成一列,则样本点总数为n!,, 1若n个人随机排成一圈.可将甲任意固定在某个位置,再考虑乙的位置。
表示按逆时针方向乙在甲的第i个位置,。
则样本空间,事件所以8.解:设A表示事件“偶遇一辆小汽车,其牌照号码中有数8”,则其对立事件A表示“偶遇一辆小汽车,其牌照号码中没有数8”,即号码中每一位都可从除8以外的其他9个数中取,因此A包含的基本事件数为,样本点总数为104。
概率论与数理统计(茆诗松)第二版课后第二章习题参考答案
(2)Y 的全部可能取值为 0, 1, 2, 3, 4, 5,
且 P{Y
= 0} =
6 62
=
6 36
, P{Y
= 1} =
5×2 62
=
10 36
,
P{Y
=
2}
=
4×2 62
=
8 36
,
P{Y
=
3}
=
3× 2 62
=
6 36
,
1
P{Y
=
4}
=
2×2 62
=
4 36
,
P{Y
=
5}
=
1× 2 62
=
⎟⎞ ⎠
3
× ⎜⎛ ⎝
5 ⎟⎞1 6⎠
=
20 1296
,
P{X
=
4} =
⎜⎜⎝⎛
4 4
⎟⎟⎠⎞
×
⎜⎛ ⎝
1 6
⎟⎞ ⎠
4
× ⎜⎛ ⎝
5 ⎟⎞0 6⎠
=
1 1296
,
故 X 的概率分布列为
X0 1 2 3 4 P 625 500 150 20 1 .
1296 1296 1296 1296 1296
6. 从一副 52 张的扑克牌中任取 5 张,求其中黑桃张数的概率分布. 解:设 X 表示黑桃张数,有 X 的全部可能取值为 0, 1, 2, 3, 4, 5,
2 36
,
故 Y 的分布列为
Y0 1 2 3 4 5 P 6 10 8 6 4 2 .
36 36 36 36 36 36
3. 口袋中有 7 个白球、3 个黑球. (1)每次从中任取一个不放回,求首次取出白球的取球次数 X 的概率分布列; (2)如果取出的是黑球则不放回,而另外放入一个白球,此时 X 的概率分布列如何.
《概率论与数理统计》第二章习题解答
第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为 投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:0,概率为所以2、一袋中有5只乒乓球,编号为1、2X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1)(1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = k -k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计习题及答案-第二章
k0 k !
(2) P(保险公司获利不少于 10000)
P(30000 2000X 10000) P(X 10)
10 e5 5k
0.986305
k0 k !
即保险公司获利不少于 10000 元的概率在 98%以上
5
分别为随机变量 X,Y 的概率分布,如果已知 P{X≥1}= ,试求 P{Y≥1}.
9
5
4
【解】因为 P( X 1) ,故 P( X 1) .
9
9
而
P( X 1) P(X 0) (1 p)2
故得
(1 p)2 4 ,
9
1
即
p .
3
从而
P(Y 1) 1 P(Y 0) 1 (1 p)4 65 0.80247
3 0.512
4.(1) 设随机变量 X 的分布律为
2
k P{X=k}= a ,
k!
其中 k=0,1,2,…,λ>0 为常数,试确定常数 a. (2) 设随机变量 X 的分布律为
P{X=k}=a/N, k=1,2,…,N, 试确定常数 a. 【解】(1) 由分布律的性质知
1
P( X
习题二
1.一袋中有 5 只乒乓球,编号为 1,2,3,4,5,在其中同时取 3 只,以 X 表示取出的 3 只
球中的最大号码,写出随机变量 X 的分布律.
【解】
X 3, 4, 5
故所求分布律为
1 P( X 3) 0.1
C35 3 P( X 4) 0.3 C35 P( X 5) C24 0.6 C35
概率论与数理统计-第二章习题附答案
概率论与数理统计-第二章习题附答案习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生.写出随机变量X 的分布律. 解X0 1P1-p p2. 已知随机变量X 只能取-1,0,1,2四个值,且取这四个值的相应概率依次为c c c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P .解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =.所求概率为P {X <1| X≠}=258167852121}0{}1{=++=≠-=cc c c X P X P .3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布, 若{P X ≥51}9=, 求{P Y ≥1}. 解 注意p{x=k}=kk n knC p q -,由题设5{9P X =≥21}1{0}1,P X q =-==- 故213q p =-=. 从而{P Y≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率.解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解 由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 X 的分布律是X3 4 5 P 110 31035 习题2-3X -1 01P0.15 0.200.65求分布函数F (x ), 并计算概率P {X <0}, P {X <2},P {-2≤X <1}.解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1;(4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩(2){11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+- 11111().24242ππππ=+⋅---= 3. 设随机变量X 的分布函数为F (x )=0, 0, 01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.习题2-41. 选择题(1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩如果c =( ), 则()f x 是某一随机变量的概率密度函数.(A) 13. (B) 12. (C) 1. (D) 32. 本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1. 本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C)22()2,0,()20,0.≥x x f x x μσπσ--=<⎧⎪⎨⎪⎩ (D)e ,0,()0,0.≥x x f x x -=<⎧⎨⎩本题应选(D).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-< 则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1<μ2. (D) μ1 >μ2.答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u . (C) 1-2u α.(D)α-1u .答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成立, 应当怎样选择数k ? 解X 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k kP k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解 由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是34d 0.5ax x =⎰, 因此42a =. 4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 由()()F x f x '=得2,01,()0,其它.x x f x <<⎧=⎨⎩(2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )= 2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤12}与P {14X <≤2}. 解{P X≤12201112d 2240}x x x ===⎰; 1{4P X <≤12141152}2d 1164x x x ===⎰.6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得1222011201111d ()d []122x x A x x x Ax x A =+-=+-=-⎰⎰, 于是 2A =; (2) 由公式()()d x F x f x x -∞=⎰可得(过程简略)220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率. 解 2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=.8. 设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解 若方程有实根, 则 21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{22}P X =--<<21d 5x =-215=-10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解 因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--, 于是22()10.3Φσ-=, 从而2()0.65Φσ=. 所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=.习题2-52. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度.解 若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++ 这里1,2μσ==所以Z ~(5,8)N .概率密度为()f z =2(5)16,4x x π---∞<<+∞. 3. 已知随机变量X 的分布律为X-1137P 0.37 0.05 0.2 0.13 0.25(1) 求Y =2-X 的分布律; (2) 求Y =3+X 2分布律.解 (1)2-X-5 -1 1 2 3P 0.25 0.13 0.2 0.05 0.37 (2) 3+X 23 4 12 52P 0.05 0.57 0.13 0.254. 已知随机变量X 的概率密度为()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解 )(y F Y={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x--∞⎰. 于是可得Y 的概率密度为121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解 因为对于0<y <4,(){Y F y P Y=≤2}{y P X =≤}{y P y =-X y ()()XX F y F y =--.于是随机变量2Y X =的概率密度函数为()Y f y ()22X X f y f y yy=-0 4.4y y=<< 即 ()04,40,.其它f y y y=<<⎩。
概率论与数理统计第二章课后习题及参考答案
x 0, 0, 2 2x x F ( x ) 2 ,0 x a , . a a x a. 1, a a 1 1 (3) P ( X a ) F (a ) F ( ) 1 (1 ) . 2 2 4 4
12.设随机变量 X 在 [2,6] 上服从均匀分布,现对 X 进行三次独立观察,试求至 少有两次观测值大于 3 的概率. 解:由题意知
1 ,2 x 6, f ( x) 4 , 0, 其他.
记 A { X 3} ,则
P ( A) P ( X 3)
6
3
3 设 Y 为对 X 进行三次独立观测事件 { X 3} 出现的次数,则 Y ~ B (3, ) , 4
1 3 dx , 4 4
6.抛掷一枚不均匀的硬币,正面出现的概率为 p , 0 p 1 ,以 X 表示直至两 个面都出现时的试验次数,求 X 的分布律. 解: X 所有可能的取值为 2,3,…, 设 A { k 次试验中出现 k 1 次正面,1 次反面},
B { k 次试验中出现 k 1 次反面,1 次正面},
3.设离散型随机变量 X 的分布律为
X P 1 0 .2 1 0 .5 2 0 .3
1
1 求:(1) X 的分布函数;(2) P ( X ) ;(3) P (1 X 3) . 2
概率论与数理统计习题及答案第二章.doc
习题 2-21. 设 A 为任一随机事件 , 且 P ( A )= p (0< p <1). 定义随机变量1, 发生 ,XA0, 不发生 .A写出随机变量 X 的分布律 .解 { =1}= ,{ =0}=1- p .P X p P X或者X 0 1P1- pp2. 已知随机变量X 只能取 -1,0,1,2 四个值 , 且取这四个值的相应概率依次为1 , 3 , 5 , 7. 试确定常数 c ,并计算条件概率 P{ X1 | X0} .2c 4c 8c 16c解 由离散型随机变量的分布律的性质知,1 3 571,2c4c8c 16c37所以 c .161P{ X1}8所求概率为{ <1|X0 }=2c.P XP{ X 0}1 5 7252c 8c 16c3. 设随机变量 X 服从参数为 2, p 的二项分布 , 随机变量 Y 服从参数为 3, p 的二项分布 ,若P{X ≥1}5, 求P{Y ≥1}.9解 注意 p{x=k}=C n k p k q n k , 由题设 5P{ X ≥1}1 P{ X0} 1 q 2 ,9故 q1 p2 从而.3P{Y ≥1} 1 P{ Y 0}1 (2 )3 19 .3 274. 在三次独立 的重复试验中 , 每次试验成功的概率相同 , 已知至少成功一次的概率19为, 求每次试验成功的概率 .27解设每次试验成功的概率为p , 由题意知至少成功一次的概率是19,那么一次都27没有成功的概率是8 . 即 (1 p)38 ,故p = 1 .272735. 若 X 服从参数为的泊松分布 ,且P{X1} P{ X 3}, 求参数 .解 由泊松分布的分布律可知 6 .6. 一袋中装有 5 只球 , 编号为 1,2,3,4,5.在袋中同时取 3 只球, 以 X 表示取出的 3 只球中的最大号码 , 写出随机变量 X 的分布律 .解 从 1,2,3,4,5 中随机取 3 个,以 X 表示 3 个数中的最大值, X 的可能取值是 3,4,5,在 5 个数中取 3 个共有C 5310 种取法 .{ =3} 表示取出的 3 个数以 3 为最大值, P{=3}=C 22= 1;C 53 10{ =4} 表示取出的 3 个数以 4 为最大值, P{=4}=C 323 ;C 53 10 { =5} 表示取出的 3 个数以 5 为最大值, P{=5}=C 423 .5 C 53X 的分布律是X 3 45P13310105习题 2-31. 设 X 的分布律为X -11P求分布函数( ), 并计算概率 { <0},{ <2},{-2 ≤ <1}.F xPXPXPX0, x 1, 解 (1)0.15, 1≤ x 0,F ( x )=0≤ x 1,0.35, 1,x ≥1.(2) P { X <0}= P { X =-1}=; (3) P { X <2}= P { X =-1}+ P { X =0}+P { X =1}=1; (4) P {-2 ≤ x <1}= P { X =-1}+ P { X =0}=.2. 设随机变量 X 的分布 函数为( ) = + arctan x - ∞< <+∞.F xA Bx试求 : (1) 常数 A 与 B ; (2)X 落在 (-1, 1] 内的概率 .解 (1) 由于 (- ∞)=0,(+∞)=1, 可知F FA B()1 12A, B.A B( )122于是F ( x) 1 1arctan x, x .2(2) P{ 1X ≤1} F (1) F ( 1)1 1 1 1arctan( 1))( arctan1) (2 21 1 1 1 () 1 .2424 23. 设随机变量 X 的分布函数为F ( x )=0,x 0, x,0≤x 1,1,x ≥1,求 P { X ≤ -1}, P { < X <}, P {0< X ≤ 2}.解 P {X ≤ 1} F( 1) 0,P {< X <}= F - F {}- P { X =}=, P {0< X ≤2}= F (2)- F (0)=1.5.X 的绝对值不大于1;P{ X1}1 1}1 假设随机变量 ,P{X; 在事件{ 1 X 1} 出现的条件下 ,84X 在 (-1,1) 内任一子区间上取值的条件概率与该区间的长度成正比 . (1) 求 X 的分布函数 F ( x) P{ X ≤ x }; (2)求 X 取负值的概率 p .解 (1) 由条件可知 ,当 x1时,F ( x) 0 ;当 x 1 时 , F ( 1) 1;当 x 1时 , 8F (1)= P { X ≤ 1}= P ( S )=1.所以P{ 1 X1} F (1) F ( 1)P{X 1}1 1 514.88易见 , 在 X 的值属于 (1,1) 的条件下 , 事件 { 1 X x} 的条件概率为P{ 1 X ≤ x | 1X 1} k[ x( 1)],取 x =1 得到 1= k (1+1),所以 k = 1.2x 1 . 因此P{ 1 X ≤x | 1 X 1}于是 , 对于1 x 1 ,有2P{ 1X ≤ x} P{ 1X ≤ x, 1 X 1}P{ 1 X 1} P{ 1 X ≤ x | 1 X 1}5 x 1 5x 5 . 对于 x ≥1,8 2 16有 F ( x) 1. 从而0, x 1, F ( x)5x 7 , 1x 1,161, ≥x1.(2) X 取负值的概率p P{ X0} F(0) P{ X0} F (0) [F(0)F (0 )] F (0 )7 . 习题 2-4161. 选择题设 f ( x)2x, x [0, c],则 f ( x) 是某一随机变量的概率(1)0,x如果 c =(),[0, c].密度函数 .(A)1(B)1.(C) 1.(D)3.2.3c2f ( x)dx 11 ,于是 c 1解 由概率密度函数的性质可得2xdx, 故本题应选 (C ).(2) 设 X ~ N (0,1), 又常数 c 满足 P{ X ≥ c} P{ X c} , 则 c 等于 ( ).(A) 1.(B) 0.(C)1 (D) -1..2解因为P{ X ≥ c} P{ X c} ,所以 1 P{ X c} P{ X c} , 即2P{ Xc} 1, 从而 P{X c} 0.5 , 即 ( c) 0.5 , 得 c =0. 因此本题应选 (B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).cos x, x [0, ],1x2,(A)f (x)(B)f (x),0,其它 .20,其它 .1( x) 2x≥22e,≥ 0,e , x0, (C)f (x) (D)f ( x)20, x0.0,x 0.解 由概率密度函数的性质f ( x)dx 1 可知本题应选 (D).(4) 设随机变量X ~ N(,42) , Y~N(,52), P 1P{X ≤4 },P 2 PY ≥ 5 }, 则( ).(A) 对任意的实数 , P 1P 2 . (B) 对任意的实数 , P 1 P 2 .(C) 只对实数的个别值 ,有P 1 P 2 . (D) 对任意的实数 , P P .12解 由正态分布函数的性质可知对任意的实数, 有P 1( 1) 1 (1) P 2 .因此本题应选 (A).Xf xf (x)f ( x)F x(5) 设随机变量 的概率密度为 , 且 , 又( )为分布函数 , 则对任意实数 a , 有 ( ).a(A)F ( a) 1∫0 f (x)dx .(B)F ( a)(C) F ( a)F ( a) . (D) Fa解由分布函数的几何意义及概率密度的性质知答案为1 a2 ∫0f ( x)dx.2F ( a) 1 .(B).(6) 设随机变量X 服从正态分布N (1, 12 ) , Y 服从正态分布 N ( 2, 22) ,且P{ X11} P{ Y21},则下式中成立的是 (). (A) σ1 < σ2 .(B)σ 1 > σ 2 .(C)μ1 <μ2 .(D)μ1 >μ2 .解 答案是 (A). XN(0 1)u 满足(7) 设随机变量 服从正态分布对给定的正数, 数(0,1),P{ X u }, 若P{X x}, 则 x 等于 ().(A)u .(B)u.(C)u 1-.(D)u 1.2122解 答案是 (C).2. 设连续型随机变量 X 服从参数为的指数分布 ,要使P{ kX 2k}1成立 ,4应当怎样选择数 k ?解 因为随机变量 X 服从参数为的指数分布 , 其分布函数为F ( x)1 e x , x 0,0,x ≤ 0.由题意可知1 P{ k X 2k} F(2k) F ( k) (1 e2 k )(1 e k ) e k e 2 k .4于是kln 2.3. 设随机变量 X 有概率密度f ( x) 4 x 3 , 0 x 1, 0,其它 ,要使 P{ X ≥ a}P{ Xa} ( 其中 a >0) 成立 , 应当怎样选择数 a ?解由条件变形 , 得到 1P{ Xa} P{ Xa},可知P{ X a} 0.5 ,于是a3dx 0.5,因此 a14x.424. 设连续型随机变量 X 的分布函数为0,x 0,F ( x)x 2 , 0≤x ≤1,1,x 1,求: (1)X 的概率密度 ; (2) P{0.3 X 0.7} .解 (1)根据分布函数与概率密度的关系F ( x)f ( x) ,可得f (x)2x, 0 x 1,0, 其它 .(2)P{0.3 X0.7}F (0.7) F (0.3) 0.720.320.4 .5. 设随机变量 X 的概率密度为2x,0≤ x ≤1,f ( x ) =其它 ,0,求P {X ≤ 1}与P {1< X ≤2}.241}11 1解P{X ≤ 22xdx x 22 ;24P{ 1 X ≤2}1 2 xdx x 2 1 15 .1444 166. 设连续型随机变量 X 具有概率密度函数x,0 x ≤1,f ( x) Ax,1x ≤2,0,其它 .求 : (1) 常数 A ; (2) X 的分布函数 F ( x ).解 (1) 由概率密度的性质可得11 2( A x)dx1 x2xdx12于是A 2;(2) 由公式 F ( x) xf ( x)dx可得当 x ≤0 时 , F ( x) 0 ; 当 0x ≤1时 ,F( x)x1 x2 ;xdx2当 1x ≤2时 ,F ( x)1x(2xdx1当 x >2 时,F ( x) 1.0,1 x2 , 所以F ( x)2 x 22x1,2112[ Ax x 2]A 1,21x 2 x)dx 2x1;2x ≤ 0,0 x ≤ 1,1 x ≤ 2,1,x2.7. 设随机变量 X 的概率密度为1f ( x) 4( x 1), 0 x 2,0, 其它 ,对 X 独立观察 3 次, 求至少有 2 次的结果大于 1 的概率 . 解根据概率密度与分布函数的关系式P{ a X ≤ b} F (b) F ( a)b f ( x)dx ,a可得P{ X 1} 21 ( x 1)dx 54.1 8 所以 , 3 次观察中至少有2 次的结果大于 1 的概率为C 2(5)2(3) C 3 ( 5)3 175 .8 8 2568 4x 2 8. 设 X ~U(0,5) , 求关于 x 的方程 4 Xx 2 0 有实根的概率 .解 随机变量 X 的概率密度为1, ≤ x 5,f ( x)50, 其它 ,若方程有实根 , 则16 X 232≥0, 于是 X 2 ≥ 2. 故方程有实根的概率为P { X 2 ≥2}= 1P{ X 2 2}1 P{2 X2}1 21dx0 512 .59. 设随机变量 X ~ N(3,22) .(1)计算 P{2 X ≤5} , P{ 4 X ≤10}, P{| X | 2}, P{X 3};(2)确定 c 使得P{ X c} P{ X ≤ c}; (3) 设 d 满足 P{ X d}≥0.9 , 问 d 至多为多少?解 (1) 由 P { a <x ≤ b }= P { a3 X 3 ≤ b 3 } Φ( b 3 ) Φ( a 3)公式,得到2 2 2 22XΦ(1) Φ( 0.5) 0.5328P,{2< ≤5}=P {-4< X ≤10}= Φ(3.5) Φ( 3.5) 0.9996,P{|X|2}=P{X2} +P{X2}=1 2 32 3Φ() +Φ(2 ) =,2P{ X 3} =1 P{ X ≤3} 1Φ( 3 3 ) 1 Φ(0) = .2(2) 若P{Xc}P{ X ≤ c} , 得 1P{ X ≤ c}P{ x ≤ c} ,所以P{ X ≤ c} 0.5由 Φ(0) =0 推得c3 0, 于是 c =3.2 Φ(d3(3)P{ X d}≥ 0.9 即1)≥ 0.9 , 也就是2Φ( d 3 )≥ 0.9 Φ(1.282) ,2因分布函数是一个不减函数, 故(d 3)≥ 1.282,2解得d ≤ 3 2 ( 1.282) 0.436 .10. 设随机变量 X ~ N (2, 2) , 若 P{0 X4} 0.3 , 求 P{X 0} .解 因为X ~ N2,所以 ZX~ N(0,1). 由条件 P{0 X4} 0.3可知0.3 P{0 X4}0 2X 24 22(2P{}( )) ,于是 222 ( )10.3从而 ( )0.65 .,P{X 0}P{X202}(22 所以) 1( ) 0.35.习题 2-5 1. 选择题(1) 设 X 的分布函数为 F ( x ), 则 Y 3 X 1 的分布函数 G y 为( ).(A) F (1 1 (B)F (3 y 1) .y) .3311(C)3F ( y) 1.(D)F ( y).3 3解 由随机变量函数的分布可得 , 本题应选 (A).(2) 设X~N 01 ,令YX 2, 则Y ~().(A)N( 2, 1). (B)N(0,1) . (C) N( 2,1) . (D)N (2,1) .解 由正态分布函数的性质可知本题应选 (C).2. 设 X ~ N(1,2), Z 2X 3 , 求 Z 所服从的分布及概率密度 . 解 若随机变量 X ~ N(,2) , 则 X 的线性函数 YaX b 也服从正态分布 , 即Y aX b ~ N( a b,( a ) 2). 这里 1,2 , 所以 Z ~ N(5,8) .概率密度为1 ( x 5) 2f (z)16,x.e43. 已知随机变量 X 的分布律为X -1137P(1) 求 =2- X 的分布律; (2) 求 =3+ 2分布律 .YYX解 (1)2-X-5-1123P(2)3+X 23 41252P4. 已知随机变量 X 的概率密度为1, 1 x 4,f X ( x)=2 x ln 20,其它,且 Y =2- X , 试求 Y 的概率密度 .解 先求Y的分布函数F Y ( y):F Y ( y) = P{ Y ≤ y}P{2X ≤ y}P{X ≥2 y}2 y1 P{ X 2y} =1-f X ( x)dx.于是可得 Y 的概率密度为1, 1 2 y4,f Y ( y)f X (2y)(2 y)=2(2 y) ln 20,其它 .1, 2 y1,f Y ( y)即2(2 y) ln 20,其它 .5. 设随机变量 X 服从区间 (-2,2) 上的均匀分 布, 求随机变量 YX 2 的概率密度 .解 由题意可知随机变量 X 的概率密度为f X ( x)1 ,2 x2,40, 其它 .因为对于 0<y <4,F Y ( y) P{ Y ≤ y} P{ X 2 ≤ y} P{y ≤ X ≤ y }F X ( y ) F X ( y ) .于是随机变量YX 2 的概率密度函数为f Y ( y)1 f X ( y )11 , 0 y 4.f X ( y )y4 2 y2 yf ( y)1 , 0 y 4,即4 y0,其它 .总习题二1. 一批产品中有 20%的次品 , 现进行有放回抽样 , 共抽取 5 件样品 . 分别计算这 5 件样品中恰好有 3 件次品及至多有 3 件次品的概率 .解 以 X 表示抽取的 5 件样品中含有的次品数 . 依题意知 X ~ B(5,0.2) .(1) 恰好有 3 件次品的概率是 P X C 5 0.2 3 0.8 .{ =3}= 3 23(2) 至多有 3 件次品的概率是C 5k 0.2k 0.85 k .k 02. 一办公楼装有 5 个同类型的供水设备 . 调查表明 , 在任一时刻 t 每个设备被使用 的概率为 . 问在同一时刻(1) 恰有两个设备被使用的概率是多少? (2) 至少有 1 个设备被使用的概率是多少? (3) 至多有 3 个设备被使用的概率是多少?(4) 至少有 3 个设备被使用的概率是多少?解 以 X 表示同一时刻被使用的设备的个数,则X ~B (5,,{ = }=k k5 kP X kC 50.1 0.9, k =0,1, ,5.(1) 所求的概率是 P XC 50.1 0.90.0729 ;{ =2}=223(2)所求的概率是 P X(1 0.1)5 0.40951 ;{ ≥ 1}=1(3)所求的概率是{ ≤ 3}=1-P{ =4}- { =5}=;P XXP X(4) 所求的概率是 P { X ≥ 3}= P { X =3}+ P { X =4}+ P { X =5}=.3. 设随机变量 X 的概率密度为xkf ( x)e , x ≥0,0, x0,1且已知k θ, 求常数.,2k x解由概率密度的性质可知dx1得到 k =1.e1x1由已知条件1, 得.1 e dx2ln 24. 某产品的某一质量指标 X ~ N(160, 2 ) , 若要求 P{120 ≤X ≤ 200} ≥, 问允许最大是多少 ?解 由P{120 ≤ ≤ 200} P{ 120 160 X160 200 160X≤ ≤ }= ( 404040) (1( ))2 ( ) 1≥,( 40 ) ≥ , 40最大值为 .得到 查表得 ≥ , 由此可得允许5.设随机变量 X 的概率密度为( x ) = e -| x | , - ∞< <+∞.φX A x试求 : (1) 常数 ; (2) {0< <1}; (3)的分布函数 .AP X解 (1)由于(x)dxAe |x|dx 1, 即2 Ae x dx 1故 2A = 1, 得1到A = .2所以φ( x ) =1 e -|x |.2(2) P {0< X <1} = 11 xdx1 ( e x 11 e 10.316.e2 ) 220 (3)因为 F ( x)x1 e |x| 得到2 dx,11当 x <0 时 , F ( x)x x x ,2 e dx 2e当 x ≥0 时,F ( x)1 0x1 xe x1 x,2e dx2dx 1 e21e x ,x0,所以 X 的分布函数为F ( x)21 ex,1 x ≥ 0.2。
李贤平[概率论与数理统计第二章]答案
李贤平[概率论与数理统计第二章]答案第 2 章条件概率与统计独立性1,字母 M,A,X,A,M 分别写在一张卡片上,充分混合后重新排列,问正好得到顺序 MAAM 的概率是多少? 2,有三个孩子的家庭中,已知有一个是女孩,求至少有一个男孩的概率. 3,若 M 件产品中包含 m 件废品,今在其中任取两件,求: (1)已知取出的两件中有一件是废品的条件下,另一件也是废品的条件概率; (2)已知两件中有一件不是废品的条件下,另一件是废品的条件概率; (3)取出的两件中至少有一件是废品的概率. 5,袋中有 a 只黑球,b 吸白球,甲乙丙三人依次从袋中取出一球(取后来放回) ,试分别求出三人各自取得白球的概率( b ≥ 3 ) . 6,甲袋中有 a 只白球,b 只黑球,乙袋中有α吸白球, β吸黑球,某人从甲袋中任出两球投入乙袋,然后在乙袋中任取两球,问最后取出的两球全为白球的概率是多少? 7,设的 N 个袋子,每个袋子中将有 a 只黑球,b 只白球,从第一袋中取出一球放入第二袋 , 中,然后从第二袋中取出一球放入第三袋中,如此下去,问从最后一个袋子中取出黑球的概率是多少? 9, , 投硬币 n 回, 第一回出正面的概率为 c, 第二回后每次出现与前一次相同表面的概率为 p, 求第 n 回时出正面的概率,并讨论当n → ∞ 时的情况. 10,甲乙两袋各将一只白球一只黑球,从两袋中各取出一球相交换放入另一袋中,这样进行 , 了若干次.以 pn,qn,rn 分别记在第 n 次交换后甲袋中将包含两只白球,一只白球一只黑球,两只黑球的概率.试导出 pn+1,qn+1,rn+1 用 pn,qn,rn 表出的关系式,利用它们求 pn+1,qn+1,rn+1,并讨论当n → ∞ 时的情况.ap n , n ≥ 1, ap 11,设一个家庭中有 n 个小孩的概率为 p n = , 1 , n = 0, 1p这里 013,已知产品中 96%是合格品,现有一种简化的检查方法,它把真正的合格品确认为合格 , 品的概率为 0.98,而误认废品为合格品的概率为 0.05,求在简化方法检查下,合格品的一个产品确实是合格品的概率. 16,设 A,B,C 三事件相互独立,求证 A ∪ B, AB, A B 皆与 C 独立. , 17,若 A,B,C 相互独立,则 A , B , C 亦相互独立. ,18,证明:事件 ,A1 , A2 , , An 相互独立的充要条件是下列 2n 个等式成立:P( A1 A2 An ) = P( A1 ) P( A2 ) P( An ) , 其中 Ai 取 Ai 或 Ai .19,若 A 与 B 独立,证明 {φ , A, A , } 中任何一个事件与 {φ , B, B , } 中任何一个事件是相 , 互独立的. 20,对同一目标进行三次独立射击,第一,二,三次射击的命中概率分别为 0.4,0.5,0.7, , 试求(1)在这三次射击中,恰好有一次击中目标的概率; (2)至少有一次命中目标的概率. 21,设 A1 , A2 , , An 相互独立,而 P ( Ak ) = p k ,试求: , (1)所有事件全不发生的概率; (2) 诸事件中至少发生其一的概率; (3)恰好发生其一的概率. 22,当元件 k 或元件 k1 或 k 2 都发生故障时电路断开,元件 k 发生故障的概率等于 0.3,而元 , 件k1,k2 发生故障的概率各为.2,求电路断开的概率. 23,说明件产品中抽查 , 了 100 件,发现有两件次品,能否据此断定该车间谎报合格率?解答1,解:自左往右数,排第 i 个字母的事件为 Ai,则 ,P ( A1 ) =2 2 1 1 , P ( A2 A1 ) = , P ( A3 A2 A1 ) = , P ( A4 A3 A2 A1 ) =5 4 3 2P( A5 A4 A3 A2 A1 ) = 1 .所以题中欲求的概率为P( A1 A2 A3 A4 A5 ) = P( A1 ) P( A2 A1 )P( A3 A2 A1 )P( A4 A3 A2 A1 )P( A5 A4 A3 A2 A1 )= 2 2 1 1 1 1 = 5 4 3 2 302,解:总场合数为 23=8.设 A={三个孩子中有一女},B={三个孩子中至少有一男},A 的有 , 利场合数为 7,AB 的有利场合为 6,所以题中欲求的概率 P(B|A)为P(B A) =P( AB) 6 / 8 6 = = . P( A) 7/8 73,解: )M 件产品中有 m 件废品, M m 件正品.设 A={两件有一件是废品},B={两 , (1) ( 件都是废品},显然 A B ,则题中欲求的概率为2 2 Cm / CM m 1 = P ( B | A) = P ( AB ) / P ( A) = P ( B ) / P ( A) = 1 1 .2 2 (C m C M m + C m ) / C M 2 M m 11 12 2 P ( A) = C m C M m + C m / C m()2 2 P( B) = C m / C M ,(2)设 A={两件中有一件不是废品},B={两件中恰有一件废品},显然 B A ,则 )2 1 1 2 P ( A) = C M m + C m C M m / C M ,)1 12 P( B) = C m C M m / C M .题中欲求的概率为1 12 C m C M m / C M 2m P ( B | A) = P ( AB ) / P ( A) = P ( B ) / P ( A) = 2 = . 1 1 2 (C M m + C m C M m ) / C M M + m 11 12 2 (3)P{取出的两件中至少有一件废品}= C m C M m + C m / C M =()m(2 M m 1) . M ( M 1)5,解:A={甲取出一球为白球},B={甲取出一球后,乙取出一球为白球},C={甲,乙各取 , 出一球后,丙取出一球为白球}.则利用全概率公式得P ( A) =a ( a + b)甲取出的球可为白球或黑球,P ( B ) = P ( A) P ( B | A) + P ( A ) P ( B | A ) =b b 1 a b b + = a + b a + b 1 a + b a + b 1 a + b甲, 乙取球的情况共有四种,由全概率公式得P(C ) = P( AB) P(C | AB) + P( AB ) P(C | AB ) + P( A B) P(C | A B) + P( A B ) P(C | A B ) = b(b 1) b2 ab b 1 + (a + b)(a + b 1) a + b 2 (a + b)(a + b 1) a + b 2 + ab b 1 a (a 1) b + (a + b)(a + b 1) a + b 2 (a + b)(a + b 1) a + b 2=b(a + b 1)(a + b 2) b = . (a + b)(a + b 1)(a + b 2) a + b6,解:设 A1={从甲袋中取出 2 只白球},A2={从甲袋中取出一只白球一只黑球},A3={从甲 , 袋中取出 2 只黑球},B={从乙袋中取出 2 只白球}.则由全概率公式得P( B) = P( B | A1 ) P( A1 ) + P( B | A2 ) P( A2 ) + P( B | A3 ) P ( A3 )2 2 Ca C a+2 c 1 C 1C 2 c 2C 2 a + 2 b 2 α +1 + 2 b 2a . 2 2 c A+ B cα + β + 2 C a +b Cα + β + 2 C a +b Cα + β + 27, :A1={从第一袋中取出一球是黑球},……, i={从第一袋中取一球放入第二袋中, ,解A …, 再从第 i 1 袋中取一球放入第 i 袋中,最后从第 i 袋中取一球是黑球},i = 1, , N .则P ( A1 ) =a b , P ( A1 ) = . a+b ( a + b)一般设 P ( Ak ) =a b ,则 P ( Ak ) = ,得 ( a + b) ( a + b) a . ( a + b)P ( Ak +1 ) = P ( Ak +1 | Ak ) P ( Ak ) + P ( Ak +1 | Ak ) P ( Ak ) =由数学归纳法得P ( AN ) =a . ( a + b)9,解:设 Ai={第 i 回出正面},记 pi = P ( Ai ) ,则由题意利用全概率公式得 ,P ( Ai +1 ) = P ( Ai +1 | Ai ) P ( Ai ) + P ( Ai +1 | Ai ) P ( Ai )= pp1 + (1 p)(1 p1 ) = (2 p 1) p1 + (1 p) .已知 pi = c ,依次令 i = n 1, n 2, ,1 可得递推关系式Pn = (2 p 1) p n1 + (1 p ),Pn 1 = (2 p 1) p n 2 + (1 p ), ,P2 = (2 p 1) p1 + (1 p) = (2 p 1)c + (1 p).解得Pn = (1 p )[1 + (2 p 1) + (2 p 1) 2 + + (2 p 1) n 2 ] + c(2 p 1) n 1 ,当p ≠ 1 时利用等比数列求和公式得p n = (1 p)1 (2 p 1) n 1 1 1 + c(2 p 1) n 1 = (2 p 1) n 1 + c (2 p 1) n1 . (*) 1 (2 p 1) 2 2n →∞(1)若 p = 1 ,则p n ≡ C , lim p n = C ; (2)若 p = 0 ,则当 n = 2k 1 时, pn = c ;当 n = 2k 时, p n = 1 c .若c = 若c ≠1 1 1 ,则p n ≡ , lim p n =2 2 n →∞ 2 1 1 ,则 c ≠ 1 c, lim p n 不存在. n →∞ 2(3)若 01 1 1 lim p n = lim (2 p 1) n 1 + c(2 p 1) n 1 = . n →∞ n→ ∞ 2 2 210,解:令 Ai , Bi , C i 分别表示第 i 次交换后,甲袋中有两只白球,一白一黑,两黑球的事 , 件,则由全概率公式得p n +1 = P( An +1 ) = P( An ) P( An +1 | An ) + P( Bn ) P ( An +1 | Bn ) + P(C n ) P( An +1 | C n ) = 0 pn + 1 1 q n + 0 rn = q n , 4 4q n+1 = P( Bn +1 ) = P( An ) P( Bn +1 | An ) + P( Bn ) P( Bn +1 | Bn ) +P(C n ) P ( Bn +1 | C n ) = 1 pn + 1 1 q n + 1 rn = p n + q n + rn , , 2 2rn +1 = P (C n +1 ) = P( An ) P(C n +1 | An ) + P( Bn ) P(C n+1 | Bn ) +P(C n ) P(C n+1 | C n ) 1 1 = 0 p n + q n + 0 rn = q n . 4 4这里有 p n +1 = rn +1 , 又 p n +1 + q n +1 + rn +1 = 1 , 所以 q n +1 =1 2 p n +1 , 同理有q n = 1 2 p n ,再由 p n +1 =1 1 q n 得 p n +1 = (12 p n ) .所以可得递推关系式为 4 4 1 rn +1 = p n +1= (1 2 p n ) , 4 q n+1 = 1 2 p n +1初始条件是甲袋一白一黑,乙袋一白一黑,即 p 0 = r0 = 0, q 0 = 1 ,由递推关系式得rn +1 = p n +1 =1 1 1 1 1 1 1 1 1 1 (12 p n ) = p n = ( p n 1 ) = + p n 1 = 4 4 2 4 2 4 2 4 8 4=1 1 (1) n +2 (1) n +1 p 03 + + n+2 + = 2 2 n +1 22 2n +11 1 1 4 2n +11 1 21 1 = 1 (1) n+1 6 2q n+1 = 1 2 p n +1n+2 1 n 1 1 = + (1) , 3 2 6n +12 1 1 = + (1) n+13 3 21 2 , lim q n = . 6 n→ ∞ 3.lim p n = lim rn =n →∞ n→ ∞11,解:设 An={家庭中有 n 个孩子},n=0,1,2,…,B={家庭中有 k 个男孩}.注意到生男孩 , 与生女孩是等可能的,由二项分布 ( p =1 )得 2k nk k1 = Cn . 2 nk1 1 P ( B | An ) = C n 2 2由全概率公式得∞ 1 1 p P ( B ) = ∑ P ( An ) P ( B | An ) = ∑ ap n C = a ∑ C k +1 2 2 n= k n=k i =0 k n ∞ ∞ n k +1(其中 i = n k )p = a 2k ∞p p ∑ C k1+1 2 = a 2 i =01kp 1 2k 1`=2ap k . (2 p) k +112,解: , (1)设 A={至少有一男孩},B={至少有 2 个男孩}. A B, AB = B ,由p(2 p )(1 p ) (2 p)P ( A) = ∑2ap k +1 k =1 ( 2 p )∞kP( B) = ∑2ap k k +1 k =2 (2 p)∞p2 2a ( 2 p ) 2 ap 2 = = , 2 p 1 p (2 p ) 2 (1 p ) 2 (2 p)P( B | A) =P( AB) P( B) p = = . P( A) P( A) 2 p(2)C={家中无女孩}={家中无小孩,或家中有 n 个小孩且都是男孩,n 是任意正整数},则P (C ) = 1∞ ap 1 + ∑ ap n 1 p a =1 2nap ap ap ap 2 3 p ap + p 2 = 1 + 2 = 1 + = p 1 p 1 p 2 p (1 p )(2 p ) 1 2A1={家中正好有一个男孩}={家中只有一个小孩且是男孩},则P ( A1 ) = ap1 1 = ap ,且 A1 C ,2 2所以在家中没有女孩的条件下,正好有一个男孩的条件概率为P ( A1 | C ) =P ( A1C ) P ( A1 ) 1 ap ap (1 p )(2 p ) = = . = 2 P (C ) P (C ) 2 2 3 p ap + p 2(2 3 p ap + p 2 ) (1 p )(2 p )13, 解 : 设 A={产品确为合格品},B={检查后判为合格品}.已知 P ( B | A) =0.98 , ,P ( B | A ) = 0.05, ( A) = 0.96 ,求 P ( A | B ) .由贝叶斯公式得 P P( A | B) = P ( AB ) P ( A) P ( B | A) = P( B) P ( A) P ( B | A) + P ( A ) P ( B | A ) = 0.96 × 0.98 0.9408 = = 0.9979 0.96 × 0.98 + 0.04 × 0.05 0.9428.16,证: 1) P (( A ∪ B ) ∩ C ) = P ( AC ∪ BC ) = P ( AC ) + P ( BC ) P( ABC ) , ( )= P ( A) P (C ) + P ( B ) P (C ) P ( A) P ( B ) P (C ) = P (C )[ P ( A) +P ( B ) P ( AB )] = P (C ) P ( A ∪ B ) ,∴ A ∪ B 与 C 独立. (2) P ( ABC ) = P ( A) P ( B ) P (C ) = P ( AB ) P(C ) ) ∴AB 与 C 独立. (3) P (( A B )C ) = P ( AB C ) = P ( AC ( B )) = P( AC ) P ( ABC )= P( A) P(C ) P ( A) P( B) P(C ) = P (C )[ P( A) P( AB)] = P(C ) P( A B) ,∴ A B 与 C 独立.17,证: P ( A B ) = P ( A ∪ B ) = 1 P ( A ∪ B ) = 1 [ P ( A) + P ( B ) PAB )] ,= 1 P ( A) P ( B ) + P ( A) P ( B ) = (1 P ( A))(1 P ( B ))= P( A ) P( B ) ,同理可证P( A C ) = P( A ) P(C ) , P( B C ) = P( B ) P(C ) .又有P( A B C ) = P( A ∪ B ∪ C ) = 1 P( A ∪ B ∪ C )= 1 [P( A) + P( B) + P (C ) P( AB) P( AC ) P( BC ) + P( ABC )]= 1 P ( A) P ( B ) P (C ) + P ( A) P ( B ) + P ( A) P (C ) + P ( B ) P (C ) + P ( A) P ( B ) P (C ) = (1 P ( A))(1 P ( B ))(1 P (C )) = P ( A ) P ( B ) P (C ) ,所以 A , B , C 相互独立.18,证:必要性 , 必要性.事件 A1 , A2 , , An 相互独立,用归纳法证.不失为一般性,假设总是前必要性连续 m 个集 Ai 取 Ai 的形式.当 m = 1 时,P ( A1 A2 An ) = P ( A2 An ) P ( A1 An ) P ( A1 An ) = P ( A2 ) P ( An ) P ( A1 ) p ( An ) = P ( A1 ) P ( A2 ) P ( An ) .设当 m = k 时有P ( A1 Ak Ak +1 An ) = P ( A1 ) P ( Ak ) P ( Ak +1 An ) ,则当 m = k + 1 时P ( A1 Ak +1 Ak + 2 An ) = P ( A1 Ak Ak + 2 An ) P ( A1 Ak Ak +1 An ) = P ( A1 ) P ( Ak ) P ( Ak + 2 ) P ( An ) P ( A1 ) P ( Ak ) P ( Ak +1 ) P ( An )= P ( A1 ) P ( Ak )(1 P ( Ak +1 )) P ( Ak + 2 ) P ( An ) = P ( A1 ) P( Ak ) P ( Ak +1 ) P ( Ak + 2 ) P ( An )从而有下列 2n 式成立:P( A1 A2 An ) = P( A1 ) P( A2 ) P( An ) , 其中 Ai 取 Ai 或 Ai.充分性.设题中条件成立,则充分性P( A1 An ) = P( A1 ) P( An ) , P( A1 An 1 An ) = P( A1 ) P( An1 ) P( An ) .∵ ∴(1)(2)A1 An 1 An ∩ A1 An 1 An = φ , P( A1 An1 ) = P( A1 An 1 An ∪ A1 An 1An ) .(1)+(2)得P( A1 An 1 ) = P( A1 ) P( An1 ) .(3)同理有P( A1 An 2 An1 An ) = P( A1 ) P( An 2 ) P( An 1 ) P( An ) , P( A1 An 2 An1 An ) = P( A1 ) P( An 2 ) P( An 1 ) P( An )两式相加得P( A1 An 2 An 1 ) = P( A1 ) P( An 2 ) P( An 1 ) .(3)+(4)得(4)P( A1 An 2 ) = P( A1 ) P( A2 ) P( An 2 ) .同类似方法可证得独立性定义中 2 n + 1 个式子,n∴A1 , , An 相互独立.19,证: P (φφ ) = P (φ ) = 0 × 0 = P (φ ) P (φ ), ,P (φ ) = 0 = P () P (φ ), P () = 1 = P () P (), P (B ) = P ( B ) = P () P ( B ), P (A) = P ( A) = P () P( A),P( A B ) = P( A ) P( B ) P( AB ) = P ( A AB) = P( A) P( AB) = P( A) P( A) P( B) = P ( A)(1 P( B)) = P( A) P( B) ,同理可得P( A B) = P( A ) P( B) .证毕.20,解:P{三次射击恰击中目标一次} = 0.4(1 0.5)(1 0.7) + (1 0.4)0.5(1 0.7) + (1 0.4)(1 0.5)0.7= 0.36P{至少有一次命中}=1-P{未击中一次} = 1 (1 0.4)(1 0.5)(1 0.7) = 0.91 21,解: , (1)P{所有的事件全不发生} = P{ A1 An } = P ( A1 ) P ( An ) =∏ (1 pk =1nk).(2)P{至少发生其一} = P ( A1 ∪ ∪ An )P ( A1 An ) = 1 P ( A1 An ) = 1 ∏ (1 p n ) .k =1n(3)P{恰好发生其一} = p1 (1 p 2 ) (1 p n ) + (1 p1 ) p 2 (1 p 3 ) (1 p n ) ++ + (1 p1 ) (1 p n 1 ) p n= ∑ pi 2i =1nn ≥ j > i ≥1∑pi p j + + (1) n1 n∏ pi .i =1n22, : , 解本题中认为各元件发生故障是相互独立的. A0 ={元件 k 发生故障}, A1 ={元件 k1 记发生故障}, A2 ={元件 k 2 发生故障}.则 P{电路断开} = P ( A0 ∪ A1 A2 ) = P ( A0 ) + P ( A1 A2 ) P ( A0 A1 A2 )= 0.3 + 0.2 × 0.2 0.3 × 0.2 × 0.2 = 0.328 .23,解:以 Ak 表事件场比赛的优胜者,则需在未来的三 3次中,丙获胜三次;或在前三次中,丙获胜两次乙胜一次,而第四次为丙获胜.故本题欲求的概率为p=3! 1 3! 0! 0! 333! 1 1 1 1 1 + . 2! 1! 0! 3 3 3 3 3228,解:利用两个的二项分布,得欲副省长的概率为 ,p = ∑ P{甲掷出i次正面, 乙掷出i次正面}i =0n1 1 = ∑C2 2 i =0n i nin 11 1 C2 2i nin 11 = 22n n1 ∑ (C ) = C2 i =0i 2 n n 2n2n.29,解:事件 A 出现奇数次的概率记为 b,出现偶数次的概率记为 a,则 ,0 2 a = C n p 0 q n + C n p 2 q n 2 + ,1 3 b = C n p q n1 + C n p 3 q n 3 + .利用 a + b = ( p + q ) n = 1, a b = (q p ) n ,可解得事件 A 出现奇数次的概率为b=1 1 1 1 ( p q ) n = (12 p ) n . 2 2 2 1 1 + (1 2 p ) n . 2 2[]顺便得到,事件 A 出现偶数次的概率为 a =30,解:事件0.959637,解 :事件。
概率论与数理统计第二章习题与答案
概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。
陈国华等主编概率论与数理统计第二章习题解答
∫ π 2 cos dx =
−
1
2
sin x + 1 2
当x≥
π
2
时, F ( x) = P ( X ≤ x) =
∫
2 −∞
−
π x 1 1 1 cos xdx + ∫ 2π cos xdx + ∫π cos xdx = 1 − 2 2 2 2 2
⎧ Ax 2 e − λx 6.设连续型随机变量 X 的概率密度为 f ( x) = ⎨ ⎩ 0
∫
k
0
λ × e −λ × x dx =
1 2
解之得 k=
ln 2
λ
1. 已知离散随机变量 X 的分布列为 X -2 -1 0 1 1/5 1/6 1/5 P 2 试求Y=X 与Z=|X|的分布列.
答案:解:由题意得:
3
1/15
11/30
x P
2
0 1/5 0 1
1 7/30 2 1/5
4 17/30 3 11/30
1
P=0.02,
39
λ = n × P = 0 .8 .
=1- C 40 × (0.02) × (0.98) (2) P(X>=2)=1-P(X=1)-P(X=0) =1-
0 − C 40 × (0.98) 40 =
0.8 −1 (0.8) 0 ×e − × e 0 = 0.192 1! 0!
已知某商场一天来的顾客数 X 服从参数为λ的泊松分布,而每个来到商场的顾客购物的概 2、 率为 p,证明:此商场一天内购物的顾客数服从参数为λp 的泊松分布. 答案:证明:已知 X~P( λ ),设购物的顾客数为 Y,由题设知
(3)
1 P (0 < X < )
概率论与数理统计 第二章 习题2
1 y
,1
y
e
0,0 y 1或y
e
(2)当 y 0 时, fY ( y) 0
当 y 0 时 ,FY (y) P{Y y} P{2ln X y} P{X ey/2} 1 P{X e y / 2} 1 F X (e y / 2 )
fY
(
y)
f
X
(ey / 2
)(1/
2e y
36
2 一大楼装有5个同类型的供水设备。调查表明在 任一时刻每个设备被使用的概率为,问在同一 时刻(1)恰有2个设备被使用的概率是多少? (2)至少有3个设备被使用的概率是多少? (3)至多有3个设备被使用的概率是多少? (4)至少有1个设备被是使用的概率是多少?
解:以 X 表示同一时刻被使用的设备的个数,则
2 fK (x)dx
1
fK (x)dx
5 1dx 25
1 0dx 3
5
6 设随机变量 X 在 (0,1)服从均匀分布.(1)求 Y e X 的概率密度;(2)求 Y 2ln X 的概率密度。
解:X 的概率密度为
1,0 x 1 f (x) 0,其它
分别记 X ,Y 的分布函数为 FX (x), FY ( y).
y)2
2
arcsin
y.
所以当 0 y 1
时,fY
( y)
d dy
FY
( y)
2 1 y2
因此,所求的概率为
fY ( y)
2 ,0 y 1, 1 y2
0, 其它
8 一工厂生产的某种元件的寿命(以小时计)服从参数 为 160, ( 0) 的正态分布。若要 P{120 X 200} 0.80
4x2 4Kx K 2 0 有实根的概率.
概率论与数理统计 第二章习题附答案
习题4-11. 设随机变量求()E X ;E (2-3 X ); 2()E X ;2(35)E X +.解 由定义和数学期望的性质知2.03.023.004.0)2()(-=⨯+⨯+⨯-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-⨯-=;8.23.023.004.0)2()(2222=⨯+⨯+⨯-=X E ; 4.1358.235)(3)53(22=+⨯=+=+X E X E .2. 设随机变量X 的概率密度为,0,()0,0.xe xf x x -⎧>⎪=⎨⎪⎩≤求Xe Z X Y 22-==和的数学期望.解 0()(2)2()22x E Y E X E X x x ∞-====⎰e d ,2201()()3X x x E Z E e e e dx ∞---==⋅=⎰. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60]上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为1,060,()600,.x f x =⎧⎪⎨⎪⎩≤≤其它记Y 为游客等候电梯的时间,则5,05,25,525,()55,2555,65,5560.X X X X Y g X X X X X -<-<==-<-<⎧⎪⎪⎨⎪⎪⎩≤≤≤≤因此, 6001()[()]()()()60E Y E g X g x f x dx g x dx ∞-∞===⎰⎰()5255560525551(5)(25)(55)(65)60x dx x dx x dx x dx =-+-+-+-⎰⎰⎰⎰=11.67(分钟)..习题4-21. 选择题(1) 已知(1,(3))E D X X =-= 则2[3(2)]()E X -=.(A) 9. (B) 6. (C) 30. (D) 36.应选(D).(2) 设~(,),(6,( 3.6))B n p E D X X X ==, 则有( ).(A) 10, 0.6n p ==. (B) 20, 0.3n p ==. (C) 15, 0.4n p ==. (D) 12, 0.5n p ==.应选(C).(3) 设X 与Y 相互独立,且都服从2(,)N μσ, 则有( ).(A) ()()()E X Y E X E Y -=+. (B) ()2E X Y μ-=.(C) ()()()D X Y D X D Y -=-. (D) 2()2D X Y σ-=.选(D).(4) 在下列结论中, 错误的是( ).(A) 若~(,),().X B n p E X np =则(B) 若()~1,1X U -,则()0D X =. (C) 若X 服从泊松分布, 则()()D X E X =. (D) 若2~(,),X N μσ 则~(0,1)X N μσ-.选(B).2. 已知X , Y 独立, E (X )= E (Y )=2, E (X 2)= E (Y 2)=5, 求E (3X -2Y ),D (3X -2Y ). 解 由数学期望和方差的性质有E (3X -2Y )= 3E (X )-2 E (Y )=3×2-2×2=2,(32)9()4()D X Y D X D Y -=+ })]([)({4})]([)({92222Y E Y E X E X E -⨯+-⨯= 13)45(4)45(9=-⨯+-⨯=. 5. 设随机变量]2,1[~-U X , 随机变量⎪⎩⎪⎨⎧<-=>=.0,1,0,0,0,1X X X Y求期望()E Y 和方差)(Y D .解 因为X 的概率密度为1,12,()30,.X x f x -=⎧⎪⎨⎪⎩≤≤其它于是Y 的分布率为--11{1}{0}31()d d 3X P Y P X f x x x ∞=-=<===⎰⎰, {0}{0}0P Y P X ====,+22{1}{0}31()d d 3X P Y P X f x x x ∞==>===⎰⎰. 因此121()1001333E Y =-⨯+⨯+⨯=,222212()(1)001133E Y =-⨯+⨯+⨯=.故有 2218()()[()]199D Y E Y E Y =-=-=.习题4-31. 选择题(1) 在下列结论中, ( )不是随机变量X 与Y 不相关的充分必要条件(A) E (XY )=E (X )E (Y ). (B) D (X +Y )=D (X )+D (Y ). (C) Cov(X ,Y )=0. (D) X 与 Y 相互独立.选(D).(2) 设随机变量X 和Y 都服从正态分布, 且它们不相关, 则下列结论中不正确的是( ).(A) X 与Y 一定独立. (B) (X , Y )服从二维正态分布. (C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.选(A).(3) 设(X , Y )服从二元正态分布, 则下列说法中错误的是( ).(A) (X , Y )的边缘分布仍然是正态分布.(B) X 与Y 相互独立等价于X 与Y 不相关. (C) (X , Y )是二维连续型随机变量.(D)由(X , Y )的边缘分布可完全确定(X , Y )的联合分布. 选(D)2 设D (X )=4, D (Y )=6, ρXY =0.6, 求D (3X -2Y ) .解 (32)9()4()12Cov(,)D X Y D X D Y X Y -=+-)()(126449Y D X D XY ⨯⨯-⨯+⨯=ρ 727.24626.0122436≈⨯⨯⨯-+=.3. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 22()()2E X E Y ==, 求2[()]E X Y +.解222[()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++42420.526.XY ρ=+=+⨯⨯=4. 设随机变量(X , Y )若E (XY )=0.8, 求常数a ,b 解 首先由∑∑∞=∞==111i j ijp得4.0=+b a . 其次由0.8()100.420110.2210.22E XY a b b ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=+得=b于是 故 Cov(,)()()()0.8 1.40.50.1X Y E XY E X E Y =-=-⨯=.7.证明: 对随机变量(X , Y ), E (XY )=E (X )E (Y )或者D (X ±Y )=D (X )+D (Y )的充要条件是X 与Y 不相关.证 首先我们来证明)()()(Y E X E XY E =和()()()D X Y D X D Y ±=+是等价的. 事实上, 注意到()()()2Cov(,)D X Y D X D Y X Y ±=+±. 因此()()()D X Y D X D Y ±=+Cov(,)0()()()X Y E XY E X E Y ⇔=⇔=.其次证明必要性. 假设E (XY )=E (X )E (Y ), 则Cov(,)()()()0X Y E XY E X E Y =-=.进而0XY ρ==, 即X 与Y 不相关.最后证明充分性. 假设X 与Y 不相关, 即0=XY ρ, 则Cov(,)0X Y =. 由此知)()()(Y E X E XY E =.。
概率论及数理统计习题及答案第二章
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章练习题(答案)一、单项选择题1. 已知连续型随机变量X 的分布函数为3.若函数f(x)是某随机变量X 的概率密度函数,则一定成立的是(C ) A. f(x)的定义域是[0, 1] B. f(x)的值域为[0,1]4.设X - N(l,l),密度函数为f(x),则有(C )5.设随机变量X ~ N (/M6), Y 〜N 仏25),记 P1 = P (X <//-4), p 2 = P (Y> “ + 5), 则正确的是(A)对任意“,均有Pi = p 2 (B)对任意“,均有Pi v p?(c)对任意〃,均有Pl > Pi (D )只对“的个别值有P1 = P26.设随机变量x 〜N(10^s 2) 9 则随着s 的增加 P{|X- 10|< s} ( C )F(x) =o,kx+b 、 x<0 0 < x< x>则常数&和〃分别为 (A) k = —b = 0龙, (B) k = 0,b 丄 (C) k = —,b = 0 (D) k = 0,b= 1 n In In2.下列函数哪个是某随机变量的分布函数(A ) z 7fl -cosx ; 2 0, f sinx,A. f(x)』沁,xnO C. f (x)= a (a>0);B. f (x)1, x < 0[cosx, — - < X < - 1 2 2 D. f (x) 其他 0, 0 < X < 7T 其他 —-< x < - 2 2 其他 C- f(x)非负D. f (x)在(-叫+00)内连续A. P {X <O }=P {X >O }B. f(x)= f(-x)C. p{x<l}=p{x>l} D ・ F(x) = l-F(-x)A.递增B.递减C.不变D.不能确定7.设片3与E(力分别为随机变量X、兀的分布函数,为使F(沪aF©—胡(力是某一随机变量的分布函数,在下列给定的多组数值中应取(A )&设心与人是任意两个相互独立的连续型随机变量,它们的概率密度函数分别为ft (力和f2(力,分布函数分别为川力和E (力,则(A)亡(力+負(力必为某个随机变量的概率密度;(B) f心)临(力必为某个随机变量的概率密度;(C)川力+£(力必为某个随机变量的分布函数;(D)FAx)吠(力必为某个随机变量的分布函数。
9.设连续随机变量X的密度函数满足f(x) = f(-x) , F(x)是X的分布函则P( XI > 2004)=(D )(A) 2-F(2004) ;(B) 2F(2004)-1 ; (C) l-2F(2004);(D) 2[l-F(2004)].10.每次试验成功率为p(Ovpvl),进行重复试验,直到第十次试验才取得4次成功的概率为(B )A、C^p4(l-p)6B、C^p4(l-p)6C、C^p4(l-p)5D、C;p“l-p)611-设随机变量x的概率密度为f(週严(弋GV+J则其分布函数F (x)是(B )(A) F (x) =■1 X .2e,X<(B) F (x)=J,x>0A|e\x<0l--e_x,x>022D.1 , -e\x<02 (D) F (x) =<l--e~x ,O<x<l2Lx>0 二、填空题1.设随机变量x 的概率密度为1 .a f(x) = — e 4 , -oo<x<oo 2五KY=aX + b 〜N(0,1) (a >0),贝(|a= —, b= 41 ・_ -----------0 x<-l2. 已知随机变量X 的分布函数F(x)=二"J,则X 的分布律为0.7 l<x<31 x>3X -1 1 3F 0.4 0.3 0.33. 设三次独立试验中,事件川出现的概率相等,如果已知力至少出现一 次的概率等于菩,则事件虫在一次试验中出现的概率为1/3・4. X 〜B(2, p),Y 〜B(4, p),已知 p{X^l} = |,则 p{Y>l} = go 1 三、计算题1.设连续型随机变量X 的分布函数为F(x)= A+Barctanx,-8VXV+00.求⑴ 常数虫和〃;(2) X 落入区间(71)的概率;(3)X 的概率密度f(x)(1) A=1/2,B=1/TT ; (2)1/2; (3) f(x)=i 宀 (-oo<x <oo)71 1+X 2、 1- —e"x (c) F (x) =r 2 ' l,x>0 x<00, x<-a, 2・设连续型随机变量无的分布函数为F(x) = < A+Barcsm-, -a<x<a,其中 a 1, x>a,a>0,求:(1)常数人 B\(2)P {|X |<^}; (3)概率密度 f (x)・(1) A=1/2,B=1/TT ; (2) 1/3; (3) f(x)二 n 傅二0,|x| > a3.若©〜U[0, 5],求方程x2+« x +l=0有实根的概率.求(1)系数 k ; (1) § 的分布函数;(3) Pfe<l},P{e = l}.P{l<^<2}.(2) Y=e-2X (3) Y=X ,的概率分布.6.设X 〜N (0, 1)求丫次的概率密度。
7•进行一系列独立试验,每次试验成功的概率均为p,试求以下事件的概 率:(1)直到第「次才成功;(2) 第】次成功之前恰失败k 次;(3) 在D 次中取得r(l<r<n)次成功;(4) 直到第1】次才取得r(l<r <n)次成功。
解:(1) P = p(i-p)T (2) P = c ;;i_1P r d-P )k(3) P = c ;p r (i-P )M (4) P = c ::p 「(i_p )円8•投掷“次均匀硬币,求出现正反面次数相等的概率。
解 若口为奇数,显然,出现正反面次数不可能相等,故所求概率为0; 若为偶数,“出现正反面次数相等”等价于“出现正反面次数各口/2次”,投掷n 次均匀硬币,可以看作伯努里概型,故这时概率为:[0, n 为奇数 ----- 2分故所求为:(c :「2T, n 为偶数 12分 9•某科统考成绩近似服从4.设连续型随机变量歹的概率密度为f(x)=o;2:2 < < >- XXX <- 5-已知随机变量才的概率密度为f(x) = e"\x>0, a x<0-求随机变量(1) Y=2X,N(70, 102),在参加统考的人数中,及格者100人(及格分数为60分),计算(1)不及格人数;(2)成绩前10名的人数在考生中所占的比例;(3)估计排名第10名考生的成绩。
解,设考生的统考成绩为X, X〜N(70, 1O2).设参加统考的人数为n, 则P{x^6O}=l-0(^^)=0 (1) =0.8413,—=0.8413.10 11(1)不及格人数占统考人数的15.87%,不及格人数为0.1587n^l9Ao ⑵ 前10名考生所占比例为更4%II(3)设第10 名考生成绩为X。
分,P{XMx。
}二0・ 08413, P{X<x o}=0. 91587 0(^)=0.91587,千尹=1.37, x0=83.7^84 分。
O x<- 110•离散型随机变量X的分布函数F(x)=(a,-1 S x VI,且P(x=2)= 1.-a, 1 < x<2la + b, x > 2求a,b及x的分布律.11•巴拿赫火柴盒问题:波兰数学家巴拿赫(Banach)随身带着两盒火柴,分别放在左右两个衣袋里,每盒各有Ji根火柴。
每次使用时,他随机地从其中一盒中取出一根。
试求他将其中一盒火柴用完,而另一盒中剩下K根火柴的概率。
解:A:“取左衣袋盒中火柴”,B:“取右衣袋盒中火柴”。
P(A)=P(B)=l/2. 若Banach首次发现他左衣袋盒中火柴用完,这时事件A已经是第n+1次发生了,而此时他右衣袋盒中火柴恰好剩k根一相当于他在此前已在右衣袋中取走了n-k根火柴,即B发生了n-k次,即一共做了n-k+n+l=2n k+1次随机试验,其中A发生了n+1次,B发生了n-k次,在这2n-k+l次试验中,第2n—k+l次是A发生,前面的次试验中,A发生了n次,B发生了"k 次,这时概率为P(A)C人/P(A))n(P(B))n-k =ic?n_k(i)2n-k由对称性知,他右衣袋盒中火柴用完,而左衣袋盒中火柴恰好剩k根的概率也是扌C人亠匚所以,将其中一盒火柴用完,而另一盒中剩下k根火柴的概率为Cn /1、2n_k2n - °四.应用题1.某家电维修站保养本地区某品牌的600台电视机,已知每台电视机的故障率为0. 005 o(1)如果维修站有4名维修工,每台只需1人维修,求电视机能及时维修的概率。
(2)维修站需配备多少维修工,才能使及时维修的概率不少于96%。
解:设同一时刻发生故障的电视机台数为X, X~B(600, 0. 005),由于n很大,而P较小,可以利用泊松定理计算。
A=np=3,所以P{X^4}=l-0.1847=0. 8153 (査表)P{XWn} M0. 96,査表知n=6,即需配备6名维修工。
2•人寿保险问题:某单位有2500个职工参加某保险公司的人寿保险。
根据以前的统计资料,在1年内每个人死亡的概率为0.0001 o每个参保人1年付给保险公司120元保险费,而在死亡时其家属从保险公司领取20000元,求(不计利息)下列事件的概率。
(A)保险公司亏本。
(B)保险公司1年获利不少于十万元。
解:设这2500人中有k个人死亡。
则保险公司亏本当且仅当20000k>2500*120,即k>15.由二项概率公式知,1年中有k个人死亡的概率为C^soo (0. OOOl)k (0.9999)2500-k.k=0,l,2, ,2500所以,保险公司亏本的概率P(A)吃聲%° (0.0001)k (0・9999严007^0.000001 (由此可见保险公司亏本几乎不可能)保险公司1年获利不少于十万元等价于2500*120-20000k^ 1(^ 即k^lO保险公司1年获利不少于十万元的概率为P(B)=Sk=o C愿oo (0 0001)k (0.9999严^0.999993662 (由此可见保险公司1年获利不少于十万元几乎是必然的) 对保险公司来说,保险费收太少了,获利将减少,保险费收太多了,参保人数将减少,获利也将减少。