河北省高一数学-3.2.2课题-函数模型的应用实例(1)新学案-新人教A版-必修1
高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例讲义教案 新人教A版必修1
学习资料3.2。
2 函数模型的应用实例学习目标核心素养1.会利用已知函数模型解决实际问题.(重点) 2.能建立函数模型解决实际问题.(重点、难点)3.了解拟合函数模型并解决实际问题.(重点)通过本节内容的学习,使学生认识函数模型的作用,提升学生数学建模、数据分析的素养.1.常用函数模型常用函数模型(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模型y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)(4)对数函数模型y=m log a x+n(m,a,n为常数,m≠0,a〉0且a≠1)(5)幂函数模型y=ax n+b(a,b为常数,a≠0)(6)分段函数模型y=错误!思考:解决函数应用问题的基本步骤是什么?提示:利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:1.如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是()x 45678910y 15171921232527C.指数函数模型D.对数函数模型A[自变量每增加1函数值增加2,函数值的增量是均匀的,故为一次函数模型.故选A。
]2.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为y=a log2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到()A.300只B.400只C.600只D.700只A[将x=1,y=100代入y=a log2(x+1)得,100=a log2(1+1),解得a=100。
所以x =7时,y=100log2(7+1)=300.]3.据调查,某自行车存车处在某星期日的存车量为2 000辆次,其中变速车存车费是每辆一次0。
8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是()A.y=0。
高中数学3.2.2函数模型的应用实例第1课时教学设计新人教A版必修1-经典通用宝藏文档
函数模型的运用实例(第一课时)【教学设计】一、教学内容本课是普通高中课程标准实验教科书(人民教育出版社A版)数学1(必修),3.2.2 函数模型的运用实例的第一课时。
经过对例3,例4的教学让先生学习领会利用已知的函数模型解决成绩和建立确定的函数模型解决理论成绩,进而掌握建立数学模型解决理论成绩的普通步骤。
二、教学目标知识与技能目标:1.能根据图象和表格提供的有关信息和数据,发掘隐含条件,建立函数模型;2.领会分段函数模型的理论运用,规范分段函数的标准方式;3.掌握用待定系数法求解已知函数类型的函数模型;4.学会验证数学模型与理论情况能否吻合的方法及运用数学模型进行预测。
5.会利用建立的函数模型解决理论成绩,掌握求解函数运用题的普通步骤;6.培养先生浏览理解、分析成绩、数形结合、抽象概括、数据处理、数学建模等数学能力.过程与方法目标:1.经过实例分析,巩固练习,结合多媒体教学,培养先生读图的能力;2.经过实例使先生感受函数的广泛运用,领会建立函数模型解决理论成绩的普通过程;3.浸透数形结合、转化与化归等数学思想方法.情感、态度与价值观目标:1.经过切身感受数学建模的过程,让先生体验数学在理论生活中的运用,领会数学来源于生活又服务于生活,体验数学在解决理论成绩中的价值和作用,激发学习数学的兴味与动力,加强学好数学的认识。
2.培养先生的应意图识、创新认识和勇于探求、勤于考虑的精神,优化先生的理性思想和求真务虚的科学态度。
三、教材分析本课时共有2个例题,其中例3是根据图形信息建立确定的函数模型解决理论成绩;例4 是利用已知的确定的函数模型解决理论成绩,并验证求解出的数学模型与理论情况的吻合程度及用数学模型进行预测。
分别在汽车和人口成绩这两种不同运用情境中,引导学生自主建立函数模型来解决理论成绩.教学重点1.根据图形信息建立函数模型解决理论成绩.2.用待定系数法求解函数模型并运用.3.将理论成绩转化为数学成绩的过程。
人教A版高一数学必修一 3-2-2 函数模型的应用实例 学
3.2.2 函数模型的应用实例(学案)一、学习目标 1.会利用给定的函数模型解决实际问题.(重点)2.能够建立确定性函数模型解决问题及建立拟合函数模型解决实际问题.(重点、难点)二、自主学习教材整理 函数模型的应用阅读教材P 101~P 106,完成下列问题.f (x )=⎩⎪⎨⎪⎧ f 1x ,x ∈D 1f 2x ,x ∈D 2……f n x ,x ∈D n三、合作探究 例1. 商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?【自主解答】 (1)设购买人数为n 人,羊毛衫的标价为每件x 元,利润为y 元,则x ∈(100,300],n =kx +b (k <0),∵0=300k +b ,即b =-300k ,∴n =k (x -300),y =(x -100)k (x -300)=k (x -200)2-10 000k (x ∈(100,300]),∵k <0,∴x =200时,y m ax =-10 000k ,即商场要获取最大利润,羊毛衫的标价应定为每件200元.(2)由题意得,k (x -100)(x -300)=-10 000k ·75%,即x 2-400x +37 500=0,解得x=250或x =150.所以,商场要获取最大利润的75%,每件标价为250元或150元.归纳总结:在函数模型中,二次函数模型占有重要的地位,根据实际问题建立二次函数解析式后,可以利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的利润最大、用料最省等问题.例2. 声强级Y (单位:分贝)由公式Y =10lg I 10-12给出,其中I 为声强(单位:W/m 2). (1)平时常人交谈时的声强约为10-6W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两个学生在宿舍说话的声强为5×10-7W/m 2,问这两位同学是否会影响其他同学休息?【自主解答】 (1)当I =10-6W/m 2时,代入得Y =10lg 10-610-12=10lg 106=60,即声强级为60分贝.(2)当Y =0时,即为10lg I 10-12=0,所以I 10-12=1,I =10-12 W/m 2, 则能听到的最低声强为10-12 W/m 2.(3)当声强I =5×10-7W/m 2时,声强级Y =10lg 5×10-710-12=10lg (5×105)=50+10lg 5>50,所以这两位同学会影响其他同学休息.归纳总结:1.有关对数函数的应用题一般是先给出对数函数模型,利用对数运算性质求解.2.在实际问题中,有关人口增长、银行利率、细胞分裂等问题常可以用指数函数模型表示,通常可以表示为y =N (1+p )x ,(其中N 为基数,p 为增长率,x 为时间)的形式.例3. 经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足于f (t )=⎩⎨⎧15+12t ,t 25-12t ,t (元). (1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式;(2)求该种商品的日销售额y 的最大值与最小值.【自主解答】 (1)由已知,由价格乘以销售量可得:y =⎩⎨⎧ ⎝⎛⎭⎫15+12t -2t ,0≤t ≤10⎝⎛⎭⎫25-12t -2t ,10<t ≤20,=⎩⎪⎨⎪⎧ t +-t ,0≤t ≤10-t -t,10<t ≤20,=⎩⎪⎨⎪⎧-t 2+10t +1 200,0≤t ≤10t 2-90t +2 000,10<t ≤20, (2)由(1)知①当0≤t ≤10时,y =-t 2+10t +1 200=-(t -5)2+1 225,函数图象开口向下,对称轴为t =5,该函数在t ∈[0,5)递增,在t ∈(5,10]递减,∴y m ax =1 225(当t =5时取得),y min =1 200(当t =0或10时取得).②当10<t ≤20时,y =t 2-90t +2 000=(t -45)2-25,图象开口向上,对称轴为t =45,该函数在t ∈(10,20]递减,t =10时,y =1 200,y min =600(当t =20时取得),由①②知y m ax =1 225(当t =5时取得),y min =600(当t =20时取得). 归纳总结:1.建立分段函数模型的关键是确定分段的各界点,即明确自变量的取值区间.2.分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别求出来,再将其合到一起. 四、学以致用1.某水厂的蓄水池中有400吨水,每天零点 由池中放水向居民供水,同时以每小时60吨的速度向池中注水,若t 小时内向居民供水总量为1006t (0≤t ≤24),求供水 几小时后,蓄水池中的存水量最少.【解】 设t 小时后,蓄水池中的存水量为y 吨,则y =400+60t -1006t (0≤t ≤24),设u =t ,则u ∈[0,26],y =60u 2-1006u +400=60⎝⎛⎭⎫u -5662+150, ∴当u =566,即t =256时,蓄水池中的存水量最少. 2.目前某县有100万人,经过x 年后为y 万人.如果年平均增长率是1.2%,请回答下列问题:(1)写出y 关于x 的函数解析式;(2)计算10年后该县的人口总数(精确到0.1万人);(3)计算大约多少年后该县的人口总数将达到120万(精确到1年).【解】 (1)当x =1时,y =100+100×1.2%=100(1+1.2%);当x =2时,y =100(1+1.2%)+100(1+1.2%)×1.2%=100(1+1.2%)2;当x =3时,y =100(1+1.2%)2+100(1+1.2%)2×1.2%=100(1+1.2%)3;……故y 关于x 的函数解析式为y =100(1+1.2%)x (x ∈N *).(2)当x =10时,y =100×(1+1.2%)10=100×1.01210≈112.7.故10年后该县约有112.7万人.(3)设x 年后该县的人口总数为120万,即100×(1+1.2%)x =120,解得x =log 1.012120100≈16. 故大约16年后该县的人口总数将达到120万.3.国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15 000元.(1)写出每人需交费用y 关于人数x 的函数;(2)旅行团人数为多少时,旅行社可获得最大利润?【解】 (1)当0<x ≤30时,y =900;当30<x ≤75,y =900-10(x -30)=1 200-10x ;即y =⎩⎪⎨⎪⎧ 900,0<x ≤301 200-10x ,30<x ≤75. (2)设旅行社所获利润为S 元,则当0<x ≤30时,S =900x -15 000;当30<x ≤75,S =x (1 200-10x )-15 000=-10x 2+1 200x -15 000;即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30-10x 2+1 200x -15 000,30<x ≤75. 因为当0<x ≤30时,S =900x -15 000为增函数,所以x =30时,S m ax =12 000;当30<x ≤75时,S =-10x 2+1 200x -15 000=-10(x -60)2+21 000,即x =60时,S m ax =21 000>12 000.所以当旅行团人数为60时,旅行社可获得最大利润. 五、自主小测1则对x ,y A .y =2x B .y =x 2-1C .y =2x -2D .y =log 2 x2.某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K 是单位产品数Q 的函数,K (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元.3.某商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”结果是每台彩电比原价多赚了270元,则每台彩电的原价为________元.4.2008年我国人口总数为14亿,如果人口的自然年增长率控制在1.25%,则________年我国人口将超过20亿.(lg 2≈0.301 0,lg 3≈0.477 1,lg 7≈0.845 1)5.已知A ,B 两地相距150 km ,某人开汽车以60 km/h 的速度从A 地到达B 地,在B 地停留1小时后再以50 km/h 的速度返回A 地. (1)把汽车离开A 地的距离s 表示为时间t 的函数(从A 地出发时 ),并画出函数的图象;(2)把车速v (km/h )表示为时间t (h )的函数,并画出函数的图象.参考答案1.【解析】 根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2 x ,可知满足题意.【答案】D2.【解析】 因为L (Q )=40Q -120Q 2-10Q -2 000=-120Q 2+30Q -2 000= -120(Q -300)2+2 500,所以,当Q =300时,L (Q )的最大值为2 500万元. 【答案】 2 5003.【解析】 设彩电的原价为a ,∴a (1+0.4)·80%-a =270,即0.12a =270,解得a =2 250.∴每台彩电的原价为2 250元.【答案】 2 2504.【解析】 由题意,得14(1+1.25%)x -2 008>20,即x -2 008>lg 107lg 8180=1-lg 74lg 3-3lg 2-1=28.7, 解得x >2 036.7,又x ∈N ,故x =2 037.【答案】 2 0375.【解】 (1)①汽车由A 地到B 地行驶t h 所走的距离s =60t (0≤t ≤2.5).②汽车在B 地停留1小时,则汽车到A 地的距离s =150(2.5<t ≤3.5).③由B 地返回A 地,则汽车到A 地的距离s =150-50(t -3.5)=325-50t (3.5<x ≤6.5).综上,s =⎩⎪⎨⎪⎧ 60t t <t 325-50t <t ,它的图象如图(1)所示.(1) (2) (2)速度v (km/h )与时间t (h )的函数关系式是v =⎩⎪⎨⎪⎧ t <t -<t ,它的图象如图(2)所示.。
高中数学 3.2.2 函数模型的应用实例导学案 新人教A版必修1
3.2.2函数模型的应用实例班级:__________姓名:__________设计人__________日期__________课前预习· 预习案【温馨寄语】有人说:“人人都可以成为自己的幸运的建筑师。
”愿你们在前行的道路上,用自己的双手建造幸运的大厦【学习目标】1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义2.恰当运用函数的三类表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.【学习重点】1.将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义2.集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合【学习难点】1.运用数学模型分析解决实际问题2.对数函数应用题的基本类型和求解策略知识拓展· 探究案【交流展示】1.某市原来民用电价为0.52元kW·s,其中表示燕子的耗氧量.(1)当燕子静止时的耗氧量是多少个单位?(2)当一只两岁燕子的耗氧量是80个单位时,它的飞行速度是多少?11.今有一组数据,如表所示:下列函数模型中,最接近地表示这组数据满足的规律的一个是A.指数函数B.反比例函数C.一次函数D.二次函数12.某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:第被感染的计算机数量(则下列函数模型中能较好地反映计算机在第天被感染的数量与之间的关系的是A. B.C. D.【学习小结】1.幂函数模型解析式的两种类型及求解方法(1)已知函数解析式形式:用待定系数法求解.(2)解析式形式未知:审清题意,弄清常量,变量等各元素之间的关系,列出两个变量,之间的解析式,进而解决问题.2.二次函数模型应用题的解法(1)理解题意,设定变量,.(2)建立二次函数关系,并注明定义域.(3)运用二次函数相差知识求解.(4)回归到应用问题中去,给出答案.3.一次函数模型的特点和求解方法(1)一次函数模型的突出特点是其图象是一条直线.(2)解一次函数模型时,注意待定系数法的应用,主要步骤是:设元、列式、求解.4.对一次函数解析式的三点说明解析式:.(1)一次项的系数.(2)时,是的正比例函数,即为非零常数).(3)时,直线必经过一、二象限;时,直线必经过原点;时,直线必经过三、四象限.5.数据拟合问题的三种求解策略(1)直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解.(2)列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较.(3)描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.6.对数函数应用题的基本类型和求解策略(1)基本类型:有关对数函数的应用题一般都会给出函数解析式,然后根据实际问题再求解.(2)求解策略:首先根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据数值回答其实际意义.7.指数型函数模型在生活中的应用(1)在实际问题中,有关人口增长、银行利率、细胞分裂等增长率总理常可以用指数型函数模型表示,通常可以表示为 (其中为基础数,为增长率,为时间)的形式.(2)增长率问题多抽象为指数函数形式,当由指数函数形式来确定相差的量的值要求不严格时,可以通过图象近似求解.是数学常用的方法之一.【当堂检测】1.某商人购货,进价按原价扣去25%,他希望对货物订一新价,以便按新价让利20%销售后可获得售价25%的纯利,则此商人经营这种货物的件数与按新价让利总额之间的函数关系是 .2.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过年后的剩留量为,则的函数解析式为 .3.某企业实行裁员增效.已知现有员工人,每人每年可创纯收益(已扣工资等)1万元,据评估在生产条件不变的条件下,每裁员一人,则留岗员工每人每年可多创收0.01万,但每年需付给每位下岗工人0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的,设该企业裁员人后年纯收益为万元.(1)写出关于的函数关系式,并指出的取值范围.(2) 当时,问该企业应裁员多少人,才能获得最大的经济效益?(注:在保证能取得最大经济效益的情况下,能少裁员,应尽量少裁.)4.某工厂今年1月,2月,3月生产某产品分别为1万件,1.2万件,1.3万件,为了预测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可选用二次函数或指数型函数(其中,,为常数).已知4月份该产品的产量为1.37万件,请问选择以上哪个函数作为模型较好?并说明理由.答案【交流展示】1.D2.D3.B4.y=R-100Q-20000.(1)0≤Q≤400时,,当Q=300时,y m a x=25 000.(2)Q>400时,y=60 000-100Q<20 000,综合(1)(2),当每年生产300件产品时,总利润最大,为25 000元.5.B6.A7.108.(1)1年后该城市人口总数为y=100+100×1.2%=100×(1+1.2%),2年后该城市人口总数为y=100×(1+1.2%)2,3年后该城市人口总数为y=100×(1+1.2%)3,……x年后该城市人口总数为y=100×(1+1.2%)x(x∈N).(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万人).(3)设x年后人口将达到120万人,即可得到=120,.所以大约16年后该城市人口总数达到120万人.9.A10.(1)由题意,当燕子静止时,它的速度υ=0,所以,,解得:O=10,则燕子静止时的耗氧量是10个单位.(2)由耗氧量O=80得:.11.C12.C【当堂检测】1.(x∉N*)2.3.(1)由题意可得y=(a-x)(1+0.01x)-0.4x,因为,所以.即x的取值范围是中的自然数.(2)因为,且140<a≤280,所以当a为偶数时,,y取最大值.当a为奇数时,,y取最大值.(因为尽可能少裁人,所以舍去.)答:当员工人数为偶数时,裁员人,才能获得最大的经济效益,当员工人数为奇数时,裁员人,才能获得最大的经济效益.4.设y1=f(x)=ax2+bx+c(a≠0),则有解得所以f(4)=-0.05×42+0.35×4+0.7=1.3.①设y2=g(x)=mn x+p则有解得所以g(4)=-0.8×0.54+1.4=135.②比较①,②知,g(4)=1.35更接近4月份的实际产量1.37万件.故选择y=-0.8×0.5x+1.4作为模型较好.。
高中数学3.2.2函数模型的应用实例教案(新人教A版必修1)河北地区专用
4)“总收入最高”的数学含义如何理解?
根据老师的引导启发,学生自主,建立恰当的函数模型,进行解答,然后交流、进行评析.(AB)
[略解:]
设客房日租金每间提高2 元,则每天客房出租数为300-10 ,由 >0,且300-10 >0得:0< <30
设客房租金总上收入 元,则有:
比例激发学生学习兴趣,增强其求知欲望.
可引导学生运用方程的思想解答“鸡兔同笼”问题.
二、结合实例,探求新知
1. 例1.某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.
1)本例所涉及的变量之间的关系可用何种函数模型来描述?
2)本例涉及到几个函数模型?
3)如何理解“更省钱?”;
4)写出具体的解答过程.
在学生自主思考,相互讨论完成本例题解答之后,老师小结:通过以上两例,数学模型是用数学语言模拟现实的一种模型,它把实际问题中某些事物的主要特征和关系抽象出来,并用数学语言来表达,这一过程称为建模,是解应用题的关键。数学模型可采用各种形式,如方程(组),函数解析式,图形与网络等.
=(20+2 )(-10 )
=-20( -10)2+8000(0< <30)
由二次函数性质可知当 =10时, =8000.
所以当每间客房日租金提高到20+10×2=40元时,客户租金总收入最高,为每天8000元.
3. 课堂练习2要建一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.
高中数学 3.2.2 函数模型的应用实例教案 新人教a版必修1
3.2.2 函数模型的应用实例[学习目标] 1.会利用已知函数模型解决实际问题.2.能建立函数模型解决实际问题.[预习导引]1.解决函数应用问题的基本步骤利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:2.数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述.解决学生疑难点要点一用已知函数模型解决问题例1 通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)值越大,表示接受的能力越强),x表示提出和讲授概念的时间(单位:min),可有以下的公式:f (x )=⎩⎪⎨⎪⎧-0.1x 2+2.6x +43,0<x ≤10,59,10<x ≤16,-3x +107,16<x ≤30.(1)开始后多少分钟,学生的接受能力最强?能维持多长时间? (2)开讲后5 min 与开讲后20 min 比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13 min 时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题? 解 (1)当0<x ≤10时,f (x )=-0.1x 2+2.6x +43=-0.1(x -13)2+59.9.故f (x )在(0,10]上单调递增,最大值为f (10)=-0.1×(-3)2+59.9=59;当16<x ≤30时,f (x )单调递减,f (x )<-3×16+107=59.因此,开讲后10 min ,学生达到最强的接受能力(值为59),并维持6 min. (2)f (5)=-0.1×(5-13)2+59.9=59.9-6.4=53.5,f (20)=-3×20+107=47<53.5=f (5).因此,开讲后5 min 学生的接受能力比开讲后20 min 强一些. (3)当0<x ≤10时,令f (x )=55, 则-0.1×(x -13)2=-4.9,(x -13)2=49. 所以x =20或x =6.但0<x ≤10, 故x =6.当16<x ≤30时,令f (x )=55,则-3x +107=55. 所以x =17 13.因此,学生达到(或超过)55的接受能力的时间为17 13-6=11 13<13(min),所以老师来不及在学生一直达到所需接受能力的状态下讲授完这道难题.规律方法 解决已给出函数模型的实际应用题,关键是考虑该题考查的是哪种函数,并要注意定义域,然后结合所给模型,列出函数关系式,最后结合其实际意义作出解答. 解决此类型函数应用题的基本步骤是: 第一步:阅读理解,审清题意.读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景.在此基础上,分析出已知是什么,所求是什么,并从中提炼出相应的数学问题.第二步:根据所给模型,列出函数关系式.根据问题的已知条件和数量关系,建立函数关系式,在此基础上将实际问题转化为一个函数问题.第三步:利用数学的方法将得到的常规函数问题(即数学模型)予以解答,求得结果. 第四步:再将所得结论转译成具体问题的解答.跟踪演练1 统计表明,某种型号的汽车在匀速行驶中每小时的耗油量为y (升)关于行驶速度x (千米/时)的函数解析式可以表示为:y =112 800x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米.当汽车以40千米/时的速度匀速行驶时,从甲地到乙地要耗油多少升? 解 当x =40时,汽车从甲地到乙地行驶了10040=2.5(小时),要耗油⎝ ⎛⎭⎪⎫112 800×403-380×40+8×2.5=28.75(升),即当汽车以40千米/时的速度匀速行驶时,从甲地到乙地耗油28.75升. 要点二 建立函数模型解决实际问题例2 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数. (1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/时)解 (1)由题意:当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,13-x ,20≤x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x -x ,20≤x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200; 当20≤x ≤200时,f (x )=13x (200-x )=-13x 2+2003x =-13(x 2-200x )=-13(x -100)2+10 0003,所以当x =100时,f (x )在区间[20,200]上取得最大值10 0003. 综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时. 规律方法 根据收集到的数据的特点,通过建立函数模型,解决实际问题的基本过程,如下图所示.跟踪演练2 某投资公司投资甲、乙两个项目所获得的利润分别是M (亿元)和N (亿元),它们与投资额t (亿元)的关系有经验公式:M =13 t ,N =16t ,今该公司将用3亿元投资这两个项目,若设甲项目投资x 亿元,投资这两个项目所获得的总利润为y 亿元. (1)写出y 关于x 的函数表达式; (2)求总利润y 的最大值.解 (1)当甲项目投资x 亿元时,获得利润为M =13x (亿元),此时乙项目投资(3-x )亿元,获得利润为N =16(3-x )(亿元),则有y =13x +16(3-x ),x ∈[0,3].(2)令x =t ,t ∈[0,3],则x =t 2, 此时y =13t +16(3-t 2)=-16(t -1)2+23.∵t ∈[0,3],∴当t =1,即x =1时,y 有最大值为23.即总利润y 的最大值是23亿元.1.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A .310元B .300元C .390元D .280元 答案 B解析 由图象知,该一次函数过(1,800),(2,1 300),可求得解析式y =500x +300(x ≥0),当x =0时,y =300.2.小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10分钟报纸后,用20分钟返回家里,下面图形中能表示小明的父亲离开家的时间与距离之间的关系的是( )答案 D3.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……现有2个这样的细胞,分裂x 次后得到细胞的个数y 与x 的函数关系是( ) A .y =2x B .y =2x -1C .y =2xD .y =2x +1答案 D解析 分裂一次后由2个变成2×2=22个,分裂两次后4×2=23个,……,分裂x 次后y =2x +1个.4.长为3,宽为2的矩形,当长增加x ,宽减少x2时,面积达到最大,此时x 的值为________.答案 12解析 S =(3+x )(2-x 2)=-x 22+x2+6=-12(x -12)2+498,∴x =12时,S max =498.1.函数模型的应用实例主要包括三个方面: (1)利用给定的函数模型解决实际问题; (2)建立确定性的函数模型解决实际问题; (3)建立拟合函数模型解决实际问题.2.在引入自变量建立目标函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求.3.在实际问题向数学问题的转化过程中,要充分使用数学语言,如引入字母,列表,画图等使实际问题数学符号化.一、基础达标1.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往,他先前进了a km ,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了b km(b <a ),当他记起诗句“不到长城非好汉”,便调转车头继续前进,则该同学离起点的距离与时间的函数关系图象大致为( )答案 C解析 由题意可知,s 是关于时间t 的一次函数,所以其图象特征是直线上升.由于中间休息了一段时间,该段时间的图象应是平行于横轴的一条线段.然后原路返回,图象下降,再调转车头继续前进,则直线一致上升.2.国内快递1 000 g 以内的包裹的邮资标准如下表:( ) A .5.00元 B .6.00元 C .7.00元 D .8.00元 答案 C解析 由题意可知,当x =1 200时,y =7.00元.3.某机器总成本y (万元)与产量x (台)之间的函数关系式是y =x 2-75x ,若每台机器售价为25万元,则该厂获利润最大时应生产的机器台数为( ) A .30 B .40 C .50 D .60 答案 C解析 设安排生产x 台,则获得利润f (x )=25x -y =-x 2+100x=-(x -50)2+2 500.故当x =50台时,获利润最大.4.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx,x <A ,c A ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是( ) A .75,25 B .75,16 C .60,25 D .60,16 答案 D解析 由题意知,组装第A 件产品所需时间为c A =15,故组装第4件产品所需时间为c 4=30,解得c =60.将c =60代入cA=15,得A =16. 5.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +110x 2,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有( ) A .a =45,b =-30 B .a =30,b =-45 C .a =-30,b =45 D .a =-45,b =-30 答案 A解析 设生产x 吨产品全部卖出,获利润为y 元, 则y =xQ -P =x ⎝ ⎛⎭⎪⎫a +x b -⎝ ⎛⎭⎪⎫1 000+5x +110x 2=⎝ ⎛⎭⎪⎫1b -110x 2+(a -5)x -1 000(x >0). 由题意知,当x =150时,y 取最大值,此时Q =40.∴⎩⎨⎧-a -52⎝ ⎛⎭⎪⎫1b -110=150,a +150b =40,解得⎩⎪⎨⎪⎧a =45,b =-30.6.已测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1,乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则选用________作为拟合模型较好.答案 甲解析 对于甲:x =3时,y =32+1=10,对于乙:x =3时,y =8,因此用甲作为拟合模型较好.7.武汉市的一家报摊主从报社买进《武汉晚报》的价格是每份0.40元,卖出的价格是每份0.50元,卖不掉的报纸还可以以每份0.08元的价格退回报社.在一个月(以30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,他应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算他一个月最多可赚得多少元?解 设报摊主每天买进报纸x 份,每月利润为y 元(x 为正整数). 当x ≤250时,y =0.1×30×x =3x . 当250≤x ≤400时,y =0.1×20×x +0.1×10×250-(x -250)×0.32×10=2x +250-3.2x +800 =1 050-1.2x . 当x ≥400时,y =0.1×20×400+0.1×10×250-(x -400)×0.32×20-(x -250)×0.32×10=800+250-6.4x +2 560-3.2x +800 =-9.6x +4 410.当x ≤250时,取x =250,y max =3×250=750(元). 当250≤x ≤400时,取x =250,y max =750(元). 当x ≥400时,取x =400,y max =570(元).故他应该每天从报社买进250份报纸,才能使每月所获得的利润最大,最大值为750元.二、能力提升8.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e-kt.已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( )A .125B .100C .75D .50 答案 C解析 由已知,得49a =a ·e -50k ,∴e -k=⎝ ⎛⎭⎪⎫49501.设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e-kt 1, ∴827=(e -k)t 1=⎝ ⎛⎭⎪⎫49501t, ∴t 150=32,t 1=75. 9.“学习曲线”可以用来描述学习某一任务的速度,假设函数t =-144lg ⎝ ⎛⎭⎪⎫1-N 90中,t 表示达到某一英文打字水平所需的学习时间,N 表示每分钟打出的字数.则当N =40时,t =________(已知lg 2≈0.301,lg 3≈0.477). 答案 36.72解析 当N =40时,则t =-144lg ⎝ ⎛⎭⎪⎫1-4090=-144lg 59=-144(lg 5-2lg 3)=36.72. 10.如图所示,某池塘中浮萍蔓延的面积y (m 2)与时间t (月)的关系y =a t,有以下几种说法:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m 2; ③浮萍从4 m 2蔓延到12 m 2需要经过1.5个月; ④浮萍每月增加的面积都相等. 其中正确的命题序号是________.答案 ①②解析 由图象知,t =2时,y =4, ∴a 2=4,故a =2,①正确.当t =5时,y =25=32>30,②正确, 当y =4时,由4=2t 1知t 1=2,当y =12时,由12=2t 2知t 2=log 212=2+log 23.t 2-t 1=log 23≠1.5,故③错误;浮萍每月增长的面积不相等,实际上增长速度越来越快,④错误.11.在对口扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).根据甲提供的资料有:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如下图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额. (2)企业乙只依靠该店,最早可望在几年后脱贫? 解 设该店月利润余额为L ,则由题设得:L =Q (P -14)×100-3 600-2 000.①由销量图易得:Q =⎩⎪⎨⎪⎧-2P +50,14≤P ≤20,-32P +40,20<P ≤26,代入①式得 L =⎩⎪⎨⎪⎧-2P +P --5 600,14≤P ≤20,-32P +P --5 600,20<P ≤26,(1)当14≤P ≤20时,L max =450(元), 此时P =19.5(元);当20<P ≤26时,L max =1 2503(元),此时P =613(元).故当P =19.5(元)时,月利润余额最大,最大余额为450元. (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20.即最早可望在20年后脱贫.三、探究与创新12.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12h t,其中T a 表示环境温度,h 称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20 min ,那么降温到35℃时,需要多少时间? 解 由题意知40-24=(88-24)·⎝ ⎛⎭⎪⎫12h 20, 即14=⎝ ⎛⎭⎪⎫12h 20,解得h =10.故T -24=(88-24)·⎝ ⎛⎭⎪⎫1210t . 当T =35时,代入上式,得35-24=(88-24)·⎝ ⎛⎭⎪⎫1210t , 即⎝ ⎛⎭⎪⎫1210t =1164. 两边取对数,用计算器求得t ≈25.因此,约需要25 min ,可降温到35℃.13.今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P (单位:mg/L)与过滤时间t (单位:小时)间的关系为P =P 0e -kt (P 0,k 均为非零常数,e 为自然对数的底数),其中P 0为t =0时的污染物数量.若经过5小时过滤后还剩余90%的污染物.(1)求常数k 的值;(2)试计算污染物减少到40%至少需要多少时间(精确到1小时,参考数据:ln 0.2≈-1.61,ln 0.3≈-1.20,ln 0.4≈-0.92,ln 0.5≈-0.69,ln 0.9≈-0.11.)解 (1)由已知,当t =0时,P =P 0;当t =5时,P =90%P 0.于是有90%P 0=P 0e -5k .解得k =-15ln 0.9(或0.022).(2)由(1)得,知P=tP⎪⎪⎭⎫⎝⎛0.9In51e.当P=40%P0时,有0.4P0=tP⎪⎪⎭⎫⎝⎛0.9In51e.解得t=ln 0.41 5ln 0.9≈-0.9215-=4.600.11≈41.82.故污染物减少到40%至少需要42小时.。
高中数学3.2.2函数模型的应用实例教案新人教A版必修1
《函数模型的应用实例》一、教课内容分析:本节课选自人民教育第一版社 A 版的一般高中课程标准实验教科书·数学必修1中3.2.2 函数模型的应用实例(第二课时).函数基本模型的应用是本章的要点内容之一,函数模型自己就根源于现实,并用于解决实质问题.本节课的内容是在《几类不一样增添的函数模型》和《函数模型的应用实例(一)》内容以后,关于纯数学知识的几类函数及其性质和给定的函数模型应用有了必定的学习,本节课是对以上两节内容的持续与拓展,研究没有给定函数模型或没有确立性函数模型的实质问题进行建模和应用.这节课的内容持续经过一些实例来感觉函数模型的成立和应用,逐渐领会实质问题中建立函数模型的过程,本节课的函数模型的应用实例主要包含成立确立性函数模型解决问题及选择或成立拟合函数模型解决问题.例 5 所给的问题的特色是表中数学的变化是有特定规律的,运用表中的数据规律成立数学模型,注意变化范围和查验结果的合理性,同时使用这类有规律的简单数据实例供给了建立数学模型的方法.例 6 与例 5 有所差别,表中数据的变化规律特色不是和显然,需要自己依据对数据的理解选择模型,这反应一个较为完好的成立函数模型解决问题的过程,让学生逐渐感觉和明确这一点.整节课要修业生分析数据,比较各个函数模型的好坏,选择靠近实质的函数模型,并应用函数模型解决实质问题.增强读图、读表能力;优化学生思想,提升学生研究和解决问题的能力;增强学生数学应企图识,感觉数学的适用性;锻炼学生的吃苦精神,提升学生的团队合作能力.二、教课目的:知识与技术: 1.会分析所给出数据,画出散点图.2.会利用选择或成立的函数模型.3.会运用函数模型解决实质问题.过程与方法: 1.经过对给出的数据的分析,抽象出相应确实定性函数模型,并考证函数模型的合理性.2.经过采集到的数据作出散点图,并经过察看图像判断问题所合用的函数模型,在合理选择部分数据或计算机的拟合功能得出详细的满意的函数分析式,并应用模型解决实质问题.感情、态度和价值观:1.经历成立函数模型解决实质问题的过程,意会数学源自生活,服务生活,领会数学的应用价值.2.培育学生的应企图识、创新意识和研究精神,优化学生的理性思维和求真求实的科学态度.3.提升学生研究学习新知识的兴趣, 培育学生 , 勇于研究的科学态度.三、学生学情分析:1.已掌握了一些基本初等函数的有关知识,有相应的数学基础知识贮备.2.在前面的学习中,初步领会了利用给定函数模型解决实质问题的经历,为本节课累积解决问题的经验.3.学生从文字语言向图像语言和符号语言转变较弱;应企图识和应用能力不强;抽象归纳和局部办理能力单薄.四、教课要点、难点要点:依据采集的数据作出散点图,并经过察看图像选择问题所合用的函数模型,利用演算或计算机数据成立详细的函数分析式.难点:如何合理分析数据选择函数模型和成立详细的函数分析式.五、教课策略分析:鉴于新课程标准倡议以学生为主体进行研究性学习,教师应成为学生学习的指引者、组织者和合作者的教课理念和近来发展区理论,联合本节课的教课目的,采纳以下教课方法:1.问题教课法.在例 1 的教课中,提出如何能更为直观的发现函数模型,指引学生思虑,发现选择函数模型的重要方法,即散点图图像,进而让学生有收获,有成就感.在例 2 的解决过程中,提出一系列的问题串,学会对问题的分析,直抵问题的核心.使学生的学习过程成为在教师引导下的“再创建”过程,并使学生从中领会学习的兴趣.这样能够充分调换学生学习的主动性、踊跃性,使讲堂氛围更为活跃,同时培育了学生自主学习,着手研究的能力.2.分组议论法.在例 2 的教课中,碰到难以选择模型时,经过小组议论,拓展思想,增强合作,解决问题;在获取函数模型后和讲堂总结中,组织小组议论,互相沟通成就,扩大成就影响力.这样不单能够培育学生对数学知识的研究精神和团队协作精神,更能让学生体验成功的乐趣,培育其学习的主动性.3.多媒体协助教课法:在教课过程中,采纳多媒体教课工具,经过动向演示有益于惹起学生的学习兴趣,激发学生的学习热忱,增大信息的容量,使内容充分、形象、直观,提升教课效率和教课质量。
高中数学 3.2.2函数模型的应用举例教案(2)新人教A版必修1
3.2.2(2)函数模型的应用实例(教学设计)教学目标:知识与技能:能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.过程与方法:感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数模型在数学和其他学科中的重要性.情感、态度、价值观:体会运用函数思想和处理现实生活和社会中的简单问题的实用价值.教学重点难点:重点运用一次函数、二次函数模型的处理实际问题.难点运用函数思想理解和处理现实生活和社会中的简单问题.一、新课引入:2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目.67岁的马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了可供决策部门参考的应用软件.这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真.结果指出,将患者及时隔离对于抗击非典至关重要.分析报告说,就全国而论,若非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加2100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府未采取隔离措施,则高峰期病人人数将达60万人.这项研究在充分考虑传染病的一般流行机制、非典的特殊性、我国政府所采取的一系列强有力措施的基础上,根据疾病控制中心每日发布的数据,利用统计学的方法和流行病传播机理建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测.二、师生互动,新课讲解:例1:(课本第104页例5)某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示,销售单价/元 6 7 8 9 10 11 12日均销售量/桶480 440 400 360 320 280 240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?解:(课本P104)课本第104页表3-9中数据的变化是有特定规律的,教学时应注意引导学生分析问题所提供的数据特点,由数据特点抽象出函数模型.同时,应注意变量的变化范围,并以此检验结果的合理性.例2:(课本第105页例6)某地区不同身高的未成年男性的体重平均值如下表:(身高:cm;体重:kg)身高60 70 80 90 100 110体重 6.13 7.90 9.99 12.1515.0217.5身高120 130 140 150 160 170体重20.9226.8631.1138.8547.2555.051y kg与身高x cm的函数关系?试写出这个函数模型的解析式.2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?探索:1) 借助计算器或计算机根据统计数据,画出它们相应的散点图;2) 观察所作散点图,你认为它与以前所学过的何种函数的图象较为接近?3) 你认为选择何种函数来描述这个地区未成年男性体重y kg 与身高x cm 的函数关系? 4) 确定函数模型,并对所确定模型进行适当的检验和评价. 5) 怎样修正确定的函数模型,使其拟合程度更好? 课堂练习(课本P106练习 NO :1)例3:根据市场调查商品在最近40天内的价格P (万元)与时间t 的关系,用图(1)中的一条折线表示,销售量Q 与时间t 的关系用图(2)中的线段表示(t ∈N +)。
高中数学3.2.2函数模型的应用举例教案(1)新人教A版必修1
322 (1)函数模型的应用实例(教学设计)教学目标:知识与技能能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.过程与方法感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数模型在数学和其他学科中的重要性.情感、态度、价值观体会运用函数思想和处理现实生活和社会中的简单问题的实用价值.教学重点难点:重点运用一次函数、二次函数模型的处理实际问题.难点运用函数思想理解和处理现实生活和社会中的简单问题.一、新课引入:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。
求笼中各有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?原来孙子提出了大胆的设想。
分析解答:介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”。
这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47 —35=12;鸡数就是:35- 12=23。
激发学生学习兴趣,增强其求知欲望.用方程的思想解答“鸡兔同笼”问题.二、师生互动,新课讲解:例1(课本P102例3)•一辆汽车在某段路程中的行驶速度与时间的关系如图所示.1)写出速度v关于时间t的函数解析式;2)写出汽车行驶路程y关于时间t的函数关系式,并作图象;3)求图中阴影部分的面积,关说明所求面积的实际含义;4)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数s与时间t的函数解析式,并作出相应的图象.探索:1)将图中的阴影部分隐去,得到的图象什么意义?2)图中每一个矩形的面积的意义是什么?3)汽车的行驶里程与里程表读数之间有什么关系?它们关于时间的函数图象又有何关系?本例所涉及的数学模型是确定的,需要我们利用问题中的数据及其蕴含的关系建立数学模型.此题的主要意图是让学生用函数模型(分段函数)刻画实际问题.50t2004,0t 180(t1)2054, 1 t2(1)获得路程关于时间变化的函数解析式:s 90(t2)2134, 2 t375(t3)2224, 3 t465(t4)2299, 4 t 5.(2)根据解析式画出汽车行驶路程关于时间变化的图象.例2 (课本P103例4).人口问题是当今世界各国普遍关注的问题•认识人口数量的变化规律,可以为有效控制人口增长提供依据•早在1798,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:rty y o e其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.(精确到0.0001 ),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?探索:1) 本例中所涉及的数量有哪些?2) 描述所涉及数量之间关系的函数模型是否是确定的,确定这种模型需要几个因素?3) 根据表中数据如何确定函数模型?4) 对于所确定的函数模型怎样进行检验,根据检验结果对函数模型又应作出如何评价?如何根据所确定函数模型具体预测我国某个时期的人口数,实质是何种计算方法?本例中,数学模型y y°e n是指数型函数模型,它由y。
高中数学 3.2.3函数模型的应用实例(一)教案 新人教A版必修1.doc
3.2.3 函数模型的应用实例(一)(一)教学目标1.知识与技能:初步掌握一次和二次函数模型的应用,会解决较简单的实际应用问题.2.过程与方法:经历运用一次和二次函数模型解决实际问题,提高学生的数学建模能力.3.情感、态度与价值观:了解数学知识来源于生活,又服务于实际,从而培养学生的应用意识,提高学习数学的兴趣.(二)教学重点、难点一次和二次函数模型的应用是本节的重点,数学建模是本节的难点.(三)教学方法本节内容主要是例题教学,因此采用学生探究解题方法,总结解题规律,教师启发诱导的方法进行教学.= –20(x– 10)2 + 8000.由此得到,当x = 10时,y max = 8000.即每间租金为20 + 10×2 = 40(元)时,客房租金的总收入最高,每天为8000元.3.分将函数模型的应用例 3 一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象.生:解答:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5小时内行驶的路程为360km.(2)根据图,有502004,01,80(1)2054,12,90(2)2134,23,75(3)2224,34,65(4)2299,4 5.t tt ts t tt tt t+≤<⎧⎪-+≤<⎪⎪=-+≤<⎨⎪-+≤<⎪-+≤≤⎪⎩这个函数的图象如图所示.实际应用用问题解决的一般步骤:理解问题⇒简化假设⇒数学建模⇒解答模型⇒检验模型⇒评价与应用的进一步深体.巩固练习课堂练习习题1.如果一辆汽车匀速行驶,1.5h行驶路程为90km,求这辆汽车行驶路程与时间之间的函数关系,以及汽车3h所行驶的路程.习题2.已知某食品5kg价格为40元,求该食品价格与重量之间的函数关系,并求8kg食品的价格是多少元.习题3.有300m长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,问矩形的长、学生练习,师生点评.1.设汽车行驶的时间为t h,则汽车行驶的路程S km与时间t h之间的函数关系为S = vt.当t = 1.5时,S = 90,则v = 60.因此所求的函数关系为S=60t,当t = 3时,S = 180,所以汽车3h所行驶的路程为180km.2.设食品的重量为x kg,则食品的价格y元与重量x kg之间的函数关系式为y=8x,当x = 8时,y = 64,所以当8kg食品的价格为64元.3.设矩形菜地与墙相对的一边长为x cm,则另一组对边的长为3002x-m,从而矩形菜地的面积为:学生动手实践、体验所学方法,从而提升解应用题的技能.宽各为多少时,这块菜地的面积最大?习题4.某市一种出租车标价为1.20元/km ,但事实上的收费标准如下:最开始4km 内不管车行驶路程多少,均收费10元(即起步费),4km 后到15km 之间,每公里收费1.20元,15km 后每公里再加收50%,即每公里1.80元.试写出付费总数f 与打车路程x 之间的函数关系.21(300)21(150)11250(0300).2S x x x x =-=--+<<当x = 150时,S max = 11250. 即当矩形的长为150m ,宽为75m 时,菜地的面积最大. 4.解:所求函数的关系式为 100410 1.2(4)41523.2 1.8(15)15x y x x x x <≤⎧⎪=+-<≤⎨⎪+->⎩归纳小结课堂小结解决应用用问题的步骤:读题—列式—解答. 学生总结,师生完善使学生养成归纳总结的好习惯.让学生初步掌握数学建模的基本过程. 布置作业 习题2—3B 第1、3题:教材第71页“思考与讨论”.学生练习使学生巩固本节所学知识与方法.例1 某游艺场每天的盈利额y 元与售出的门票数x 张之间的关系如图所示,试问盈利额为750元时,当天售出的门票数为多少?【解析】根据题意,每天的盈利额y 元与售出的门票数x 张之间的函数关系是:3.75(0400)1.251000(400600)x x y x x ≤≤⎧=⎨+≤≤⎩(1)当0≤x ≤400时,由3.75x =750,得x =200.(2)当400≤x ≤600时,由1.25x + 1000 = 750,得x = – 200 (舍去). 综合(1)和(2),盈利额为750元时,当天售出的门票数为200张. 答:当天售出的门票数为200张时盈利额为750元.例2投资A 种商品金额(万元) 123456获纯利润 (万元) 0.65 1.39 1.85 2 1.84 1.40投资B 种商品金额(万元) 1 2 3 4 5 6获纯利润 (万元)0.25 0.49 0.76 1 1.26 1.51合算. 请你帮助制定一个资金投入方案,使得该经营者获得最大的利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).【解析】以投资额为横坐标,纯利润为纵坐标,在直角坐标系中画出散点图:据此,可考虑用下列函数分别描述上述两组数据之间的对应关系.y = –a (x – 4)2 + 2 (a>0) ①y = bx②把x = 1,y = 0.65代入①式,得0.65 = –a (1 – 4)2 + 2,解得a = 0.15.故前六个月所获纯利润关于月投资A商品的金额的函数关系式可近似地用y = – 0.15(x– 4)2 + 2表示,再把x = 4,y = 1代入②式,得b = 0.25,故前六个月所获利润关于月投资B种商品的金额的函数关系可近似地用y = 0.25x表示.设下月投资A种商品x万元,则投资B种商品为(12 –x)万元,可获纯利润y = – 0.15 (x– 4)2 + 2 + 0.25 (12 –x)= – 0.15x2 + 0.95x + 2.6,当0.952(0.15)x-=⨯-≈3.2时,2max 4(0.15) 2.60.954(0.15)y⨯-⨯-=⨯-≈4.1.故下月分别投资A、B两种商品3.2万元和8.8万元,可获最大纯利润4.1万元.【评析】幂函数模型的应用题经常以二次函数的形式出现,要注意y = x2变换到y = a (x–m)2 + b后发生的变化.。
河北省衡水中学高一数学一学案:3.2.2 函数模型的应用实例
3。
2.2 函数模型的应用实例学习目标1.掌握集中初等函数的应用; 2.理解应用拟合函数的方法解决实际问题的方法 3. 了解应用实例的三个方面和数学建模的步骤.自学导引 1.函数模型的应用实例主要包括下面三个方面: (1)(2)(3)2. 面临实际问题,自己建立函数模型的步骤(1)(2)(3)(4)(5)(6)一。
已知函数模型的应用问题例1。
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:⎪⎩⎪⎨⎧>≤≤-=)400(80000)4000(21400)(2x x x x x R 。
其中x 是仪器的月产量. 将利润表示为月产量的函数)(x f ;(2) 当月产量为何值时,公司所获的利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间。
讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,分析结果和实验表明,用)(x f 表示学生掌握和接受概念的能力()(x f 值越大,表示接受的能力越强),x 表示提出和讲授概念的时间(单位:min ),可有以下的公式:⎪⎩⎪⎨⎧≤<+-≤<≤<++-=)3016(1073)1610(59)100(436.21.0)(2x x x x x x x f(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间? (2)开讲后5分钟和开讲后20分钟比较,学生接受能力何时强一些?二。
已知图像或表格的应用问题例2.甲,乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息如图所示。
甲调查表明:每个甲鱼池平均出产量从第一年1万只甲鱼上升到第6年2万只。
乙调查表明:甲鱼池个数由第一年30个减少到第6年10个,请你根据提供的信息说明:(1)第2年甲鱼池的个数及全县出产甲鱼总数.(2)到第6年这个县的甲鱼养殖业的规模比第一年是扩大了还是缩小了?说明理由;(3)哪一年的规模最大?说明理由。
人教A版高中数学必修一3.2.2《 函数模型的应用实例》Word导学案
3.2.2函数模型的应用实例班级:__________姓名:__________设计人__________日期__________课前预习· 预习案【温馨寄语】有人说:“人人都可以成为自己的幸运的建筑师。
”愿你们在前行的道路上,用自己的双手建造幸运的大厦【学习目标】1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义2.恰当运用函数的三类表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.【学习重点】1.将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义2.集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合【学习难点】1.运用数学模型分析解决实际问题2.对数函数应用题的基本类型和求解策略知识拓展· 探究案【交流展示】1.某市原来民用电价为0.52元/kW·h,换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kW·h,谷时段(晚上九点到次日早上八点)的电价为0.35元/kW·h,对于一个平均每月用电量为200kW·h的家庭,要使节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量A.至少为82kW·hB.至少为118kW·hC.至多为198kW·hD.至多为118kW·h2.一等腰三角形的周长是20,底边长 y 是关于腰长 x 的函数,它的解析式为A.y=20−x(x≤10)B.y=20−2x(x<10)C.y=20−x(5≤x≤10)D.y=20−2x(5<x<10)3.某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元.每提高一个档次,利润每件增加2元,但每提高一个档次,在相同的时间内,产量减少3件,如果在规定的时间内,最低档次的产品可生产60件,则在同样的时间内,生产哪一档次的产品的总利润最大? A.10B.9C.8D.74.某车间生产某种产品,固定成本为2万元,每生产一件产品,成本增加100元,已知总收益 R (总收益指工厂出售产品的全部收入,它是成本与总利润的和,单位:元)是年产量Q (单位:件)的函数,满足关系式: R =f (Q )={400Q −12Q 2,0≤Q ≤400,80000,Q >400.求每年生产多少产品时,总利润最大?此时总利润是多少元?5.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是 (下列数据仅供参考:√2=1.41,√3=1.73,√33=1.44,√66=1.38 ) A.38%B.41%C.44%D.73%6.某人1月1日到银行存入一年期存款 a 元,若年利率为 x ,按复利计算,到1月1日,可取回款 元. A.a (1+x )3B.a (1+x )4C.a+(1+x )3D.a (1+x 3)7.如图,开始时桶1中有 a 升水,t 分钟后剩余的水符合指数衰减曲线y 1=ae −nt ,那么桶2中水就是y 2=a −ae −nt ,假设过5分钟后桶1和桶2的水相等,则再过 分钟桶1中的水只有 a8 升.8.某海滨城市现有人口100万人,如果年平均自然增长率为1.2%.解答下面的问题: (1)写出该城市人口数 y (万人)与年份 x (年)的函数关系. (2)计算10年后该城市人口总数(精确到0.1万人).(3) 计算大约多少年后该城市人口将达到120人(精确到1年).9.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量 y(只)与引入时间 x (年)的关系为 y=a log2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到A.300只B.400只C.600只D.700只10.燕子每年秋天都要从北方飞向南方过冬,研究燕子的专家发现,两岁燕子的飞行速度可以表示为函数 v=5log2O10,单位是m/s,其中 O 表示燕子的耗氧量.(1)当燕子静止时的耗氧量是多少个单位?(2)当一只两岁燕子的耗氧量是80个单位时,它的飞行速度是多少?11.今有一组数据,如表所示:下列函数模型中,最接近地表示这组数据满足的规律的一个是A.指数函数B.反比例函数C.一次函数D.二次函数12.某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:则下列函数模型中能较好地反映计算机在第 x 天被感染的数量 y 与 x 之间的关系的是A.y=10x B.y=5x2−5x+10C.y=5×2xD.y=10log2x+10【学习小结】1.幂函数模型解析式的两种类型及求解方法(1)已知函数解析式形式:用待定系数法求解.(2)解析式形式未知:审清题意,弄清常量,变量等各元素之间的关系,列出两个变量,之间的解析式,进而解决问题.2.二次函数模型应用题的解法(1)理解题意,设定变量,.(2)建立二次函数关系,并注明定义域.(3)运用二次函数相差知识求解.(4)回归到应用问题中去,给出答案.3.一次函数模型的特点和求解方法(1)一次函数模型的突出特点是其图象是一条直线.(2)解一次函数模型时,注意待定系数法的应用,主要步骤是:设元、列式、求解.4.对一次函数解析式的三点说明解析式:.(1)一次项的系数.(2)时,是的正比例函数,即为非零常数).(3)时,直线必经过一、二象限;时,直线必经过原点;时,直线必经过三、四象限.5.数据拟合问题的三种求解策略(1)直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解.(2)列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较.(3)描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.6.对数函数应用题的基本类型和求解策略(1)基本类型:有关对数函数的应用题一般都会给出函数解析式,然后根据实际问题再求解.(2)求解策略:首先根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据数值回答其实际意义.7.指数型函数模型在生活中的应用(1)在实际问题中,有关人口增长、银行利率、细胞分裂等增长率总理常可以用指数型函数模型表示,通常可以表示为(其中为基础数,为增长率,为时间)的形式.(2)增长率问题多抽象为指数函数形式,当由指数函数形式来确定相差的量的值要求不严格时,可以通过图象近似求解.是数学常用的方法之一.【当堂检测】1.某商人购货,进价按原价 a 扣去25%,他希望对货物订一新价,以便按新价让利20%销售后可获得售价25%的纯利,则此商人经营这种货物的件数 x 与按新价让利总额 y 之间的函数关系是 .2.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过 x 年后的剩留量为 y ,则y=f(x)的函数解析式为 .3.某企业实行裁员增效.已知现有员工 a 人,每人每年可创纯收益(已扣工资等)1万元,据评估在生产条件不变的条件下,每裁员一人,则留岗员工每人每年可多创收0.01万,但每年需付给每位下岗工人0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的34,设该企业裁员 x 人后年纯收益为 y 万元.(1)写出 y 关于 x 的函数关系式,并指出 x 的取值范围.(2) 当140<a≤280 时,问该企业应裁员多少人,才能获得最大的经济效益?(注:在保证能取得最大经济效益的情况下,能少裁员,应尽量少裁.)4.某工厂今年1月,2月,3月生产某产品分别为1万件,1.2万件,1.3万件,为了预测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量 y 与月份数 x 的关系,模拟函数可选用二次函数或指数型函数 y=mn x+p (其中m ,n ,p 为常数).已知4月份该产品的产量为1.37万件,请问选择以上哪个函数作为模型较好?并说明理由.3.2.2函数模型的应用实例详细答案【交流展示】1.D2.D3.B4.y=R-100Q-0={300Q−12Q2−20 000,0≤Q≤400,60 000-100Q,Q>400Q∈Z.(1)0≤Q≤400时,y=−12(Q−300)2+25 000,当Q=300时,y m a x=25 000.(2)Q>400时,y=60 000-100Q<20 000,综合(1)(2),当每年生产300件产品时,总利润最大,为25 000元.5.B6.A7.108.(1)1年后该城市人口总数为y=100+100×1.2%=100×(1+1.2%),2年后该城市人口总数为y=100×(1+1.2%)2,3年后该城市人口总数为y=100×(1+1.2%)3,……x年后该城市人口总数为y=100×(1+1.2%)x(x∈N).(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万人).(3)设x年后人口将达到120万人,即可得到100×(1+1.2%)x=120,x=log1.012120100=log1.0121.2=lg1.2lg1.012≈15.28.所以大约16年后该城市人口总数达到120万人.9.A10.(1)由题意,当燕子静止时,它的速度υ=0,所以,0=5log2O10,解得:O=10,则燕子静止时的耗氧量是10个单位.(2)由耗氧量O=80得:υ=5log28010=5log28=15(m/s).11.C 12.C【当堂检测】1.y=a4x(x∉N*)2.y=(0.9576)x 1003.(1)由题意可得y=(a-x)(1+0.01x)-0.4x=−1100x2+(a100−140100)x+a,因为a−x≥34a,所以x≤14a.即x的取值范围是(0,a4]中的自然数.(2)因为y=−1100[x−(a2−70)]2+1100(a2−70)2+a,且140<a≤280,所以当a为偶数时,x=a2−70,y取最大值.当a为奇数时,x=a−12−70,y取最大值.(因为尽可能少裁人,所以舍去x=a+12−70.)答:当员工人数为偶数时,裁员(a2−70)人,才能获得最大的经济效益,当员工人数为奇数时,裁员(a−12−70)人,才能获得最大的经济效益.4.设y1=f(x)=ax2+bx+c(a≠0),则有{f(1)=a+b+c=1,f(2)=4a+2b+c=1.2,f(3)=9a+3b+c=1.3,解得{a=−0.05,b=0.35,c=0.7,所以f(4)=-0.05×42+0.35×4+0.7=1.3.①设y2=g(x)=mn x+p则有{g(1)=mn+p=1,g(2)=mn2+p=1.2,g(3)=mn3+p=1.3,解得{m=−0.8,n=0.5,p=1.4,所以g(4)=-0.8×0.54+1.4=135.②比较①,②知,g(4)=1.35更接近4月份的实际产量1.37万件.故选择y=-0.8×0.5x+1.4作为模型较好.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省石家庄市2012-2013年高中数学 3.2.2课题 函数模型的应用
实例(1)新学案 新人教A 版
课前预习案
【使用说明及学法指导】
1.用15分钟的时间阅读探究课本上的基础知识,自主高效预习,提升自己的阅读理解能力.
2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测题.
3.将预习中不能解决的问题标出来,并写到“我的疑惑”处。
一、相关知识
1. 前面学过的函数模型有哪些?
2. 如何作函数的图象?
3. 根据函数模型如何求函数的最值?
二、教材助读
1. 教材例3中阴影部分的面积如何表示?
2. 教材例3中根据坐标轴表达的含义,你能确定阴影部分面积的实际含义吗?
3. 教材例3中,为什么关于的函数解析式为分段的?
4. 教材例4中怎样检验所给出的函数模型是否适合人口增长数据?
三、预习自测
1.在本埠投寄平信,每封信不超过20g 时付邮资0.80元,超过20g 而不超过40g 付邮资1.60
元,依次类推,每增加20g 需增加邮资0.80元(信重在100g 以内).如果某人所寄一封信的
质量为82.5g ,那么他应付邮资 ( ).
A. 2.4元
B. 2.8元
C. 3.2元
D. 4元
2.甲、乙两人同时从A 地赶往
B 地,甲先骑自行车到中点改
为跑步,而乙则是先跑步,到
中点后改为骑自行车,最后两
人同时到达B 地,已知甲骑自
行车比乙骑自行车快,若每人离开甲地的距离s 与所用时间t 的函数用图象表示,则甲、乙两
人的图像分别是( ).
A. 甲是(1), 乙是(2)
B. 甲是(1), 乙是(4)
C. 甲是(3), 乙是(2)
D. 甲是(3), 乙是(4)
3.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线nt y ae .
假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有8a ,则m 的值为( ). A. 7 B. 8 C. 9 D. 10
四、【我的疑问和收获】
__________________________________________________________________________
课堂探究案
例1. 一辆汽车在某段路程中的行驶速度与时间的关系如右图:(1)求图中阴影部分的面积,
并说明所求面积的实际意义;
(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km ,试建立汽车行驶这段
路程时汽车里程表读数S 和时间t 的函数解析式.
变式:某客运公司定客票的方法是:如果行程不超过100km ,票价是0.5元/km ,如果超过
100km ,则超过100km 的部分按0.4元/km 定价. 则客运票价y 元与行程公里x km 之间的函数
关系是 .
小结:分段函数是生产生活中常用的函数模型,与生活息息相关,解答的关键是分段处理、
分类讨论.
例2人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制
人口增长提供依据. 早在1798年,英国经济学家马尔萨斯(1766-1834)就提出了自然状态
下的人口增长模型:0rt y y e =,其中t 表示经过的时间,0y 表示0t =时的人口数,r 表示人口(单位:万人)
0.0001),用马尔
萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数
据是否相符;
2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?
小结:人口增长率平均值的计算;指数型函数模型.
练1. 某书店对学生实行促销优惠购书活动,规定一次所购书的定价总额:①如不超过20元,
则不予优惠;②如超过20元但不超过50元,则按实价给予9折优惠;③如超过50元,其中
少于50元包括50元的部分按②给予优惠,超过50元的部分给予8折优惠.
(1)试求一次购书的实际付款y 元与所购书的定价总额x 元的函数关系;
(2)现在一学生两次去购书,分别付款16.8元和42.3元,若他一次购买同样的书,则应付
款多少?比原来分两次购书优惠多少?
练2. 在中国轻纺城批发市场,季节性服装当季节即将来临时,价格呈上升趋势. 设某服装开
始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的平稳销售;10周后当
季节即将过去时,平均每周降价2元,直到16周末,该服装已不再销售.
(1)试建立价格P 与周次t 之间的函数关系;
(2)若此服装每件进价Q 与周次t 之间的关系式为[]20.125(8)12,0,16,Q t t t N =--+∈∈,试
问该服装第几周每件销售利润最大?
【课堂小结】
【课堂检测】
1. 按复利计算,若存入银行5万元,年利率2%,3年后支取,则可得利息(单位:万元) 为( ).A.
5(1+0.02)3 B. 5(1+0.02)2 C. 5(1+0.02)3-5 C. 5(1+0.02)2-5
2. x 克a %盐水中,加入y 克b %的盐水,浓度变为c %,则x 与y 的函数关系式为( ).
A. y =c a c b --x
B. y =c a b c --x
C. y =a c b c --x
D. y =b c c a
--x 3. A 、B 两家电器公司在今年1—5月份的销售量如下图所示,
则B 相对于A 其市场份额比例比较大的月份是( ). A. 2 月 B. 3月 C. 4月 D. 5 月 4. 拟定从甲地到乙地通话m 分钟的电话费由f (m )=1.06(0.5×[m ]+1)元给出,其中m >0,[m ]是大于或等于m 的最小整数(职[3]=3,[3.7]=4),则从甲地到
乙地通话时间为5.5分钟的话费为 元. 5. 已知镭经过100年,质量便比原来减少4.24%,设
质量为1的镭经过x 年后的剩留量为y ,则()y f x =的函数解析式为 .
课后训练案
【基础知识检测】
1.由甲城市到乙城市t 分钟的电话费由函数g (t )=1.06×(0.75[t ]+1)给出,其中t >0,[t ]表示大
于或等于t 的最小整数,则从甲城市到乙城市5.5分钟的电话费为( ).
A. 5.83元
B. 5.25元
C. 5.56元
D. 5.04元
2.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到B 地,在B 地
停留1小时后再以50千米/小时的速度返回A 地,汽车离开A 地的距离x 表示为时间t (小时)
的函数式是( ).
A. x =60t
B. x =60t +50t
C. x ={
60,(0 2.5)15050,( 3.5)t t t t ≤≤-> D. x =60,(0 2.5)150,(2.5 3.5)15050( 3.5),(3.5 6.5)
t t t t t ≤≤⎧⎪<≤⎨--<≤⎪⎩ 3.在国内投寄平信,每封信不超过20克重付邮资80分,超过节20克重而不超过40克重付
邮资160分,将每封信的应付邮资(分)表示为信重(040)x x <≤克的函数,其表达式为
()f x = .
4.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过x 年后的剩留量为y ,
则()y f x =的函数解析式为 .
【能力题目训练】
5.某冬晨,警局接到报案,在街头发现一位流浪者的尸体,早上六点测量其体温13℃,到早
上七点时,其体温下降到11℃. 若假设室外温度约维持在10℃,且人体正常体温为37℃,运
用牛顿冷却模型可以判定流浪汉已死亡多久?
6.某厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产100台需要加可变成
本(即另增加投入)0.25万元,市场对此产品的年需求量为500台,销售收入函数为543
21(月)20406080100(万台)A B
21()52
R x x x =-(万元)(0≤x ≤5),其中x 是产品售出的数量(单位:百台). (1)把利润L (x )表示为年产量x 的函数; (2)年产量是多少时,工厂所得的利润最大?
【拓展题目探究】
7.通过研究学生的行为,心理学家发现,学生的接受能力依赖于教师引入概念和描述问题所用的时间. 讲座开始时,学生的兴趣急增;中间有一段不太长的时间,学生的学习兴趣保持较理想的状态,随后学生的学习兴趣开始分散.分析结果和实验表明,用()f x 表示学生掌握和接受概念的能力,x 表示提出和讲授概念的时间(单位分)可以使用公式:
20.1 2.643,(010)()59,(1016)
3107,(1630)
x x x f x x x x ⎧-+-<≤⎪=<≤⎨-+<≤⎪⎩. (1)开讲后多少分钟,学生的接受能力最强?能持续多长时间? (2)一个数学难题,需要55的接受能力以及13分钟时间,教师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题? (3)如果每隔5分钟测量一下学生的接受能力,在计算平均值(5)(10)....(30)6
f f f M +++=,它能高于45吗?
错误!未定义书签。