论电力电子技术的发展及应用
电力电子技术的发展及应用
电力电子技术的发展及应用朱磊1侯振义1张开2(空军工程大学电讯工程学院陕西西安710077)(南京理工大学动力工程学院江苏南京210000)摘要:本文通过介绍电力电子技术的发展及应用,阐述了电力电子技术在国民经济中的重要作用,结合国家政策,描绘出我国电力电子行业的大好前景。
关键词:电力电子技术功率器件逆变能源电力电子技术,又称功率电子技术。
它主要研究各种电力电子器件,以及这些电力电子器件所构成的各种各样高效地完成对电能的变换和控制的电路或装置。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、大电流)或电子领域的一个分支,总之是强弱电相结合的新学科。
1 电力电子技术的发展电力电子技术的发展与功率器件的发展密切相关,1948年普通晶体管的发明引起了电子工业革命,1957年第一只晶闸管的问世,为电力电子技术的诞生奠定了基础。
1.1 电力电子技术的晶闸管时代由于大功率硅整流器能够高效率的把工频交流电转变为直流电,因此在60年代和70年代,大功率硅整流管和晶闸管的开发与应用得到大发展,这一时期称之为电力电子技术的晶闸管时代。
1.2 电力电子技术的逆变时代20世纪70年代,随着自关断器件的出现,电力电子技术进入了逆变时代。
七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。
在70年代到80年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。
这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3现代电力电子时代80年代末期和90年代初期发展起来的以功率MOSFET和IGBT为代表的集高频、高压和大电流于一身的功率半导体复合器件,使以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学转变创造了条件,表明传统电力电子技术已经进入现代电力电子时代。
电力电子技术的应用研究及发展趋势
电力电子技术的应用研究及发展趋势电力电子技术是一种应用极广的技术,它涉及到包括电力系统、工业、交通、家电等领域的许多方面。
随着社会经济的发展和科技不断进步,电力电子技术的应用越发普遍,其应用领域也在不断扩大。
在这篇文章中,我将从电力电子技术的分类、应用研究和未来发展三个方面来谈谈电力电子技术的应用研究及发展趋势。
一、电力电子技术的分类电力电子技术根据其不同的功率等级、用途和原理等因素,可以分为多种不同的类别。
其中比较常见的主要有以下几种:1、直流-直流变换器直流-直流变换器可以将直流电压转换、升压或降压,常见的应用有开关电源、电动机驱动系统等。
直流-直流变换器具有简单的控制、高效率和稳定性,目前在交通、能源、石化、冶金等领域中得到了广泛的应用。
2、交流-直流变流器交流-直流变流器可以将交流电转换为直流电供电使用,常见的应用有风力发电、光伏发电等。
这种变换器具有高效、可靠和可控的特点,是现代电力系统中最重要的组成部分之一。
3、交流-交流变换器交流-交流变换器可以改变交流电的频率和电压等参数,常见的应用有电动机驱动系统、变频空调、UPS等。
交流-交流变换器在工业、家电等领域中应用广泛,目前已经成为了工业发展的关键技术之一。
二、电力电子技术的应用研究随着电力电子技术的不断发展和进步,其应用领域也在不断拓展。
在应用研究方面,电力电子技术主要有以下几个方向:1、高电压高功率应用随着电力系统的发展和能源消费增长,电力电子技术在高电压高功率领域的应用范围也在不断扩大。
高电压高功率应用主要包括超高压输电、逆变器、脉冲电源、高压直流输电等。
电力电子技术在这些领域中的应用,可以提高电力系统的可靠性、效率和稳定性,同时也可以改善电力系统的质量和环境问题。
2、新能源发电系统新能源发电系统是近年来最热门的电力电子技术应用之一。
新能源发电系统包括太阳能发电、风力发电、潮汐能发电等。
电力电子技术在新能源发电系统中的应用,可以将风、光等无法控制的能源转化为易于控制的电能,提高了整个发电系统的效率。
电力电子技术概述
电力电子技术概述电力电子技术是一门研究电力系统中电能的控制与转换的学科,它涉及到电力电子器件、电力电子电路、电力电子系统以及与之相关的控制策略和应用领域等方面。
本文将概述电力电子技术的起源、应用领域、主要器件和电路拓扑结构,以及未来发展趋势。
一、电力电子技术的起源与发展电力电子技术源于20世纪60年代的美国,当时希望能够利用电子器件来实现电力的调节、控制和转换。
最早应用于变频调速装置、静态无功补偿装置、电能质量改善装置等,逐渐发展成为一个独立的技术领域。
电力电子技术的发展也受益于电子器件的进步,如功率半导体器件的改进和智能控制技术的应用。
二、电力电子技术的应用领域1. 变频调速技术:电力电子技术在工业生产中的一个重要应用领域就是变频调速技术。
通过改变电机的输入电压和频率,可以实现对电机转速的精确控制。
变频调速器广泛应用于印刷机械、纺织机械、化工设备等领域,提高了生产效率和节能效果。
2. 静态无功补偿技术:电力电子技术可以实现对电力系统中无功功率的补偿控制,提高电力系统的功率因数和稳定性。
静态无功补偿装置主要应用于电力系统中的无功功率补偿和谐波抑制,有效改善了电能质量,降低了线损和电流谐波。
3. 新能源发电技术:电力电子技术在新能源领域的应用也日益广泛。
光伏逆变器、风力发电控制器等电力电子装置将新能源转换为交流电能,并通过电网进行输送和利用。
这种技术可以实现对新能源发电的有效控制和管理,推动了可再生能源的利用。
4. 电力系统调节和控制:电力电子技术在电力系统调节和控制中扮演着重要角色。
通过电力电子器件和控制策略,可以实现对电力系统的电压、频率、质量等方面的调节和保护。
这对于电力系统的稳定运行具有重要意义。
三、电力电子技术的主要器件和电路拓扑结构1. 功率半导体器件:电力电子技术的基础是功率半导体器件,主要包括二极管、晶闸管、MOSFET、IGBT等。
这些器件具有承受高压和高电流的特点,并能实现高效率的电能转换。
电力电子技术的发展与应用
电力电子技术的发展与应用电力电子技术是电气工程领域中的一个重要分支,它涉及到电力转换、控制和调节等方面的研究与应用。
随着科技的不断进步和社会的不断发展,电力电子技术在能源转换、电力传输和工业自动化等领域的应用日益广泛,对于提高能源利用效率、改善电力质量和保障电力系统的稳定运行起到了关键作用。
一、电力电子技术的发展历程电力电子技术的发展可以追溯到20世纪60年代,当时主要用于直流输电和高压直流变压器的研究。
随着功率半导体器件的发展,如晶闸管、功率MOSFET和IGBT等,电力电子技术得以迅速发展。
在20世纪80年代,随着功率半导体器件的性能不断提高,电力电子技术逐渐应用于交流输电、电力变换和电机控制等领域。
到了21世纪,随着新型功率半导体器件的出现,如SiC和GaN等,电力电子技术迎来了新的发展机遇。
二、电力电子技术的应用领域1. 可再生能源发电系统随着可再生能源的快速发展,如风能、太阳能和潮汐能等,电力电子技术在可再生能源发电系统中的应用越来越重要。
电力电子技术可以实现可再生能源的高效转换和稳定输出,提高发电系统的可靠性和稳定性。
2. 电力传输与配电系统电力电子技术在电力传输与配电系统中的应用主要包括柔性交流输电、高压直流输电和智能配电网等。
柔性交流输电技术可以提高电力系统的稳定性和可靠性,高压直流输电技术可以实现长距离大容量的电力传输,智能配电网可以实现电力系统的自动化和智能化管理。
3. 电机控制与驱动系统电力电子技术在电机控制与驱动系统中的应用主要包括变频调速技术和电力电子变压器技术等。
变频调速技术可以实现电机转速的无级调节和高效能量转换,提高电机的运行效率和控制精度。
电力电子变压器技术可以实现电力系统的电压和频率调节,提高电力系统的稳定性和可靠性。
三、电力电子技术的未来发展趋势1. 高效能量转换技术随着能源短缺和环境保护的要求,电力电子技术将继续朝着高效能量转换的方向发展。
新型功率半导体器件的应用和拓扑结构的优化将进一步提高电力电子系统的能量转换效率。
浅谈电力电子技术发展对我国社会经济的影响
浅谈电力电子技术发展对我国社会经济的影响一、电力电子技术的发展背景二、电力电子技术在我国的应用现状三、电力电子技术对我国社会经济的意义四、电力电子技术在节能减排方面的应用与效果五、电力电子技术在智能电网建设中的作用随着科技的不断进步,电力电子技术逐渐成为近年来国内外关注的热点之一。
电力电子技术可以将交流电转换成直流电,也可以将直流电转换成交流电。
这一技术的发展对我国社会经济产生了深远的影响。
本文将从电力电子技术的发展背景、应用现状、社会经济意义、节能减排方面的应用与效果以及在智能电网建设中的作用等五个方面展开分析。
一、电力电子技术的发展背景电力电子技术是一种相对较新的技术,它的出现是受到了电能变换、交流电源以及大功率电动机控制的发展。
这一技术的发展源远流长,早在20世纪60年代后期,就已经开始了关于电力电子技术的研究。
然而,近年来电力电子技术得到了更广泛的应用和推广,标志着我国电力电子技术的发展进入了一个新的阶段。
二、电力电子技术在我国的应用现状在我国,电力电子技术得到的越来越广泛的应用。
这一技术应用于国家规划的重大能源工程中,例如南水北调工程、西电东送工程等。
除此之外,电力电子技术还应用于交通运输、医疗、信息科技等领域。
在交通运输方面,电力电子技术应用于轨道交通、电动汽车、高铁等,有效提高了车辆的运行安全性和人民的出行质量。
在医疗方面,电力电子技术应用于医学成像系统、扫描系统、电子教育等。
三、电力电子技术对我国社会经济的意义电力电子技术对我国社会经济的影响是非常巨大的。
首先,电力电子技术的应用为我国提供了更加高效、安全、可靠、环保的能源解决方案。
其次,电力电子技术的应用对于提高国家的综合能源利用效率、推进能源结构调整,以及实现我国经济可持续发展意义重大。
再次,电力电子技术的发展还可谓为我国的“社会绿色发展”提供了更强的技术支撑。
四、电力电子技术在节能减排方面的应用与效果电力电子技术的应用促进了我国的节能减排工作。
电力电子技术在电力系统中的应用及发展
电力电子技术在电力系统中的应用及发展首先,电力电子技术在电力系统中的应用非常广泛。
电力电子技术包含了各种电力电子器件和电路,如开关电源、逆变器、整流器、变频器等。
这些技术可以用于各种不同的应用,包括电力调节、变频调速、无停电切换、能量回馈等。
电力电子技术在电力系统中的应用主要有以下几个方面:1.电力调节:电力电子技术可以用来调节电力系统的电压和频率。
例如,电力电子技术可以用于调节输电线路的电压,以保证电力系统的稳定性和可靠性。
同时,它也可以用来调节电力系统的频率,以适应不同的负载条件。
2.变频调速:电力电子技术可以用于变频调速系统中,通过改变电机的供电频率来改变电机的转速。
这可以使电机在不同负载要求下,具备良好的性能特性。
变频调速系统广泛应用于工业、交通等领域。
3.无停电切换:电力电子技术可以实现无停电切换。
例如,在配电系统中,当发生故障时,电力电子技术可以实现对备用电源的无停电切换,以保证供电的连续性和可靠性。
4.能量回馈:电力电子技术可以实现能量的回馈。
例如,通过逆变器将太阳能等可再生能源转换为电能,然后回馈到电力系统中,减少对传统能源的依赖,提高能源利用效率。
除了以上应用,电力电子技术还可以用于电力系统的电力质量改善、电力系统的故障检测和故障定位等方面,为电力系统的稳定运行和安全性提供支持。
其次,电力电子技术在电力系统中的发展也非常迅速。
随着科技的不断进步和应用需求的不断增加,电力电子技术得到了广泛的研究和应用。
目前,电力电子技术正在向下列几个方向发展:1.高效率:提高电力电子设备的工作效率是当前的重要发展方向。
高效率的电力电子设备可以减少能量损失,提高能源利用效率。
2.高功率密度:提高电力电子设备的功率密度,使其在体积相同的情况下可以提供更大的功率输出。
这对于应用于空间有限的场合非常有用。
3.高可靠性:提高电力电子设备的可靠性,使其能够在恶劣的工作环境下稳定运行。
这对于电力系统的稳定性和可靠性非常重要。
电力电子技术在电力系统中的应用
电力电子技术在电力系统中的应用随着电子技术的迅速发展,电力电子技术得到了广泛的应用。
电力电子技术是指将电力和电子技术相结合,通过半导体器件将电力进行变换、传递和控制的技术。
在电力系统中,电力电子技术的应用已经成为了研究的热点之一。
一、电力电子技术的概述电力电子技术是一种电力工程和电子工程相结合的技术。
其主要应用在将电力进行变换、传递和控制的过程中。
电力电子技术的发展可以追溯到1960年代,当时出现了用半导体器件实现交流电到直流电的变换技术,即交流输电系统的直流输电技术(HVDC)。
这项技术实现了对远距离长距离输电的需求,缩短了电力传输距离,减少了线路损耗,提高了电力传输的效率和可靠性。
随着时代的发展,电力电子技术应用领域不断扩大,如市电变频器、电力电容、UPS等系统都是电力电子技术的代表。
电力电子技术的发展,推动了电力系统的革新,提升了电力传输的能力和效率,实现了电网智能化、数字化、可靠性和安全性的大幅提升。
二、1、 HVDC交流输电系统的直流输电技术(HVDC)是电力电子技术在电力系统中的基础应用之一。
它可以将交流电转换成直流电,从而实现不同地点之间的电力互联、跨越海洋和山区、进行长距离电力输送。
HVDC技术可以提高输电线路的容量、减少输电损耗,并且提高电力传输的可靠性。
HVDC技术正在逐渐普及,已经被应用到欧洲、北美、亚洲等地区的多条输电线路中,成为了电力系统中重要的输电方式。
2、 FACTS灵活交流输电系统(FACTS)技术是一种电力电子技术,它可以根据负荷不同而调整电力系统的电压、电流和相角,从而提高电力系统的稳定性、可靠性以及抗干扰能力。
FACTS技术可以使电力系统在电力负载发生变化时,自动调整电力参数和稳定电力系统,从而提高电网的稳定性,减少配电线路的损耗,降低能源消耗和污染排放。
3、 STATCOM静止补偿器(STATCOM)是一种电力电子设备,它可以在电力系统中自动实现电容电抗补偿,从而提高电力系统的稳定性和可靠性,减少电力线路的损耗。
电力电子技术的发展趋势及应用
电力电子技术的发展趋势及应用半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。
而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就是电力电子器件,特点是功率大、快速化。
自20世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。
电子电力技术包括电力电子器件、变流电路和控制电路3部分,是以电力为处理对象并集电力、电子、控制三大电气工程技术领域之间的综合性学科。
电力技术涉及发电、输电、配电及电力应用,电子技术涉及电子器件和由各种电子电路所组成的电子设备和系统,控制技术是指利用外加的设备或装置使机器设备或生产过程的某个工作状态或参数按照预定的规律运行。
电力电子器件是电力电子技术的基础,电力电子器件对电能进行控制和转换就是电子电力技术的利用。
在21世纪已经成为一种高新技术,影响着人们生活的各种领域,因此对对电子电力技术的研究具有时代意义。
传统电力电子技术是以低频技术处理的,现代电力电子的发展向着高频技术处理发展。
其发展先后经历了整流器时代、逆变器时代和变频器时代,在不断的发展中促进了现代电力电子技术的广泛应用。
电力电子技术在1947年晶体管诞生开始形成,接着1956的晶闸管的出现标志电力电子技术逐渐形成一门学科开始发展,以功率MOS-FET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件的出现,表明已经进入现代电子电力技术发展时代。
1.整流器时代在60年代到70年代被称为电力电子技术的整流时代。
该期间主要是大功率硅整流管和晶闸管的开发与应用。
1948年的晶体管的出现引发了电子工业革命,半导体器件开始应用与通信领域,1957年,晶闸管的诞生扩展了半导体器件功率控制范围,属于第一代电力电子器件。
电力电子技术的研究进展及应用
电力电子技术的研究进展及应用随着现代科学技术的迅猛发展,电力电子技术作为其中一个重要分支,在国家经济和社会发展中扮演着不可或缺的角色。
本文将从电力电子技术的定义、研究进展以及应用方面进行探讨。
一、电力电子技术的定义电力电子技术是电力系统中电能的处理与控制技术,是研究通过半导体元件实现交、直流的能量转移、传递、匹配以及电能的调节、变换、变频的新型电气工程技术,具有诸多特点,如高效、精确、可靠、无噪音、无污染等。
因此,电力电子技术是目前国家十三五规划中电力转型的核心技术之一,广泛应用于今天的工业制造、信息通讯和公共基础设施等领域。
下面将详细讲述电力电子技术的研究进展。
二、电力电子技术的研究进展随着电力电子技术的不断发展,其研究取得了丰硕的成果。
在电力电子器件、电力电子拓扑与控制、电力电子应用等方向上都有着日益丰富的研究进展。
在电力电子器件方面,功率半导体电子器件得到了长足的发展。
压缩机封装车间生产的功率半导体器件已经进入行业标准化生产,其特点是具有低损耗、高速度、高电压、大电流、高耐受放热量和温度等特点,越来越能够满足各种场合的需求。
在电力电子拓扑与控制方面,电力电子系统的拓扑结构和控制策略得到了日益完善,已经从传统的整流、逆变结构转变为集成于一体的多功能电力电子拓扑结构。
电力电子系统的控制技术不断发展,已经实现了全数字化、高速、高精度的控制。
例如,目前双向DC-DC转换器及其控制技术已经得到了广泛的应用。
新型的电气系统如智能家居、新能源分布式发电等,对于双向变换器的研究和应用成为了热点。
在电力电子应用方面,电力电子技术在新能源、半导体照明和交通运输等领域得到了广泛的应用。
其中,新能源是电力电子技术应用领域的一大亮点,电力电子技术在太阳能、风能、氢能等新能源的开发利用中发挥了巨大的作用,能够有效提高能源的利用效率。
电力电子技术的应用范围之广,使其成为了当今高新技术的代表之一。
接下来,本文将从电力电子技术应用的实际案例进行分析,探讨其在各个领域中的应用。
电力电子技术在电网中的应用及智能电网的发展
电力电子技术在电网中的应用及智能电网的发展随着社会的进步和科技的发展,电力电子技术在电网中的应用越来越广泛。
电力电子技术是将电力与电子技术相结合,用电子器件和电力设备来处理和控制电能的技术。
它在电网中的应用带来了许多好处,同时也推动了智能电网的发展。
一、电力电子技术在电网中的应用1. 柔性交流输电技术柔性交流输电技术是指利用电力电子设备来控制电流和电压的频率、幅值和相位等参数,从而实现高压交流输电线路的柔性控制。
通过柔性交流输电技术,可以有效地提高电力系统的稳定性和可靠性,减少能量损耗,并且适应不同负荷需求的变化。
2. 逆变技术逆变技术是指将直流电转换为交流电的技术。
在电网中,逆变技术广泛应用于交流-直流变流器和逆变器中。
交流-直流变流器将电网中的交流电转换为直流电,并可用于直流输电、直流电源以及电动汽车充电等领域。
而逆变器则将直流电转换为交流电,可用于太阳能发电、风能发电以及UPS电源等。
3. 无功补偿技术无功补偿是对电网中的无功功率进行控制和补偿,以提高电能的有效利用率。
电力电子技术可以通过控制电容器、电抗器等无功补偿设备的接入和切除,实现电网中无功功率的调节和平衡,提高电网的功率因数和稳定性。
二、智能电网的发展随着电力电子技术的应用,智能电网正在不断发展。
智能电网是指利用先进的通信、控制和计算技术,对电网中的各个环节进行集成和优化,实现电力系统的智能化管理和运行。
智能电网的发展有以下几个方面:1. 智能感知智能感知是指通过传感器、测量仪表等设备,实时采集和监测电网中的各种数据,包括电压、电流、功率、负荷等信息。
通过智能感知技术,可以实现电网中各个节点的数据互联互通,提高电网的可视化程度,为智能化管理提供数据支持。
2. 智能调度智能调度是指根据电网中各个节点的状态和需求,通过智能算法和优化模型,实现对电网中的电力资源进行合理分配和调度。
智能调度可以提高电网的供电可靠性和经济性,优化电能的分配和利用效率。
电力电子技术的发展与应用
电力电子技术的发展与应用电力电子技术是指利用电力电子器件和电力电子系统来转换和控制电能的技术。
随着科技的发展和人们对电力需求的不断增长,电力电子技术在能源转换、电力传输、能效提升等方面起着重要的作用。
本文将详细介绍电力电子技术的发展与应用,并分点列出相关步骤。
一、电力电子技术的发展历程1. 从早期的整流器到现代的逆变器- 20世纪初,电力电子技术主要用于电力系统中的整流器,将交流电转换成直流电;- 随着电力电子器件的发展,逆变器成为新的研究方向,可以将直流电转换成交流电。
2. 电力电子器件的发展- 二极管、晶闸管、可控硅等电力电子器件的问世,为电力电子技术的应用提供了重要基础;- 随着半导体材料和工艺的不断改进,新型电力电子器件的性能得到提升,如功率场效应管(IGBT)、金属氧化物半导体场效应管(MOSFET)等。
3. 电力电子系统的发展- 从单个电力电子器件到集成电路的应用,电力电子系统的规模不断扩大;- 电力电子技术在交通运输、工业生产、能源管理等领域得到广泛应用。
二、电力电子技术的应用1. 新能源发电系统- 光伏发电系统:光伏逆变器将光能转换成电能,并通过电网馈送;- 风力发电系统:风力逆变器将风能转换成电能,实现风电接入电网。
2. 电动交通工具- 电动汽车:电力电子技术用于电动汽车的驱动系统,实现电能转化和控制;- 城市轨道交通:地铁、轻轨等城市轨道交通系统中广泛应用电力电子技术。
3. 变频调速控制- 工业生产中的电机控制:电力电子变频器用于控制电机的转速和运行状态,提高能源利用效率和生产效率;- 家电领域:变频空调、洗衣机等家电产品通过电力电子技术实现节能和控制。
4. 电力传输与配电- 高压直流输电技术:通过高压直流逆变器实现交流与直流电能的互相转换;- 电力系统中的谐波控制:电力电子技术用于控制电网中的谐波,确保电力质量。
三、电力电子技术的应用步骤1. 系统需求分析- 根据电力应用的需求,确定需要进行能量转换和控制的电路系统。
电力电子技术在电网中的应用
电力电子技术在电网中的应用随着电网建设的不断完善和电气化进程的加速推进,电力电子技术在电网中的应用越来越广泛。
其应用领域包括能源转换、电力控制、电力传输、电力质量等多个方面,为电网建设和运行提供了崭新的可能性。
一、电力电子技术的发展历程电力电子技术起源于20世纪60年代,当时人们开始利用晶体管和场效应晶体管等半导体器件进行电力控制。
70年代时出现了集成电路,电力电子技术取得了长足的发展。
80年代开始,人们开始研究高频开关电源和成熟的散热技术,电力电子技术发展得更加迅速。
90年代,功率半导体器件技术得到了进一步提升,研究者开始致力于将应用领域扩展至电网。
21世纪以来,高压直流输电、储能技术、微电网、智能电网等领域中更多的电力电子技术得到了广泛的应用。
二、电力电子技术在电网中的应用1. 高压直流输电技术高压直流输电技术作为电力电子技术在电网中的重要应用之一,已成为当前最先进、最有效的输电方式之一。
高压直流输电利用半导体器件配合控制电路,实现对大功率电能的调节和传输,大大提高了电力传输的效率和稳定性。
高压直流输电技术应用于长距离输电和海底电缆传输时,其优良的性能表现尤为突出。
2. 功率因数修正与无功补偿技术功率因数修正与无功补偿技术是电力电子技术在电网控制领域的主要应用之一。
利用半导体器件的可控性,实现电容电感等元件在电网中的无功调节和电路分合,增强了电力品质,提高了电网的稳定性和可靠性。
3. 高压马达控制技术高压马达控制技术是电力电子技术在电动机系统中的应用。
通过控制器实现对电压、电流、频率等参数的调节,使电动机在高效运行的同时,也保证了电网的稳定性和安全性。
4. 光伏电站与风力发电技术在光伏电站与风力发电等新型能源中,电力电子技术被广泛应用,既保证了光伏电池片和风力发电机的高效稳定运行,又实现了将发电与电网互联的关键性作用,提高了能源利用效率。
5. 电能质量控制技术电能质量控制技术利用电网动态反馈控制方法,实现对电力波形的精确调整与控制。
电气工程中的电力电子技术的应用与发展
电气工程中的电力电子技术的应用与发展在当今科技飞速发展的时代,电气工程领域的创新不断推动着社会的进步。
其中,电力电子技术作为关键的一环,正发挥着日益重要的作用。
它不仅改变了电能的处理和利用方式,还为众多行业带来了革命性的变革。
电力电子技术简单来说,就是使用电力电子器件对电能进行变换和控制的技术。
从日常生活中的电子设备到大型工业系统,电力电子技术的身影无处不在。
在交通运输领域,电动汽车的兴起离不开电力电子技术的支持。
电动汽车中的电机驱动系统,就是通过电力电子变换器将电池的直流电转换为交流电,从而实现对电机的精确控制,使车辆能够高效运行。
此外,高铁的牵引系统也大量运用了电力电子技术,通过控制电能的转换和传输,实现列车的高速、稳定运行。
在可再生能源领域,电力电子技术更是发挥着关键作用。
太阳能光伏发电和风力发电产生的电能往往是不稳定的直流电或频率、电压变化的交流电。
通过电力电子变换器,可以将这些电能转换为符合电网要求的交流电,并实现最大功率点跟踪,提高能源的利用效率。
同时,在储能系统中,电力电子技术能够实现电能的高效存储和释放,平衡电网的供需。
在工业生产中,电力电子技术广泛应用于电机调速系统。
传统的电机调速方式效率低下、精度不高,而采用电力电子变频器可以实现电机的平滑调速,提高生产效率,降低能耗。
例如,在风机、水泵等设备中,采用变频调速技术可以根据实际负载需求调整电机转速,大大节约了电能。
此外,电力电子技术还用于电焊机、电炉等设备的电源控制,提高了工艺质量和生产效率。
在家用电器领域,电力电子技术也带来了诸多便利。
空调、冰箱等电器中的变频技术,能够根据室内温度和负载情况自动调节功率,实现节能和舒适的目的。
电脑、电视等电子设备的电源管理也离不开电力电子技术,通过高效的电源转换,提高设备的稳定性和可靠性。
随着技术的不断进步,电力电子技术也在不断发展。
新型电力电子器件的出现,如碳化硅(SiC)和氮化镓(GaN)器件,具有更高的工作频率、更低的导通电阻和更好的耐高温性能,为电力电子系统的小型化、高效化和高频化发展提供了可能。
电力电子技术的发展和应用
电力电子技术的发展和应用随着电力电子技术的快速发展,它在能源转换、电力调节、能量存储等方面的应用日益广泛,并成为当今工业制造业中不可或缺的一环。
本文将从发展历程、技术分类、应用领域等方面来探讨电力电子技术的发展和应用。
一、发展历程电力电子技术是在运用电子技术将交流电转换为直流电的过程中逐渐形成的。
由于交流电源在供应长距离输电时,无法达到高效稳定的要求,而直流电源更适合远距离输电,且易于调节电压和电流。
自20世纪60年代开始,电力电子技术逐步发展成熟,进入了成熟发展阶段。
20世纪30年代,晶体管被发明出来,从而奠定了电力电子技术的基础。
自此以后,电力电子技术在电源和驱动技术、变频技术、电力控制等方面获得了广泛的应用,特别是随着半导体技术、微电子技术、数字控制等技术的快速发展,电力电子技术得到了更为广泛的应用。
二、技术分类电力电子技术可分为直流电源技术、交流电源技术、变频技术、电力控制技术、光电转换技术等多个方面。
1. 直流电源技术直流电源技术主要应用于直流电驱动领域,包括直流电机、直流电动车辆、电力机车等领域。
2. 交流电源技术交流电源技术是将交流电转换为直流电的技术。
常用于电气设备的稳定供电,如电脑、电视、冷气等家用电器。
在高压输电系统中,电力电子变流器已成为控制能量流的关键技术。
3. 变频技术变频技术主要针对交流电源,并可以调节电源的频率与电压,以达到更好的能耗效率,因此被广泛应用在空调、电风扇、冰箱等家电上,以及工业生产中的变频控制系统,如水泵、电机、压缩机等。
4. 电力控制技术电力控制技术主要涉及电力电子设备的关键芯片、组件和系统的设计、制造、选择和运行。
电力控制技术的发展促进了节能减排,提高了电能利用率,减少了损耗,节约了成本。
5. 光电转换技术光电转换技术是将光能转化成电能的技术,是电力电子技术的重要分支之一,主要应应用于能量采集和存储等环节,如太阳能电池板、光伏电站、数码相机等。
三、应用领域1. 能源转换电力电子技术在能源转换方面的应用越来越广泛。
电力电子技术的发展趋势与应用前景
电力电子技术的发展趋势与应用前景随着科技的飞速发展,电力电子技术成为了当前发展中最受瞩目的技术之一,被广泛应用于工业、通信、医疗、交通等众多领域。
本文将探讨电力电子技术的发展趋势与应用前景。
一、电力电子技术的基础与发展历程电力电子技术指的是将电力与电子技术相结合所形成的一种技术。
它将电力转换与电子器件相结合,可实现供电系统的高效、智能化、精密控制等特点。
电力电子技术的应用范围极为广泛,包括了电源、电器、动力、照明、控制等方面。
电力电子技术的发展历程,草根于20世纪60年代,起初被用作不间断电源,进一步发展为无线输能电源、热补偿电源等。
到了21世纪,电力电子技术由于其高效节能、智能化、低耗能等特征,被广泛应用于新能源、智能电网、电动汽车等领域,成为推动技术进步的重要一环。
二、电力电子技术的发展趋势1、反义变流器将大规模普及反义变流器是电力电子技术的一个重要分支。
它可将交流电转换成直流电,再将直流电转变成交流电。
反义变流器在智能电网中起到了至关重要的作用,优点是能够对电力进行高效的流量控制,从而实现电力系统的高效、快速响应。
预计未来反义变流器将会大规模普及,满足对能源的更高要求。
2、微网将得到普及微网是由一组分布式电源、负荷和能量存储装置组成,通过电力互联,形成一种近似于小型电力网的电力系统。
微网技术能够将电力设备智能控制、自主组网和协同运行等技术集成起来,为用户提供优质的电力服务。
预计未来,微网技术将越来越普及,符合能源调节和能源转型发展趋势。
3、电力互联网的新型拓扑结构电力互联网是一种新型的能源调控方案,它将分布式电源、负荷、电池储能、高压直流输电等纳入一个交互网中,构成一种基于互联网和计算机技术的新型能源系统。
电力互联网的发展是电力电子技术的最新成果,通过加强电力电子器件的功能和智能控制系统的升级,实现了电力分布式化、智能化和网络化,从而更高效的管理和分配电力资源。
三、电力电子技术的应用前景电力电子技术已经广泛应用于工业、家庭、交通运输、车辆和航空航天等领域中。
浅谈电力电子技术的发展及应用
绿色化的方 向发展 。通 过介绍电力 电子技术 的发展及应用 ,阐述电力 电子技 术在 国民经济中 的重要作用 。 [ 关键词] 电力电子技术
中图分类号:I - 文献标识码 :A 文章编号 :1 7 - 7 9 2 1 )0 1 1 5 0 N9 6 1 5 7( 0 O 2 0 4 - 1
22 交通 运 输 。电气 化铁道 中广泛采 用 了 电力 电子技 术 。电气机 车 中 . 的直 流机 车 中采 用 整流 装置 ,交 流机 车采 用 变频 装置 。直流 斩波 器也 广泛 用 于铁道 车 辆 。在 磁悬浮 列 车 中, 电力 电子 技术 更是 一 项关键 技 术 。除牵 引 电机传 动 外 ,车 辆中 的各 种辅 助 电源 也离 不 开电力 电子技 术 。电动 汽车 的 电机靠 电力 电子装 置进 行 电力 变换 和驱 动控 制 ,其 蓄 电池 的充 电也 离不 开 电力 电子 装置 。 飞机 、船 舶需 要很 多不 同 要求 的 电源 ,因此 航 空和航 海 都离 不开 电力 电子技 术 。如 果把 电梯 也算 做 交通运 输 ,那 么它 也 需要 电力 电子 技术 。以前 的 电梯大 都 采用 直流 调速 系统 ,而 近 年来 交流 变频 调速 已
1 1整 流 器 时代 。 大 功率 的工 业 用 电 由工 频 ( 0 z 5 H )交 流 发 电机 提
供 ,但是 大约 2% 电能是 以直流 形式 消费 的 ,其 中最 典型 的是 电解 、牵 引 0的
2 3传 统改 造 业。 电力 电子技 术 是弱 电控制 强 电的媒 介 ,是机 电设 备 . 与计 算 机 的重 要 接 口, 为 传统 产 业 和 新 兴产 业 采 用微 电子 技 术创 造 了 条 件 。在 电力 电子技 术 的支 撑 下,传 统 产业 中 的许 多劳 动强度 大 、劳 动环 境 恶 劣 的工 作 ,可 以通 过工业 控 制系 统把 电 能转 化为 劳动 力 ,把 工人 带入 到 现 代化 的 智能 工作 室 ,从 而大 幅度 地提 高 了生 产率 。在 化石 燃料 电站 和 核 电站 中, 电力 电子 技术 已经 成 为 “ 技术 之星 ”脱颖 而 出,成 功地 解决 了诸
现代电力电子技术及应用
现代电力电子技术及应用电力电子技术是指以半导体器件为核心,应用电子技术来实现电力转换、控制和保护的技术。
电力电子技术的发展,不仅加速了电力系统的进步,而且也成为现代电子技术应用领域中的重要组成部分。
本文将以电力电子技术的发展、应用和前景为主线,进行以下详细阐述。
一、电力电子技术的发展电力电子技术的发展始于20世纪60年代,主要是针对电力变频调速和谐波污染这两个问题。
20世纪70年代到80年代,随着电力电子器件如晶闸管、功率场效应管(MOSFET)和可控硅(SCR)等的出现,电力电子技术逐渐成熟,并在电力系统中得到广泛应用。
在这个阶段,电力电子技术主要应用于电动机的调速控制、输电线路电力因数补偿、谐波抑制等方面。
20世纪90年代以来,随着高压直流输电(HVDC)技术、柔性交流输电(FACTS)技术和电能质量(PQ)控制技术的发展,电力电子技术获得了更大的应用空间。
其中,HVDC技术不仅弥补了交流传输中输电线路对环境的影响,还提高了长距离输电效率;FACTS技术则通过直接控制交流输电系统的电压、电流和相位等参数,实现对电力系统的灵活控制,提高电力系统的可靠性和稳定性。
此外,电能质量控制技术也在消除电路中的谐波、尖峰电流和点状变压器等方面发挥了重要作用。
二、电力电子技术的应用在电力系统中,电力电子技术已经广泛应用于能源转换、输配电和工业自动化等领域。
下面将重点介绍电力电子技术在这些领域中的应用。
1、能源转换应用电力电子技术在能源转换中的应用包括风力发电、太阳能电池和燃料电池等方面。
其中,风力发电和太阳能电池都属于可再生能源,将电力电子技术应用于其控制系统中可以提高其发电效率和可靠性;燃料电池则可将化学能转化为电能,成为能源转换领域的理想选择。
2、输配电应用电力电子技术在输配电领域中的应用主要有功率因数补偿技术、电网稳频技术和电网无功控制技术等。
其中,功率因数补偿技术是指通过电容器、静态无功补偿器等设备将系统的功率因数提高到合理的范围,降低输电损耗,提高系统效率和稳定性;电网稳频技术是通过调节负载和电压控制器的频率和电压,使系统频率和电压保持稳定;电网无功控制技术则主要是调节无功电力来维持系统的电压稳定和电能质量。
浅析电力电子技术的发展及应用
分析其在现 实社会 中的应 用情况
上述的逆 变时代 ,虽然完成 了逆变和整流 的功能,但是其工作频率相对来说 比较低 ,满 足不 了人们逐 渐扩大 的需求。所 以,到 8 0年 代后期出现了集成 电路。这种大规模的集成电 路主要特点是将高压大电流技术和精细加 工技 术融为一体 ,标志着现代 电力电子变频器时代 的到来 ,标志着传 电力 电子技术的升级。这 时期的 电力电子器件走复合化的道路,各器件 的结构也越来越紧密,因为结合了各类器件 的 优 点,显得功能也越来越 强大 。纵观世界现状 , 电力电子技术 的发展方 向将是高频化 。
2 . 4 一般 工 业
现代化 的工 厂 中随处 可见 自动 化的机 器 设备,这就需要强大的 电力系统 ,所 以各工厂 几乎都采用交直流电动机供 电,尤其是交流电 机,已经逐渐 占据各工厂的主导地位了 。不管 是多大的 电都可 以使用 电力 电子调速技术 ,一 些低技术的设备 比如大型鼓风机,也可通过采 用变频 装置来提 高性 能和效率。
2 . 5 电 力 系统
电力 系统 的发 展能 够推 动 国家 的发展 , 电力系统也需要 电力 电子技术 ,所 以,当前 的 【 关键 词】发展 电子 电力 技 术 我 国正在 由 “ 工业 经济 ”模 式 向 “ 信 息 电力系统广泛采用该技术 。配 电系统的不稳定 经济”模式转变过程 中,在转变中 电子技术的 为我们带来很大的烦恼, 电力 电子装置可 以在 因为高新技术的发 发生意外的情况下有效的控制电能质量,达到 随着 高新技 术 的发 展, 电力 电子 技术 的 发展将起到了基石的作用 改善电力系统供电质量的 目的。 发展也为 电力行业带来 了新鲜血液 ,为 电力行 展需要 电子技术。它将传统产业和信息产业结 合起来 ,促进 了信息业的飞速前进 如今,很 业 朝着更高方 向发展提供 了基础。但它不仅仅 3 结 语 多高性能的 电力变流装置 已经被人们接纳,并 只是应 用于电力行业 ,由于时代科技的发展, 总 而 言 之 , 电 力 电子 技 术 是 一 个 有 着 极 各学科间的边缘越来越模糊,由此也决定了电 且广泛的投入 使用。这不仅 促进电子行业 的发 展,而且还有 利于促进 其他 相关行业 发展 ,比 大发展潜力的朝阳产业 ,自上世纪 以来经历 了 力 电子 技术并不是一个完全独立的学科技术, 如前面所讲的 自动控 制技术,就能够 为其 发展 五十多年的发展历程 ,在其理论研 究及现实应 与它关联的有材料科学、微电子技 术及控制 理 论等,也就是说电力 电子技术已经慢慢地 渗透 提供便利。未来的 电力 电子技术的应用领域还 用领域 已经取得 了一定的效果 ,也具有 了一定 会拓宽 ,并将在经济发展中 占据不可忽视的地 的生产规模。 以 “ 变频技术 ”的为核心 电力 电 进 各个 工 业 部 门 。 位。下面,笔者将从五个方面分析电力电子技 子技术的广泛运用为人们带来了极大的便利 , 1电力电子技 术的发展历程 术在现实社会 中的应用 。 极大限度的拉动了国民经济的增长 。可想而知 的是,在 不久 的将来,电力 电子技术将如太阳 . 1传 统 改造 业 如果说 晶体 管 的诞生标 志着 固态 电子 时 2 样普照世 界。 代 的来 临,那么晶闸管的问世就把 电子技术带 在 传 统产业 的环 境 中,有很 多不 利于 人 上 了飞速 发展的轨道 随着高技术的发展,电 体健康 的因素,人们 往往要 在恶劣 的环境 中进 参考文献 力 电子 技术发展速度 也越来越快,更 多的领域 1 ]张 为佐 .电力 电 子技 术 的二 十 年及 其 未 行高强度 的工作 。电力 电子技 术的出现大大 的 [ 开始应用这 一技 术,其作用可 以从我 国经济 的 来 一一思 考走 向 信 息 时代 的 电力 电子 学 改善 了这 一状 况 ,它 能把 电 能转 化 成 劳 动 力 , 发展看 出。纵观 电力 电子技术 的发展史 ,我们 [ J ] .电 源技 术应 用 , 2 0 0 1 ( Z 1 ) . 可 以看 出其经 历了三个阶段:晶闸管 时代 、逆 把智能工作室 带进工厂 ,减轻工人们 的工作 负 2 ]俞 勇祥 .电力 电子 技 术的 应 用概 况 【 J 】 . 担 。像化石燃料 电站类 的行业 ,工人们通 常都 [ 变 时代 、变频 时代。接 下来 ,笔者将从这三个 新 技 术新 工 艺 , 2 0 0 0 ( 1 0 ) . 是在危 险的环境 中作业 , 电力电子 行业 的出现 , 阶段分别进行描述 。 [ 3 】马克 刚 .现代 电力电子器件 及其应 用 [ J ] . 给此类行业的工作带来 了极大的便利。 世 界 电子 元 器件 , 2 0 0 0 ( 0 7 ) . 1 ・ 1晶闸管 时代 2 . 2 家用 电器 [ 4 ]张为 佐 .电 力 电子 技 术 的应 用和 发 展 … . 晶闸管 时代 也称 晶 闸管 整流 时代 ,晶 闸 江 苏机 械 制 造 与 自动 化 , 1 9 9 8( 0 2 ) . 电力 电子技 术也逐 渐 的普 及 到各家 各户 管 整流 管在 2 0世 纪 6 O和 7 0年 代得 到了长 足 【 5 ]张玉 芬 .电 力 电子技 术的新 发展 [ J ] .微 中,如变频 空调 、荧光灯等等 。这些家用 电器 的发展 ,当时都是通过 5 0 HZ的交流发 电机来 电 子技 术 , 1 9 9 7 ( 0 6 ) . 为家庭生活带来极大 的便利 的同时也相对 的节 提供较大功率 的工业用 电,其 中直流形式 的电 [ 6 ]万遇 良 . 电力 电子技 术的发展趋 势及应 用 约 了家庭开支 。比如 ,变频 空调能够节约 百分 能消费 占了百分之二十 。在 当时,我 国很 多电 【 J ] .电 工 电 能新 技 术 , 1 9 9 5 ( 0 2 ) . 之三十 的电量 。除了这些之外 ,居 民家 中的电 厂都需要把交流 电转化为直流 电,这就催生 了 【 7 ]肖元真 ,张 良 .我 国电力电子技 术发展 展 器 , 比如 冰 箱 等 都 需要 电力 电子 技 术 。 电力 电 大功率硅整流器和 晶闸管 ,它能高效 的完成直 望 [ J ] .中国科技信 息 , 1 9 9 4 ( O 3 ) . 子技术为 人人们 带来 更多的空余时间去享 受生 流 电的转变。这也造就 了晶闸管整流时代 。 【 8 】张 超 .电 力 电 子 技 术 的 发 展 及 在 电 力 活。 系统 中应 用 【 J ] . 企 业 家 天地 ( 理 论
电力电子技术与应用
电力电子技术与应用电力电子技术是指利用半导体器件和电磁元件等电子器件,对电力进行高效、稳定的转换与控制的技术领域。
它在现代电力系统和电力设备中扮演着至关重要的角色。
本文将从电力电子技术的定义、应用、发展趋势等方面进行探讨。
一、电力电子技术的定义电力电子技术是指利用电子器件对电能进行调节、变换、控制的技术。
电力电子器件一般具有高功率、高频率、高唯一性和高可靠性等特点,主要包括晶体管、可控硅、IGBT等。
电力电子技术通过改变电路的开关状态和电源工作方式,实现电能的调整和转换,从而满足电力系统对不同形式电能的需求。
二、电力电子技术的应用1. 高压直流输电技术高压直流输电是电力电子技术的一项重要应用。
通过将交流电能转换为直流电能,再进行输送,可以有效降低输电损耗,提高电网稳定性。
高压直流输电技术在远距离、大容量输电方面具有明显优势,已广泛应用于长距离跨区域输电工程。
2. 可再生能源发电技术电力电子技术在可再生能源发电中起到了关键作用。
风力发电、光伏发电等可再生能源具有不稳定性和间歇性,而电力电子技术可以实现对可再生能源的有效调节和控制,使其能够稳定地并入电力系统。
此外,电力电子技术还可以实现电能的质量改善和功率因数校正。
3. 变频调速技术变频调速技术是电力电子技术在电机控制领域的应用。
通过电力电子器件对电机进行调节,可以实现电机转速的连续调整和转矩的精确控制。
变频调速技术广泛应用于电力、化工、交通等行业,可以实现能量的高效利用和运行的平稳可靠。
4. 无功补偿技术无功补偿是电力电子技术在电力系统中的重要应用之一。
通过电力电子器件对无功功率的生成和吸收进行调节,可以实现电网的无功功率平衡和电压稳定控制。
无功补偿技术对提高电力系统的电能质量和稳定性具有重要意义。
三、电力电子技术的发展趋势1. 高功率、高可靠性随着电力需求的增长和电力器件技术的不断进步,电力电子技术将朝着高功率、高可靠性方向发展。
电力电子器件的集成化和可靠性的提升将进一步推动电力电子技术的发展。
电力电子技术的发展与应用
电力电子技术的发展与应用作为电气自动化的学生,我们有必要对专业课程电力电子技术做个全面的了解。
我们先对电力电子的定义做了解,再对电子电力技术的发展做大致介绍,最后综述电力电子技术的应用。
电力电子技术,是使用电力电子器件对电能进行变换和控制的电子技术。
电力电子技术包括电力电子器件、电力电子设备和系统及其控制三个方面,涉及电力电子器件,电力电子设备和系统,电力电子技术在各个行业的应用。
与以信息处理为主的信息电子技术不同,电力电子技术主要用于功率(电力)变换,所变换“电力”功率的范围小到数瓦(W),大到数百兆瓦(MW)甚至吉瓦(GW)。
电力电子技术分为电力电子器件制造技术和变流技术,电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。
因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。
电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。
电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。
近代新型电力电子器件中大量应用了微电子学的技术。
电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。
电力电子技术的发展史:一般认为,电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。
晶闸管出现前的时期可称为电力电子技术的史前期或黎明期。
1904年出现了电子管,它能在真空中对电子流进行控制,并应用于通信和无线电,从而开启了电子技术用于电力领域的先河。
20世纪30年代到50年代,水银整流器广泛用于电化学工业、电气铁道直流变电所以及轧钢用直流电动机的传动,甚至用于直流输电。
1947年美国著名的贝尔实验室发明了晶体管,引发了电子技术的一场革命。
晶闸管时代,晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组,并且其应用范围也迅速扩大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电力电子技术》
班级 09物本
姓名朱义
学号 200903054077
论电力电子技术的发展及应用
电力电子学(Power Electronics)这一名称是在上世纪60年代出现的。
1974年,美国的W.Newell用一个倒三角形(如图)对电力电子学进行了描述,认为它是由电力学、电子学和控制理论三个学科交叉而形成的。
这一观点被全世界普遍接受。
“电力电子学”和“电力电子技术”是分别从学术和工程技术2个不同的角度来称呼的。
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。
电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。
八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
一电力电子器件发展
电力半导体器件是电力电子应用技术的基础, 必须重视电力电子器件的发展。
国际上电力半导体器件经历了晶闸管(SCR)、可关断晶闸管(GTO)和场控器件(IGBT和功率MOSFET)三个阶段。
单管耐压
6.5kV、电流1kA、工作频率在20kHz~50kHz的大功率IGBT,耐压600V、电流100A、工作频率达150kHz(硬开关)到300kHz(软开关)的高频化IGBT均已问世。
进入90年代,电力电子器件的研究和开发已进入大功率化、高频化、标准模块化、集成化和智能化时代。
由于加工工艺的不断进步,各类电力电子器件的容量日益增大。
从理论分析和实验证明电气产品的体积与重量的缩小与供电频率的平方根成反比,也就说,当我们将50Hz的标准工频大幅的提高之后,使用这样工频的电气设备的体积与重量就能大大缩小,使电气设备制造节约材料,运行时节电就更加明显,设备的系统性能亦大为改善,尤其是对航天工业其意义十分深远的。
故电力电
子器件的高频化是今后电力电子技术创新的主导方向。
而硬件结构的标准模块化是器件发展的必然趋势。
目前先进的模块,已经包括开关元件和与其反向并联的续流二极管在内,以及驱动保护电路等多个单元,都以标准化生产出系列产品,并且可以在一致性与可靠性上达到极高的水平。
目前世界上许多大公司已开发出IPM智能化功率模块,如日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。
例如,日本新电元公司的IPM智能化功率模块的主要特点是:
1.它内部集成了功率芯片,检测电路及驱动电路,使主电路的结构为最简。
2.其功率芯片采用的是开关速度高,驱动电流小的IGBT,且自带电流传感器,可以高效地检测出过电流和短路电流,给功率芯片以安全的保护。
3.在内部配线上将电源电路和驱动电路的配线长度控制到最短,从而很好地解决了浪涌电压及噪声影响误动作等问题。
4.自带可靠的安全保护措施,当故障发生时能及时关断功率器件并发出故障信号,对芯片实施双重保护,以保证其运行的可靠性。
然而,国产电力半导体器件基本上停留在晶闸管阶段,严重落后于世界电力电子器件的发展水平。
在新世纪国际电力电子崛起之时,中国电力半导体器件的被动状态将会拖延中国振兴的进程,因此,必须大家共同努力,使这一被动局面早日得到改变。
二现代电力电子的应用
高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。
八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。
接着开关电源技术相继进人了电子、电器设备领域。
计算机技术的发展,提出绿色电脑和绿色电源。
绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。
就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。
变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。
变频器电源主电路均采用
交流-直流-交流方案。
工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。
国际上400kVA以下的变频器电源系列产品已经问世。
八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。
至1997年,其占有率已达到日本家用空调的70%以上。
变频空调具有舒适、节能等优点。
国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。
预计到2000年左右将形成高潮。
变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。
优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。
用直流斩波器代替变阻器可节约电能(20~30)%。
直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。
通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。
随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
通信业的迅速发展极大的推动了通信电源的发展,高频小型化的开关电源及其技术已成为现代通信供电系统的主流。
在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。
一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。
目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。
近几年,开关整流器的功率容量不断扩大,单机容量己从
48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在
通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。
一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。
因通信容量的不断增加,通信电源容量也将不断增加。
总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。
开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。
这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。
开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。
还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。