专题10.等腰三角形有关的全等判定

合集下载

等腰三角形的性质与判定

等腰三角形的性质与判定

第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。

【基础知识】一.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.二.等腰三角形的判定判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.三.等腰三角形的判定与性质1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.【考点剖析】一.等腰三角形的性质(共7小题)1.(2021秋•盱眙县期末)如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm2.(2021秋•抚远市期末)等腰三角形的两边长分别为3和6,则这个三角形的周长是()A.15B.12C.12或15D.93.(2022春•鼓楼区校级期中)如图,在△ABC中,∠A=α,∠B=∠C,点D是△ABC外一点,E,F分别在AB,AC上,ED与AC交于点G,且∠D=∠B,若∠1=2∠2,则∠EGF的度数为()A.180°﹣2αB.60°+13αC.90°−32αD.30°+23α4.(2022春•镇江期中)三角形的三边长为2,a,5,如果这个三角形中有两条边相等,那么它的周长是.5.(2022春•金湖县校级月考)在△ABC中,∠C=30°,且∠A=∠B;求∠A的度数.6.(2022春•睢宁县月考)一个等腰三角形的两条边长为4,7,那么它的周长是多少?7.(2021秋•邗江区期末)如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=7,△CBD周长为12,求BC的长.二.等腰三角形的判定(共7小题)8.(2021秋•仪征市期末)在△ABC中,∠A=100°,当∠B=°时,△ABC是等腰三角形.9.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定10.(2021秋•滨海县期末)用三根木棒首尾相连围成一个等腰三角形,其中两根木棒的长度分别为3cm和6cm,则第三根木棒长为cm.11.(2021秋•泗阳县期中)如图,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.(1)求证:AB=AC;(2)若点H是BC的中点,求证:AH⊥AD.12.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,413.(2021秋•龙华区校级期末)如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个14.(2020秋•定西期末)如图,在△ABC中,∠B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?(2)当点Q在边CA上运动时,出发几秒后,△BCQ是以BC或BQ为底边的等腰三角形?三.等腰三角形的判定与性质(共6小题)15.(2020秋•绿园区期末)如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD 于点G,若∠1=∠BEF,若EF=3,则FG为()A.4B.3C.5D.1.516.(2021•建湖县二模)若一条长为32cm的细线能围成一边长等于8cm的等腰三角形,则该等腰三角形的腰长为cm.17.(2021秋•句容市期末)如图,BD平分∠ABC,DE∥BC交BA于点E,若DE=52,则EB=.18.(2021秋•射阳县校级期末)已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,且MN ∥BC,分别交AB、AC于点M、N.求证:MN=BM+CN.19.(2021秋•盱眙县期末)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.20.(2021秋•苏州期末)如图,在△ABC中,AD⊥BC,∠B=62°,AB+BD=CD,则∠BAC的度数为()A.87°B.88°C.89°D.90°【过关检测】一.选择题(共6小题)1.(2021秋•溧阳市期末)若等腰三角形边长别为6cm和3cm,则该等腰三角形的周长是()A.9cm B.12cm C.15cm D.12cm或15cm2.(2021秋•江阴市期末)等腰三角形的周长为21cm,其中一边长为5cm,则该等腰三角形的底边长为()A.5cm B.11cm C.8cm或5cm D.11cm或5cm3.(2022•陕西模拟)如图,在△ABC中,AB=AC,BD=CD,点E为AC的中点,连接DE.若△ABC 的周长为20cm,则△CDE的周长为()A.10 cm B.12 cm C.14 cm D.16cm4.(2022•黔东南州模拟)如图,在△ABC中,AB=AC,BD为△ABC的高.若∠CBD=20°,则∠BAC 的度数是()A.30°B.40°C.50°D.60°5.(2021秋•鼓楼区校级期末)下列长度的三条线段能组成等腰三角形的是()A.1,2,3B.3,4,5C.2,2,3D.2,2,46.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形B.等边三角形C.锐角三角形D.不确定二.填空题(共3小题)7.(2021秋•溧水区期末)如图,在△ABC中,∠ABC、∠ACB的平分线交于点O,MN经过点O,且MN ∥BC,分别交AB、AC于点M、N.若BM=3cm,MN=5cm,则CN=cm.8.(2021秋•宁津县期末)如图,△ABC中,∠A=∠ACB,CP平分∠ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:①CP⊥CD;②∠P=12∠A;③BC=CD;④∠D=90°−12∠A;⑤PD∥AC.其中正确的结论是(直接填写序号).9.(2021秋•东城区校级期末)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=5,则FG的长为.三.解答题(共3小题)10.(2022春•无锡期中)如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,试求∠MPB+∠NPC 的度数(用含∠A的代数式表示);(3)将(2)中的直线MN绕点P旋转,分别交线段AB于点M(不与A、B重合),交直线AC于N,试探索∠MPB、∠NPC、∠A三者之间的数量关系,并说明理由.11.(2021秋•淮安区期末)如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于点D,交AB于点E,求∠DBC的度数.12.(2021秋•泗洪县期末)如图,在△ABC中,AB=AC,角平分线BD,CE相交于点O,求证:OB=OC.第05讲等腰三角形的性质与判定【学习目标】1.了解等腰三角形的有关概念,探索并掌握性质及判定方法。

等腰三角形的性质与判定(6类热点题型讲练)(解析版) 八年级数学下册

等腰三角形的性质与判定(6类热点题型讲练)(解析版) 八年级数学下册

第01讲等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm ,则第三边的长为cm .【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm ,则底边为4cm ,则第三边的长为8cm ,488+>,故能组成三角形;②若一腰长为4cm ,则底边为8cm ,则第三边的长为4cm ,448+=,故不能组成三角形.故答案为:8.【变式训练】1.(2023上·甘肃陇南·八年级校考阶段练习)一个等腰三角形有两边分别为3cm 和8cm ,则周长是cm .【答案】19【分析】本题考查了等腰三角形的性质和三角形的三边关系.等腰三角形两边的长为3cm 和8cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3cm ,底边是8cm 时:338+<,不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是8cm 时,388+>,能构成三角形,则其周长()38819cm =++=.故答案为:19.2.(2023上·山东潍坊·八年级校考阶段练习)若()2450a b -+-=,则以a ,b 为边长的等腰三角形的周长为.【答案】13或14【分析】本题考查了等腰三角形的概念,非负数的性质,以及三角形的三边关系,注意利用分类讨论思想解题.根据非负数的和为零,可得每个非负数同时为零,可得a ,b 的值,根据等腰三角形的概念进行分类讨论,可得答案.【详解】解:∵()2450a b -+-=,且()240a -≥,50b -≥,∴40a -=,50b -=,解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02根据等腰三角形等边对等角求角的度数题型03根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE ∵AB BC =,∴AE CE =,∵AC CD ⊥,90BAD ∠=︒∴EBA BAE BAE ∠+∠=∠+EBA CAD BAE ∠=∠∠=,【答案】10【详解】解:AB 5BD CD ∴==,210BC BD ∴==,故答案为:10.2.两个同样大小的含(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC ∠=︒,AB ∴222(2)BC AB AC =+=∴190452B ACB ∠=∠=⨯︒=︒,∵F 为BC 中点,题型04根据等腰三角形三线合一进行证明(1)若106BAC DAE ∠∠=︒,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1180ADE AED ∠=∠=︒∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =∠=∠=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ⊥,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD⊥连接AC AD,∵AB AE ABC AED BC ED=∠=∠=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ⊥.2.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形∠,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BC是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C ∠=∠∠=∠,,再由角平分线的定义和等量代换得到B C ∠=∠,即可证明ABC 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C ∠=∠∠=∠,,∵AD 平分CAE ∠,∴EAD CAD ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形.【变式训练】【答案】ABC 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x ∠=,3ECD x =∠,由角平分线的定义得到13BEC x ABC =-∠∠,A =∠【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06等腰三角形的性质和判定综合应用【例题】如图,在ABC 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC ∠交AC 于点E .(1)若40C ∠=︒,求BAD ∠的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC 的周长,AEF △的周长为15,求ABC 的周长.【详解】(1)解:AB AC = ,C ABC ∴∠=∠,∵40C ∠=︒,∴40ABC ∠=︒,AB AC = ,D 为BC 的中点,AD BC ∴⊥,90BDA ∴∠=︒,∴90904050BAD ABC ︒︒︒︒∠=-∠=-=;(2)证明:BE 平分ABC ∠,ABE EBC ∴∠=∠,又∵EF BC ∥,∴EBC BEF ∠=∠,∴EBF FEB ∠=∠,BF EF ∴=,BEF ∴ 是等腰三角形;(3)解:AEF 的周长为15,15AE AF EF ∴++=,BF EF = ,15AE AF BF ∴++=,即15AE AB +=,BE 平分ABC 的周长,=15AE AB BC CE ∴++=,ABC ∴ 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC 中,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(2)若6,3,4AD BE EF ===,求线段AB 的长.(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80︒,则这个等腰三角形的顶角为().A .20︒B .80︒C .100︒D .20︒或100︒【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80︒,∴等腰三角形的顶角为180808020︒-︒-︒=︒.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC 中,,AB AC AD =为BC 边上的中线,30B ∠=︒,则CAD ∠的度数为()A .50︒B .60︒C .70︒D .80︒【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC 是等腰三角形的是()A .40B ∠=︒,80C ∠=︒B .123A BC ∠∠∠=::::C .2A B C∠=∠+∠D .三个角的度数之比是2:2:1【答案】D 【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=︒,80C ∠=︒,A .16【答案】A 【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.先得出ABD ACF ∠=∠,进而得到AF 长,求出AB 出即可.【详解】CE BD ⊥ ,90BEF ∴∠=︒,90BAC ∠=︒ ,90CAF ∴∠=︒,90FAC BAD ∴∠=∠=︒ABD ACF ∴∠=∠.在ABD △和ACF △中【答案】10︒,80︒,140︒或20︒【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC ∠=︒,30ACB ∠=︒,+∵BAC ∠是ABP 的一个外角,∴20BAC APB ABP ∠=∠+∠=︒,∵AB AP =,∵AB AP=,20BAP∠=︒,∴180802BAPABP APB︒-∠∠=∠==︒;当BA BP=时,如图:∵BA BP=,∴20BAP BPA∠=∠=︒,∴180140ABP BAP BPA∠=︒-∠-∠=︒;当PA PB=时,如图:∵PA PB=,∴20BAP ABP∠=∠=︒;综上所述:当ABP是等腰三角形时,故答案为:10︒,80︒,140︒或20︒.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(2)能围成有一边的长为5cm的等腰三角形吗?如果能,请求出另两边长.【答案】(1)三角形的三边分别为3cm9cm9cm、、(2)能围成一个底边是5cm,腰长是8cm的等腰三角形【分析】本题考查了等腰三角形的性质,三角形的周长,难点在于要分情况讨论并利用三角形的三边关系进行判断.(1)设底边长为x cm,表示出腰长,然后根据周长列出方程求解即可;(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ⊥Q ,AD AC =,AE ∴平分CAD ∠,CAE DAE ∴∠=∠,在CAE V 和DAE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS CAE DAE ∴ ≌,CE DE ∴=,90ADE ACE ∠=∠=︒,设BE x =,则8CE DE x ==-,由勾股定理可得:222DE BD BE +=,()22284x x ∴-+=,解得:5x =,5BE ∴=.14.(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,AB AC =,ED AB ∥,分别交BC 、AC 于点D 、E ,点F 在BC 的延长线上,且CF DE =,(1)求证:CEF △是等腰三角形;(2)连接AD ,当AD BC ⊥,8BC =,CEF △的周长为16时,求DEF 的周长.【答案】(1)证明见解析(2)20【分析】本题考查了等腰三角形的判定与性质,掌握等腰三角形的性质,等腰三角形的三线合一,是解答本题的关键.(1)利用等腰三角形的性质得到B ACB ∠=∠,然后推出EDC ECD ∠=∠,DE EC =,结合已知条件,得到结论.当AD BC ⊥时,AB AC =,∴142BD CD BC ===, DEF 的周长DE DF EF =++,∴DEF 的周长CE EF CD =+++15.(2023上·湖北武汉·八年级校联考阶段练习)的平分线,DF AB 交AE 的延长线于(1)若120BAC ∠=︒,求BAD ∠(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE ∠=∠,求【答案】(1)见解析(2)108BAC ∠=︒【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C ∠=∠,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =∠∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C ∠=∠∠=∠,∵AE 平分DAC ∠,∴DAE CAE ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD ∠,AC BD ∥,∴,ABC DBC ACB DBC ∠=∠∠=∠,∴A ABC CB =∠∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .18.(2023上·福建龙岩·八年级校考期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(3)当ACD 是等腰三角形,DA DC =时,如图,则50ACD A ∠=∠=︒,50BCD A ∠=∠=︒∴100ACB ACD BCD ∠=∠+=︒∠;当ACD 是等腰三角形,DA AC =时,如图,则65ACD ADC ∠=∠=︒,50BCD A ∠=∠=︒,∴5065115ACB ∠=︒+︒=︒;当ACD 是等腰三角形,CD AC =的情况不存在;当BCD △是等腰三角形,DC BD =时,如图,则1803ACD BCD B ︒-∠=∠=∠=∴2603ACB ACD BCD ∠=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD ∠=∠,设BDC BCD x ∠=∠=,则B ∠=则1802ACD B x ∠=∠=︒-,由题意得,180250x x ︒-+︒=,解得,2303x ︒=,∴8018023ACD x ︒∠=︒-=,∴3103ACB ︒∠=,综上所述:ACB ∠的度数为100。

中考数学专题复习教案:共顶点的等腰三角形与全等

中考数学专题复习教案:共顶点的等腰三角形与全等

共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。

等腰三角形的性质定理和判定定理

等腰三角形的性质定理和判定定理

一. 本周教学内容:等腰三角形的性质和判定二. 教学目标:(一)知识与技能:(1)掌握等腰三角形的性质定理和判定定理,并会灵活运用。

(2)能用上述结论进行分析与说理,进行初步的逻辑思维训练,形成一定的推理能力。

(二)情感态度与价值观:通过等腰三角形性质定理和判定定理的证明体现数学的应用价值。

三. 重点、难点:重点是等腰三角形的性质定理和判定定理难点是利用定理解决实际问题四. 教学过程:(一)知识梳理知识点1:等腰三角形的性质定理1(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C(3)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)(4)定理的作用:证明同一个三角形中的两个角相等。

知识点2:等腰三角形性质定理2(1)文字语言:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)(2)符号语言:∵AB=AC ∵AB=AC ∵AB=AC∠1=∠2 AD⊥BC BD=DC∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2BD=DC AD⊥BC(3)定理的作用:可证明角相等,线段相等或垂直。

说明:在等腰三角形中经常添加辅助线,虽然“顶角的平分线,底边上的高、底边上的中线互相重合,如何添加要根据具体情况来定,作时只作一条,再根据性质得出另两条”。

知识3:等腰三角形的判定定理(1)文字语言:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)(2)符号语言:在△ABC中∵∠B=∠C ∴AB=AC(3)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。

在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC(4)定理的作用:证明同一个三角形中的边相等。

说明:①本定理的证明还有其他证明方法(如作顶角的平分线)。

1.1等腰三角形的性质和判定

1.1等腰三角形的性质和判定

第一章图形与证明(二)1.1 等腰三角形的性质和判定Ⅰ.核心知识点扫描1.等腰三角形和等边三角形的性质和判定性质判定等腰三角形⑴等腰三角形两个底角相等(简称“等边对等角”) .⑵等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).⑴如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).⑵定义:如果一个三角形中有两条边相等,那么这个三角形是等腰三角形.图示(1)在△ABC中,∵AB=AC ∴∠B=∠C;(2)在△ABC中,AB=AC.若∠BAD=∠CAD,那么AD⊥BC,BD=CD;若BD=CD,那么∠BAD=∠CAD,AD⊥BC;若AD⊥BC,那么∠BAD=∠CAD,BD=CD.在△ABC中,∵∠B=∠C ∴AB=AC.等边三角形⑴等边三角形是特殊的等腰三角形,因此等边三角形具有等腰三角形的所有性质,并且,在每条边上都有“三线合一”;⑵等边三角形的每个内角都等于60°.⑴定义:三条边都相等的三角形是等边三角形.⑵有一个角是60°等腰三角形是等边三角形.⑶三个角都相等的三角形是等边三角形.图示∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°.(1)∵AB=BC=AC,∴△ABC是等边三角形;(2) ∵AB=BC,∠A=60°,∴△ABC是等边三角形;(3)∵∠A=∠B=∠C,∴∴△ABC是等边三角形.Ⅱ.知识点全面突破知识点1:等腰三角形性质(重点)⒈等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”);可用符号语言表述如下:如图1-1-1,在△ABC中,∵AB=AC ∴∠B=∠C.已知:如图1-1-1,在△ABC中, AB=AC.求证:∠B=∠C.图1-1-3定理的证明分析:利用分析法思考证明的过程:如下所示:作顶角的平分线AD.()AB AC B C ABD ACD SAS BAD CAD AD AD =⎧⎪∠=∠⇐≅⇐∠=⎨⎪=⎩,具体证明过程略.此外,我们还可以用AAS 、ASA 、SSS 证明这一性质.如取BC 的中点D ,连接AD,在△ABD 和△ACD中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∴B C ∠=∠.2.等腰三角形的性质定理2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).可用符号语言表述如下:如图1-1-2,在△ABC 中,AB=AC.若∠BAD=∠CAD ,那么AD ⊥BC ,BD=CD ; 若BD=CD ,那么∠BAD=∠CAD ,AD ⊥BC ;若AD ⊥BC ,那么∠BAD=∠CAD ,BD=CD.详解:①等腰三角形是特殊的三角形,它拥有一般三角形所具有的所有的性质.同时它还具有一般三角形所没有的特点和性质;②定理1常用来证明同一个三角形中的两个角相等;定理2实际上是等腰三角形中的两个结论,已知其中任意一个可以得到另两个结论,常用来证明角相等、线段相等或垂直;③将这两条性质用在特殊的等腰三角形即等边三角形中,可得等边三角的性质:等边三角形的各角都相等,并且都等于60°;等边三角形每一条边上的中线高都与所对的角平分线互相重合.例1.如图1-1-3,房屋的顶角∠BAC=100O ,过屋顶A 的立柱,屋椽AB=AC 求∠B ,∠C ,∠BAD ,∠CAD 的度数.解:在△ABC 中, AB=AC(已知).∴∠B=∠C(等边对等角) .∴∠B=∠C=21(180O -∠BAC) 图1-1-1图1-1-2=21(180O -100O )=40O (三角形内角和定理) .又∵AD ⊥BC ,∴∠BAD=∠CAD(等腰三角形顶角的平分线与底边上的高互相重合),∴∠BAD=∠CAD=50O .点拨:已知等腰三角形的顶角,根据等边对等角及三角形的内角和定理可求出∠B 与∠C 的度数,再根据等腰三角形的三线合一,可得AD 是顶角的平分线,则∠BAD 与∠CAD 的度数即可求.例2:(2010,山东济南)(一题多解)如图1-1-4,已知AB AC AD AE ==,.求证BD CE =.证明:方法1 如图1-1-5过点A 作AH ⊥BC ,交BC 于点H . ∵AB=AC ,AD=AE ,AH ⊥BC , ∴BH=CH , DH=EH∴BH 一DH=CH 一EH 即BD=CE 方法2 ∵AB=AC ∴∠B=∠C ∵AD=AE ∴∠ADE=∠AED∴180O-∠ADE=180O-∠AED 即∠ADB=∠AEC ∵AB=AC ,∠B=∠C ,∠ADB=∠AEC ∴△ABD ≌△ACE ∴BD=CE .点拨:在等腰三角形中,虽然顶角平分线、底边上的中线、底边上的高互相重合,但如何添加,要根据具体情况来定.本题中适合高AH AH ,利用等腰三角形的“三线合一”来解决这个问题。

等腰三角形判定教案5篇

等腰三角形判定教案5篇

等腰三角形判定教案5篇等腰三角形判定教案5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形判定教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形判定教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。

专题08 等腰三角形(考点串讲)(解析版)

专题08 等腰三角形(考点串讲)(解析版)

专题08 等腰三角形【考点剖析】1.等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一) 图形:如下所示;21DCBA符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则2.等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2) 等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)3.等边三角形的性质(1)等边三角形性质1:等边三角形的三条边都相等; (2) 等边三角形性质2:等边三角形的每个内角等于60︒; (3)等边三角形性质3:等边三角形是轴对称图形,有三条对称轴.4.等边三角形的判定(1)等边三角形的判定方法1:(定义法:从边看)有三条边相等的三角形是等边三角形; (2)等边三角形的判定方法2:(从角看)三个内角都相等的三角形是等边三角形;(3)等边三角形的判定方法3:(从边、角看)有一个内角等于60︒的等腰三角形是等边三角形. 【典例分析】例1 (杨浦2019期末14)在ABC ∆中,AB=AC ,把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N. 如果CAN ∆是等腰三角形,则B ∠的度数为 . 【答案】4536︒︒或;【解析】因为把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N.所以MN 是AB 的中垂线,∴NB=BA ,B BAN ∴∠=∠,AB AC B C =∴∠=∠Q ,设B x ∠=,则C BAN x ∠=∠=. (1)当AN=NC 时,CAN C x ∠=∠=,在ABC ∆中,根据三角形内角和定理得4180x =︒,得45x =︒,故45B ∠=︒;(2)当AN=AC 时,ANC C x ∠=∠=,而ANC B BAN ∠=∠+∠,故此时不成立;(3)当CA=CN 时,1802x NAC ANC ︒-∠=∠=,于是得1801802xx x x ︒-+++=︒,解得36x =︒. 综上所述:4536B ∠=︒︒或.NM CBA例2 (浦东2018期末18)如图,在ABC ∆中,A=120,=40B ∠︒∠︒,如果过点A 的一条直线把ABC ∆分割成两个等腰三角形,直线l 与BC 交于点D ,那么ADC ∠的度数是 .CBA【答案】14080︒︒或;【解析】如图所示,把BAC ∠分为1000︒︒和2或者4080︒︒和,可得ADC=14080∠︒︒或.ABCDC BA20°80°80°40°40°20°20°40°40°100°例3 (闵行2018期末17)有下列三个等式①AB =DC ;②BE =CE ;②∠B =∠C .如果从这三个等式中选出两个作为条件,能推出Rt △AED 是等腰三角形,你认为这两个条件可以是 (写出一种即可)EDCBA【答案】①②或①③或②③.(答案不唯一)【解析】解:当AB =DC ,BE =CE ,∠AEB =∠DEC 时,Rt △ABE ≌Rt △DCE (HL ),故AE =DE ,即Rt △AED 是等腰三角形;当AB =DC ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (AAS ),故AE =DE ,即Rt △AED 是等腰三角形;当BE =CE ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (ASA ),故AE =DE ,即Rt △AED 是等腰三角形.故答案为:①②或①③或②③.(答案不唯一)例4 (黄浦2018期末27)如图,在ABC ∆中,AD BC ⊥,垂足为点D ,AD 平分BAC ∠,点O 是线段AD 上一点,线段的延长线交边AC 于点F ,线段CO 的延长线交边AB 于点E . (1)说明ABC ∆是等腰三角形的理由; (2)说明BF=CE 的理由.O FE DC BA【答案与解析】(1)AD BC ADB=ADC ⊥∴∠∠Q ,Q AD 平分BAC ∠,BAD=CAD ∴∠∠.ADB=DAC+ACD ADC=BAD+ABD ∠∠∠∠∠∠Q ,,ABD=ACD ∴∠∠,AB=AC ∴即ABC ∆是等腰三角形;(2)ABC ∆Q 是等腰三角形,AD BC ⊥,BD=CD ∴.在BDO CDO ∆∆与中,DO DO ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,BDO CDO ∴∆∆≌OBD OCD ∴∠=∠.在BEC CFB ∆∆与中ECB FBCBC CBABC ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩BEC CFB ∴∆∆≌,BF CE ∴=. 【真题训练】 一、选择题1.(宝山2018期末18)如图7,在ABC ∆中,AB=AC ,30A ∠=︒,以B 为圆心,BC 的长为半径作弧,交AC 于点D ,联结BD ,则ABD ∠等于( )A. 45︒;B. 50︒;C. 60︒;D. 75︒.DABC【答案】A ;【解析】因为在ABC ∆中,AB=AC ,30A ∠=︒,所以18030752ABC ACB ︒-︒∠=∠==︒,又因为以B为圆心,BC 的长为半径作弧,交AC 于点D ,所以,75BD BC BCA BDC =∴∠=∠=︒,30CBD ∴∠=︒,故753045ABD ABC CBD ∠=∠-∠=︒-︒=︒. 故答案选A.2.(长宁2019期末20)在平面直角坐标系,O 为坐标原点,点A的坐标为,M 为坐标轴上一点,且使得MOA ∆为等腰三角形,那么满足条件的点M 的个数为( ) A. 4; B.5; C.6; D.8 【答案】C ;【解析】分三种情况:(1)当OA=OM 时,可得M 点坐标可以为:(0,2)、(0,-2)、(2,0)、(-2,0);当AO=AM 时,M 点坐标可以为(2,0)、(0,;当MO=MA 时,(2,0)、(0,3;故一共有6个不同的点. 故选C. 二、填空题3.(浦东2018期末13)已知一个等腰三角形两边长分别为2和4,那么这个等腰三角形的周长是 . 【答案】10;【解析】依题,(1)若腰长为2、底为4,不可能构成等腰三角形,舍去;(2)若腰长为4、底为2,符合题意,周长为4+4+2=10;由上可知,这个等腰三角形的周长为10. 4.(宝山2018期末7)已知实数x 、y满足|3|0x -=,那么以x 、y 的值为两边长的等腰三角形的周长是 . 【答案】15;【解析】因为实数x 、y满足|3|0x -=,所以x=3,y=6,故符合题意的等腰三角形三边长分别为6、6、3,故此等腰三角形的周长为6+6+3=15.5.(闵行2018期末15)如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2= .l 3l 2l 1【答案】35°.【解析】解:∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∵△ABC 是等边三角形, ∴∠ABC =60°,∴∠4=60°﹣25°=35°,∴∠2=∠4=35°.故答案为:35°.1l 2l 36.(普陀2018期末17)如图,已知△ABC 中,∠ABC 的角平分线BE 交AC 于点E ,DE ∥BC ,如果点D 是边AB 的中点,AB=8,那么DE 的长是 .E D CBA【答案】4;【解析】解:连接BE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∵DE ∥BC ,∴∠DEB=∠ABE , ∴∠ABE=∠DEB ,∴BD=DE ,∵D 是AB 的中点,∴AB=BD ,∴DE=12AB=4,故答案为:4 AD BCE7.(宝山2018期末13)如图,已知Rt ABC ∆中,90ACB ∠=︒,AC=AE ,BC=BD ,则ACD BCE ∠+∠= ______-︒.ECBA【答案】45;【解析】过点C 作CH AB ⊥于点H ,因为AC =AE ,所以ACE AEC ∠=∠,因为CH AB ⊥,所以90AEC HCE ∠+∠=︒, 又90ACE BCE ∠+∠=︒,所以=BCE HCE ∠∠;同理可得:ACD HCD ∠=∠; 故+=+BCE ACD HCE HCD ∠∠∠∠即+=45BCE ACD ∠∠︒.HED CBA8.(黄浦2018期末19)已知等腰三角形的一个内角为50度,则这个等腰三角形的顶角为 ︒. 【答案】50︒或80︒;【解析】(1)当顶角为50︒时,这个等腰三角形的顶角为50︒;(2)当底角为50︒时,则顶角为180-250=80︒⨯︒︒;综上述,这个等腰三角形的顶角为50︒或80︒.9.(长宁2018期末14)等腰三角形一腰上的高与另一腰的夹角为40︒,那么这个等腰三角形的顶角为____度.【答案】50130︒︒或.【解析】(1)如下图1,4050ABD A ∠=︒∴∠=︒,(2)如图2,40130ABD BAC ∠=︒∴∠=︒,故这个等腰三角形的顶角为50130︒︒或(图2)(图1)10.(黄浦2018期末14)等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且 ,那么AD BC ⊥且 .DCBA【答案】BD=CD ;BAD CAD ∠=∠;【解析】等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且BD=CD ,那么AD BC ⊥且BAD CAD ∠=∠.故答案为:BD=CD ;BAD CAD ∠=∠. 11.(杨浦2019期末13)如图,已知在ABC ∆中,AB=AC ,点D 在边BC 上,要使BD=CD ,还需添加一个条件,这个条件是 .(只需填上一个正确的条件)D B A【答案】BAD CAD ∠=∠或者AD BC ⊥(只填一个)【解析】解:在ABC ∆中,AB=AC ,BAD CAD ∠=∠,BD CD ∴=;或者 在ABC ∆中,AB=AC ,AD BC ⊥,BD CD ∴=;故答案为:BAD CAD ∠=∠或者AD BC ⊥. 考查等腰三角形的三线合一。

初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析

初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析

特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析1.(2020秋•喀什地区期末)下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍2.(2020秋•顺城区期末)已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 3.(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6 4.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.5.(2013•凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.6.(2020秋•五常市期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.7.(2019秋•龙岩期末)如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.6 8.(2006•烟台)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°9.(2020秋•慈溪市期中)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.10.(2014秋•青山区期中)已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.11.(2018秋•六合区期中)如图,△ABC为等边三角形,BD平分∠ABC交AC于点D,DE ∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.12.(2017•裕华区校级模拟)已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.13.(2012秋•姜堰市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?14.(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.15.(2020秋•连山区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.816.(2020秋•肇州县期末)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm 17.(2020秋•朝阳县期末)如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.618.(2020秋•抚顺县期末)右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为.19.(2020秋•宽城区期中)如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AD等于()A.10B.8C.6D.420.(2020秋•无棣县期中)如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.4B.4.5C.5D.721.(2020秋•云县期中)如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.822.(2020秋•北碚区校级期中)如图,已知∠AOB=60°,P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=5,则ON的长度是()A.9B.6.5C.6D.5.523.(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P 在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个24.(2020秋•连江县期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE ⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x 25.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC=6,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.5B.2C.4D.326.(2019秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D 作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④27.(2019春•秦淮区期末)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a28.下列说法中,正确的个数是()①三条边都相等的三角形是等边三角形;②有一个角为60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形;④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形A.1个B.2个C.3个D.4个29.(2020•和平区三模)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.30.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.31.(2019春•杏花岭区校级期中)关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形32.(2019•城步县模拟)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.16 33.(2018•柳州一模)如图,在四边形ABCD中,∠A=∠B=60°,∠D=90°,AB=2,则CD长的取值范围是()A.<CD<B.CD>2C.1<CD<2D.0<CD<34.(2018秋•罗庄区期中)如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C.60°D.90°参考答案与试题解析1.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解答】解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.【点评】本题考查了角平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能灵活运用知识点进行推理是解此题的关键.2.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.3.【考点】等腰三角形的判定.【专题】三角形.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.4.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的度数,要分∠A是顶角和底角两种情况,以免造成答案的遗漏.5.【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.【考点】等腰三角形的判定.【专题】几何图形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.【考点】等边三角形的判定与性质.【专题】数形结合;三角形;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EG⊥BC,交BC于点G,先证明△ABC是等边三角形,再证明∠AFE =90°,然后利用等腰三角形的“三线合一”性质及角平分线的性质定理求得EG的长,随后利用含30度角的直角三角形的性质求得DE的长,最后将EF与DE相加即可.【解答】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.【点评】本题考查了等边三角形的判定与性质、等腰三角形的“三线合一”性质及含30度角的直角三角形的性质,熟练掌握相关性质及定理是解题的关键.8.【考点】等边三角形的判定与性质.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【点评】考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.【考点】等腰三角形的判定与性质.【专题】几何图形.【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【解答】证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点评】重点考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.10.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.【解答】证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.【点评】此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【考点】平行线的性质;等腰三角形的判定与性质;等边三角形的判定与性质.【专题】几何图形.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.12.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF 是等边三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DE=EF=FD,∴△DEF是等边三角形.【点评】本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.13.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2,∴△AOD是直角三角形,且∠ADO=90°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=90°+60°=150°,根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°,∴∠ADO=α﹣60°,又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,∴∠DAO=180°﹣(190°﹣α)﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°,∵△AOD是等腰三角形,∴①∠AOD=∠ADO时,190°﹣α=α﹣60°,解得α=125°,②∠AOD=∠DAO时,190°﹣α=50°,解得α=140°,③∠ADO=∠DAO时,α﹣60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD是等腰三角形.【点评】本题考查了等边三角形的判定与性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质,勾股定理逆定理,等腰三角形的性质,(3)用α表示出△AOD的各个内角是解题的关键,注意要分情况讨论.14.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题;压轴题.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中∴△ECB≌△EDF(SAS),∴EC=ED.【点评】此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.15.【考点】含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形.【分析】根据线段垂直平分线的性质得到EB=EA,根据等腰三角形的性质得到∠EAB=∠B=15°,根据三角形的外角的性质求出∠AEC=30°,根据直角三角形的性质计算.【解答】解:∵DE垂直平分AB,∴EB=EA,∴∠EAB=∠B=15°,∴∠AEC=30°,∴AC=AE=3(cm),故选:D.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.17.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.18.【考点】含30度角的直角三角形.【专题】推理填空题.【分析】根据直角三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC =30°,根据CD=2可得出BD的长,进而得出AD的长.【解答】解:连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.故选:D.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.熟练掌握直角三角形的性质是解题的关键.20.【考点】垂线段最短;含30度角的直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】在Rt△ABC中,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出AB的长,由点P是BC边上一动点结合AC,AB的长,即可得出AP长的取值范围,再对照四个选项即可得出结论.【解答】解:在Rt△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=2AC=6.∵点P是BC边上一动点,∴AC≤AP≤AB,即3≤AP≤6.故选:D.【点评】本题考查了含30度角的直角三角形以及垂线段最短,通过解含30度角的直角三角形,求出AB的长是解题的关键.21.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【分析】求出AD的长,再根据含30°角的直角三角形的性质得出DE=AD,即可求出答案.【解答】解:∵点D是AB的中点,AB=7.2,∴AD=AB=3.6,∵DE⊥AC,∴∠DEA=90°,∵∠A=30°,∴DE=AD=1.8,故选:A.【点评】本题考查了含30°角的直角三角形的性质,能根据含30°角的直角三角形的性质得出DE=AD是解此题的关键.22.【考点】等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】过P作PC⊥MN于C,先由等腰三角形的性质得CM=CN=2.5,再由含30°角的直角三角形的性质求出OC的长,然后由OC+CM求出ON的长即可.【解答】解:过P作PC⊥MN于C,如图所示:∵PM=PN,MN=5,∴CM=NC=MN=2.5,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则ON=OC+CM=4+2.5=6.5,故选:B.【点评】本题考查的是含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握含30°角的直角三角形的性质和等腰三角形的性质是解题的关键.23.【考点】三角形内角和定理;等腰三角形的判定;含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】根据等腰三角形的判定和含30°的直角三角形的性质解答即可.【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.【点评】此题考查等腰三角形的判定,关键是根据等腰三角形的判定和含30°的直角三角形的性质解答.24.【考点】列代数式;等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的性质可得AB=BC=AC=4,∠B=∠C=60°,再利用含30度角的直角三角形的性质进行计算即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.【点评】此题主要考查了等边三角形的性质和含30度角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.25.【考点】平行线的性质;等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∵AB=6,∠B=30°,∴AD=AB=3,∴DF=3,故选:D.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.26.【考点】等边三角形的判定与性质.【专题】等腰三角形与直角三角形.【分析】由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【解答】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.【点评】此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB 的中点是解此题的关键.27.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形.【分析】延长EP交BC于点G,延长FP交AC于点H,证出四边形AEPH、四边形PDCG 均为平行四边形,得出PE=AH,PG=CD.证出△FGP和△HPD也是等边三角形,得出PF=PG=CD,PD=DH,得出PE+PD+PF=AH+DH+CD=AC即可.【解答】解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.28.【考点】等腰三角形的判定与性质;等边三角形的判定与性质.【专题】三角形.【分析】根据等边三角形的判定、轴对称的性质即可判断;【解答】解:①三条边都相等的三角形是等边三角形;正确.②有一个角为60°的等腰三角形是等边三角形;正确.③有两个角为60°的三角形是等边三角形;正确.④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形;正确.故选:D.【点评】本题考查等边三角形的判定和性质、等腰三角形的判定和性质、轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.30.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质和等边三角形的性质和判定逐个进行分析判断,即可得到答案.【解答】解:A.有一个角为60°的等腰三角形是等边三角形,故本选项不合题意;B.如果一个三角形有两个角相等,那么这两个角所对的边相等,故本选项不合题意;C.等腰三角形顶角的角平分线,底边的中线,高相互重合,说法错误,故本选项符合题意;D.三个角都相等的三角形是等边三角形,故本选项不合题意;故选:C.【点评】本题考查了等边三角形的判定和性质,等腰三角形的性质,熟练掌握等边三角形的判定和性质定理是解题的关键.31.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.。

等腰三角形的全等判定

等腰三角形的全等判定

等腰三角形的全等判定
有顶角和一底角相等,则三角均对应相等,又知是等腰三角形,所以可以用角边角(底角—腰—顶角)或(腰—顶角—腰)来证明全等。

在一个三角形中,一个角的平分线与该角对边上的中线重合,那么这个三角形是等腰三角形,且该角为顶角。

有一个角的平分线与该角对边上的高重合,那么这个三角形是等腰三角形,且该角为顶角。

有一条边上的中线与该边上的高重合,那么这个三角形是等腰三角形,且该边为底边。

有两条角平分线相等的三角形是等腰三角形。

2.5第1课时等腰三角形的性质与判定(十一大题型)(解析版)

2.5第1课时等腰三角形的性质与判定(十一大题型)(解析版)

(苏科版)八年级上册数学《第2章 轴对称图形》2.4 等腰三角形的轴对称性第1课时 等腰三角形的性质和判定◆1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形.◆2、等腰三角形性质1:等腰三角形的两个底角相等(简写“等边对等角”).★用符号语言表示为:在△ABC 中,∵ AB =AC (已知),∴ ∠B =∠C (等边对等角).◆3、等腰三角形性质2:等腰三角形底边上的高线、中线及顶角平分线重合.★用符号语言表示为:在△ABC 中,(1)∵AB =AC , ∠1=∠2(已知),∴BD =CD , AD ⊥BC (等腰三角形三线合一).(2)∵AB =AC , BD =CD (已知),∴∠1=∠2 , AD ⊥BC (等腰三角形三线合一).(3)∵AB =AC , AD ⊥BC (已知),∴BD =CD , ∠1=∠2(等腰三角形三线合一).★在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.★拓展:等腰三角形是轴对称图形,对称轴为顶角平分线(或底边上的高或底边上的中线)所在的直线.等腰三角形的判定方法:◆1、定义法:有两边相等的三角形是等腰三角形.◆2、判定定理:有两个角相等的三角形是等腰三角形.(简称“等角对等边”).几何语言:在△ABC中,∵∠B=∠C(已知),∴AB=AC(等角对等边).◆3、等腰三角形的判定与性质的区别条件结论作用性质(等边对等角)在同一个三角形中,两边相等.这两边所对的角也相等.证明角相等.判定(等角对等边)在同一个三角形中,两个角相等.这两个角所对的边也相等.证明线段相等.【例题1】(2022•梅江区校级开学)如图,等腰△ABC 中,AB =AC ,∠A =36°.BD 平分∠ABC ,则∠BDC 是( )A .36°B .60°C .72°D .80°【分析】根据等腰三角形的性质以及三角形的内角和定理可得∠ABC 的度数,再根据角平分线的定义可得∠ABD 的度数,然后根据三角形的外角性质解答即可.【解答】解:∵AB =AC ,∠A =36°,∴∠ABC =180°36°2=72°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =36°,∴∠BDC =∠A +∠ABD =72°.故选:C.【点评】本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;【变式1-1】(2022春•藁城区期末)如图,在△ABC中,∠ABC=90°,AD=DC,AE⊥BD,若∠DAE=28°,则∠BAE= °.【分析】根据等腰三角形的性质和直角三角形的性质即可得到结论.【解答】解:∵AE⊥BD,∴∠ARD=90°,∵∠DAE=28°,∴∠ADB=62°,∵∠ABC=90°,AD=DC,∴AD=BD,∴∠DAB=∠ABD=12×(180°﹣62°)=59°,∴∠BAE=∠BAD﹣∠DAE=31°,故答案为:31.【点评】本题考查了等腰三角形的性质,直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.【变式1-2】(2022春•三原县期末)如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,交AB于点E,交AC于点D.若∠ADE=40°,则∠CBD= .【分析】由DE垂直平分AB,根据线段垂直平分线的性质,可得∠AED=∠BED=90°,DA=DB,又由∠ADE =40°,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得答案.【解答】解:∵DE垂直平分AB,∴∠AED=∠BED=90°,DA=DB,∵∠ADE=40°,∴∠A=∠ABD=50°,又∵AB=AC,∴∠ABC=(180°﹣50°)÷2=65°,∴∠CBD=∠ABC﹣∠ABD=65°﹣50°=15°.故答案为:15°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.【变式1-3】(2022春•碑林区校级期末)如图,已知在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AC于点D,交AB于点E,连接BD,则∠DBC的度数为( )A.30°B.32°C.34°D.36°【分析】根据等腰三角形的性质可得∠ABC的度数,根据线段垂直平分线的性质可得DA=DB,可得∠DBA 的度数,进一步即可求出∠DBC的度数.【解答】解:在△ABC中,AB=AC,∠A=40°,∴∠ABC =∠ACB =70°,∵AB 的垂直平分线交AC 于点D ,∴DA =DB ,∴∠DBA =∠A =40°,∴∠DBC =30°,故选:A .【点评】本题考查了等腰三角形的性质,线段垂直平分线的性质,熟练掌握这些性质是解题的关键.【变式1-4】(2022春•铁西区期末)如图,在等腰△ABC 中,AB =AC ,延长BC 到点D ,使得CD =CA ,连接AD ,若∠D =25°,求∠BAC 的度数.【分析】两次利用等边对等角求得∠B =∠BCA =50°,然后利用三角形的内角和求得答案即可.【解答】解:∵CD =CA ,∠D =25°,∴∠BCA =2∠D =50°,∵AB =AC ,∴∠B =∠BCA =50°,∴∠BAC =180°﹣∠B ﹣∠C =80°.【点评】考查了等腰三角形的性质,解题的关键是了解“等边对等角”,难度不大.【例题2】(2022秋•云梦县期中)如图,在△ABC 中,AB =AC ,AD =DB ,DE ⊥AB 于点E ,若BC =3,且△BDC 的周长为8,则AE的长为( )A.2B.2.5C.3D.3.5【分析】根据已知可得BD+CD=5,从而可得AB=AC=5,然后利用等腰三角形的三线合一性质进行计算即可解答.【解答】解:∵BC=3,且△BDC的周长为8,∴BD+CD=8﹣3=5,∵AD=BD,∴AD+DC=5,∴AC=5,∵AB=AC,∴AB=5,∵AD=DB,DE⊥AB,∴AE=12AB=2.5,故选:B.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.【变式2-1】如图,在△ABC中,AB=AC,MN是AB的垂直平分线,△BNC的周长是24cm,BC=10cm,则AB的长是( )A .17cmB .12cmC .14cmD .34cm【分析】根据垂直平分线的性质可得:AN=BN ,根据△BNC 的周长和BC 的长度得出AC=14cm,再利用AB=AC ,则AB=AC=14cm .【解答】解:∵MN 是AB 的垂直平分线,∴AN =BN ,∵△BNC 的周长是24cm ,BC =10cm ,∴BN +NC +BC =AN +NC +BC =AC +BC =24(cm ),∴AC =14cm ,∵AB =AC ,∴AB =14cm ,故选:C .【点评】本题考查垂直平分线的性质以及等腰三角形的性质,解题的关键是掌握垂直平分线的性质,求出AC=14cm .【变式2-2】(2023春•西安月考)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,DE ⊥AB 于点E ,BF ⊥AC 于点F ,DE =5cm ,则BF =( )A .8cmB .10cmC .12cmD .14cm【分析】先得出AD 是△ABC 的中线,得出S △ABC =2S △ABD =2×12AB •DE =AB •DE =5AB ,又S △ABC =12AC •BF ,将AC =AB 代入即可求出BF .【解答】解:∵△ABC 中,AB =AC ,AD ⊥BC ,∴AD 是△ABC 的中线,∴S △ABC =2S △ABD =2×12AB •DE =AB •DE =5AB ,∵S △ABC =12AC •BF ,∴12AC •BF =5AB ,∵AC =AB ,∴12BF =5,∴BF =10(cm ),故选:B .【点评】本题考查了等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.【例题3】(2022秋•栖霞区校级月考)如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .则下列结论:①∠C =2∠A ;②BD 平分∠ABC ;③BC =AD ;④OD =2CD .正确的有( )A .1个B .2个C .3个D .4个【分析】由在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,根据线段垂直平分线的性质与等腰三角形的性质,可求得∠ABD =∠DBC =∠A =36°,∠ABC =∠BDC =∠C =72°,继而求得:①∠C =2∠A ;②BD 平分∠ABC ;③BC =AD .【解答】解:∵AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,∴AD =BD ,∴∠ABD =∠A =36°,∵AB=AC,∴∠ABC=∠C=72°,∴∠C=2∠A,故①正确;∴∠DBC=∠ABC﹣∠ABD=36°,∴∠ABD=∠DBC,∴BD平分∠ABC,故②正确;∴∠BDC=∠C=72°,∴BC=BD=AD,故③正确;由条件不能得出OD=2CD,故④错误.故选:C.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.【变式3-1】在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.下列结论中:①∠C=72°;②BD是△ABC的中线;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.正确的序号有( )A.①③④B.①④⑤C.①②⑤D.②④⑤【分析】根据题意画出图形,再根据在△ABC中,已知AB=AC,∠A=36°求出∠C的度数;由线段垂直平分线的性质求出∠ABD的度数,故可得出∠DBC的度数,进而得出BD是∠ABC的平分线;由三角形内角和定理可求出∠BDC的度数;由线段垂直平分线的性质,易证得△ABD是等腰三角形.【解答】解:∵△ABC中,∠A=36°,AB=AC,∴∠ABC=∠C=180°∠A2=72°,故①正确;∵DM是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠DBC=72°﹣36°=36°,∴BD是∠ABC的平分线,故②错误;∵在△BCD中,∠DBC=36°,∠C=72°,∴∠BDC=180°﹣(∠DBC+∠C)=180°﹣(36°+72°)=72°.故③错误;∵DM是AB的垂直平分线,∴AD=BD∴△ABD是等腰三角形;故④正确;∵MN是线段AB的垂直平分线,∴AD=BD,∵∠A=∠ABD=36°,∴∠CBD=36°,∴BD=BC,∴AD=BD=BC,故⑤正确.故选:B.【点评】本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.【变式3-2】如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有( )A.1个B.2个C.3个D.4个【分析】利用等腰三角形的概念、性质以及角平分线的性质做题.【解答】解:∵AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC∴△ABC是等腰三角形,AD⊥BC,BD=CD,∠BED=∠DFC=90°∴DE=DF∴AD垂直平分EF∴(4)错误;又∵AD所在直线是△ABC的对称轴,∴(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF.故选:C.【点评】有两边相等的三角形是等腰三角形;等腰三角形的两个底角相等;(简写成“等边对等角”)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”).【变式3-3】如图,在△ABC中,∠BAC与∠ACB的平分线交于点M,过点M作DE∥AC交AB于点D,交BC于点E,那么下列结论:①△ADM和△CEM都是等腰三角形;②△BDE的周长等于AB+BC;③AM=2CM;④AD+CE=AC.其中一定正确的结论有( )A.4个B.3个C.2个D.1个【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:∵DE∥AC,∴∠DMA=∠MAC,∠EMC=∠MCA,∵△ABC中,∠BAC与∠ACB的平分线交于点M,∴∠DAM=∠MAC,∠ECM=∠MCA,∴∠DAM=∠DMA,∠EMC=∠ECM,∴DA=DM,ME=EC,即△ADM和△CEM都是等腰三角形;故①正确;∴DE=DM+EM=AD+CE,∵AC>DE,∴AD+CE<AC,故④错误;∴△BDE的周长为:BD+DE+BE=DB+DM+ME+BE=AB+BC;故②正确;根据已知条件无法证明AM=2CM,故③错误.故选:C.【点评】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.【变式3-4】(2022春•神木市期末)如图,在△ABC中,点E、D分别在AB、AC的延长线上,∠BAC 与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②CP平分∠BCD;③BP垂直平分CE,其中正确的结论有( )A.0个B.1个C.2个D.3个【分析】①根据角平分线的性质和平行线的性质即可得到结论;②根据角平分线的性质即可得到结论;③根据线段垂直平分线的性质即可得出结论.【解答】解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP,故①正确;②∵∠BAC与∠CBE的平分线相交于点P,∴点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,故②正确;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),故③正确;故选:D.【点评】本题主要考查了角平分线的性质和定义,平行线的性质,等腰三角形的性质,熟练掌握各性质定理是解题的关键.【例题4】(2022春•巴中期末)在等腰△ABC中有一个角是50°,那么另外两个角分别是( )A.50°、80°B.50°、80°或65°、65°C.65°、65°D.无法确定【分析】根据等腰三角形的性质分∠B为顶角或底角两种情况求解即可.【解答】解:当∠B=50°为顶角时,此时∠A=∠C=180°50°2=65°;当∠B=50°为底角时,此时另一底角为50°,顶角为80°,故另外两个角分别是50°,80°或65°,65°.故选:B.【点评】本题考查了等腰三角形的性质和三角形的内角和定理,注意此题有两种情况.【变式4-1】(2022•上杭县校级开学)如果等腰三角形的一个外角为150°,则它的底角度数为( )A.30°B.75°C.30°或75°D.60°【分析】根据等腰三角形的一个外角等于150°,进行讨论可能是底角的外角是150°,也有可能顶角的外角是150°,从而求出答案.【解答】解:①当150°外角是底角的外角时,底角为:180°﹣150°=30°;②当150°外角是顶角的外角时,顶角为:180°﹣150°=30°,则底角为:(180°﹣30°)×12=75°,∴底角为30°或75°.故选:C.【点评】此题主要考查了等腰三角形的性质,此题应注意进行分类讨论,非常容易忽略一种情况.【变式4-2】(2022秋•南岗区校级月考)已知等腰三角形的两边长分别为7和3,则周长是( )A.13B.17C.18D.19【分析】分两种情况讨论:当3是腰时或当7是腰时,利用三角形的三边关系进行分析求解即可.【解答】解:当3是腰时,则3+3<7,不能组成三角形,舍去;当7是腰时,则三角形的周长是3+7×2=17.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.【变式4-3】(2022春•榆次区期中)一个等腰三角形的周长为13cm,一边长为5cm,则另两边长分别为( )A.3cm,5cm B.4cm,4cmC.3cm,5cm或4cm,4cm D.以上都不对【分析】此题分为两种情况:5cm是等腰三角形的底边或5cm是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:当5cm是等腰三角形的腰时,则其底边是13﹣5×2=3(cm),能够组成三角形;当5cm是等腰三角形的底边时,则其腰长是(13﹣5)÷2=4(cm),能够组成三角形.故另两边长分别为3cm,5cm或4cm,4cm.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系定理的应用,从边的方面考查三角形,涉及分类讨论的思想方法.【变式4-4】(2022春•文登区期末)若实数m,n=0,且m,n恰好是等腰△ABC的两条边的长,则△ABC的周长是( )A.6B.8C.10D.8或10【分析】利用非负数的性质求出m,n的值,再分两种情形讨论即可.【解答】解:=0,∴m﹣2=0,n﹣4=0,解得:m=2,n=4,当2是等腰三角形的底时,4,4,2能构成三角形,周长为10,当4是底时,2,2,4不能构成三角形.故选:C.【点评】本题考查等腰三角形的性质,非负数的性质,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.【变式4-5】(2022秋•长汀县校级月考)已知等腰三角形一腰上的高线与另一腰的夹角为60°,那么这个等腰三角形的顶角等于( )A.15°或75°B.30°C.150°D.150°或30°【分析】方法1:首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.方法2:读到此题我们首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,我们可以通过画图来讨论剩余两种情况.【解答】解:方法1:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=30°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠BAC=180°﹣30°=150°.故这个等腰三角形的顶角等于30°或150°.方法2:①当为锐角三角形时可以画图,高与左边腰成60°夹角,由三角形内角和为180°可得,顶角为180°﹣90°﹣60°=30°,②当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为30°,∴三角形的顶角为180°﹣30°=150°.故选:D.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.【例题5】已知:如图,P 、Q 是△ABC 边BC 上两点,且AB=AC ,AP=AQ .求证:BP=CQ .【分析】根据线段垂直平分线的性质,可得BO=CO ,PO=QO ,根据等式的性质,可得答案.【解答】证明:过点A 作AO ⊥BC 于O .∵AB=AC ,AO ⊥BC ,∴BO=CO , ∵AP=AQ ,AO ⊥BC ,∴PO=QO , ∴BO -PO=CO -QO∴BP=CQ .【点评】本题考查了等腰三角形的性质,利用线段垂直平分线的性质是解题关键.【变式5-1】已知:如图,在△ABC 中,AB =AC ,BD ,CE 是△ABC的角平分线.求证:BD =CE .【分析】由于AB=AC,BD,CE是△ABC的角平分线,利用等边对等角,角平分线定义,可得∠ABC=∠ACB,∠DBC=∠ECB,而BC=CB,利用ASA可证△EBC≌△DBC,再利用全等三角形的性质可证BD=CE.【解答】证明:如图所示,∵AB=AC,BD,CE是△ABC的角平分线.∴∠ABC=∠ACB,∴∠DBC=∠ECB,又∵BC=CB,∴△EBC≌△DCB(ASA),∴BD=CE.【点评】本题利用等腰三角形的性质、角平分线的定义、全等三角形的判定和性质.【变式5-2】如图,AB=AC,BD=CD,AD的延长线与BC交于E,求证:AE⊥BC.【分析】由AB=AC,BD=CD,AD是公共边,即可证得△ABD≌△ACD(SSS),则可得∠BAD=∠CAD,又由等腰三角形的三线合一的性质,证得AE⊥BC.【解答】解:在△ABD和△ACD中,AB=ACAD=AD,BD=CD∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵AB=AC,∴AE⊥BC.【点评】此题考查了等腰三角形的性质与全等三角形的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.【变式5-3】(2023•成武县校级三模)如图,△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF,求证:DE=DF.【分析】首先连接AD,由AB=AC,D是BC的中点,根据三线合一的性质,可得∠EAD=∠FAD,又由SAS,可判定△AED≌△AFD,继而证得DE=DF.【解答】证明:连接AD,∵AB=AC,D是BC的中点,∴∠EAD=∠FAD,在△AED和△AFD中,AE=AF∠EAD=∠FAD,AD=AD∴△AED≌△AFD(SAS),∴DE=DF.【点评】此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.【变式5-4】如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E,AD与BE相交于点F.(1)求证:∠CBE=∠BAD;(2)若CE=EF,求证:AF=2BD.【分析】(1)根据∠CBE +∠C =90°,∠CAD +∠C =90°,得出∠CBE =∠CAD ,再根据等腰三角形的性质得出∠CAD =∠BAD 即可得证结论;(2)根据AAS 证△BCE ≌△AFE ,得出AF =BC ,根据BC =2BD ,即可得证结论.【解答】证明:(1)∵∠CBE +∠C =90°,∠CAD +∠C =90°,∴∠CBE =∠CAD ,∵AB =AC ,AD 是BC 边上的中线,∴∠CAD =∠BAD ,∴∠CBE =∠BAD ;(2)由(1)知∠CBE =∠CAD ,在△BCE 和△AFE 中,∠CBE =∠AFE ∠BEC =∠FEA =90°CE =EF,∴△BCE ≌△AFE (AAS ),∴AF =BC ,∵BC =2BD ,∴AF =2BD .【点评】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【例题6】(2022•建湖县一模)如图,每个小方格的边长为1,A ,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且△ABC 是等腰三角形,那么点C的个数为( )A.1B.2C.3D.4【分析】根据“两圆一线”画图找点即可.【解答】解:如图,C点与P、Q、R重合时,均满足△ABC是等腰三角形,故选:C.【点评】本题考查“两圆一线”构造等腰三角形的方法,熟练使用两圆一线的方法是解题关键.【变式6-1】如图所示,共有等腰三角形( )A.4个B.5个C.3个D.2个【分析】由已知条件,根据三角形内角和定理,求出图形中未知度数的角,即可根据等角对等边求得等腰三角形的个数.【解答】解:根据三角形的内角和定理,得:∠ABO=∠DCO=36°,根据三角形的外角的性质,得∠AOB=∠COD=72°.再根据等角对等边,得等腰三角形有△AOB,△COD,△ABC,△CBD和△BOC.故选:B.【点评】此题考查了三角形的内角和定理、三角形的外角的性质以及等腰三角形的判定方法.得到各角的度数是正确解答本题的关键.【变式6-2】(2022春•杨浦区校级期末)如图,在直角三角形ABC中,∠ACB=90°,∠B=36°,点D、E在AB上,如果BC=BD,∠CED=∠CDE,那么图中的等腰三角形共有( )个.A.3个B.4个C.5个D.6个【分析】先求出各个角的度数,然后根据等腰三角形的判定即可求出答案.【解答】解:∵∠ACB=90°,∠B=36°,∴∠A=54°,∵BC=BD,∴∠CDB=∠DCB=72°,∴∠ECB=36°,∠ACE=54°,∴CE=BE,AE=CE,∴△BCD,△CDE,△CEB,△ACE都是等腰三角形,故选:B.【点评】本题考查等腰三角形的判定,解题的关键是求出各个角的度数,本题属于基础题型.【变式6-3】如图,在△ABC中,且∠ABC=60°,且∠C=45°,AD是边BC上的高,∠ABC的平分线交AD于F,交AC于E,则图中等腰三角形的个数为( )A.2B.3C.4D.5【分析】根据三角形高线的性质及直角三角形的性质推出∠ADC=∠ADB=90°,∠BAD=90°﹣∠ABD=30°,∠DAC=90°﹣∠C=45°,从而利用等腰三角形的判定定理得到△ADC是等腰三角形,再根据角平分线的性质得到∠ABF=∠CBE=12∠ABC=30°,从而由∠ABF=∠BAD推出△ABF是等腰三角形,而∠BEA=∠EBC+∠C=45°+30°=75°,∠BAC=180°﹣60°﹣45°=75°=∠BEA,进而求解.【解答】解:∵AD是边BC上的高线,∴∠ADC=∠ADB=90°,∵∠ABC=60°,∠C=45°,∴∠BAD=90°﹣∠ABD=30°,∠DAC=90°﹣∠C=45°,∴△ADC是等腰三角形,∵BE是∠ABC的平分线,∴∠ABF=∠CBE=12∠ABC=30°,∴∠ABF=∠BAD,∴△ABF是等腰三角形,则∠BEA=∠EBC+∠C=45°+30°=75°,而∠BAC=180°﹣60°﹣45°=75°=∠BEA,故△ABE为等腰三角形,故选:B.【点评】本题考查等腰三角形的判定及直角三角形的性质,应充分运用数形结合的思想方法,结合图形从中寻找角之间的关系,结合相关定理及性质进行求解.【变式6-4】(2022秋•鼓楼区期末)如图,在3×3正方形网格中,点A,B在格点上,若点C也在格点上,且△ABC是等腰三角形,则符合条件的点C的个数为( )A.1B.2C.3D.4【分析】分别画出以A点和B点为顶点的等腰三角形,再画出C为顶点的等腰三角形即可.【解答】解:以AB为腰的等腰三角形有两个,以AB为底的等腰三角形有一个,如图:所以符合条件的点C的个数为3个,故选:C.【点评】本题考查了等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等.等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.掌握等腰三角形的判定方法是解题的关键.【变式6-5】(2022秋•镇江月考)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰三角形,满足条件的格点C的个数是( )A .5B .6C .8D .9【分析】分三种情况:当BA =BC 时,当AB =AC 时,当CA =CB 时,然后进行分析即可解答.【解答】解:如图:分三种情况:当BA =BC 时,以点B 为圆心,BA 长为半径作圆,点C 1,C 2,C 3即为所求;当AB =AC 时,以点A 为圆心,AB 长为半径作圆,点C 4,C 5,C 6,C 7,C 8即为所求;当CA =CB 时,作AB 的垂直平分线,与正方形网格的交点不在格点上,综上所述:满足条件的格点C 的个数是8,故选:C .【点评】本题考查了等腰三角形的判定,分三种情况讨论是解题的关键.【例题7】如图,在△ABC 中,AD 平分∠BAC ,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:△ABC是等腰三角形.【分析】由条件可得出DE=DF,可证明△BDE≌△CDF,可得出∠B=∠C,再由等腰三角形的判定可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,BD=CDDE=DF,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C;∴AB=AC∴△ABC为等腰三角形.【点评】本题主要考查等腰三角形的判定及全等三角形的判定和性质,利用角平分线的性质得出DE=DF 是解题的关键.【变式7-1】已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.【分析】根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.【解答】解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,∴∠BAD=∠CAD,∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=∠CAD∴AE=ED,∴△AED是等腰三角形.【点评】本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.【变式7-2】如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD =BE,求证:△ABC为等腰三角形.【分析】要证△ABC为等腰三角形,须证∠A=∠C,而由题中已知条件,DF⊥AC,BD=BE,因此,可以通过角的加减求得∠A与∠C相等,从而判断△ABC为等腰三角形.【解答】证明:∵DF⊥AC,∴∠DFA=∠EFC=90°.∴∠A=∠DFA﹣∠D,∠C=∠EFC﹣∠CEF,∵BD=BE,∴∠BED=∠D.∵∠BED=∠CEF,∴∠D=∠CEF.∴∠A=∠C.∴△ABC为等腰三角形.【点评】本题考查了等腰三角形的判定方法;角的等量代换是正确解答本题的关键.【变式7-3】已知:如图,△ABC中,BC边上有D、E两点,∠1=∠2,∠3=∠4.求证:△ABC是等腰三角形.【分析】由∠1=∠2,∠3=∠4,根据三角形外角的性质,易证得∠B=∠C,然后由等角对等边,证得:△ABC 是等腰三角形.【解答】证明:∵∠B=∠3﹣∠1,∠C=∠4﹣∠2,又∵∠1=∠2,∠3=∠4,∴∠B=∠C,∴AB=AC,即△ABC是等腰三角形.【点评】此题考查了等腰三角形的判定与三角形外角的性质.此题比较简单,注意掌握数形结合思想的应用.【变式7-4】已知如图,点D在AB上,点E在AC的延长线上,且BD=CE,FD=FE.求证:△ABC 是等腰三角形.【分析】过点D作DG∥AE于点G,利用平行线的性质得出∠GDF=∠CEF,进而利用ASA得出△GDF ≌△CEF,再利用全等三角形的性质以及等腰三角形的判定得出即可.【解答】证明:过点D作DG∥AE于点G,∵DG∥AC∴∠GDF=∠CEF(两直线平行,内错角相等),在△GDF和△CEF中,∠GDF=∠CEFDF=EF,∠DFG=∠CFE∴△GDF≌△CEF(ASA),∴DG=CE又∵BD=CE,∴BD=DG,∴∠DBG=∠DGB,∵DG∥AC,∴∠DGB=∠ACB,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.【点评】本题考查了全等三角形的判定与性质以及等腰三角形的判定,作出恰当的辅助线是解答此题的关键.【例题8】(2022秋•通州区校级月考)如图,BO平分∠ABC,CO平分∠ACB,MN∥BC,△AMN的周长为33,AB=15,则AC为( )A.15B.18C.20D.23【分析】根据角平分线的定义和平行线的性质可证△MBO和△NCO是等腰三角形,从而可得MO=MB,NO=NC,然后根据线段的和差关系可得,△AMN的周长=AB+AC,进行计算即可解答.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵△AMN的周长为33,AB=15,∴AM+MN+AN=33,∴AM+OM+ON+AN=33,∴AM+MB+CN+AN=33,∴AB+AC=33,∴AC=18,故选:B.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,熟练掌握根据角平分线的定义和平行线的性质可证等腰三角形是解题的关键.【变式8-1】如图,在Rt△ABC中,∠A=90°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=2,则BC的长为( )A.12B.16C.20D.8【分析】根据角平分线的性质,平行线的性质,可以求得∠B的度数,再根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵CM平分∠ACB交AB于点M,∴∠NCM=∠BCM,∵MN∥BC∴∠NCM=∠BCM=∠NMC,∵MN平分∠AMC,∴∠AMN=∠NMC=∠B,∴∠ACB=2∠B,NM=NC,∴∠B=30°;∵AN=2,∠AMN=∠B=30°,∴MN=2AN=4,∴NM=NC=4,∴AC=AN+NC=6,∴BC=2AC=12,故选:A.【点评】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.【变式8-2】如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE,AB=5,BE=3,则AC=( )A.10B.11C.13D.15【分析】延长BE交AC于M,利用三角形内角和定理,得出∠3=∠4,AB=AM=5,BM=2BE=6,再利用∠4是△BCM的外角,利用等腰三角形判定得到CM=BM,利用等量代换即可求证.【解答】解:延长BE交AC于M,∵BE⊥AE,∴∠AEB=∠AEM=90°∴∠3=90°﹣∠1,∠4=90°﹣∠2,∵∠1=∠2,∴∠3=∠4,∴AB=AM=5,∵BE⊥AE,∴BM=2BE=6,∵∠4是△BCM的外角,∴∠4=∠5+∠C,∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5,∴3∠C=∠4+∠5=2∠5+∠C,∴∠5=∠C,∴CM=BM=6,∴AC=AM+CM=AB+2BE=11.故选:B.【点评】此题考查等腰三角形的判定与性质,利用三角形内角和定理,三角形外角的性质,准确添加辅助线构建等腰三角形是解题关键.【变式8-3】(2022春•神木市期末)如图,已知在△ABC中,AB=AC,BP、CQ是△ABC两腰上的高,BP与CQ交于点O.求证:△BCO是等腰三角形.【分析】由题意可求得∠ABC=∠ACB,再由高得∠BQC=∠CPB=90°,从而可求得∠OBC=∠OCB,即有OB=OC,从而得证△BCO是等腰三角形.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∵BP、CQ是△ABC两腰上的高,∴∠BQC=∠CPB=90°,∵∠OBC=90°﹣∠ACB,∠OCB=90°﹣∠ABC,∴∠OBC=∠OCB,∴OB=OC,∴△BCO为等腰三角形.【点评】本题主要考查等腰三角形的判定,等腰三角形的性质,解答的关键是结合图形分析清楚角之间的关系.【变式8-4】如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DEF的度数.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF 是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B 即可得出结论;(3)由(2)知∠DEF=∠B,再根据等腰三角形的性质即可得出∠DEF的度数.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,BD=CE ∠B=∠C BE=CF,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;。

三角形全等的判定

三角形全等的判定

三角形全等的判定+性质+辅助线技巧三角形全等的判定+性质+辅助线技巧在初中三角形问题集中体现在“全等”和“相似”两大问题上,非常考验大家的解题能力、思维能力、耐性与定力。

有时证不出来,急不可耐、恨它恨的牙痒痒。

豆姐这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法,认真看完这篇文章,保证关于三角形全等所有的题型你都会做!一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

3.有两角及其夹边对应相等的两个三角形全等(ASA)。

4.有两角及一角的对边对应相等的两个三角形全等(AAS)。

5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

二、全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。

②全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

④全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

三、找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明至少需要三个条件(包含两个要素:边和角),其中必须有边的条件。

缺个角的条件:缺条边的条件:四、构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。

角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。

关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

等腰三角形性质及判定

等腰三角形性质及判定

等腰三角形性质及判定(基础)【学习目标】1. 掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.2. 掌握等腰三角形的判定定理.3. 熟练运用等腰三角形的判定定理与性质定理进行推理和计算.【要点梳理】要点一、等腰三角形的定义有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC 为腰,BC为底边,∠A是顶角,∠B、∠C是底角.要点诠释:等腰直角三角形的两个底角相等,且都等于45°.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠ . 要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).2.等腰三角形的性质的作用性质1:证明同一个三角形中的两角相等,是证明角相等的一个重要依据.性质2:用来证明线段相等,角相等,垂直关系等.3.等腰三角形是轴对称图形等腰三角形底边上的高(顶角平分线或底边上的中线)所在直线是它的对称轴,通常情况只有一条对称轴.要点三、等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。

要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.【典型例题】类型一、等腰三角形中有关度数的计算题1、如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数.【答案与解析】解:∵AB=AC∴∠B =∠C∵AB=BD∴∠2=∠3∵∠2=∠1+∠C∴∠2=∠1+∠B∵∠2+∠3+∠B=180°∴∠B=180°-2∠2∴∠2=∠1+180°-2∠2∴3∠2=∠1+180°∵∠1=30°∴∠2=70°【总结升华】解该题的关键是要找到∠2和∠1之间的关系,显然∠2=∠1+∠C,只要再找出∠C与∠2的关系问题就好解决了,而∠C=∠B,所以把问题转化为△ABD的角之间的关系,问题就容易的多了.关于角度问题可以通过建立方程进行解决.举一反三:【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【答案】解:∵AC=BC=BD,AD=AE,DE=CE,∴设∠ECD=∠EDC=x,∠BCD=∠BDC=y,则∠AED=∠ADE=2x,∠A=∠B=180°-4x在△ABC中,根据三角形内角和得,x+y+180°-4x+180°-4x=180°①又∵A、D、B在同一直线上,∴2x+x+y=180°②由①,②解得x=36°∴∠B=180°-4x=180°-144°=36°.类型二、等腰三角形中的分类讨论2、在等腰三角形中,有一个角为40°,求其余各角.【思路点拨】唯独等腰三角形的角有专用名词“顶角”“底角”,别的三角形没有,然而此题没有指明40°的角是顶角还是底角,所以要分类讨论.【答案与解析】解:(1)当40°的角为顶角时,由三角形内角和定理可知:两个底角的度数之和=180°-40°=140°,又由等腰三角形的性质可知:两底角相等,故每个底角的度数114070=⨯︒=︒;2(2)当40°的角为底角时,另一个底角也为40°,则顶角的度数=180°-40°-40°=100°.∴其余各角为70°,70°或40°,100°.【总结升华】条件指代不明,做此类题应分类讨论,把可能出现的情况都讨论到,别遗漏.3、已知等腰三角形的周长为13,一边长为3,求其余各边.【答案与解析】解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7;(2)3为底边长时,则两个腰长的和=13-3=10,则一腰长1105=⨯=.2这样得两组:①3,3,7 ②5,5,3.而由构成三角形的条件:两边之和大于第三边可知:3+3<7,故不能组成三角形,应舍去.∴等腰三角形的周长为13,一边长为3,其余各边长为5,5.【总结升华】唯独等腰三角形的边有专用名词“腰”“底”,别的三角形没有,此题没有说明边长为3的边是腰还是底,所以做此题应分类讨论.同时结合三角形内角和定理、三角形两边之和大于第三边、两边之差小于第三边,来验证讨论哪些情况符合,哪些情况不符合,从而决定取舍,最后得到正确答案.举一反三:【变式】已知等腰三角形的底边BC=8cm,且|AC-BC|=2cm,那么腰AC的长为( ).A.10cm或6cm B.10cm C.6cm D.8cm或6cm 【答案】A;解:∵ |AC-BC|=2cm,∴ AC-BC=±2.又BC=8cm.∴ AC=10cm或6cm.∴ AB=10cm或6cm.类型三、等腰三角形性质和判定综合应用4、已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD 于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.【思路点拨】此题由等腰三角形的判定知AD=DC,易证△ABD≌△CFD,要证BE⊥AC,只需证∠BEC=90°即可,DF=BD,可知∠FBD=45°,由已知∠ACD=45°,可知∠BEC=90°.【答案与解析】证明:(1) ∵ AD⊥BC,∴∠ADC=∠FDB=90°.∵45∠=︒,ACB∴45∠=∠=︒ACB DAC∴ AD=CD∵BAD FCD∠=∠,Array∴△ABD≌△CFD(2)∵△ABD≌△CFD∴ BD=FD.∵∠FDB=90°,∴45FBD BFD∠=∠=︒.∵45ACB∠=︒,∴90BEC∠=︒.∴ BE⊥AC.【总结升华】本题主要考查全等三角形判定定理及性质,垂直的性质,三角形内角和定理,等腰直角三角形的性质等知识点,关键在于熟练的综合运用相关的性质定理,通过求证△ABD≌△CFD,推出BD=FD,求出∠FBD=∠BFD=45°.举一反三:【变式】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.【答案】(1)证明: ∵ AD ∥BC ,∠ABC=90°,∴ ∠BAD=∠ABC=90°. 又∵ EC ⊥BD ,∴ ∠BEC +∠DBE=90°,∠BEC +∠BCE=90°.∴ ∠DBE=∠BCE .在△DAB 与△EBC 中,,,,BAD EBC AB BC ABD BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △DAB ≌△EBC(ASA).∴ AD=BE .(2)证明:连接AC ,ED .∵ E 为AB 的中点,∴ BE=AE .又∵ AD=BE(已证),∴ AE=AD 且∠A=90°.△AED 为等腰三角形.∴ ∠AED=∠ADE(等边对等角),即∠AED=∠ADE=45°.又∵ AB=BC ,AD ∥BC ,∠ABC=90°.∴ ∠BAC=∠BCA(等边对等角).∴ ∠BAC=∠BCA=1(18090)452︒-︒⨯=︒.∴ 45CAD BAC ∠=∠=︒.由等腰三角形性质.可知AC垂直平分ED,即AC是线段ED的垂直平分线.(3)解:△DBC是等腰三角形.理由如下:由(2)得CD=CE.由(1)可得CE=BD,∴ CD=BD.∴△DBC是等腰三角形.【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A.16 B.17C.16或17D.10或122. 若一个三角形的三个外角度数比为2:3:3,则这个三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是()A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的有( )①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.A.1个B.2个C.3个D.4个5. 如图,D是AB边上的中点,将ABC∆沿过D的直线折叠,使点A 落在BC上F处,若50∠度数是()B∠=︒,则BDFA.60° B.70° C.80° D.不确定6. 如图,ΔABC中,AB=AC,∠BAC=108°,若AD、AE三等分∠BAC,则图中等腰三角形有()A.4个B.5个C.6个D.7个二.填空题7.如图,△ABC中,D为AC边上一点,AD=BD=BC,若∠A=40°,则∠CBD=_____°.8. 等腰三角形的顶角比其中一个底角大30°,则顶角的度数为.9. 如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB =_________ cm.10. 等腰三角形的一个角是70°,则它的顶角的度数是 .11. 如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______cm.12. 如图,四边形ABCD中,AB=AD,∠B=∠D,若CD=1.8cm,则BC=______.三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14. 已知:如图,AD是∠BAC的平分线,∠B=∠EAC,EF⊥AD于F.求证:EF平分∠AEB.15. 如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ +AQ=AB+BP.。

等腰三角形与等边三角形的性质和判定学生版

等腰三角形与等边三角形的性质和判定学生版

2014年秋季同步课初二年级学生姓名:上课时间:等腰三角形与等边三角形的性质和判定内容基本要求略高要求较高要求 等腰三角形了解等腰三角形、等边三角形的概念,会识别这两种图形;理解等腰三角形、等边三角形的性质和判定能用等腰三角形、等边三角形的性质和判定解决简单问题会运用等腰三角形、等边三角形的知识解决有关问题知识框架图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧判定性质定义等边三角形判定性质定义等腰三角形等腰三角形 知识点讲解一、等腰三角形定义:有两条边相等的三角形叫做等腰三角形。

二、等腰三角形的性质 1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。

三、等腰三角形的判定 1. 有关的定理及其推论中考考纲知识体系定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2. 定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。

考点15 等腰三角形【无答案】

考点15 等腰三角形【无答案】

考点15 等腰三角形等腰三角形的性质及判定是初中数学最为重要的知识点之一,也是重要几何模型的“发源地”,最为经典的“手拉手”模型就是以等腰三角形为特征总结的。

而数学中考中,等腰三角形单独出题的可能性还是比较大的,多以选择填空题型出现,但是因为等腰三角形可以放在很多模型中,所以等腰三角形结合其他考点出成压轴题的几率特别大,所占分值也是比较多,属于是中考必考的中等偏上难度的考点。

一、等腰三角形的性质和判定二、角平分线的性质定理与判定定理三、线段垂直平分线的性质定理与判定定理考向一:等腰三角形的性质和判定1.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的腰长为()A.3cm B.6cm C.3cm或6cm D.3cm或9cm2.等腰三角形一腰上的高与另一腰的夹角为50°,则它的底角的大小是()A.25°B.20°C.25°或65°D.20°或70°3.如图,等腰△ABC中,AB=AC=10,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.12B.8C.15D.134.如图,在△ABC中,D为BC边上一点,BD=AD=AC,∠BAC=108°,则∠DAC的度数为()A.75°B.80°C.85°D.84°5.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F分别为垂足,则下列四个结(填论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)AD垂直平分EF,其中正确的有.序号)6.等腰△ABC中,AB=AC,点E为底边BC上一点,以点E为圆心,EA长为半径画弧,交AB于点D,测得∠CAE=80°,∠EAD=54°,则∠DEB=°.7.如图所示,在坐标平面中,A(0,4),C为x轴负半轴上一点,CO=3,AC=5,若点P为y轴上一动点,以PC为腰作等腰三角形△PCQ,已知∠CPQ=2∠ACO=2α(α为定值),连接OQ,则OQ的最小值为.8.如图,已知点P是射线MN上一动点,∠AMN=35°,当∠A为时,△AMP是等腰三角形.9.在如图所示的3×3方格中,以AB为边,第三个顶点也在格点上的等腰三角形有个.10.如图所示,∠AOB=60°,C是BO延长线上的一点,OC=12cm,动点P从点C出发沿CB以3cm/s 的速度移动,动点Q从点O出发沿OA以2cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=s时,△POQ是等腰三角形.11.如图,△ABC中,AB=BC,∠C=60°,AD是BC上的高,DE∥AC,图中与BD(BD除外)相等的线段共有()条.A.1B.2C.3D.412.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列五个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤△CMN是等边三角形.其中,正确的有()A.2个B.3个C.4个D.5个13.如图,已知AB=AC,AD平分∠BAC,∠DEB=∠EBC=60°,若BE=5,DE=2,则BC=.14.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当α为多少度时,△AOD是等腰三角形?15.如图,在等腰△ABC中,AB=AC,过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.(1)求证:△ACD为等腰三角形;(2)若∠BAD=140°,求∠ACD的度数.16.如图,在△ABC中,AB=AC,D为CA延长线上一点,DE⊥BC于点E,交AB于点F,若AF=BF.求证:(1)△ADF是等腰三角形.(2)DF=2EF.考向二:角平分线的性质与判定一.角平分线的性质定理与判定定理性质定理:角平分线上的点到角两边的距离相等。

第十二讲 等腰三角形的判定(含答案)-

第十二讲 等腰三角形的判定(含答案)-

第十二讲 等腰三角形的判定由于等腰三角形有丰富的性质,这些性质为我们解几何题提供了新的理论依据,所以寻找发现等腰三角形是解一些几何题的关键,判定一个三角形为等腰三角形的基本方法是:从定义入手,证明一个三角形的两条边相等;从角入手,证明一个三角形的两个角相等, 实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有: 1.“角平分线+平行线”构造等腰三角形; 2.“角平分线+垂线”构造等腰三角形; 3.用“垂直平分线”构造等腰三角形;4.用“三角形中角的2倍关系”构造等腰三角形.例题求解【例1】 如图,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5,那么这个六边形的周长是 cm .(“祖冲之杯”邀请赛试题)思路点拨 设法将六边形的问题转化为三角形或四边形的问题加以解决,六边形的外角都为60°,利用60°构造等边三角形是解本例的关键.5991注 证明线段相等是最基本的几何问题,目前常用证法有: (1)若两线段属于两个三角形,则考虑证对应的三角形全等; (2)若两线段是同一个三角形两边,则考虑用等角对等边证明; (3)寻找中间线段,通过等量代换证明.类似的,我们可以对证明角相等、等边三角形的判定作归纳总结.不同形状的几何图形之间可互相转化,向外补形与对内分割是基本的两种转化方式. 【例2】 如图,已知Rt △ABC 中,∠C=90°,∠A=30°,在直线BC 或AC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的P 点有( )A .2个B .4个C .6个D .8个。

(第11届江苏省竞赛题)思路点拨 AB 既可作等腰三角形PAB 的腰,也可作为等腰三角形PAB 的底,故要思考全面,才能正确地得出符合条件的P 点的个数.BCA【例3】 如图,△ABC 中,AD ⊥BC 于D ,∠B=2∠C ,求证:AB 十BD =CD .(天津市竞赛题)BCD A思路点拨 如何利用条件∠B=2∠C?又怎样得到AB+BD?不同的思考方向,会找到解题的不同方法.【例4】 如图甲,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形,直线AN 、MC 交于点E ,直线BM 、CN 交于点F .(2003年荆门市中考题) (1)求证:AN=BM ;(2)求证:△CEF 是等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图乙中补出符合要求的图形,并判断第(1)、(2)两小属结论是否仍然成立(不要求证明).BC A甲NM FE BCA乙NM思路点拨 图甲中有多对全等三角形,这是解(1)、(2)问的基础. 注 若仅将题中的条件∠A =30°改为∠A=45°,则符合条件的点有几个?若将题中的条件∠A=30°,改为∠A ≠30°,∠A ≠45°,则符合条件的P 点有几个?请读者思考. 分折法(执果溯因),综合法(由因导果)是两种最基本的分析方法. 处理题设条件中的“两倍角”的基本途径是:(1) 向外构造等腰三角形; (2)对内作角平分线.【例5】 如图,在五边形ABCDE 中,∠B =∠E ,∠C=∠D ,BC=DE ,M 为CD 中点,求证:AM ⊥CD . (武汉市选拔赛试题)思路点拨 证明∠AMC=90°或应用等腰三角形“三线合一”的性质,通过作辅助线将五边形问题恰当地转化为三角形问题是解本例的关键.BC DAME学历训练1.如图,在△ABC 中,∠B 、∠C 的平分线相交于O 点.作MN ∥BC ,EF ∥AB ,GH ∥AC ,BC =a ,AC=b ,AB =c ,则△GMO 周长+△ENO 的周长-△FHO 的周长 . 2.如图,△ABC 中,AB=AC ,∠B=36°,D 、E 是BC 上两点,使∠ADE=∠AED=2∠BAD ,则图中等腰三角形共有 个.BCA G HN M FOE B C D AE B CD A(第1题) (第2题) (第3题)3.如图,△ABC 中,AD 平分∠BAC ,AB+BD=AC ,则∠D :∠C 的值= . (“五羊杯”竞赛题) 4.如图,四边形ABCD 中,对角线AC 与BD 相交于E 点,若AC 平分∠DAB ,且AB=AE ,AC=AD ,有如下四个结论: ①AC ⊥BD ;②BC=DE ;③∠DBC=21∠DAB ;④△ABE 是等边三角形.请写出正确结论的序号 .(把你认为正确结论的序号都填上) (2002午天津市中考题)5.如图,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的中垂线,E 、M 在BC 上,则∠EAM 等于( )A .58°B .32°C .36°D .34°B C DAEB CA NMFEB A(第4题) (第5题) (第6题) 6.如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( )A .AC>2AB B .AC =2AB C .AC ≤2ABD .AC<2AB. (山东省竞赛题) 7.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A .30° B .30°或150°C . 120°或150° D .30°或120°或150° (“希望杯”邀请赛试题)8.在锐角△ABC 中,三个内角的度数都是质数,则这样的三角形( ) A .只有一个且为等腰三角形; B .至少有两个且都为等腰三角形C .只有一个但不是等腰三角形;D .至少有两个,其中有非等腰三角形 9.如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,O 为BC 的中点. (1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的关系.(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN=BM ,请判断△OMN 的形状,并证明你的结论. (2003年广东省中考题)BC A NMO10.如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF =EF .BCD A FE11.如图,已知等边三角形ABC ,在AB 上取点D ,在AC 上取点E ,使得AD=AE ,作等边三角形PCD ,QAE 和RAB ,求证:P 、Q 、R 是等边三角形的三个顶点.BCD ARQPE12.在△ABC 中,AB=AC ,高线AD=21BC ,AE 为∠BAC 的平分线,则∠CAD 的度数为 . (2003年北京市竞赛题)13.如图,△ABC 中,AB=AC ,BC=BD=ED=EA ,则∠A= .BCDAEBCDAFEBC DAE(第13题) (第14题) (第17题) 14.如图,四边形ABCD 中,AE 、AF 分别是BC ,CD 的中垂线,∠EAF=80°,∠CBD=30°,则∠ABC= ,∠ADC= . (天津市竞赛题)15.有一个等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片,则原等腰三角形纸片的顶角为 度. (第15届江苏省竞赛题)16.在等边△ABC 所在的平面内求一点P ,使△PAB 、△PBC 、△PAC 都是等腰三角形,具有这样性质的点P 有( )A .1个B .4个C .7个D .10个17.如图,在五边形ABCDE 中,∠A=∠B=120°,EA=AB=BC=21DC=21DE ,则∠D =( ) A .30° B .450° C . 60° D .67.5°18.如图,在△ABC 中,∠BAC=120°,P 是△ABC 内一点,则( ) A .PA+PB+PC<AB+AC B . PA+PB+PC>AB+ACC .PA+PB+PC=AB+ACD .PA+PB+PC 与AB+AC 的大小关系不确定,与P 点位置有关BCA P19.如图,在△ABC 内,∠BAC=60°,∠ACB=40°,P 、Q 分别在BC 、CA 上,并且AP 、BQ 分别为∠BAC 、∠ABC 的角平分线.求证:BQ+AQ=AB+BP . (2002年全国初中数学竞赛矗)BCAQP20.如图,在△ABC 中,AB=AC ,∠ABC>60°,∠ABD=60°,且∠ADB=90°一21∠BDC ,求证:AC=BD+DC . (天津市竞赛题)BCDA21.如图,在△ABC 中,∠BAC=90°,AB =AC ,D 是△ABC 内一点,且∠DAC=∠DCA=15°,求证:BD =BA .BCDA22.在平面内确定四点,连接每两点,使任意三点构成等腰三角形(包括等边三角形),且每两点之间函线段长只有两个数值,则这四点的取法有多少种?画图说明.(2003年潍坊市中考题)23.(1)如图,四边形ABCD 中,AB=AD ,∠ABD=60°,∠BCD=120°,证明:BC+DC=AC .(2) 如图,四边形ABCD 中,AB=BC ,∠ABC=60°,P 为四边形ABCD 内一点,且∠APD=120°,证明:PA+PD+PC ≥BD . (第15届江苏省竞赛题)(1)B C DA(2)BC DAP24.如图,等边三角形ABD 和等边三角形CBDD 的长均为a ,现把它们拼合起来,E 是AD 上异于A 、D 两点的一动点,F 是CD 上一动点,满足AE+CF =a . (1)E 、F 移动时,△BEF 的形状如何? (2)求△BEF 面积的最小值.BCD AFE。

全等三角形与等腰三角形的应用

全等三角形与等腰三角形的应用

全等三角形与等腰三角形的应用一:线段的相等1:若所证线段恰好是两个三角形的边,则证这两条线段所在的三角形全等。

?2:若所证线段是同一三角形的边,则证此三角形是等腰三角形;也可通过证中垂线得出结论。

3:上面两种方法无法解决问题时,要用构造法来解题。

例1:如图点A ,B ,C 在一直线上,DC?AC ,AE ∥CD ,A D ⊥BE ,垂足为F ,AB=CD :求证:AE=AC例2:如图1,已知C 是线段AB 上的一点,△ACD 和△BCE 是等边△,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ;求证:(1):AE=BD (2):∠AOB=120° (3):CM=CN 。

引伸1:若M ,N 分别是DB ,AE 中点,△MCN 是等边三角形吗?若是,请证明,若 不是,请说明理由。

(图2)引伸2:若△ECB 绕点C 顺时针旋转α度,例2中的结论成立吗?若成立,请给于 证明;若不成立,请说明理由。

例3:如图,已知在△ABC 中,D 为AC 上一点,且DC=(1/2)AD ,∠ADB=60°, ∠C=45°,A E ⊥BD 于E ,连接CE ; 求证:EA=EB=EC 。

例4:如图,已知AB=AD ,AC=AE ,∠BAC=∠DAE ,DB 交AC 于F ,且AF 平分BD ,GE 交AD 于G 。

求证:CG=GE 。

例5:已知:如图,AF 平分∠BAC ,B C ⊥AF ,垂足为E ,点D 与点A 关于点E 对称,PB 分别与线段CF ,AF 相交于P ,M ; (1):求证:AB=CD ;(2):若∠BAC=2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由。

图2图1例6:如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别为EB ,CD 的中点, 易证CD=BE ,△AMN 是等边三角形; (1):当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立,请证明,若不成立,请说明理由;? (2):当△ADE 绕点A 旋转到图3的位置时,△AMN 是否还是等边三角形??若是,请给出证明,若不是,请说明理由。

三角形的全等和等腰三角形的性质 优秀课教案

三角形的全等和等腰三角形的性质   优秀课教案

1.1 等腰三角形第1课时 三角形的全等和等腰三角形的性质1.复习全等三角形的判定定理及相关性质;2.理解并掌握等腰三角形的性质定理及推论,能够运用其解决简单的几何问题.(重点,难点)一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC 有什么特点?二、合作探究探究点一:全等三角形的判定和性质 【类型一】 全等三角形的判定如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是()A .BD =CDB .AB =AC C .∠B =∠CD .∠BAD =∠CAD解析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.A.∵∠1=∠2,AD 为公共边,若BD =CD ,则△ABD ≌△ACD (SAS);B.∵∠1=∠2,AD 为公共边,若AB =AC ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;C.∵∠1=∠2,AD 为公共边,若∠B =∠C ,则△ABD ≌△ACD (AAS);D.∵∠1=∠2,AD 为公共边,若∠BAD =∠CAD ,则△ABD ≌△ACD (ASA);故选B.方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.要注意AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【类型二】 全等三角形的性质如图,△ABC ≌△CDA ,并且AB=CD ,那么下列结论错误的是( )A .∠1=∠2B .AC =CA C .∠D =∠B D .AC =BC解析:由△ABC ≌△CDA ,并且AB =CD ,AC 和CA 是公共边,可知∠1和∠2,∠D 和∠B 是对应角.全等三角形的对应角相等,对应边相等,因而前三个选项一定正确.AC 和BC 不是对应边,不一定相等.∵△ABC ≌△CDA ,AB =CD ,∴∠1和∠2,∠D 和∠B 是对应角,∴∠1=∠2,∠D =∠B ,∴AC 和CA 是对应边,而不是BC ,∴A 、B 、C 正确,错误的结论是D.故选D.方法总结:本题主要考查了全等三角形的性质;根据已知条件正确确定对应边、对应角是解决本题的关键.探究点二:等边对等角【类型一】 运用“等边对等角”求角的度数如图,AB =AC =AD ,若∠BAD=80°,则∠BCD =( )A .80°B .100°C .140°D .160° 解析:先根据已知和四边形的内角和为360°,可求∠B +∠BCD +∠D 的度数,再根据等腰三角形的性质可得∠B =∠ACB ,∠ACD =∠D ,从而得到∠BCD 的值.∵∠BAD =80°,∴∠B +∠BCD +∠D =280°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠D ,∴∠BCD =280°÷2=140°,故选C.方法总结:求角的度数时,①在等腰三角形中,一定要考虑三角形内角和定理;②有平行线时,要考虑平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补;③两条相交直线中,对顶角相等,互为邻补角的两角之和等于180°.【类型二】 分类讨论思想在等腰三角形求角度中的运用等腰三角形的一个角等于30°,求它的顶角的度数.解析:本题可根据等腰三角形的性质和三角形内角和定理求解,由于本题中没有明确30°角是顶角还是底角,因此要分类讨论.解:①当底角是30°时,顶角的度数为180°-2×30°=120°;②顶角即为30°.因此等腰三角形的顶角的度数为30°或120°.方法总结:已知的一个锐角可以是等腰三角形的顶角,也可以是底角;一个钝角只能是等腰三角形的顶角.分类讨论是正确解答本题的关键.探究点三:三线合一【类型一】 利用等腰三角形“三线合一”进行计算如图,在△ABC 中,已知AB =AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC =125°.求∠ACB 和∠BAC 的度数.解析:根据等腰三角形三线合一的性质可得AE ⊥BC ,再求出∠CDE ,然后根据直角三角形两锐角互余求出∠DCE ,根据角平分线的定义求出∠ACB ,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC .解:∵AB =AC ,AE 平分∠BAC ,∴AE ⊥BC .∵∠ADC =125°,∴∠CDE =55°,∴∠DCE =90°-∠CDE =35°.又∵CD 平分∠ACB ,∴∠ACB =2∠DCE =70°.又∵AB =AC ,∴∠B =∠ACB =70°,∴∠BAC =180-(∠B +∠ACB )=40°.方法总结:利用等腰三角形“三线合一”的性质进行计算,有两种类型:一是求边长,求边长时应利用等腰三角形的底边上的中线与其他两线互相重合;二是求角度的大小,求角度时,应利用等腰三角形的顶角的平分线或底边上的高与其他两线互相重合.【类型二】 利用等腰三角形“三线合一”进行证明如图,△ABC 中,AB =AC ,D 为AC 上任意一点,延长BA 到E 使得AE =AD ,连接DE ,求证:DE ⊥BC .解析:作AF ∥DE ,交BC 于点F .利用等边对等角及平行线的性质证明∠BAF =∠F AC .在△ABC 中由“三线合一”得AF ⊥BC .再结合AF ∥DE 可得出结论.证明:过点A 作AF ∥DE ,交BC 于点F .∵AE =AD ,∴∠E =∠ADE .∵AF ∥DE ,∴∠E =∠BAF ,∠F AC =∠ADE .∴∠BAF =∠F AC .又∵AB =AC ,∴AF ⊥BC . ∵AF ∥DE ,∴DE ⊥BC .方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高.第2课时 平行四边形的判定定理3与两平行线间的距离1.复习并巩固平行四边形的判定定理1、2;2.学习并掌握平行四边形的判定定理3,能够熟练运用平行四边形的判定定理解决问题;(重点)3.根据平行四边形的性质总结出求两条平行线之间的距离的方法,能够综合平行四边形的性质和判定定理解决问题.(重点,难点)一、情境导入小明的父亲的手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?你能想出几种办法?二、合作探究 探究点一:对角线互相平分的四边形是平行四边形【类型一】 利用平行四边形的判定定理(3)判定平行四边形已知,如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 中点.求证:(1)△AOC ≌△BOD ; (2)四边形AFBE 是平行四边形. 解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC ≌△BOD ;(2)此题已知AO =BO ,要证四边形AFBE 是平行四边形,根据全等三角形,只需证OE =OF 就可以了.证明:(1)∵AC ∥BD ,∴∠C =∠D .在△AOC 和△BOD 中,∵⎩⎪⎨⎪⎧AO =OB ,∠AOC =∠BOD ,∠C =∠D ,∴△AOC ≌△BOD (AAS);(2)∵△AOC ≌△BOD ,∴CO =DO .∵E 、F 分别是OC 、OD 的中点,∴OF =12OD ,OE =12OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形. 方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.熟练掌握平行四边形的判定定理是解决问题的关键.【类型二】 利用平行四边形的判定定理(3)证明线段或角相等如图,在平行四边形ABCD 中,AC 交BD 于点O ,点E ,F 分别是OA ,OC 的中点,请判断线段BE,DF 的位置关系和数量关系,并说明你的结论.解析:根据平行四边形的对角线互相平分得出OA =OC ,OB =OD ,利用中点的意义得出OE =OF ,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE =DF ,BE ∥DF .解:BE =DF ,BE ∥DF .因为四边形ABCD 是平行四边形,所以OA =OC ,OB =OD .因为E ,F 分别是OA ,OC 的中点,所以OE =OF ,所以四边形BFDE 是平行四边形,所以BE =DF ,BE ∥DF .方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.探究点二:平行线间的距离如图,已知l 1∥l 2,点E ,F 在l 1上,点G ,H 在l 2上,试说明△EGO 与△FHO 的面积相等.解析:结合平行线间的距离相等和三角形的面积公式即可证明.证明:∵l 1∥l 2,∴点E ,F 到l 2之间的距离都相等,设为h .∴S △EGH =12GH ·h ,S △FGH =12GH ·h ,∴S △EGH =S △FGH ,∴S △EGH -S △GOH =S △FGH -S △GOH ,∴S △EGO =S △FHO .方法总结:解题的关键是明确三角形的中线把三角形的面积等分成了相等的两部分,同底等高的两个三角形的面积相等.探究点三:平行四边形判定和性质的综合如图,在直角梯形ABCD 中,AD∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD的中点,连接DE 、FG .(1)求证:四边形DEGF 是平行四边形; (2)如果点G 是BC 的中点,且BC =12,DC =10,求四边形AGCD 的面积.解析:(1)求出平行四边形AGCD ,推出CD =AG ,推出EG =DF ,EG ∥DF ,根据平行四边形的判定推出即可;(2)由点G 是BC 的中点,BC =12,得到BG =CG =12BC=6,根据四边形AGCD 是平行四边形可知AG =DC =10,根据勾股定理得AB =8,求出四边形AGCD 的面积为6×8=48.解:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形,∴AG =DC .∵E 、F 分别为AG 、DC 的中点,∴GE =12AG ,DF =12DC ,即GE =DF ,GE ∥DF ,∴四边形DEGF 是平行四边形;(2)∵点G 是BC 的中点,BC =12,∴BG =CG =12BC =6.∵四边形AGCD 是平行四边形,DC =10,AG =DC =10,在Rt △ABG 中,根据勾股定理得AB =8,∴四边形AGCD 的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计 1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.。

等腰三角形的性质与判定(人教版)(含答案)

等腰三角形的性质与判定(人教版)(含答案)

等腰三角形的性质与判定(人教版)试卷简介:本套试卷主要考查等腰三角形的判定及性质,等边对等角、等角对等边;三线合一等,以此为载体考查同学们几何学习的有序操作能力.一、单选题(共10道,每道10分)1.已知等腰三角形的一个内角为70°,则另两个内角的度数是( )A.55°,55°B.70°,40°C.55°,55°或70°,40°D.以上都不对答案:C解题思路:此题仅告诉我们等腰三角形的一个内角为70°,并没有确定是顶角还是底角,所以需分两种情况考虑.①当70°为顶角时,另外两个角是底角,度数相等,为(180°-70°)÷2=55°,②当70°为底角时,另外一个底角也是70°,顶角是180°-140°=40°.综上,另两个内角度数为55°,55°或70°,40°.故选C.试题难度:三颗星知识点:等腰三角形的性质2.一个等腰三角形的两边长分别为2和5,则它的周长为( )A.7B.9C.12D.9或12答案:C解题思路:求等腰三角形的周长,即是确定等腰三角形的腰与底的长,题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还需应用三角形的三边关系验证能否组成三角形.①若2为腰长,5为底边长,由于2+2<5,则三角形不存在;②若5为腰长,2为底边长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选C试题难度:三颗星知识点:三角形的三边关系3.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的角平分线,则图中的等腰三角形有( )A.5个B.4个C.3个D.2个答案:A解题思路:∵AB=AC,∴△ABC是等腰三角形.∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD,CE分别是∠ABC,∠BCD的角平分线,∴,,∴∠DBC=∠BCE,∠CED=∠DBC+∠BCE=36°+36°=72°,∠A=∠ABD,∠BDC=180°-∠DBC-∠BCD=180°-72°-36°=72°,∴△EBC,△ABD是等腰三角形;∵∠BDC=∠BCD,∠CED=∠CDE,∴△BCD,△CDE是等腰三角形,∴图中的等腰三角形有5个.故选A试题难度:三颗星知识点:等腰三角形的判定及性质4.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,则下列五个结论:①AD上任意一点到AB,AC两边的距离相等;②AD上任意一点到B,C两点的距离相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中正确的有( )A.2个B.3个C.4个D.5个答案:D解题思路:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一);故AD所在直线可以看成△ABC的对称轴,再根据角平分线的性质、垂直平分线的性质可得①②③④⑤都正确.故选D试题难度:三颗星知识点:全等三角形的判定与性质5.如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③;④△ABD一定是正三角形.请写出正确结论的序号是( )A.①②B.①③C.②④D.①②③答案:B解题思路:①∵AB=AC=AD,AC平分∠DAB∴AC垂直平分BD,①正确;②由①可知DC=CB,DE=BE,∠DEC=90°,∴DC>DE∴BC>DE,②错误;③在Rt△BCE中,∠DBC=90°-∠ACB,在等腰△ABC中,∠BAC=180°-2∠ACB,即∠DAC=180°-2∠ACB,∴,③正确;④△ABD是等腰三角形,但不一定是等边三角形,而且根据题中条件也推导不出△ABD是等边三角形,④错误.正确的为①③,故选B试题难度:三颗星知识点:等腰三角形的判定与性质6.如图,在△ABC中,BC=9cm,BP,CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是( )A.6cmB.9cmC.10cmD.12cm答案:B解题思路:∵BP,CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE.∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴PD+DE+PE=BD+DE+EC=BC=9,即△PDE的周长为9cm.故选B试题难度:三颗星知识点:等腰三角形的判定及性质7.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=125°,则∠ABC的度数为( )A.60°B.65°C.70°D.75°答案:C解题思路:∵AD⊥BC,∠AOC=125°,∴∠C=∠AOC-∠ADC=125°-90°=35°,∵D为BC的中点,AD⊥BC,∴OB=OC,∴∠OBC=∠C=35°,∵BO平分∠ABC,∴∠ABC=2∠OBC=2×35°=70°.故选C试题难度:三颗星知识点:等腰三角形的性质8.如图,在等腰三角形ABC中,AB=AC=8,,点D为底边BC上一动点(不与点B,C重合),DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF的长为( )A.2B.3C.4D.5答案:C解题思路:连接AD,∵AB=AC=8,∴DE+DF=4.故选C试题难度:三颗星知识点:等腰三角形的性质9.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有( )A.4个B.6个C.8个D.10个答案:C解题思路:已知A,B两个定点,再寻找点C使得△ABC为等腰三角形,可知需要利用“两圆一线”解题,即:分别以A,B为圆心,以AB的长为半径画圆;作线段AB的垂直平分线.再来判断点C 的个数.如图所示,图中的10个格点均在圆或垂直平分线上,但是点M,N与A,B在同一直线上,构不成等腰三角形,故舍去,所以有8个点.故选C试题难度:三颗星知识点:等腰三角形的存在性10.如图,在平面直角坐标系中,O为原点,已知A(2,-1),P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2B.3C.4D.5答案:C解题思路:已知O,A两个定点,再寻找点P使得△OAP为等腰三角形,可知需要利用“两圆一线”解题,即:分别以O,A为圆心,以OA的长为半径画圆;作线段OA的垂直平分线,与x轴的交点即为所求.如图所示,图中,,,即为所求.故选C.试题难度:三颗星知识点:等腰三角形的存在性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索三角形全等
---等腰(边)三角形有关的全等判定
复习与回顾
三角形全等的判定方法
SSS
SAS
AAS ASA
HL
1.三角形全等的判断定理 (1)三角形全等的判断定理
三边对应相等的两个三角形全等(SSS) 两边及其夹角对应相等的两个三角形全等(SAS) 两角及其夹边对应相等的两个三角形全等(ASA) 两角相等且其中一组等角的对边相等的两个三角形全等(AAS) 两个直角三角形的斜边和一条直角边对应相等的三角形全等(HL) (2)全等三角形的性质:全等三角形的对应边相等、对应角相等。
BF=CD; ∠CBF=∠ACD=90°
CB=AC, ∴△CBF≌△ACD(SAS). ∴∠BCF=∠CAD. 又∵∠BCF+∠GCA=90°, ∴∠CAD+∠GCA=90°. 即AD⊥CF.
应用举例3:利用等腰三角形的性质判定三角形全等
如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点, DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连 接CF.
(1)求证:CD=BF; (2)求证:AD⊥CF;
(3)连接AF,试判断△ACF的形状.
(3)△ACF是等腰三角形,理由为:连接AF,如图所示, 由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是 ∠DBF的平分线, ∴BE垂直平分DF, ∴AF=AD(等腰三角形的性质:三线合一) ∵CF=AD(全等三角形的对应边相等) ∴CF=AF(等量代换) ∴△ACF是等腰三角形.
思考探究二:与等腰(边)三角形有关的全等问题
A
E
D
G
BF
C
思考探究二:与等腰(边)三角形有关的全等问题
A
A
D E
E
C
F
图1
B
C
A
D
C
FB
E
图2
D
BF 图3
小结
等腰三角形的性质: 1.等边对等角 2.高线、顶角角平分线和中线是同一条直线(三线)
判定两边相等的方法: 1.两个三角形全等; 2.两条边是等腰三角形的两条腰; 3.垂直平分线、高线、中线重合。 (如:应用举例3(3))
A
12
BD C
应用举例1:利用等腰三角形的性质判定三角形全等
若三角形中一角的平分线是它对边的中线 , 则 这个三角形一定是______三角形. A.等腰 B.直角 C.等边 D.等腰直角
应用举例2:利用等腰三角形的性质判定三角形全等
B D
E
A
C
图(2)
B D
E
A
F
C
应用举例3:利用等腰三角形的性质判定三角形全等
思考探究一:利用等腰三角形的性质判定三角形全等
辅助线做法三:所做的辅助线AD为底边BC的高
已知:△ ABC中,AB=AC.求证: ∠B= ∠C.
证明:如图,过点A作BC边上的高,垂足为D.
∵AD⊥BC
∴∠ADB=∠ADC=90°
在Rห้องสมุดไป่ตู้△ABD和Rt△ACD中, A
AD=AD; 12
AB=AC.
∴△ABD≌△ACD(HL).
辅助线做法一:所做的辅助线为底边BC的中线
已知:△ ABC中,AB=AC.求证: ∠B= ∠C.
证明:如图,取BC的中点D,连接AD(中线)
在Rt△ABD和Rt△ACD中, A
AB=AC, 12
BD=CD,
AD=AD ∴△ABD≌△ACD(SSS).
BD C
∴∠B=∠C(全等三角形的对应角相等)
思考探究一:利用等腰三角形的性质判定三角形全等
应用举例3:利用等腰三角形的性质判定三角形全等
如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足 为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)求证:CD=BF; (2)求证:AD⊥CF;
(3)连接AF,试判断△ACF的形状.
(2)证明: ∵D为BC的中点, ∴CD=DB. 即BF=CD. 在△CBF和△ACD中,
将上述定理抽象化,转化为以下问题: 已知:△ ABC中,AB=AC.求证: ∠B= ∠C.
分析:我们利用折叠的方法说明 了等腰
三角形两底角相等,由此得到启发可以作
A
一条辅助线(有何讲究?),把原三角形
12
分成两个全等的三角形,从而证明这两个
底角相等。
B DC
思考探究一:利用等腰三角形的性质判定三角形全等
思考探究一:利用等腰三角形的性质判定三角形全等 折从纸 对实称验性:上将来一讲个,等它腰是三轴角对形称对折图,形观。察对折后的图形特征: 从数量关系上讲,它的两腰相等 ,两底角 相等。
由此得到定理: 等腰三角形的两底角相等 (简称为:等边对等角)
思考探究一:利用等腰三角形的性质判定三角形全等
思考:如何用全等三角形知识来证明上述定理。
如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足
为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)求证:CD=BF; (2)求证:AD⊥CF;
(3)连接AF,试判断△ACF的形状.
(1)证明:在等腰直角三角形ABC中, ∵∠ACB=90°, ∴∠CBA=∠CAB=45°. 又∵DE⊥AB, ∴∠DEB=90°. ∴∠BDE=45°. 又∵BF∥AC, ∴∠CBF=90°. ∴∠BFD=45°=∠BDE. ∴BF=DB.
BD C
∴∠B=∠C(全等三角形的对应角相等)
思考探究一:利用等腰三角形的性质判定三角形全等 已知:△ ABC中,AB=AC.求证: ∠B= ∠C.
根据上面三种证明所给你的启示:线段AD还具有怎样的 性质?由此你能得到什么结论? 【归纳结论】 1. 等腰三角形的两底角相等(等边对等角) 2. 等腰三角形顶角的平分线,底边上的中线及底边上的高 线互相重合(三线合一)
还有其他的证明方法吗?
辅助线做法二:所做的辅助线AD为∠BAC的角平分线
已知:△ ABC中,AB=AC.求证: ∠B= ∠C.
证明:如图,过点A作∠BAC的角平分线,与BC交于点D,连接AD。
在Rt△ABD和Rt△ACD中,
AB=AC,
∠BAD=∠CAD,
A
AD=AD
12
∴△ABD≌△ACD(SAS). ∴∠B=∠C(全等三角形的对应角相B等)D C
相关文档
最新文档