九年级数学能力水平测试试题

合集下载

第22章 二次函数 人教版九年级数学上册能力测试(含答案)

第22章 二次函数 人教版九年级数学上册能力测试(含答案)

第二十二章二次函数(测能力)——2022-2023学年人教版数学九年级上册单元闯关双测卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.若是关于x的二次函数,则m的值为( )A.-2B.-2或1C.1D.不存在2.今年由于受新型冠状病毒的影响,一次性医用口罩的销量剧增.某药店一月份销售量是5000枚,二、三两个月销售量连续增长.若月平均增长率为x,则该药店三月份销售口罩枚数y与x的函数关系式是( )A. B.C. D.3.二次函数的图像如图所示,若一元二次方程有实数根,则m的最大值为( )A.3B.-3C.-6D.94.在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是( )A. B.C. D.5.抛物线的函数解析式为,若将x轴向上平移2个单位长度,将y轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数解析式为( )A. B.C. D.6.关于抛物线,下列说法错误的是( )A.开口向下B.顶点坐标是C.当时,y随x的增大而增大D.对称轴是直线7.将二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线与这个新图象有3个公共点,则b的值为( )A.或-12B.或2C.-12或2D.或-128.在抛物线和直线上有三点,则的结果是( )A. B.0 C.1 D.29.如图,在中,,cm,cm.动点P从点A出发,沿边AB向点B以1 cm/s的速度移动(不与点B重合),同时动点Q从点B出发,沿边BC向点C以2 cm/s的速度移动(不与点C重合).当四边形APQC的面积最小时,经过的时间为( )A.1 sB.2 sC.3 sD.4 s10.已知抛物线(a,b,c为常数,且)的图象如图所示,有下列结论:①;②若,则;③.其中,正确结论的个数是( )A.0B.1C.2D.3二、填空题(每小题4分,共20分)11.若抛物线与x轴没有交点,则m的取值范围是______.12.如图,四边形ABCD是矩形,A,B两点在x轴的正半轴上,C,D两点在抛物线上.设(),矩形ABCD的周长为l,则l与m的函数解析式为_________.13.某农场拟建两间矩形饲养室,一面靠足够长的墙体,中间用一道围栏隔开,并在如图所示的两处各留1m宽的门,所有围栏的总长(不含门)为26m.若要使得建成的饲养室面积最大,则利用墙体的长度为__________m.14.如图,已知二次函数的图像经过,两点,且图像的对称轴与x 轴交于点C,连接BA,BC,则的面积为___________.15.已知抛物线与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程无实数根;③;④的最小值为3.其中正确的结论是__________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款免洗洗手液”的销售单价为x (元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大?最大利润为多少元?17.(8分)抛物线与直线交于.(1)求m和n的值;(2)求抛物线的顶点坐标和对称轴;(3)对于二次函数,当x在什么范围时,y随x的增大而减小?(4)抛物线与直线还有其他交点吗?若有,请求出来;若没有,说明理由.18.(10分)如图,抛物线与x轴交于点A,B,与y轴交于点C.过点C作轴交抛物线的对称轴于点D,连接BD.已知点A的坐标为.(1)求抛物线的表达式;(2)求梯形COBD的面积.19.(10分)某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…-3-2-10123…y…3m-10-103…其中,_________.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有___________个交点,所以对应的方程有___________个不相等的实数根;②方程有__________个不相等的实数根;③关于x的方程有4个不相等的实数根时,a的取值范围是__________.20.(12分)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系.某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离02581114 x/m竖直高度20.0021.4022.7523.2022.7521.40y/m根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系;(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系.记该运动员第一次训练的着陆点的水平距离为;第二次训练的着陆点的水平距离为,则______(填“>”“=”或“<”).21.(12分)如图,抛物线的顶点为,与y轴交于点,点为其对称轴上的一个定点.(1)求这条抛物线的函数解析式.(2)已知直线l是过点且垂直于y轴的定直线,若抛物线上的任意一点到直线l的距离为d,求证:.(3)已知坐标平面内的点,请在抛物线上找一点Q,使的周长最小,并求此时周长的最小值及点Q的坐标.答案以及解析1.答案:A解析:若是关于x的二次函数,则解得.故选A.2.答案:B解析:该药店三月份销售口罩枚数y与x的函数关系式是.3.答案:A解析:由图像可得二次函数的最小值是-3.一元二次方程有实数根,,解得,m的最大值是3.4.答案:D解析:观察函数图象可知,,,二次函数的图象开口向上,对称轴,与y轴的交点在y轴负半轴.故选D.5.答案:C解析:根据题意知,将x轴向上平移2个单位长度,将y轴向左平移3个单位长度相当于将抛物线向下平移2个单位长度,再向右平移3个单位长度,则所得抛物线的解析式为.故选C.6.答案:C解析:抛物线,该函数图象开口向下,故选项A不符合题意;该函数图象的顶点坐标是,故选项B不符合题意;当时,y随x的增大而减小,故选项C符合题意;对称轴是直线,故选项D不符合题意.故选C.7.答案:A解析:如图所示,过点B的直线与新抛物线有三个公共点,将直线向下平移到A、B之间的抛物线只有C一个公共点时,直线与新抛物线也有三个公共点.令,解得:或6,即点B坐标.当一次函数过点B时,将点B的坐标代入,得,解得.将一次函数与二次函数表达式联立得:,整理得:,,解得:.综上,b的值为或,故选A.8.答案:D解析:如图,在抛物线和直线上有三点, ,.,∴抛物线的对称轴为直线,.在直线上,,.故选D.9.答案:B解析:设运动时间为x s,四边形APQC的面积为y,则cm,cm,cm,,即,当时,y有最小值,为12,故选B.10.答案:D解析:抛物线开口向下,.,,,故①正确;设二次函数与x轴的两个交点的横坐标分别是和,,则.,,故②正确;,,,.时,,,.,,,,,,,故③正确.故选D.11.答案:解析:∵抛物线与x轴没有交点,,即,解得.12.答案:解析:,,点D的横坐标为m.把代入抛物线中,得,.把代入抛物线中,得,解得,,点C的横坐标是,故,矩形ABCD的周长,即.13.答案:14解析:设平行于墙的一边长为x m,则垂直于墙的一边长为m,总面积,当时,建成的饲养室面积最大.故答案为14.14.答案:6解析:把,代入,得解得所以抛物线的表达式为.因为抛物线的对称轴为直线,所以.又因为,,所以,,所以的面积为.15.答案:①②③④解析:,,①正确.抛物线与x轴最多有一个交点,抛物线开口向上,抛物线与直线没有交点,关于x的方程无实数根,②正确.及抛物线与x轴最多有一个交点,x取任何值时,,当时,,③正确.当时,,,,,④正确.故答案为①②③④.16.答案:(1).(2)当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为360元.解析:(1)由题意得.(2)设每天的销售利润为w元,则有,,二次函数的图象开口向下.当时,w有最大值,最大值为360.当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为360元.17.答案:(1);(2)(0,-5);y轴(3)(4)(-1,-3)解析:(1)∵抛物线与直线交于,∴将代入得,解得.将(2,3)代入得,解得.(2)根据(1)得出,∴抛物线的顶点坐标为(0,-5),对称轴为y轴.(3)抛物线开口向上,当时,y随x的增大而减小.(4)由题意得,解得,,故抛物线与直线还有其他交点,交点坐标为(-1,-3).18.答案:解:(1)把的坐标代入,得,.(2)令,得,.抛物线的对称轴是直线,...19.答案:(1)0(2)图见解析(3)见解析(4)①3,3,②2;③解析:(1)把代入得,即,故答案为0.(2)如图所示.(3)(答案不唯一)由函数图象知,①函数的图象关于y轴对称;②当时,y随x的增大而增大.(4)①由函数图象知,函数图象与x轴有3个交点,所以对应的方程有3个不相等的实数根;②如图,的图象与直线有两个交点,有2个不相等的实数根;③由函数图象知,关于x的方程有4个不相等的实数根时,a的取值范围是.故答案为①3,3,②2;③.20.答案:(1)(2)<解析:(1)该运动员竖直高度的最大值为23.20 m.由表格中的数据可知该抛物线的顶点坐标为,故该抛物线的解析式为,将代入,得,解得,.(2)设着陆点的纵坐标为t,则第一次训练时,,解得:或,根据图象可知,第一次训练时着陆点的水平距离,第二次训练时,,解得:或,根据图象可知,第二次训练时着陆点的水平距离,,,,故答案为:<21.答案:(1)(2)见解析(3)解析:(1)设抛物线的解析式为.由题意,得抛物线的顶点为.又抛物线与y轴交于,,解得.∴抛物线的解析式为.(2)证明:如图,过点P作垂直于对称轴于点M.在中,.由勾股定理,得.∵点在抛物线上,,即...又.(3)如图,作于点G,交抛物线于点Q,则点Q即为所求,此时的周长最小.由(2)可知,,.又,周长的最小值为,此时点Q的横坐标为4,纵坐标,即点Q的坐标为.。

九年级数学上学期阶段性学业水平测试试题苏科版

九年级数学上学期阶段性学业水平测试试题苏科版

2015—2016学年度第一学期阶段性学业水平测试九年级数学试卷(本卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号写在答题纸相应位置.......上)1.下列图形中不一定是相似图形的是【▲】A.两个等边三角形B.两个等腰直角三角形 C.两个长方形D.两个正方形2.反比例函数1yx=的图象是【▲】A.线段 B.直线C.抛物线 D.双曲线3.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是【▲】A.2:3 B.: C.4:9 D.8:274.在反比例函数1kyx-=的每一条曲线上,y都随着x的增大而减小,则k的值可以是【▲】A.﹣1 B.1 C.2 D.35.如图,已知AB∥CD,AD与BC相交于点O,AO:DO=1:2,那么下列式子正确的是【▲】A.BO:BC=1:2 B.CD:AB=2:1 C.CO:BC=1:2 D.AD:DO=3:1(第5题图) (第7题图)(第8题图)6.已知反比例函数2yx=-,下列结论不正确的是【▲】A.图象必经过点(﹣1,2) B.y随x的增大而增大C.图象分布在第二、四象限内 D.若x>1,则﹣2<y<0 7.如图,下列条件不能判定△ADB∽△ABC的是【▲】A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.AD AB AB BC=8.如图,A、B两点在双曲线4yx=上,分别经过A、B两点向x轴,y轴作垂线段,若图中阴影部分的面积为1,则S1+S2=【▲】A.3 B.4 C.5 D.69.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是【▲】A.124xyx=--B.21xyx=--C.31xyx=--D.84xyx=--(第9题图) (第10题图)(第12题图)10.如图,点A在双曲线3yx=上,点B在双曲线kyx=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为【▲】A.6 B.9 C.10 D.12二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答.题纸相应位置......上)11.已知反比例函数kyx=经过点(1,5),则k= ▲ .12.如图,△ABC∽△ACP,若∠A=75°,∠APC=65°,则∠B的大小为▲ 度.13.点(﹣1,1y),(2,2y),(3,3y)均在函数6yx=的图象上,则1y,2y,3y的大小关系是▲ .14.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AODO等于▲ .(第14题图)(第16题图)(第17题图)15.若函数4y x=与1yx=的图象有一个交点是(,2),则另一个交点坐标是▲ .16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是▲ 米.17.如图,已知A(,1y),B(2,2y)为反比例函数1yx=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是▲ .18.如图,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),反比例函数kyx=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于▲ .(第18题图)三、解答题:(本大题共10小题,共96分,请在答题纸指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分)如图所示,四边形ABCD∽四边形A′B′C′D′,求未知边x的长度和α的大小.20.(本小题满分10分)如图,已知反比例函数kyx的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.21.(本小题满分10分)如图,△ABC中,CD是边AB上的高,且AD CD CD BD=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.22.(本小题满分8分)去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:100yx=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数100yx=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?23.(本小题满分8分)在平面直角坐标系中△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.24.(本小题满分10分)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数myx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b﹣mx<0的解集(请直接写出答案).25.(本小题满分8分)如图,互相垂直的两条公路AM、AN旁有一矩形花园ABCD,其中AB=30米,AD=20米.现欲将其扩建成一个三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ经过点C.(1)DQ=10米时,求△APQ的面积.(2)当DQ的长为多少米时,△APQ的面积为1600平方米.26.(本小题满分8分)阅读理解:对于任意正实数a,b,∵(2(a b≥0,∴a﹣ab+b≥0,∴a+b ab,只有当a=b时,等号成立.结论:在a+b ab(a,b均为正实数)中,若ab为定值P,则a+b P当a=b,a+b有最小值P根据上述内容,回答下列问题:(1)若x>0,4xx+的最小值为▲ .(2)探索应用:如图,已知A(﹣2,0),B(0,﹣3),点P为双曲线6yx=(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD 的形状.27.(本小题满分12分)在平面直角坐标系中,函数1y =12x(x >0),2y =3x-(x <0)的图象如图所示,点A ,B 分别是1y =12x(x >0),2y =3x-(x <0)图象上的点,连接OA ,OB .(1)若OA 与x 轴所成的角为45°,求点A 的坐标; (2)如图1,当∠AOB =90°,求OA OB的值;(3)设函数3k y x=(x >0)的图象与1y =12x(x >0)的图象关于x 轴对称,点B 的横坐标为﹣2,过点B 作BE ⊥x 轴,点F 是y 轴负半轴上的一个动点,函数3k y x=(x >0)的图象上是否存在一点G ,使以点O 、F 、G 为顶点的三角形与△OBE 相似?如果存在,求出点F 的坐标,如果不存在,请说明理由.28.(本小题满分12分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C 时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.初三数学阶段性测试参考答案与试题解析一.选择题(共10小题)1.下列图形中不一定是相似图形的是()A.两个等边三角形B.两个等腰直角三角形C.两个长方形D.两个正方形【考点】相似图形.【分析】根据相似图形的定义对各选项分析判断后利用排除法求解.【解答】解:A、两个等边三角形对应边成比例,对应角相等,一定相似,故本选项错误;B、两个等腰直角三角形,顶角都是直角相等,夹边成比例,一定相似,故本选项错误;C、两个长方形,四个角都是直角相等,但对应边不一定成比例,不一定相似,故本选项正确;D、两个正方形对应边成比例,对应角相等,一定相似,故本选项错误.故选C.【点评】本题考查了相似图形的概念,注意从对应边成比例,对应角相等两个方面考虑.2.反比例函数y=的图象是()A.线段 B.直线 C.抛物线D.双曲线【考点】反比例函数的性质.【分析】根据反比例函数的性质可直接得到答案.【解答】解:∵y=是反比例函数,∴图象是双曲线.故选:D.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.3.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.在反比例函数的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.﹣1 B.1 C.2 D.3【考点】反比例函数的性质.【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1﹣k>0即可.【解答】解:∵反比例函数图象的每一条曲线上,y随x的增大而减小,∴1﹣k>0,解得k<1.故选A.【点评】本题主要考查反比例函数的性质的知识点,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.5.如图,已知AB∥CD,AD与BC相交于点O,AO:DO=1:2,那么下列式子正确的是()A.BO:BC=1:2 B.CD:AB=2:1 C.CO:BC=1:2 D.AD:DO=3:1【考点】平行线分线段成比例.【分析】证明△AOB∽△DOC,得到AB:CD=AO:DO=1:2,即可解决问题.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴AB:CD=AO:DO=1:2,∴CD:AB=2:1,故选B.【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是判断出△AOB∽△DOC.6.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象分布在第二、四象限内 D.若x>1,则﹣2<y<0【考点】反比例函数的性质.【分析】根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.【解答】解:A、(﹣1,2)满足函数的解析式,则图象必经过点(﹣1,2);B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;C、命题正确;D、命题正确.故选B.【点评】本题考查了反比例函数的性质,对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.7.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=【考点】相似三角形的判定.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【点评】本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.8.如图,A、B两点在双曲线y=上,分别经过A、B两点向x轴,y轴作垂线段,若图中阴影部分的面积为1,则S1+S2=()A.3 B.4 C.5 D.6【考点】反比例函数系数k的几何意义.【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选D.【点评】本题考查了反比例函数系数k的几何意义,以及反比例函数的图象和性质及任一点坐标的意义,有一定的难度.9.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【考点】相似三角形的判定与性质;函数关系式;全等三角形的判定与性质.【分析】作FG⊥BC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB=2x,然后根据平行线的性质即可求得.【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠DBE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中,,∴△DBE≌△EGF(AAS),∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选A.【点评】本题考查了三角形全等的判定和性质,以及平行线的性质,辅助线的做法是解题的关键.10.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12【考点】反比例函数图象上点的坐标特征.【分析】过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOD是矩形,四边形OEBF 是矩形,得出S矩形AFOD=3,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OD,即OE=3OD,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.【解答】解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=9,∴k=9,故选B.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,矩形的判定和性质,平行线分线段成比例定理,作出辅助线,构建矩形是解题的关键.二.填空题(共8小题)11.已知反比例函数y=经过点(1,5),则k= 5 .【考点】反比例函数图象上点的坐标特征.【分析】把点(1,5)代入反比例函数y=中,可直接求k的值.【解答】解:依题意,得x=1时,y=5,所以,k=xy=5.故答案为:5【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特点.关键是设函数关系式,根据已知条件求函数关系式.12.如图,△ABC∽△ACP,若∠A=75°,∠APC=65°,则∠B的大小为40 度.【考点】相似三角形的性质.【分析】根据三角形的内角和得到∠ACP=40,然后根据相似三角形的性质即可得到结论.【解答】解:∵∠A=75°,∠APC=65°,∴∠ACP=40,∵△ABC∽△ACP,∴∠B=∠ACP=40°,故答案为:40.【点评】本题考查了相似三角形三角形的内角和,熟记相似三角形的性质是解题的关键.13.点(﹣1,y1),(2,y2),(3,y3)均在函数y=的图象上,则y1,y2,y3的大小关系是y1<y3<y2.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,y1),(2,y2),(3,y3)代入函数y=,求出y1,y2,y3的值,并比较出其大小即可.【解答】解:∵点(﹣1,y1),(2,y2),(3,y3)均在函数y=的图象上,∴y1==﹣6,y2==3,y3==2,∵﹣6<2<3,∴y1<y3<y2.故答案为:y1<y3<y2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于.【考点】相似三角形的判定与性质;正方形的性质.【专题】数形结合.【分析】利用两角对应相等易得△AOD∽△EAD,那么=.【解答】解:∵∠ADO=∠ADO,∠DOA=∠DAE=90°,∴△AOD∽△EAD,∴==.故答案为:.【点评】本题考查了相似三角形的判定与应用;把所求的线段的比进行相应的转移是解决本题的关键.15.若函数y=4x与y=的图象有一个交点是(,2),则另一个交点坐标是(﹣,﹣2).【考点】反比例函数图象的对称性.【专题】计算题.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:正比例函数y=4x与反比例函数y=的图象均关于原点对称,则其交点也关于原点对称,那么(,2)关于原点的对称点为:(﹣,﹣2).故答案为:(﹣,﹣2).【点评】本题考查反比例函数图象的中心对称性,较为简单,容易掌握.16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是8 米.【考点】相似三角形的应用.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.【点评】此题主要考查了相似三角形的应用,关键是掌握相似三角形对应边成比例.17.如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(,0).【考点】反比例函数图象上点的坐标特征.【分析】先求出A、B的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP﹣BP|<AB,延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【解答】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0)把A、B的坐标代入得:,解得:,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0);故答案为:(,0).【点评】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度18.如图,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),反比例函数y=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于﹣.【考点】反比例函数系数k的几何意义.【分析】首先得出△AEB≌△GBE,再利用四边形BCDE的面积等于△ABE面积的5倍,进而得出AE与BC之间的关系,由△BCF∽△EAO,得出C点坐标,进而求出k的值.【解答】解:如图,作CF⊥y轴于F,作EG⊥BC于G,∵∠EGB=∠EAB=∠ABG=90°,∴四边形ABGE是矩形,在△AEB和△GBE中,,∴△AEB≌△GBE(SSS),∵A、B的坐标分别是A(﹣1,0)、B(0,﹣2),∴AB直线解析式为:y=kx+b,故将两点代入得出:,解得:,故直线AB解析式为:y=﹣2x﹣2,∵AD⊥AB,AO⊥BE,∴OA2=OE•OB,即12=OE×2,∴OE=,∴E(0,)∵S四边形BCDE=5S△AEB∴S四边形BCDE=5S△GBE∴S四边形CDEG=4S△GBE∴CG=2BG=2AE=2=,∴BG=,∵∠AEO=∠CBF,∠EOA=∠CFB=90°,∴△BCF∽△EAO,∴==,∵AE=BG=,BC=BG+CG=+=∴∴===3,∴BF=3EO=,CF=3AO=3,∴OF=OB﹣BF=2﹣=,设C的坐标为(x,y)则x=3,y=﹣.故k=xy=3×(﹣)=﹣.故答案为:﹣.【点评】本题考查了反比例函数的综合运用,通过作辅助线,将图形分割,寻找全等三角形,利用边的关系设双曲线上点的坐标是解题关键.三.解答题(共10小题)19.如图所示,四边形ABCD∽四边形A′B′C′D′,求未知边x的长度和α的大小.【考点】相似多边形的性质.【专题】计算题.【分析】由相似多边形的性质可得,AD:AB=A′D′:A′B′,∠C=∠C′,根据图中表明的数字求解即可.【解答】解:由题意得:,∴x=18,∵∠C′=360°﹣(63°+129°+78°)=90°,四边形ABCD∽四边形A′B′C′D′,∴∠C=∠C′=90°,即α=90°.【点评】本题考查相似多边形的性质:相似多边形的对应角相等,对应边成比例.20.如图,已知反比例函数y=的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征.【分析】(1)根据待定系数法即可求得;(2)根据反比例函数的性质先判定图象在一、三象限,y随x的增大而减小,根据0<1<3,可以确定B(1,m)、C(3,n)两个点在第一象限,从而判定m,n的大小关系.【解答】解:(1)因为反比例函数y=的图象经过点A(﹣3,﹣2),把x=﹣3,y=﹣2代入解析式可得:k=6,所以解析式为:y=;(2)∵k=6>0,∴图象在一、三象限,y随x的增大而减小,又∵0<1<3,∴B(1,m)、C(3,n)两个点在第一象限,∴m>n.【点评】本题考查了待定系数法求解析式,反比例函数的性质等,熟练掌握反比例函数的性质是解题的关键.21.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.22.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?【考点】反比例函数的应用.【专题】应用题.【分析】函数关系式y=中,y代表舒适度指数,x(分)代表等待时间.(1)是已知x=5,代入函数解析式求得y.(2)是已知y≥10,就可以得到关于x的不等式求的x的范围.【解答】解:(1)当x=5时,舒适度y===20;(2)舒适度指数不低于10时,由图象y≥10时,0<x≤10所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟.【点评】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是根据函数关系及题目的已知条件,分别求解,要注意自变量和函数代表的实际意义.23.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)利用轴对称图形的性质进而得出对应点位置进而画出图形即可;(2)利用位似图形的性质得出对应点位置进而画出图形即可.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了轴对称变换以及位似变换,根据题意得出对应点位置是解题关键.24.如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b﹣<0的解集(请直接写出答案).【考点】反比例函数与一次函数的交点问题.【专题】数形结合.【分析】(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.【解答】解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),∴m=1×(﹣4)=﹣4,∴y=﹣,将x=﹣4,y=n代入反比例解析式得:n=1,∴A(﹣4,1),∴将A与B坐标代入一次函数解析式得:,解得:,∴y=﹣x﹣3;(2)在直线y=﹣x﹣3中,当y=0时,x=﹣3,∴C(﹣3,0),即OC=3,∴S△AOB=S△AOC+S△COB=(3×1+3×4)=;(3)不等式kx+b﹣<0的解集是﹣4<x<0或x>1.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,一次函数与坐标轴的交点,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.25.如图,互相垂直的两条公路AM、AN旁有一矩形花园ABCD,其中AB=30米,AD=20米.现欲将其扩建成一个三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ经过点C.(1)DQ=10米时,求△APQ的面积.(2)当DQ的长为多少米时,△APQ的面积为1600平方米.【考点】平行线分线段成比例;一元二次方程的应用.【分析】(1)由DC∥AP,得到=,代入数据求得AP=90,于是得到结论;(2)设DQ=x米,则AQ=x+20,根据平行线分线段成比例定理得到=,得到方程=,求出AP=,解一元二次方程即可得到结论.【解答】解:(1)∵DC∥AP,∴=,∴=,∴AP=90,∴S△APQ=AQ•AP=1350米2;(2)设DQ=x米,则AQ=x+20,∵DC∥AP,∴=,∴=,∴AP=,由题意得××(x+20)=1600,化简得3x2﹣200 x+1200=0,解x=60或.经检验:x=60或是原方程的根,∴DQ的长应设计为60或米.【点评】本题考查了平行线分线段成比例,求三角形的面积,一元二次方程的应用,熟练掌握平行线分线段成比例定理是解题的关键.26.阅读理解:对于任意正实数a,b,∵(﹣)2≥0,∴a﹣2+b≥0,∴a+b≥2,只有当a=b时,等号成立.结论:在a+b≥2(a,b均为正实数)中,若ab为定值P,则a+b≥2,当a=b,a+b有最小值2.根据上述内容,回答下列问题:(1)若x>0,x+的最小值为 4 .(2)探索应用:如图,已知A(﹣2,0),B(0,﹣3),点P为双曲线y=(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD 的形状.【考点】反比例函数综合题.【专题】综合题.【分析】(1)利用在a+b≥2得到x+≥2,即可得到x+的最小值;(2)设p(x,),则C(x,0),D(0,),则可表示出四边形ABCD面积S=AC•DB=(x+2)(+3),变形得S=(x+)+6,利用前面的结论可得四边形ABCD面积的最小值为12.此时x=,则x=2,得到OA=OC=2,OD=OB=3,利用平行四边形的判定定理可得四边形ABCD是平行四边形,而AC⊥BD,再根据菱形的判定定理得到四边形ABCD是菱形.【解答】解:(1)4;(2)设P(x,),则C(x,0),D(0,),∴四边形ABCD面积S=AC•DB=(x+2)(+3)=(x+)+6,由(1)得若x>0,x+的最小值为4,∴四边形ABCD面积S≥×4+6=12,∴四边形ABCD面积的最小值为12.此时x=,则x=2,∴C(2,0),D(0,3),∴OA=OC=2,OD=OB=3,∴四边形ABCD是平行四边形.又AC⊥BD,∴四边形ABCD是菱形.【点评】本题考查了阅读理解题的解题方法:利用题目中给的方法或结论解决问题.也考查了利用坐标表示线段长以及平行四边形和菱形的判定方法.27.在平面直角坐标系中,函数y1=(x>0),y2=(x<0)的图象如图所示,点A,B分别是y1=(x>0),y2=(x<0)图象上的点,连接OA,OB.(1)若OA与x轴所成的角为45°,求点A的坐标;(2)如图1,当∠AO B=90°,求的值;(3)设函数y3=(x>0)的图象与y1=(x>0)的图象关于x轴对称,点B的横坐标为﹣2,过点B作BE⊥x轴,点F是y轴负半轴上的一个动点,函数y3=(x>0)的图象上是否存在一点G,使以点O、F、G为顶点的三角形与△OBE相似?如果存在,求出点F的坐标,如果不存在,请说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)设A(a,b),根据反比例函数图象上点的坐标特征,得出ab=12,进而得出a=b=2,就可求得A的坐标;(2)过A、B分别作y轴的垂线,垂足为C、D,通过证得△AOC∽△OBD,然后根据相似三角形的性质即可求得;(3)分四种情况分别讨论求得.【解答】解:(1)设A(a,b),∵OA与x轴所成的角为45°,∴a=b,∵点A在y1=(x>0)图象上,∴ab=12,。

2022-2023学年山东省济南市九级九年级数学第一学期期末学业水平测试试题含解析

2022-2023学年山东省济南市九级九年级数学第一学期期末学业水平测试试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在平面直角坐标系中,点P (m ,1)与点Q (﹣2,n )关于原点对称,则m n 的值是( )A .﹣2B .﹣1C .0D .22.下列二次根式是最简二次根式的是( )A .18B .13C .10D .0.33.服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是( ) A .平均数 B .中位数 C .方差 D .众数4.如图,平面直角坐标系中,()()()8,0,8,4,0,4A B C --,反比例函数k y x=的图象分别与线段,AB BC 交于点,D E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k =( )A .20-B .16-C .12-D .8-5.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .6.已知关于x 的方程(m +4)x 2+2x ﹣3m =0是一元二次方程,则m 的取值范围是( )A .m <﹣4B .m ≠0C .m ≠﹣4D .m >﹣47.已知如图ABC 中,点O 为BAC ∠,ACB ∠的角平分线的交点,点D 为AC 延长线上的一点,且AD AB =,CD CO =,若138∠=︒AOD ,则ABC ∠的度数是( ).A .12︒B .24︒C .48︒D .96︒8.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DE EF=( )A .12B .13C .23D .19.若正方形的外接圆半径为2,则其内切圆半径为( )A .2B 2C 2D .110.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定 11.一元二次方程x 2+x ﹣1=0的两根分别为x 1,x 2,则1211x x +=( ) A .12 B .1 C 5 D 512.若反比例函数2k yx (k 为常数)的图象在第二、四象限,则k 的取值范围是( ) A .2k <-B .2k >-且0k ≠C .2k >D .2k <且0k ≠二、填空题(每题4分,共24分)13.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.14.若二次函数25(0)y ax bx a =-+≠的图像经过点(2,2),则242017b a -+的值是_______.15. “上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .16.如图,在矩形ABCD中,AB=4,AD=3,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是______(结果保留π).17.如图,A、B、C是⊙O上三点,∠ACB=30°,则∠AOB的度数是_____.18.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.三、解答题(共78分)19.(8分)已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.(1)证明:DE//AB;(2)若CD=3,求四边形BEDF的周长.20.(8分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)21.(8分)为了推动课堂教学改革,打造高效课堂,配合我市“两型课堂”的课题研究,莲城中学对八年级部分学生就一期来“分组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的八年级学生的人数,并补全条形统计图;(2)若该校八年级学生共有180人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生).22.(10分)某校综合实践小组要对一幢建筑物MN 的高度进行测量.如图,该小组在一斜坡坡脚A 处测得该建筑物顶端M 的仰角为45︒,沿斜坡向上走20m 到达B 处,(即20AB m =)测得该建筑物顶端M 的仰角为30.已知斜坡的坡度3:4i =,请你计算建筑物MN 的高度(即MN 的长,结果保留根号).23.(10分)如图,在△ABC 中,∠C =90°,AC=8cm ,BC=6cm . 点P 从点A 出发,沿AB 边以2 cm /s 的速度向点B 匀速移动;点Q 从点B 出发,沿BC 边以1 cm /s 的速度向点C 匀速移动, 当一个运动点到达终点时,另一个运动点也随之停止运动,设运动的时间为t (s).(1)当PQ ∥AC 时,求t 的值;(2)当t 为何值时,△PBQ 的面积等于245cm 2.24.(10分)如图,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为()2,4.矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD =2,AB =1.(1)求该抛物线所对应的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度从点A 出发向B 匀速移动,设它们运动的时间为t 秒(03)t ≤≤,直线AB 与该抛物线的交点为N (如图2所示). ①当52t =,判断点P 是否在直线MB 上,并说明理由; ②设P 、N 、C 、D 以为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.25.(12分)先化简,再求值:2111x y x y xy y⎛⎫+÷ ⎪+-+⎝⎭,其中x 52,y 5 2. 26.已知,直线23y x =-+与抛物线2y ax =相交于A 、B 两点,且A 的坐标是(3,)m -(1)求a ,m 的值;(2)抛物线的表达式及其对称轴和顶点坐标.参考答案一、选择题(每题4分,共48分)1、A【分析】已知在平面直角坐标系中,点P (m ,1)与点Q(﹣2,n )关于原点对称,则P 和Q 两点横坐标互为相反数,纵坐标互为相反数即可求得m ,n ,进而求得m n 的值.【详解】∵点P (m ,1)与点Q(﹣2,n )关于原点对称∴m=2,n=-1∴m n =-2故选:A【点睛】本题考查了直角坐标系中,关于原点对称的两个点的坐标特点,它们的横坐标互为相反数,纵坐标互为相反数. 2、C【解析】根据最简二次根式的定义逐项分析即可.【详解】A. ,故不是最简二次根式;B. ,故不是最简二次根式;C. ,是最简二次根式;D. ,故不是最简二次根式; 故选C.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,象这样的二次根式叫做最简二次根式.3、D【分析】根据题意,应该关注哪种尺码销量最多.【详解】由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.故选D【点睛】本题考查了数据的选择,根据题意分析,即可完成。

河南省信阳市潢川县2021-2022学年九年级上学期期末学业水平测试数学试题

河南省信阳市潢川县2021-2022学年九年级上学期期末学业水平测试数学试题

2022年1月学业水平测试九年级数学试题亲爱的同学们:本次考试将实行网上阅卷,所有试题答案一律填写在答题卡上相应区域,选择题用2B铅笔在相应小框框内涂黑,要求把小框框涂满,非选择题要必须填写在相应的框框内横线上,不准填写在框框外,否则不得分。

每题留下的横线可能较长,但答案可能很短。

一、选择题(每题3分,共30分)1.一元二次方程x2=x的实数根是()A.0或1B.0C.1D.±12.下列说法正确的是()A.概率很小的事件是不可能事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖D.只要试验的次数足够多,频率就等于概率3.如图所示,将一个含30°角的直角三角板ABC绕点A顺时针旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°4.从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好配成一个圆锥体的是()A.B.C.D.5.如图,在平行四边形ABCD中,点E是AB的中点,CE和BD交于点O,若S△EOB=1,则四边形AEOD的面积为()座号A.4B.5C.6D.76.下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1B.y=x2﹣1C.y=7.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A.30°B.40°C.50°D.60°8.对于反比例函数y=﹣,下列说法错误的是()A.其图象既是轴对称图形又是中心对称图形B.其图象与其他的反比例函数图象都不会有交点C.其图象与y=2x图象有两个交点D.其图象与y=2x2图象只有一个交点9.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为12,则C点坐标为()A.(6,4)B.(6,2)C.(4,4)D.(8,4)10.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图象与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?()A.1B.C.D.二、填空题(每题3分,共15分)11.当x=时,代数式x2﹣x﹣6与3x﹣2的值互为相反数.12.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,已知AB=25,BC=15,则BD=.13.如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,﹣3).则经画图操作可知:△ABC的外心坐标应是.(第12题图)(第13题图)(第14题图)(第15题图) 14.如图,反比例函数y=(k>0)的图象与以原点(0,0)为圆心的圆交于A,B两点,且A(1,),图中阴影部分的面积等于.(结果保留π)15.如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向旋转90°得到点F,则线段AF的长的最小值是.三、解答题(共75分)16.(8分)从一副扑克牌中取出红桃J,Q,K和黑桃J,Q,K这两种花色的六张扑克牌.(1)将这六张牌背面朝上,洗匀,随机抽取一张,求这张牌是红桃K的概率;(2)将这三张红桃分为一组,三张黑桃分为一组,分别将这两组牌背面朝上洗匀,然后从这两组牌中各随机抽取一张,请利用列表或画树状图的方法,求其中一张是J一张是Q的概率.17.(8分)如图,A、B、C三点均在边长为1的小正方形网格的格点上.(1)请在BC上标出点D,连接AD,使得△ABD∽△CBA;(2)试证明上述结论:△ABD∽△CBA.18.(8分)如图,AB为圆O的直径,取OA的中点C,过点C作CD⊥AB交圆O于点D,D在AB的上方,连接AD,BD,点E在线段CA的延长线上,且∠ADE=∠ABD.(1)求∠ABD的度数;(2)求直线DE与圆O的公共点个数.19.(9分)已知二次函数y=x2﹣mx+2m﹣4.(1)求证:无论m取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为正数,求m的最小整数值.20.(9分)某学习小组在学习了函数及函数图象的知识后,想利用此知识来探究周长一定时,矩形的面积与边长函数关系式的图象.请将他们的探究过程补充完整.(1)列函数表达式:若矩形的周长为8,设矩形的一边长为x,面积为y,则有y =;(2)上述函数表达式中,自变量x的取值范围是;(3)列表:x…0.51 1.52 2.53 3.5…y… 1.753 3.754 3.753m…写出m=;(4)画图:在平面直角坐标系中已描出了上表中部分各对应值为坐标的点,请你画出该函数的图象.21.(10分)直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?22.(11分)如图,一次函数y1=﹣x+4与反比例函数y2=(x>0)的图象交于A,B两点.(1)点A的坐标是,点B的坐标是:(2)点P是直线AB上一点,设点P的横坐标为m.①当y1<y2时,m的取值范围是;②点P在线段AB上,过点P作PD⊥x轴于点D,连接OP.若△POD的面积最小时,求m的值.23.(12分)如图1,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,点D,E分别为AC,BC的中点.△CDE绕点C顺时针旋转,设旋转角为α(0°≤α≤360°),记直线AD与直线BE的交点为点P.(1)如图1,当α=0°时,AD与BE的数量关系为,AD与BE 的位置关系为;(2)当0°<α≤360°时,上述结论是否成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)△CDE绕点C顺时针旋转一周,请直接写出运动过程中P点运动轨迹的长度和P 点到直线BC距离的最大值.2022年1月学业水平测试九年级数学试题参考答案一、选择题(每题3分,共30分)1.A2.B3.D4.B5.B6.B7.A8.C9.A10.D二、填空题(每题3分,共15分)11.﹣4或212.913.(﹣2,﹣1)14.15.2﹣1第15题提示:根据题意先证明△ADE≌△CDF,则CF=AE=1,根据AF≤AC﹣CF,可知:当F在AC上时,AF最小,所以由勾股定理可得AC的长,可求得AF的最小值.三、解答题(共75分)16.(8分)解:(1)将这六张牌背面朝上,洗匀,随机抽取一张,则这张牌是红桃K的概率为;------------------------3分(2)画树状图如图:--------------------------------------5分共有9个等可能的结果,其中一张是J一张Q的结果有2个,∴其中一张是J一张Q的概率为.------------------------------------------8分17.(8分)解:(1)如图,点D是所求作的点,------------------------------------------3分(2)证明:∵AB==,BC=5,BD=1,∴,,∴,-------------------------------------------------------------5分∵∠DBA=∠ABC,----------------------------------------------------6分∴△ABD∽△CBA.----------------------------------------------------8分18.(8分)解:(1)如图,连接OD,∴OA=OD,∵点C为OA的中点,CD⊥AB,∴AD=OD,------------------------------------------1分∴OA=OD=AD,∴△OAD是等边三角形,--------------------------2分∴∠AOD=60°,------------------------------------3分∴∠ABD=30°;-------------------------------------4分(2)如图,∵∠ADE=∠ABD,∴∠ADE=30°,∵∠ADO=60°,∴∠ODE=90°,-----------------------------------6分∴OD⊥DE,∴DE是⊙O的切线,-------------------------------7分∴直线DE与⊙O的公共点个数为1.--------------------8分19.(9分)解:(1)∵△=(﹣m)2﹣4×1×(2m﹣4)=m2﹣8m+16--------------------------------1分=(m﹣4)2≥0,------------------------------3分∴无论m取任何实数时,该函数图象与x轴总有交点;--------------4分(2)∵该函数的图象与x轴交点的横坐标均为正数,----------------5分∴当x=0时,y>0,即2m﹣4>0,---------------------------------------7分解得m>2,----------------------------------------------------------------------8分∴m的最小整数值为3.------------------------------------------------------9分20.(9分)解:(1)y=﹣x2+4x;----------------------------------2分(2)0<x<4.-----------------------------------------------4分(3)m=1.75.-----------------------------------------------------6分(4)函数图象如图所示:-----------------9分(没有画出全部图形的,只有一部分给1分,超出0和4两点的不给分,0和4这两点没去掉的给2分)21.(10分)解:(1)设售价应定为x元,则每件的利润为(x﹣40)元,日销售量为20+=(140﹣2x)件,------------------------------------------------1分依题意,得:(x﹣40)(140﹣2x)=(60﹣40)×20,-------------3分整理,得:x2﹣110x+3000=0,解得:x1=50,x2=60(舍去).-------------------------------------------5分答:售价应定为50元;--------------------------------------------------6分(2)该商品需要打a折销售,由题意,得,62.5×≤50,--------------------------------------------8分解得:a≤8,-----------------------------------------------------------9分答:该商品至少需打8折销售.--------------------------------------10分22.(11分)解:(1)点A的坐标为(1,3);点B的坐标为(3,1).-------------4分(2)①0<m<1或m>3.-------------------------------------------------7分②∵点P在线段AB上,∴1≤m≤3,点P的坐标为(m,﹣m+4).∵PD⊥x轴于点D,∴PD=﹣m+4,OD=m,=PD•OD=(﹣m+4)•m=﹣m2+2m=﹣(m﹣2)2+2.----------8分∴S△POD∵﹣<0,随m的增大而增大;当2≤m≤3时,S△POD随m的增大而减小.∴当1≤m≤2时,S△POD---------------------------------9分=﹣(1﹣2)2+2=;当m=1时,S△POD=﹣(3﹣2)2+2=.-------------------------------10分当m=3时,S△POD∵=,∴若△POD的面积最小时,则m的值为1或3.---------------------------11分23.(12分)解:(1)AD=BE,AD⊥BE;-----------------4分(2)结论仍然成立,理由如下:∵AC=,BC=1,CD=,EC=,∴,=,∴,∵△CDE绕点C顺时针旋转,∴∠BCE=∠ACD,∴△BCE∽△ACD,------------------------------------------6分∴=,∠CBO=∠CAD,∴AD=BE,-----------------------------------------7分∵∠CBO+∠BOC=90°,∴∠CAD+∠AOP=90°,∴∠APO=90°,∴BE⊥AD;-------------------------------------------8分(3)P点运动轨迹的长度是π,-------------------------------10分P点到直线BC距离的最大值.-------------------------------12分∵∠APB=90°,∴点P在以AB为直径的圆上,如图3,取AB的中点G,作⊙G,以点C为圆心,CE为半径作⊙C,当BE是⊙C切线时,点P到BC的距离最大,过点P作PH⊥BC,交BC的延长线于H,连接GP,∵BE是⊙C切线,∴CE⊥BE,∵=,∴∠EBC=30°,∴∠GBP=30°,∵GB=GP,∴∠GBP=∠GPB=30°,∴∠BGP=120°,∵点P的运动轨迹为点C→点P→点C→点B→点C,∴P点运动轨迹的长度=×2=π,∵∠ABP=30°,BP⊥AP,∴AP=AB=1,BP=AP=,∵∠CBP=30°,PH⊥BH,∴PH=BP=.∴P点到直线BC距离的最大值.。

2021年全国中学生能力测评(初赛)九年级组数学真题

2021年全国中学生能力测评(初赛)九年级组数学真题

2021年全国中学生能力测评(初赛)九年级(初三)组数学试题(试题总分:120分答题时间:120 分钟)★温馨提示:请将答案写在答题纸上一、画龙点睛(本大题共8道小题,每小题3分,总计24分)1.定义:形如a+ bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=-1),a称为复数的实部,b称为复数的虛部复数可以进行四则运算,运算的结果还是一个复数.例如(3+4i)2=32+2×3×4i+(4i)2=9+24i+ 16i2=9+24i-16=-7 + 24i,因此,(3+4i)2 的实部是-7,虚部是24。

已知复数(2-mi)2的虛部是16,则实部是。

2.将关于x的一元二次方程x2-px+q=0变形为x=px-q,就可以将x2表示为关于x的一次多项式,从而达到“降次”的目的,又如x3=x·x2=x(px-q) =……我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式。

根据“降次法”,已知:x2-x- 1=0,则x4- 3x + 2021的值为_ 。

3.某树木种植基地有甲、乙、丙三种景观树苗每株的销售价格分别为3元、2元、1元。

在一次出售树苗时,销售甲、乙两种树苗株数的比为2∶1;销售乙、丙两种树苗株数的比为4∶3,共获销售金额28 000元,那么,此次销售甲、乙、丙三种树苗共 _株。

5.已知x=2021a+2 020,y=2 021a+2 021,z=2021a+2022,则x2+ y2+ z2-xy-yz-xz的值为。

6.如图,平行四边形ABCD中,AB=3,BC=2,∠ABC=60°,要用一块矩形铝板切割出这样的平行四边形并使废料最少,则矩形的面积最小为。

7.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-2,0),B(1,2),C(1,-2),已知N(-1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5...,依此类推,则点N2021的坐标为。

九年级数学能力练习题(一)

九年级数学能力练习题(一)

能力练习题(一)1.如图所示,是按照一定规律画出的一列“树枝型”图,经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出“树枝”的个数是( )A.25B.50 C.80D.902.已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数),其中正确的结论有( )A.2个B.3个C.4个D.5个3.如图1,四边形ABCD是正方形,点A在直线MN上,∠MAD=45°,直线MN沿AC方向平行移动。

设移动距离为x,直线MN经过的阴影部分面积为y,那么表示y与x 之间函数关系的图象大致为( )4.正方形ABCD的边长与等腰直角三角形PMN的腰长均为4cm,且AB与MN都在直线上,开始时点B与点M重合。

让正方形沿直线向右平移,直到A点与N点重合为止,设正方形与三角形重叠部分的面积为y(cm2),MB的长度为x(cm),则y与x之间的函数关系的图象大致是( )5.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A 作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是( )6.有一边长为2的正方形纸片ABCD,先将正方形ABCD对折,设折痕为EF(如图(1));再沿过点D的折痕将角A翻折,使得点A落在EF的H上(如图(2)),折痕交AE于点G,则EG的长度为( )A.B.C.D.7.某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A。

小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法:方法一:在底边BC上找一点D,连接AD作为分割线;方法二:在腰AC上找一点D,连接BD作为分割线;方法三:在腰AB上找一点D,作DE∥BC,交AC于点E,DE作为分割线;方法四:以顶点A为圆心,AD为半径作弧,交AB于点D,交AC于点E,弧DE作为分割线。

2024年山东省青岛市市南区数学九年级第一学期开学学业水平测试模拟试题【含答案】

2024年山东省青岛市市南区数学九年级第一学期开学学业水平测试模拟试题【含答案】

2024年山东省青岛市市南区数学九年级第一学期开学学业水平测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)对于函数()x2,x3y2x7,(x3)⎧-+≤=⎨->⎩下列说法正确的是()A.当x3<时,y随x的增大而增大B.当x3>时,y随x的增大而减小C.当x0<时,y随x的增大而减小D.当x4=时,y2=-2、(4分)直线y=3x-1与y=x+3的交点坐标是()A.(2,5)B.(1,4)C.(-2,1)D.(-3,0)3、(4分)若△ABC中,AB=13,BC=5,AC=12,则下列判断正确的是()A.∠A=90°B.∠B=90°C.∠C=90°D.△ABC是锐角三角形4、(4分)下列调查中,适宜采用普查方式的是()A.调查全国中学生心理健康现状B.调查一片试验田里五种大麦的穗长情况C.要查冷饮市场上冰淇淋的质量情况D.调查你所在班级的每一个同学所穿鞋子的尺码情况5、(4分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A .4小时B .4.4小时C .4.8小时D .5小时6、(4分)下列4个命题:①对角线相等且互相平分的四边形是正方形;②有三个角是直角的四边形是矩形;③对角线互相垂直的平行四边形是菱形;④一组对边平行,另一组对边相等的四边形是平行四边形其中正确的是()A .②③B .②C .①②④D .③④7、(4分)正方形具有而菱形不一定具有的性质是()A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角相等8、(4分)点P (2,﹣3)关于y 轴的对称点的坐标是()A .(2,3)B .(﹣2,﹣3)C .(﹣2,3)D .(﹣3,2)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若方程x 2﹣x =0的两根为x 1,x 2(x 1<x 2),则x 2﹣x 1=______.10、(4分)若-1,则x 2+2x+1=__________.11、(4分)将点(0A ,3)向右平移4个单位后与点B 关于x 轴对称,则点B 的坐标为______.12、(4分)一组数据2,3,3,1,5的众数是_____.13、(4分)某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用10块试验田进行实验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图6中的信息,可知在试验田中,____种甜玉米的产量比较稳定.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知在ABC ∆中,,,D E F 分别是,,AB BC AC 的中点,连结,,DF EF BF .(1)求证:四边形BEFD 是平行四边形;(2)若90,6AFB AB ∠=︒=,求四边形BEFD 的周长.15、(8分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元问平均每人捐款是多少元?16、(8分)因式分解:(1)a (m ﹣1)+b (1﹣m ).(1)(m 1+4)1﹣16m 1.17、(10分)在今年“绿色清明,文明祭祀”活动中,某花店用1200元购进若干菊花,很快售完,接着又用3000元购进第二批菊花,已知第二批所购进菊花的数量是第一批所购进菊花数量的2倍,且每朵菊花的进价比第一批每朵菊花的进价多1元.(1)求第一批每朵瓶菊花的进价是多少元?(2)若第一批每朵菊花按5元售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?18、(10分)如图,等边ABC ∆的边长是4,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使12CF BC =,连接CD 和EF .(1)求证:DE CF =;(2)求EF 的长;(3)求四边形DEFC 的面积.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一组数据1,3,5,7,9的方差为________.20、(4分)如图,已知一块直角三角板的直角顶点与原点O 重合,另两个顶点A ,B 的坐标分别为(1,0)-,,现将该三角板向右平移使点A 与点O 重合,得到'OCB ∆,则点B 的对应点'B 的坐标为__________.21、(4分)如图,在平行四边形ABCD 中,连接AC ,按以下步骤作图:分别以点A ,C 为圆心,以大于12AC 的长为半径画弧,两弧分别相交于点M ,N ,作直线MN 交CD 于点E ,交AB 于点F .若AB =5,BC =3,则△ADE 的周长为__________.22、(4分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.23、(4分)若分式33x x -+的值为0,则x 的值为_________;二、解答题(本大题共3个小题,共30分)24、(8分)如图1,正方形ABCD 中,E 为BC 上一点,过B 作BG ⊥AE 于G ,延长BG 至点F 使∠CFB=45°(1)求证:AG=FG ;(2)如图2延长FC 、AE 交于点M ,连接DF 、BM ,若C 为FM 中点,BM=10,求FD 的长.25、(10分)解一元二次方程:22510x x -+=.26、(12分)如图:在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线交BC 于点E(尺规作图的痕迹保留在图中了),连接EF .(1)求证:四边形ABEF 为菱形;(2)AE ,BF 相交于点O ,若BF =6,AB =5,求AE 的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C 【解析】根据分段函数的性质解答即可.【详解】解:A 、当x 3<时,y 随x 的增大而减小,错误;B 、当x 3>时,y 随x 的增大而增大,错误;C 、当x 0<时,y 随x 的增大而减小,正确;D 、当x 4=时,y 1=,错误;故选:C .本题主要考查一次函数的性质,掌握分段函数的性质解答是解题的关键.2、A 【解析】根据求函数图象交点的坐标,转化为求两个一次函数构成的方程组解的问题,因此联立两函数的解析式所得方程组,即为两个函数图象的交点坐标.【详解】联立两函数的解析式,得313y x y x =-⎧⎨=+⎩解得25x y =⎧⎨=⎩,则直线y =3x-1与y =x+3的交点坐标是(2,5),故选:A .考查了两条直线交点坐标和二元一次方程组解的关系,二元一次方程组的求解,注意函数的图象和性质与代数关系的转化,数形结合思想的应用.3、C【解析】【详解】∵52+122=169,132=169,∴52+122=132,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.故选:C.本题主要考查了勾股定理的逆定理,两边的平方和等于第三边的平方,则这个三角形是直角三角形.对于常见的勾股数如:3,4,5或5,12,13等要注意记忆.4、D【解析】分析:根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.详解:A、了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;B、了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误;C、了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;D、调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;故选D.点睛:本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大.5、B【解析】分析:由图中可以看出,2小时调进物资30吨,调进物资共用4小时,说明物资一共有60吨;2小时后,调进物资和调出物资同时进行,4小时时,物资调进完毕,仓库还剩10吨,说明调出速度为:(60-10)÷2吨,需要时间为:60÷25时,由此即可求出答案.解答:解:物资一共有60吨,调出速度为:(60-10)÷2=25吨,需要时间为:60÷25=2.4(时)∴这批物资从开始调进到全部调出需要的时间是:2+2.4=4.4小时.【解析】根据正方形的判定,矩形的判定、菱形的判定和平行四边形的判定判断即可【详解】①对角线相等且互相垂直平分的四边形是正方形,少“垂直”,故错;②四边形的三个角是直角,由内角和为360°知,第四个角必是直角,正确;③平行四边形对角线互相平分,加上对角线互相垂直,是菱形,故正确;④有可能是等腰梯形,故错,正确的是②③此题考查正方形的判定,矩形的判定、菱形的判定和平行四边形的判定,解题关键在于掌握判定定理7、B【解析】根据正方形的性质以及菱形的性质逐项进行分析即可得答案.【详解】菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),A.菱形和正方形的对角线都互相垂直,故本选项错误;B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;C.菱形和正方形的对角线互相平分,故本选项错误;D.菱形和正方形的对角都相等,故本选项错误,故选B.本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.8、B【解析】试题分析:点P(2,-3)关于y轴的对称点的坐标是(-2,-3).故选B.考点:关于x轴、y轴对称的点的坐标.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】求出x 1,x 2即可解答.【详解】解:∵x 2﹣x =0,∴x(x ﹣1)=0,∵x 1<x 2,∴解得:x 1=0,x 2=1,则x 2﹣x 1=1﹣0=1.故答案为:1.本题考查一元二次方程的根求解,按照固定过程求解即可,较为简单.10、2【解析】先利用完全平方公式对所求式子进行变形,然后代入x 的值进行计算即可.【详解】∵-1,∴x 2+2x+1=(x+1)2-1+1)2=2,故答案为:2.本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键.11、(4,-3)【解析】让点A 的纵坐标不变,横坐标加4即可得到平移后的坐标;关于x 轴对称的点即让横坐标不变,纵坐标互为相反数即可得到点的坐标.【详解】将点A 向右平移4个单位后,横坐标为0+4=4,纵坐标为3∴平移后的坐标是(4,3)∵平移后关于x 轴对称的点的横坐标为4,纵坐标为-3∴它关于x 轴对称的点的坐标是(4,-3)此题考查点的平移,关于x 轴对称点的坐标特征,解题关键在于掌握知识点12、3【解析】根据众数的定义进行求解即可得.【详解】数据2,3,3,1,5中数据3出现次数最多,所以这组数据的众数是3,故答案为3.本题考查了众数,熟练掌握众数的定义以及求解方法是解题的关键.13、乙【解析】试题分析:从图中看到,乙的波动比甲的波动小,故乙的产量稳定.故填乙.考点:方差;折线统计图.点评:本题要求了解方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)四边形BEFD 的周长为12.【解析】(1)根据三角形的中位线的性质得到DF ∥BC ,EF ∥AB ,根据平行四边形的判定定理即可得到结论;(2)根据直角三角形的性质得到DF=DB=DA=12AB=3,推出四边形BEFD 是菱形,于是得到结论.【详解】(1)∵,,D E F 分别是,,AB BC AC 的中点,∴,DF BC FE AB ∕∕∕∕,∴四边形BEFD 是平行四边形.(2)∵90AFB ∠=︒,D 是AB 的中点,6AB =,∴132DF DB DA AB====.∴四边形BEFD是菱形.∵3DB=,∴四边形BEFD的周长为12.本题考查了平行四边形的性质和判定,菱形的判定和性质,三角形的中位线的性质,熟练掌握平行四边形的性质是解题的关键.15、(1)80人;(2)11.5元【解析】(1)参加这次夏令营活动的初中生所占比例是:1-10%-20%-30%=40%,就可以求出人数.(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,根据平均数公式就可以求出答案.【详解】(1)参加这次夏令营活动的初中生共有200×(1﹣10%﹣20%﹣30%)=80人;(2)小学生、高中生和大学生的人数分别为:200×20%=40,200×30%=60,200×10%=20,所以平均每人捐款为:40580106015202011.5200⨯+⨯+⨯+⨯=(元).本题考查了扇形统计图、加权平均数等知识.从扇形统计图中得出初中生所占比例是解题的关键.16、(1)(m﹣1)(a﹣b);(1)(m+1)1(m﹣1)1.【解析】(1)直接提取公因式(m+1),进而得穿答案:(1)利用平方差公式进行因式分解【详解】解:(1)a(m﹣1)+b(1﹣m)=(m﹣1)(a﹣b);(1)原式=(m1+4+4m)(m1+4﹣4m)=(m+1)1(m﹣1)1.本题考查提公因式与公式法的综合运用,解题关键在于掌握运算法则17、(1)第一批每朵菊花的进价是4元;(2)第二批每朵菊花的售价至少是7元.【解析】(1)设第一批每朵菊花的进价是x 元,则第一批每朵菊花的进价是(x+1)元,根据数量=总价÷单价结合第二批所购菊花的数量是第一批所购菊花数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设第二批每朵菊花的售价是y 元,根据总利润=每朵菊花的利润×销售数量结合总利润不低于1500元,即可得出关于y 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设第一批每朵菊花的进价是x 元,则第二批每朵菊花的进价是()1x +元,依题意得:3000120021x x =⨯+解得:4x =,经检验,4x =是原方程的解,且符合题意.答:第一批每朵菊花的进价是4元.(2)设第二批每朵菊花的售价是y 元,依题意,得:()()120030005451500441y -⨯+-≥+,解得:7y ≥.答:第二批每朵菊花的售价至少是7元.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.18、(1)证明见解析;(2)EF=(3)DEFC S =四边形.【解析】(1)利用三角形中位线定理即可解决问题;(2)先求出CD ,再证明四边形DEFC 是平行四边形即可;(3)过点D 作DH BC ⊥于H ,求出CF 、DH 即可解决问题.【详解】(1)在ABC ∆中,D 、E 分别为AB 、AC 的中点,DE ∴为ABC ∆的中位线,12DE BC ∴=,12CF BC =,DECF ∴=.(2)AC BC =,AD BD =,CD AB ∴⊥,4BC=,2BD =,CD ∴==//DE CF ,DE CF =,∴四边形DEFC是平行四边形,EF CD ∴==.(3)过点D 作DH BC ⊥于H ,90DHC ∠=︒,30DCB ∠=︒,12DH DC ∴==2DE CF ==,2DEFC S CF DH ∴=⋅=⨯四边形.本题考查等边三角形的性质、三角形中位线定理、勾股定理、平行四边形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,记住平行四边形的面积公式,学会添加常用辅助线,属于中考常考题型.一、填空题(本大题共5个小题,每小题4分,共20分)19、8【解析】根据方差公式S 2=222121(()(n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦计算即可得出答案.【详解】解:∵数据为1,3,5,7,9,∴平均数为:135795++++=5,∴方差为:15[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2]=8.故答案为8.本题考查方差的计算,熟记方差公式是解题关键.20、【解析】根据A 点的坐标,得出OA 的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.【详解】∵A (-1,0),∴OA=1,∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A 与点O 重合,得到△OCB′,∴平移的距离为1个单位长度,∵点B 的坐标为∴点B 的对应点B′的坐标是,故答案为:.此题主要考查根据平移的性质求点坐标,熟练掌握,即可解题.21、8【解析】解:由做法可知MN 是AC 的垂直平分线,∴AE =CE .∵四边形ABCD 是平行四边形∴CD =AB =5,AD =BC =3.∴AD +DE +AE =AD +DE +CE =AD +CD =5+3=8,∴△ADE 的周长为8.22、或1.【解析】试题分析:分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,①当30度角是等腰三角形的顶角时,如图1中,当∠A=30°,AB=AC 时,设AB=AC=a ,作BD ⊥AC 于D ,∵∠A=30°,∴BD=12AB=12a ,∴12•a•12,∴a 2,∴△ABC 的腰长为边的正方形的面积为.②当30度角是底角时,如图2中,当∠ABC=30°,AB=AC 时,作BD ⊥CA 交CA 的延长线于D ,设AB=AC=a ,∵AB=AC ,∴∠ABC=∠C=30°,∴∠BAC=11°,∠BAD=60°,在RT △ABD 中,∵∠D=90°,∠BAD=60°,∴BD=2a ,∴12•a•2,∴a 2=1,∴△ABC 的腰长为边的正方形的面积为1.考点:正方形的性质;等腰三角形的性质.23、3【解析】根据分式的值为0,分子为0,分母不为0,可得x -3=0且x +3≠0,即可得x =3.故答案为:x =3.二、解答题(本大题共3个小题,共30分)24、(1)证明见解析;(2)2.【解析】试题分析:(1)证明:过C 点作CH ⊥BF 于H 点∵∠CFB=45°∴CH=HF ∵∠ABG+∠BAG=90°,∠FBE+∠ABG=90°∴∠BAG=∠FBE ∵AG ⊥BF CH ⊥BF ∴∠AGB=∠BHC=90°在△AGB 和△BHC 中∵∠AGB=∠BHC ,∠BAG=∠HBC ,AB=BC ∴△AGB ≌△BHC ∴AG=BH ,BG=CH∵BH=BG+GH∴BH=HF+GH=FG∴AG=FG(2)∵CH ⊥GF ∴CH ∥GM ∵C 为FM 的中点∴CH=GM ∴BG=GM ∵BM=10∴BG=,GM=(1分)∴AG=AB=10∴HF=∴CF=×∴CM=过B 点作BK ⊥CM 于K ∵CK==,∴BK=过D 作DQ ⊥MF 交MF 延长线于Q ∴△BKC ≌△CQD ∴CQ=BK=DQ=CK=∴QF=-=∴DF==考点:三角形和正方形点评:本题考查三角形和正方形的知识,解本题的关键是熟练掌握三角形和正方形的一些性质,此题难度较大25、154x +=,254x =【解析】利用公式法求解即可.【详解】解:a =2,b =-5,c =1,∴22-4(5)421170b ac ∆==--⨯⨯=>∴451724b x a -±±==∴1517 4x+=,2517 4x-=本题考查了解一元二次方程-因式分解法,配方法,以及公式法,熟练掌握各种解法是解题的关键.26、(1)见解析;(2)1.【解析】(1)先证四边形ABEF为平行四边形,继而再根据AB=AF,即可得四边形ABEF为菱形;(2)由四边形ABEF为菱形可得AE⊥BF,BO=12FB=3,AE=2AO,在Rt△AOB中,求出AO的长即可得答案.【详解】(1)由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)∵四边形ABEF为菱形,∴AE⊥BF,BO=12FB=3,AE=2AO,在Rt△AOB中,=4,∴AE=2AO=1.本题考查了平行四边形的性质,菱形的判定与性质,熟练掌握相关知识是解题的关键.。

初三数学水平测试卷及答案

初三数学水平测试卷及答案

一、选择题(每题4分,共40分)1. 若a、b是方程x² - 5x + 6 = 0的两根,则a + b的值为:A. 2B. 3C. 4D. 52. 下列函数中,在定义域内是增函数的是:A. y = x² - 2x + 1B. y = 2x - 3C. y = -x² + 4xD. y = x³3. 在直角坐标系中,点A(-2,3)关于y轴的对称点是:A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)4. 若sinα = 0.8,则cosα的值为:A. 0.6B. 0.9C. 0.7D. 0.55. 下列各数中,绝对值最小的是:A. -3B. 2C. 0D. -26. 若a > b > 0,则下列不等式成立的是:A. a² > b²B. a² < b²C. a > bD. a < b7. 下列方程中,解为x = 2的是:A. 2x + 3 = 7B. 3x - 4 = 5C. 4x + 2 = 8D. 5x - 3 = 78. 若等差数列{an}的公差为d,首项为a₁,则第10项a₁₀的值为:A. a₁ + 9dB. a₁ + 10dC. a₁ + 11dD. a₁ + 9d/29. 下列函数中,在其定义域内是奇函数的是:A. y = x²B. y = |x|C. y = x³D. y = x² + 110. 在等腰三角形ABC中,若AB = AC,且∠BAC = 40°,则∠B的度数为:A. 40°B. 50°C. 60°D. 70°二、填空题(每题4分,共40分)11. 若∠A和∠B是等腰三角形的底角,且∠A = 50°,则∠B = ______°。

12. 已知等差数列{an}的第四项a₄ = 8,公差d = 2,则首项a₁ = ______。

初三数学能力测试卷

初三数学能力测试卷

一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 已知a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 若一个等腰三角形的底边长为4,腰长为6,那么这个三角形的周长是()A. 14B. 16C. 18D. 204. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)5. 若一个一元二次方程的图象开口向上,且顶点坐标为(1,-2),那么该方程的解的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定6. 下列函数中,图象是一条直线的是()A. y = x^2 + 1B. y = 2x - 3C. y = √xD. y = log2x7. 已知等差数列{an}的首项a1=3,公差d=2,那么第10项an=()A. 19B. 21C. 23D. 258. 下列方程中,解为x=2的是()A. 2x + 3 = 7B. 3x - 2 = 7C. 4x + 1 = 9D. 5x - 3 = 119. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°10. 已知圆的半径R=5,那么圆的周长是()A. 10πB. 15πC. 20πD. 25π二、填空题(每题4分,共20分)11. 如果x^2 - 3x + 2 = 0,那么x的值是______。

12. 等差数列{an}的前5项和为60,第10项为18,那么这个数列的首项是______。

13. 已知∠A和∠B是直角,且∠A的度数是∠B的2倍,那么∠A的度数是______。

核心素养目标下九年级学生数学技能水平调查测试

核心素养目标下九年级学生数学技能水平调查测试

核心素养目标下九年级学生数学技能水平调查测试为了了解九年级学生数学技能水平和核心素养目标的达成情况,我们进行了一项调查测试。

本测试包括选择题和解答题两部分,通过这些题目我们将对学生的数学基础知识、解题能力和思维逻辑等方面进行评估。

以下是测试题目及其答案解析。

一、选择题部分1.下列各式中,哪个是一个恒等式?A. 2x + 3 = 5xB. 3x + 2 = 4xC. 4x - 2 = 2xD. 5x + 3 = 5x答案:D。

恒等式指对任何数都成立的等式,5x + 3 = 5x就是一个恒等式。

2.已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长。

A.5cmB.7cmC.10cmD.25cm答案:A。

根据勾股定理,斜边的长等于直角边长的平方和的平方根,即√(3^2 + 4^2) = 5cm。

3.一个数除以5余3,除以7余5,那么这个数可能是多少?A.38B.40C.42D.45答案:C。

根据题意,这个数等于5a + 3同时等于7b + 5,解方程组得到a = 2, b = 1,因此这个数可能为5*2 + 3 = 13,也可能为7*1 + 5 = 12。

答案:C。

等差数列的通项公式为an = a1 + (n-1)d,其中a1是首项,d是公差,n是项数。

根据题意,首项a1=1,公差d=4-1=3,所以第10项为1 + 9*3 = 28。

5.已知函数f(x) = x^2 - 4x + 3,求f(5)的值。

A.6B.8C.7D.5答案:C。

将x=5代入函数f(x)的表达式得到f(5) = 5^2 - 4*5 + 3 = 25 - 20 + 3 = 8。

二、解答题部分1.请计算 1/2 * 1/3 * 1/4 的结果。

2.一个边长为14cm的正方形和一个边长为16cm的正方形,它们的面积之和是多少?答案:14^2 + 16^2 = 196 + 256 = 452,所以它们的面积之和是452平方厘米。

九年级学习能力检测数学试题及答案

九年级学习能力检测数学试题及答案

杭州地区2018-2019学年第一学期九年级12月学习能力检测数学试题(本试卷满分120分,考试时间90分钟)一、选择题(本大题共10小题,每小题3分) 1、在双曲线的每一条曲线上,的增大而增大,则的值可以是( ) A .B .0C .1D .22、将抛物线y=(x ﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A . y =(x ﹣2)2B .y =x 2 C . .y=x 2+6D . y =(x ﹣2)2+63、如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值( ) A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个4、如图,是半圆,O 为AB 中点,C 、D 两点在上,且AD ∥OC ,连接BC 、BD .若=63°,则的度数是( )A .54°B .57°C .60°D .63°5、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=( ) A .B .C .D .2(第4题图) (第5题图) (第7题图) 6、对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x ≥0时,y 随x 的增大而减小,其中正确结论的个数为( ) A .1B .2C .3D .47、如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE=4,CD=6,则AE 的长为( )1ky x-=y x 都随k 1-215-215+3A.4B.5C.6D.78、某商品的进货单价为90元,按100元一个出售,能售出500个,如果这种商品每涨价1元,其销售量就减少10。

2025届江苏省苏州昆山、太仓市九年级数学第一学期开学学业水平测试试题【含答案】

2025届江苏省苏州昆山、太仓市九年级数学第一学期开学学业水平测试试题【含答案】

学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2025届江苏省苏州昆山、太仓市九年级数学第一学期开学学业水平测试试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若一次函数21y x =-向上平移2个单位,则平移后得到的一次函数的图象与y 轴的交点为A .()0,1-B .()0,3-C .()0,1D .()0,22、(4分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P 的坐标表示正确的是()A .(5,30)B .(8,10)C .(9,10)D .(10,10)3、(4分)如图,BE 、CF 分别是△ABC 边AC 、AB 上的高,M 为BC 的中点,EF=5,BC=8,则△EFM 的周长是()A .21B .18C .15D .134、(4分)直线y=2x+2沿y 轴向下平移6个单位后与x 轴的交点坐标是()A .(-4,0)B .(-1,0)C .(0,2)D .(2,0)5、(4分)某中学田径队的18名队员的年龄情况如下表:年龄(单位:岁)1415161718人数37341则这些队员年龄的众数和中位数分别是()A .15,15B .15,15.5C .15,16D .16,156、(4分)下列计算中,正确的是()A .336x x x +=B .623a a a ÷=C .3a 5b 8ab +=D .333(ab)a b -=-7、(4分)若分式23x +有意义,则x 的取值范围为()A .3x ≠-B .3x ≠C .0x ≠D .3x ≠±8、(4分)如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 、C 分别在x 轴、y 轴上,反比例函数y =k x (k ≠0,x >0)的图象与正方形的两边AB、BC 分别交于点E 、F ,FD ⊥x 轴,垂足为D ,连接OE 、OF 、EF ,FD 与OE 相交于点G .下列结论:①OF =OE ;②∠EOF =60°;③四边形AEGD 与△FOG 面积相等;④EF =CF +AE ;⑤若∠EOF =45°,EF =4,则直线FE的函数解析式为4y x =-++)A .2B .3C .4D .5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)观察下列各式==;n(n≥1)个等式写出来____________。

九年级数学上册阶段能力测试八24.2人教版

九年级数学上册阶段能力测试八24.2人教版

阶段能力测试(八)(24.2)时间:45分钟 满分:100分一、选择题(每小题5分,共30分) 1.(2018•福建)如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB =50°,则∠BOD 等于(D)A .40°B .50°C .60°D .80°,第1题图) ,第2题图)2.如图,从⊙O 外一点P 引⊙O 的两条切线PA ,PB ,切点分别为A ,B.如果∠APB=60°,PA =8,那么弦AB 的长是( B )A .4B .8C .43D .8 3 3.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( B )A .22<r ≤17B.17<r ≤3 2 C.17<r ≤5 D .5<r ≤29,第3题图) ,第4题图)4.(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB =3,则光盘的直径是(D)A .3B .33C .6D .6 35.如图,AB ,AC 与⊙O 相切于点B ,C ,∠A =50°,点P 是圆上异于B ,C 的一动点,则∠BPC 的度数是( C )A .65°B .115°C .65°或115°D .130°或50°6.(2018•泸州)在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线y =3x +23上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为(D)A .3B .2C .3D . 2二、填空题(每小题5分,共20分)7.(2018•湘潭)如图,AB 是⊙O 的切线,点B 为切点,若∠A=30°,则∠AOB=60°.,第7题图) ,第8题图)8.(2019•沭阳县期中)如图,AB ,AC ,BD 是⊙O 的切线,P ,C ,D 为切点,如果AB =4,AC =3,则BD 的长为1.9.(2019•洪泽区期中)若点O 是等腰△ABC 的外心,且∠BOC=90°,底边BC =2,则△ABC 的面积为1+2或2-1.10.如图,已知⊙P 的半径为1,圆心P 在抛物线y =12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为(2,1)或(-2,1)或(0,-1).三、解答题(共50分)11.(8分)(教材P100练习2变式)如图,点O 是△ABC 的内心,求证∠BOC=90°+12∠A.证明:∵∠BOC=180°-12∠ABC-12∠ACB=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A),∴∠BOC =90°+12∠A12.(10分)(2019•泰兴期中)已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C.(1)如图①,若∠P=35°,连接OC ,求∠BOC 的度数;(2)如图②,若D 为AP 的中点,求证:直线CD 是⊙O 的切线.解:(1)70° (2)连接OC ,OD ,AC.∵AB 是直径,∴∠ACB =∠ACP=90°,∵AD =DP ,∴DC =DA =DP ,∵OA =OC ,OD =OD ,∴△ODC ≌△ODA(SSS ),∴∠OCD =∠OAD=90°,∴OC ⊥CD ,∴DC 是⊙O 的切线13.(10分)如图,AB 是⊙O 的直径,弦CD⊥AB 于点E ,点M 在⊙O 上,MD 恰好经过圆心O ,连接MB.(1)若CD =16,BE =4,求⊙O 的直径; (2)若∠M=∠D,求∠D 的度数.解:(1)∵AB⊥CD ,CD =16,∴CE =DE =8.设OB =x ,又∵BE =4,∴OE =x -4.在Rt△DOE 中,DO 2=OE 2+DE 2,即x 2=(x -4)2+82,解得x =10,∴⊙O 的直径是20(2)∵OM =OB ,∴∠M =∠OBM.又∠M +∠MBO =∠BOD ,∴∠M =12∠BOD.∵∠M =∠D ,∴∠D =12∠BOD.∵AB⊥CD ,∴∠D =30°14.(10分)(2019•赣榆区期中)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E.(1)试判断DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为3,BC =4,求CE 的长.解:(1)DE 与⊙O 相切.理由如下:连接OD ,∵OB =OD ,∴∠OBD =∠ODB.∵∠ABC 的平分线交⊙O 于点D ,∴∠ABD =∠CBD.∴∠CBD =∠ODB,∴OD ∥BE ,∵DE ⊥BC 于点E.∴DE⊥OD,∴DE 与⊙O 相切(2)过点D 作DF⊥AB 于点F ,连接DC ,∵∠ABD =∠CBD,DE ⊥BE ,DF ⊥AB ,∴DF =DE ,AD ︵=DC ︵,∴AD =CD.∵AD=CD ,DF =DE ,∴Rt △DFA ≌Rt △DEC(HL ),∴AF =EC.∵DF=DE ,DB =DB ,∴Rt △DBF ≌Rt △DBE(HL ),∴BF =BE ,∵BA =BF +AF =BE +AF =BC +EC +CE =6,∴4+2CE =6,∴EC =115.(12分)如图①,AB 是⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,P 是⊙O 上半部分的一个动点,连接OP ,CP.(1)求△OPC 的最大面积; (2)求∠OCP 的最大度数;(3)如图②,延长PO 交⊙O 于点D ,连接DB ,当CP =DB 时,求证:CP 是⊙O 的切线.解:(1)△OPC 的边长OC 是定值,∴当OP⊥OC 时,OC 边上的高为最大值,此时△OPC 的面积最大.∵AB =4,BC =2,∴OP =OB =2,OC =OB +BC =4,∴S △OPC =12·OC ·OP =12×4×2=4,即△OPC 的最大面积为4 (2)当PC 与⊙O 相切,即OP⊥PC 时,∠OCP 的度数最大,可求∠OCP =30° (3)连接AP ,BP.∵∠AOP =∠DOB ,∴AP =DB.∵CP =DB ,∴AP =PC ,∴∠A =∠C.∵∠A =∠D ,∴∠C =∠D.∵OC =PD =4,PC =DB ,∴△OPC ≌△PBD ,∴∠OPC =∠PBD.∵PD 是⊙O 的直径,∴∠PBD =90°,∴∠OPC =90°,∴OP ⊥PC.又∵OP 是⊙O 的半径,∴CP 是⊙O 的切线。

初三数学能力检测测试题

初三数学能力检测测试题

初三数学能力检测测试题一、选择题(每题3分,共30分)1、⊙0的直径CD ⊥AB ,垂足为P ,且AP =4cm ,PD =2cm ,则⊙0的半径为( )A 4cmB 5cmC 24cmD 32cm2、P 为⊙0内一点,OP =1,⊙0直径为4cm ,则过P 点的弦中最短的弦长为( ) A 1cm B3cm C 32cm D 4cm3、下列语句正确的有( )① 相等的圆心角所对的弧相等; ② 相等的弧所对弦相等;③ 平分弦的直径垂直于弦; ④ 弦的垂直平分线必过圆心; A 1个 B 2个 C 3个 D 4个4、在⊙0中,圆心角∠AOB =90°,若O 到弦AB 的距离为4,则⊙0的直径为( ) A 24 B 28 C 24 D 165、在半径为1的圆中,弦AB 、AC 的长分别为3和2,则∠BAC 的度数为( )A 75°B 15°C 75°或15°D 不能确定 6、等边三角形内接于⊙0,P 是弧AB 上一点,则∠APB 等于( ) A 120° B 135° C 140° D 150° 7、已知AB 是半圆的直径,∠BAC =32°,D 是弧AC 的中点,那么∠DAC 的度数是( )A 25°B 29°C 30°D 32°8、⊙0的半径为5,圆心O 的坐标为(0, 0),点P 的坐标为(4,2),则点P 与⊙0的位置关系是( )A 圆内B 圆外C 圆上D 圆内或圆外 9、若⊙0所在平面内一点P 到⊙0上的点的最大距离为a, 最小距离为b (a >b ),则此圆的半径为( )A 2b a +B 2b a -C 2b a +或2b a - D b a +或b a -10、已知AB 为⊙0的弦,从圆上任一点引弦CD ⊥AB ,作∠OCD 的平分线交⊙0于P 点,连结PA 、PB ,则PA 与PB 的大小关系是( ) A PA >PB B PA <PB C PA =PB D 无法确定 二、填空。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学能力水平测试试题
九年级
班级:姓名:得分:
一、填空
1、当a________时,2
-
a有意义.
2.计算:=
-
+2
)2
3
(_____________.
3、如果关于x的一元二次方程22(21)10
k x k x
-++=有两个不相等的实数根,那么k的取值范围是,
4、回收废纸用于造纸可以节约木材,据专家估计,每回收一吨废纸可以节约3立方米木材,那么,回收吨废纸可以节约立方米木材.
5、把y= -x2-2x-3配方成y=a (x+m)2+n的形式为y=_____________
6、=

-)
4
3
(
)
8
(2b
a
ab.
7、分解因式 3x3 —12x=
8、如图,是一个简单的数值运算程序当输入x的值为-1时,则输出的数值为。

9、如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm,则此光盘的直径是_____cm.
10、如图,点A、B、C、D在圆周上,∠A =65°,则∠D = .
二、选择
a
图8
1、如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在
同一条直线上,若∠ADE =125°, 则∠DBC 的度数为 ( )
A .55°
B .65°
C .75°
D .125°
2.下列几组线段能组成三角形的是 ( )
(A )3cm ,5cm ,8cm (B )8cm ,8cm ,18cm
(C )0.1cm ,0.1cm ,0.1cm (D )3cm ,4cm ,8cm
3.下列运算正确的是 ( )
A.x 2+x 2=2x 4
B.a 2·a 3= a 5
C.(-2x 2)4=16x 6
D.(x+3y)(x-3y)=x 2-3y 2 4.关于函数x y 21
=,下列结论正确的是 ( )
A .函数图像必经过点(1,2)
B .函数图像经过二、四象限
C .y 随x 的增大而增大
D .y 随x 的增大而减小
5、世界文化遗产长城总长约6 700 000m ,用科学记数法可表示为( )
(A ) 6.7×105m (B )6.7×10-5m (C )6.7×106m (D )6.7×10-6m
6、反比例函数x
y 21=的图像位于( )象限。

A、第一、第二 B、第一、第三 C、第二、第四 D、第二、第三
7.下列说法正确的是:( )
A 、-4是-16的平方根
B 、4是(-4)2的平方根
C 、(-6)2的平方根是-6
D 16±4 8、不等式02
2<--x x 的解集是( ) A 、2>x B 、2->x C 、2-<x D 、2<x
9. 判断一元二次方程x 2 +2x +3=0的根的情况是 ( )
(A)有实根 (B)有两个相等实根 (C)有不等实根 (D)没有实根
10、.某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )
A 、256)x 1(2892=-
B 、289)x 1(2562=-
C 、256)x 21(289=-
D 、289)x 21(256=-
三、计算:
1、 8
1×4+16÷(-2)2 2、(45 +14 )÷73 +710
3、2
31(2)2⎛⎫
-- ⎪⎝⎭
4、 1)12111(2-÷+-+-+a a a a a a
5、ba b a ab b a 2442342222+---+ 6
、(3x —2)2—(2x+4)(2x —4)
四、解方程:
1、 2(x+3)=3(x-2) 2
、 x 2 +4x -2=0
3、 213
12=+--x x x
五、解答
1、根据所给信息,分别求出每只小猫和小狗的价格.
买一共要70元,
买一共要50元.
2、已知一个正比例函数和一个一次函数,它们的图象都经过点P(-3,3),且一次函数的图象与y轴相交于Q(0,-2),求这两个函数的解析式并画出示意图.
3、在下面的平面直角坐标系中标出点A(1,4)和点B(-4,-2),并回答下列问题:(1)点A关于y轴的对称点的坐标是C();
(2)点B关于y轴的对称点的坐标是D();
(3)四边形ACBD的面积是;
(4)求直线AD与两坐标轴围成的图形的面积.
解:。

相关文档
最新文档