2018-2019学年广东省广州市荔湾区高二上学期期末教学质量监测文科数学试题
2018-2019学度度广州市普通高中毕业班教学质量监测试题文科数学
2018-2019学度度广州市普通高中毕业班教学质量监测试题文科数学文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U 1,2,3,4,5,集合1,2,2,3,则U e ()A .3B .4,5C .1,2,3D .2,3,4,52.已知向量1,2a ,23,2a b ,则b ()A .1,2B .1,2C .5,6D .2,03.已知i 是虚数单位,若32i z i ,则z ()A .2155iB .2155iC .1255i D .1255i4.从数字1、2、3中任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A .13 B .16 C .12 D .235.已知3cos 25,且3,22,则tan ()A .43 B .34 C .34 D .346.已知函数sin 22f x x (R x ),下列结论错误的是()A .函数f x 的最小正周期为B .函数f x 是偶函数C .函数f x 在区间0,2上是增函数D .函数f x 的图象关于直线4x 对称7.已知数列n a 的前n 项和为n S ,11a ,12n n S a ,则当1n 时,n S ()A .132n B .12n C .123n D .111132n 8.执行如图1所示的程序框图,若输入的值为2,则输出的值为()A .2B .3C .4D .59.某几何体的三视图如图2所示,则该几何体的外接球表面积为()A .43B .12C .24D .4810.下列函数中,在1,1内有零点且单调递增的是()A .2log y xB .22y xC .21x yD .3y x 11.设函数f x 是定义在R 上的奇函数,且2log 1,0,0x x f x g x x ,则7g f ()A .3B .3C .2D .212.设函数f x 是定义在R 上周期为2的函数,且对任意的实数x ,恒有0f x f x ,当1,0x 时,2f x x .若log a g x f x x 在0,x 上有且仅有三个零点,则a 的取值范围为()A .3,5B .4,6C .3,5D .4,6第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设x ,y 满足约束条件010220x y x y x y ,3z x y m 的最大值为4,则m 的值为.14.已知直线:l y kx b 与曲线331y x x 相切,则当斜率k 取最小值时,直线l 的方程为.15.已知正项等比数列n a 的公比2q ,若存在两项m a ,n a ,使得14m n a a a ,则14m n 的最小值为.16.下列有关命题中,正确命题的序号是.(1)命题“若21x ,则1x ”的否命题为“若21x ,则1x ”.(2)命题“R x ,210x x ”的否定是“R x ,210x x ”.(3)命题“若x y ,则sin sin x y ”的逆否命题为假命题.(4)若“p 或q ”为真命题,则p ,q 至少有一个为真命题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在C 中,角、、C 所对的边分别是a 、b 、c ,2b ,1c ,3cos 4.(I )求sin C 的值;(II )求C 的面积.18.(本小题满分12分)已知n a 是公差0d 的等差数列,2a ,6a ,22a 成等比数列,4626a a ;数列n b 是公比q 为正数的等比数列,且32b a ,56b a .(I )求数列n a ,n b 的通项公式;(II )求数列n n a b 的前n 项和n .19.(本小题满分12分)某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组20,30,第2组30,40,第3组40,50,第4组50,60,第5组60,70,得到的频率分布直方图如图3所示.(I )若电视台记者要从抽取的群众中选1人进行采访,求被采访人恰好在第2组或第4组的概率;(II )已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女性的概率.20.(本小题满分12分)如图4,在直三棱柱111C C 中,底面C 为等腰直角三角形,C 90,4,16,。
荔湾区三中2018-2019学年高二上学期数学期末模拟试卷含解析
荔湾区三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个 A.4 B. 5 C.6 D.72. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D .3. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9C .S 8D .S 74. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A .34 B .54 C.74D .345. 设x ,y ∈R ,且满足,则x+y=( )A .1B .2C .3D .46. 若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .47. 数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -=C .(1)2n n n a += D .21n a n =+8. 设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .∅B .NC .[1,+∞)D .M9. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( )A .12+B .12 C. 34 D .0 10.若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D211.满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1B .2C .3D .412.如图,空间四边形OABC 中,,,,点M 在OA 上,且,点N 为BC 中点,则等于( )A .B .C .D .二、填空题2的点的坐标是 所示的框图,输入,则输出的数等于15.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为.16.给出下列四个命题:①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x2+1的图象可由y=3x2的图象向上平移1个单位得到;④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];⑤设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;其中正确命题的序号是.(填上所有正确命题的序号)17.如图所示是y=f(x)的导函数的图象,有下列四个命题:①f(x)在(﹣3,1)上是增函数;②x=﹣1是f(x)的极小值点;③f(x)在(2,4)上是减函数,在(﹣1,2)上是增函数;④x=2是f(x)的极小值点.其中真命题为(填写所有真命题的序号).18.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .三、解答题19.(本小题满分12分)如图所示,已知⊥AB 平面ACD ,⊥DE 平面ACD ,ACD ∆为等边 三角形,AB DE AD 2==,F 为CD 的中点. (1)求证://AF 平面BCE ; (2)平面⊥BCE 平面CDE .20.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y=x 的图象上(n ∈N *),(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若c 1=0,且对任意正整数n 都有,求证:对任意正整数n ≥2,总有.21.已知函数f(x)=2|x﹣2|+ax(x∈R).(1)当a=1时,求f(x)的最小值;(2)当f(x)有最小值时,求a的取值范围;(3)若函数h(x)=f(sinx)﹣2存在零点,求a的取值范围.22.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数. (1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.23.由四个不同的数字1,2,4,x组成无重复数字的三位数.(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x.24.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.荔湾区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C 【解析】试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。
荔湾区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析
荔湾区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( ) A .2B .8C .﹣2或8D .2或82. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )A .B .C .D .3. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .44. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( )A .B .C .D .5. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83B .4C.163 D .2036. 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )A .11?B .12?C .13?D .14?7. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm8. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]9. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++=10.对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( ) A .10个 B .15个 C .16个 D .18个11.集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N ==12.某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A .程序流程图B .工序流程图C .知识结构图D .组织结构图二、填空题13.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填B 方格的数字,则不同的填法共有 种(用数字作答).14.已知实数x ,y 满足约束条,则z=的最小值为 .15.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论: ①在区间(﹣2,1)内f (x )是增函数; ②在区间(1,3)内f (x )是减函数; ③在x=2时,f (x )取得极大值; ④在x=3时,f (x )取得极小值. 其中正确的是 .16.定义在(﹣∞,+∞)上的偶函数f (x )满足f (x+1)=﹣f (x ),且f (x )在[﹣1,0]上是增函数,下面五个关于f (x )的命题中: ①f (x )是周期函数;②f (x ) 的图象关于x=1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上为减函数; ⑤f (2)=f (0).正确命题的个数是 .17.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .18.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .三、解答题19.在直角坐标系xOy 中,已知一动圆经过点(2,0)且在y 轴上截得的弦长为4,设动圆圆心的轨 迹为曲线C .(1)求曲线C 的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C 交于A ,B 两点与曲线C 交于E ,F 两点, 线段AB ,EF 的中点分别为M ,N ,求证:直线MN 过定点P ,并求出定点P 的坐标.20.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.21.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.22.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.23.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .(1)求函数y=f (x )的单调递增区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面积.24.在四棱锥E ﹣ABCD 中,底面ABCD 是边长为1的正方形,AC 与BD 交于点O ,EC ⊥底面ABCD ,F 为BE 的中点.(Ⅰ)求证:DE ∥平面ACF ;(Ⅱ)求证:BD⊥AE.荔湾区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:由题意可得3∈A,|a﹣5|=3,∴a=2,或a=8,故选D.2.【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段,上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:故选A.【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.3.【答案】A【解析】解:设=t∈(0,1],a n=5()2n﹣2﹣4()n﹣1(n∈N*),∴a n=5t2﹣4t=﹣,∴a n∈,当且仅当n=1时,t=1,此时a n取得最大值;同理n=2时,a n取得最小值.∴q﹣p=2﹣1=1,故选:A.【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.4.【答案】C【解析】解:设四面体的内切球的球心为O,则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R= 故选C .【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).5. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=203,故选D.6. 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k 值为12, 则退出循环时的k 值为13, 故退出循环的条件应为:k ≥13?, 故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.7. 【答案】D考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.8.【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.9.【答案】A试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 10.【答案】B【解析】解:a ※b=12,a 、b ∈N *,若a 和b 一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a ,b )有4个;若a 和b 同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a ,b )有2×6﹣1=11个,所以满足条件的个数为4+11=15个. 故选B11.【答案】A 【解析】试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.考点:两个集合相等、子集.112.【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示.故选D .【点评】本题考查结构图和流程图的概念,是基础题.解题时要认真审题,仔细解答.二、填空题13.【答案】 27【解析】解:若A 方格填3,则排法有2×32=18种,若A 方格填2,则排法有1×32=9种,根据分类计数原理,所以不同的填法有18+9=27种. 故答案为:27.【点评】本题考查了分类计数原理,如何分类是关键,属于基础题.14.【答案】.【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y,设t=2x+y,则y=﹣2x+t,平移直线y=﹣2x+t,由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,此时t最小.由,解得,即B(﹣3,3),代入t=2x+y得t=2×(﹣3)+3=﹣3.∴t最小为﹣3,z有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.15.【答案】③.【解析】解:由y=f'(x)的图象可知,x∈(﹣3,﹣),f'(x)<0,函数为减函数;所以,①在区间(﹣2,1)内f(x)是增函数;不正确;②在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,③在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,④在x=3时,f(x)取得极小值.不正确.故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.16.【答案】3个.【解析】解:∵定义在(﹣∞,+∞)上的偶函数f(x),∴f(x)=f(﹣x);∵f(x+1)=﹣f(x),∴f(x+1)=﹣f(x),∴f(x+2)=﹣f(x+1)=f(x),f(﹣x+1)=﹣f(x)即f(x+2)=f(x),f(﹣x+1)=f(x+1),周期为2,对称轴为x=1所以①②⑤正确,故答案为:3个17.【答案】90°.【解析】解:∵∴=∴∴α与β所成角的大小为90°故答案为90°【点评】本题用向量模的平方等于向量的平方来去掉绝对值.18.【答案】(﹣3,21).【解析】解:∵数列{a n}是等差数列,∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=6.∵﹣3<3a3<3,0<6a6<18,∴两式相加即得﹣3<S9<21.∴S9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n 项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.三、解答题19.【答案】(1) 24y x =;(2)证明见解析;(3,0). 【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212(,)22x x y y M ++, 由24,(1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 2242(24)416160k k k ∆=+-=+>,考点:曲线的轨迹方程;直线与抛物线的位置关系.【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是)('x f 不恒等于的参数的范围.20.【答案】(1)3B π=;(2)[1,2).【解析】21.【答案】【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.请22.【答案】【解析】解:∵向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),∴=0,+8=0,∴=,化为,代入=0,化为:+16﹣cos2θ,∴,∴θ=或.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.23.【答案】【解析】解:(1)f(x)=•=2cos2x+sin2x=sin2x+cos2x+1=2sin(2x+)+1,令﹣+2kπ≤2x+≤+2kπ,解得﹣+kπ≤x≤+kπ,函数y=f(x)的单调递增区间是[﹣+kπ,+kπ],(Ⅱ)∵f(A)=2∴2sin(2A+)+1=2,即sin(2A+)=….又∵0<A<π,∴A=.…∵a=,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7 ①…∵sinB=2sinC∴b=2c ②…由①②得c2=.…∴S△ABC=.…24.【答案】【解析】【分析】(Ⅰ)连接FO,则OF为△BDE的中位线,从而DE∥OF,由此能证明DE∥平面ACF.(Ⅱ)推导出BD⊥AC,EC⊥BD,从而BD⊥平面ACE,由此能证明BD⊥AE.【解答】证明:(Ⅰ)连接FO,∵底面ABCD是正方形,且O为对角线AC和BD交点,∴O为BD的中点,又∵F为BE中点,∴OF为△BDE的中位线,即DE∥OF,又OF⊂平面ACF,DE⊄平面ACF,∴DE∥平面ACF.(Ⅱ)∵底面ABCD为正方形,∴BD⊥AC,∵EC⊥平面ABCD,∴EC⊥BD,∴BD⊥平面ACE,∴BD⊥AE.。
荔湾区高级中学2018-2019学年高二上学期第一次月考试卷数学
荔湾区高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.72.已知,其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.33.函数f(x)=﹣x的图象关于()A.y轴对称B.直线y=﹣x对称C.坐标原点对称 D.直线y=x对称4.将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为()A.B.﹣C.﹣D.5.已知函数f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式xf(x)<0的解集是()A.(﹣2,﹣1)∪(1,2)B.(﹣2,﹣1)∪(0,1)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)10101化为十进制数的结果为()6.二进制数)(2A.15B.21C.33D.417.从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是()A.B.C.D.8.若关于x的方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,且满足x1<x2<x3,则a的取值范围为()A.a>B.﹣<a<1 C.a<﹣1 D.a>﹣19.与命题“若x∈A,则y∉A”等价的命题是()A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A 10.设集合A={x|2x ≤4},集合B={x|y=lg (x ﹣1)},则A ∩B 等于( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2]11.已知函数f (x )=lnx+2x ﹣6,则它的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)12.如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为( )A .B .C .D .π二、填空题13.已知实数x ,y 满足,则目标函数z=x ﹣3y 的最大值为14.在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .15.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .16.已知函数f (x )=x 2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .17.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 . 18.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)三、解答题19.(1)直线l 的方程为(a+1)x+y+2﹣a=0(a ∈R ).若l 在两坐标轴上的截距相等,求a 的值; (2)已知A (﹣2,4),B (4,0),且AB 是圆C 的直径,求圆C 的标准方程.20.火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需多长时间?21.已知椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,点(,)在椭圆E上.(1)求椭圆E的方程;(2)设过点P(2,1)的直线l与椭圆相交于A、B两点,若AB的中点恰好为点P,求直线l的方程.22.已知函数f(x)=aln(x+1)+x2﹣x,其中a为非零实数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若y=f(x)有两个极值点α,β,且α<β,求证:<.(参考数据:ln2≈0.693)23.已知函数f(x)=xlnx+ax(a∈R).(Ⅰ)若a=﹣2,求函数f(x)的单调区间;(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)24.已知函数f(x)=log a(x2+2),若f(5)=3;(1)求a的值;(2)求的值;(3)解不等式f(x)<f(x+2).荔湾区高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.2.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.3.【答案】C【解析】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选C.【解析】解:将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数y=cos=cos (2x+φ﹣)的图象,∴φ﹣=k π+,即 φ=k π+,k ∈Z ,则φ的一个可能值为,故选:D .5. 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf (x )<0的解为:或解得:x ∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞) 故选:D .6. 【答案】B 【解析】试题分析:()21212121101010242=⨯+⨯+⨯=,故选B. 考点:进位制 7. 【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到, 这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B .【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.9.【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.故选D.10.【答案】D【解析】解:A={x|2x≤4}={x|x≤2},由x﹣1>0得x>1∴B={x|y=lg(x﹣1)}={x|x>1}∴A∩B={x|1<x≤2}故选D.11.【答案】C【解析】解:易知函数f(x)=lnx+2x﹣6,在定义域R+上单调递增.因为当x→0时,f(x)→﹣∞;f(1)=﹣4<0;f(2)=ln2﹣2<0;f(3)=ln3>0;f(4)=ln4+2>0.可见f(2)•f(3)<0,故函数在(2,3)上有且只有一个零点.故选C.12.【答案】A【解析】(本题满分为12分)解:由题意可得:|AA'|=sinα、|BB'|=sinβ、|CC'|=sin(α+β),设边长为sin(α+β)的所对的三角形内角为θ,则由余弦定理可得,cosθ==﹣cosαcosβ=﹣cosαcosβ=sinαsinβ﹣cosαcosβ=﹣cos(α+β),∵α,β∈(0,)∴α+β∈(0,π)∴sinθ==sin(α+β)设外接圆的半径为R,则由正弦定理可得2R==1,∴R=,∴外接圆的面积S=πR2=.故选:A.【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,同角三角函数基本关系式,正弦定理,圆的面积公式在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.二、填空题13.【答案】5【解析】解:由z=x﹣3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最小,此时z最大,由,解得,即C(2,﹣1).代入目标函数z=x﹣3y,得z=2﹣3×(﹣1)=2+3=5,故答案为:5.14.【答案】(1,2).【解析】解:由2ρcos 2θ=sin θ,得:2ρ2cos 2θ=ρsin θ,即y=2x 2.由ρcos θ=1,得x=1.联立,解得:.∴曲线C 1与C 2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.15.【答案】4π 【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式111sin ,,(),2224abc ab C ah a b c r R++.16.【答案】 9+4.【解析】解:∵函数f (x )=x 2+x ﹣b+只有一个零点,∴△=a ﹣4(﹣b+)=0,∴a+4b=1, ∵a ,b 为正实数,∴+=(+)(a+4b )=9++≥9+2=9+4当且仅当=,即a=b 时取等号,∴+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.17.【答案】 2:1 .【解析】解:设圆锥、圆柱的母线为l ,底面半径为r ,所以圆锥的侧面积为: =πrl圆柱的侧面积为:2πrl所以圆柱和圆锥的侧面积的比为:2:1 故答案为:2:118.【答案】必要而不充分 【解析】试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.三、解答题19.【答案】【解析】解:(1)当a=﹣1时,直线化为y+3=0,不符合条件,应舍去;当a ≠﹣1时,分别令x=0,y=0,解得与坐标轴的交点(0,a ﹣2),(,0).∵直线l 在两坐标轴上的截距相等,∴a﹣2=,解得a=2或a=0;(2)∵A(﹣2,4),B(4,0),∴线段AB的中点C坐标为(1,2).又∵|AB|=,∴所求圆的半径r=|AB|=.因此,以线段AB为直径的圆C的标准方程为(x﹣1)2+(y﹣2)2=13.20.【答案】【解析】解:由条件=,设,在中,由余弦定理得.=.在中,由正弦定理,得()(分钟)答到火车站还需15分钟.21.【答案】【解析】解:(1)由题得=,=1,又a2=b2+c2,解得a2=8,b2=4.∴椭圆方程为:.(2)设直线的斜率为k,A(x1,y1),B(x2,y2),∴,=1,两式相减得=0,∵P是AB中点,∴x1+x2=4,y1+y2=2,=k,代入上式得:4+4k=0,解得k=﹣1,∴直线l:x+y﹣3=0.【点评】本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标坐标公式,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(Ⅰ).当a﹣1≥0时,即a≥1时,f'(x)≥0,f(x)在(﹣1,+∞)上单调递增;当0<a<1时,由f'(x)=0得,,故f(x)在上单调递增,在上单调递减,在上单调递增;当a<0时,由f'(x)=0得,,f(x)在上单调递减,在上单调递增.证明:(Ⅱ)由(I)知,0<a<1,且,所以α+β=0,αβ=a﹣1..由0<a<1得,0<β<1.构造函数.,设h(x)=2(x2+1)ln(x+1)﹣2x+x2,x∈(0,1),则,因为0<x<1,所以,h'(x)>0,故h(x)在(0,1)上单调递增,所以h(x)>h(0)=0,即g'(x)>0,所以g(x)在(0,1)上单调递增,所以,故.23.【答案】【解析】解:(I)a=﹣2时,f(x)=xlnx﹣2x,则f′(x)=lnx﹣1.令f′(x)=0得x=e,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,∴f(x)的单调递减区间是(0,e),单调递增区间为(e,+∞).(II)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,则xlnx+ax>k(x﹣1)+ax﹣x恒成立,即k(x﹣1)<xlnx+ax﹣ax+x恒成立,又x﹣1>0,则k<对任意x∈(1,+∞)恒成立,设h(x)=,则h′(x)=.设m(x)=x﹣lnx﹣2,则m′(x)=1﹣,∵x∈(1,+∞),∴m′(x)>0,则m(x)在(1,+∞)上是增函数.∵m(1)=﹣1<0,m(2)=﹣ln2<0,m(3)=1﹣ln3<0,m(4)=2﹣ln4>0,∴存在x0∈(3,4),使得m(x0)=0,当x∈(1,x0)时,m(x)<0,即h′(x)<0,当x∈(x0,+∞)时,m(x)>0,h′(x)>0,∴h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,∴h(x)的最小值h min(x)=h(x0)=.∵m(x0)=x0﹣lnx0﹣2=0,∴lnx0=x0﹣2.∴h(x0)==x0.∴k<h min(x)=x0.∵3<x0<4,∴k≤3.∴k的值为1,2,3.【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题.24.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…。
荔湾区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
荔湾区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知均为正实数,且,,,则( ),,x y z 22log xx =-22log yy -=-22log z z -=A .B .C .D .x y z <<z x y <<z y z <<y x z<<2. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A .B .(4+π)C .D .3. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件4. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为()A .B . C.D .5. 设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=()A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}6. 在曲线y=x 2上切线倾斜角为的点是()A .(0,0)B .(2,4)C .(,)D .(,)7. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2()A .垂直B .平行C .重合D .相交但不垂直8. 为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象()A .向左平移3π个单位B .向左平移6π个单位C.向右平移3π个单位D .向右平移23π个单位9. 已知变量满足约束条件,则的取值范围是( ),x y 20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩y x A . B .C .D .9[,6]59(,][6,)5-∞+∞ (,3][6,)-∞+∞ [3,6]10.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=511.将函数f (x )=sin2x 的图象向右平移个单位,得到函数y=g (x )的图象,则它的一个对称中心是()A .B .C .D .12.某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A .36种B .18种C .27种D .24种二、填空题13.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .14.设函数f (x )=,①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 . 15.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.16.在平面直角坐标系中,,,记,其中为坐标原点,(1,1)=-a (1,2)=b {}(,)|M OM λμλμΩ==+a b O 给出结论如下:①若,则;(1,4)(,)λμ-∈Ω1λμ==②对平面任意一点,都存在使得;M ,λμ(,)M λμ∈Ω③若,则表示一条直线;1λ=(,)λμΩ④;{}(1,)(,2)(1,5)μλΩΩ=⑤若,,且,则表示的一条线段且长度为0λ≥0μ≥2λμ+=(,)λμΩ其中所有正确结论的序号是 .17.【盐城中学2018届高三上第一次阶段性考试】已知函数有两个极值点,则实数的()()ln f x x x ax =-a 取值范围是.18.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .三、解答题19.如图,直三棱柱ABC ﹣A 1B 1C 1中,D 、E 分别是AB 、BB 1的中点,AB=2,(1)证明:BC 1∥平面A 1CD ;(2)求异面直线BC 1和A 1D 所成角的大小;(3)求三棱锥A 1﹣DEC 的体积.20.设椭圆C : +=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.21.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?22.已知不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},(1)求a,b;(2)解不等式ax2﹣(ac+b)x+bc<0.23.【南师附中2017届高三模拟二】如下图扇形是一个观光区的平面示意图,其中为,半AOB AOB ∠23π径为,为了便于游客观光休闲,拟在观光区内铺设一条从入口到出口的观光道路,道路由圆弧OA 1km A B 、线段及线段组成.其中在线段上,且,设.AC CD BD D OB //CD AO AOC θ∠=(1)用表示的长度,并写出的取值范围;θCD θ(2)当为何值时,观光道路最长?θ24.(本小题满分12分)已知向量,,(cos sin ,sin )m x m x x w w w =-a (cos sin ,2cos )x x n x w w w =--b 设函数的图象关于点对称,且.()()2n f x x R =×+Îa b (,1)12p(1,2)w Î(I )若,求函数的最小值;1m =)(x f (II )若对一切实数恒成立,求的单调递增区间.()(4f x f p£)(x f y =【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.荔湾区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】考点:对数函数,指数函数性质.2.【答案】D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.3.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A4.【答案】C【解析】考点:平面图形的直观图.5.【答案】B【解析】解:∵全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,∴集合M,N对应的韦恩图为所以N={1,3,5}故选B6.【答案】D【解析】解:y'=2x,设切点为(a,a2)∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1,∴a=,在曲线y=x2上切线倾斜角为的点是(,).故选D.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.7.【答案】A【解析】解:由题意可得直线l 1的斜率k 1==1,又∵直线l 2的倾斜角为135°,∴其斜率k 2=tan135°=﹣1,显然满足k 1•k 2=﹣1,∴l 1与l 2垂直故选A 8. 【答案】C 【解析】试题分析:将函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象向右平移3π个单位,得2sin 2sin 233y x x ππ⎛⎫=--=- ⎪⎝⎭的图象,故选C .考点:图象的平移.9. 【答案】A 【解析】试题分析:作出可行域,如图内部(含边界),表示点与原点连线的斜率,易得,ABC ∆y x (,)x y 59(,)22A ,,,所以.故选A .(1,6)B 992552OAk ==661OB k ==965y x ≤≤考点:简单的线性规划的非线性应用.10.【答案】B【解析】解:线段AB的中点为,k AB==﹣,∴垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,故选B.【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法. 11.【答案】D【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin[2(x﹣)]=sin(2x﹣);考察选项不难发现:当x=时,sin(2×﹣)=0;∴(,0)就是函数的一个对称中心坐标.故选:D.【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型.12.【答案】C【解析】排列、组合及简单计数问题.【专题】计算题;分类讨论.【分析】根据题意,分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,③,P 船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,④,P船乘1个大人和2个小孩共3人,Q 船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案.【解答】解:分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33×A22=12种情况,③,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C32×2=6种情况,④,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,则共有6+12+6+3=27种乘船方法,故选C.【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式.二、填空题13.【答案】 .【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(﹣,),故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,所以O点到直线AB的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.14.【答案】 ≤a<1或a≥2 .【解析】解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.15.【答案】【解析】解:∵f(x)=a x g(x)(a>0且a≠1),∴=a x,又∵f′(x)g(x)>f(x)g′(x),∴()′=>0,∴=a x是增函数,∴a>1,∵+=.∴a1+a﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n}.∵数列{}的前n项和大于62,∴2+22+23+…+2n==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n>5.∴n的最小值为6.故答案为:6.【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.16.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力.由得,∴,①错误;(1,4)λμ+=-a b 124λμλμ-+=-⎧⎨+=⎩21λμ=⎧⎨=⎩与不共线,由平面向量基本定理可得,②正确;a b 记,由得,∴点在过点与平行的直线上,③正确;OA = a OM μ=+ a b AM μ=b M A b 由得,,∵与不共线,∴,∴,∴④2μλ+=+a b a b (1)(2)λμ-+-=0a b a b 12λμ=⎧⎨=⎩2(1,5)μλ+=+=a b a b 正确;设,则有,∴,∴且,∴表示的一(,)M x y 2x y λμλμ=-+⎧⎨=+⎩21331133x y x y λμ⎧=-+⎪⎪⎨⎪=+⎪⎩200x y x y -≤⎧⎨+≥⎩260x y -+=(,)λμΩ条线段且线段的两个端点分别为、,其长度为,∴⑤错误.(2,4)(2,2)-17.【答案】.【解析】由题意,y ′=ln x +1−2mx令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,函数有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点,()()ln f x x x mx =-等价于函数y =ln x 与y =2mx −1的图象有两个交点,,当m =时,直线y =2mx −1与y =ln x 的图象相切,12由图可知,当0<m <时,y =ln x 与y =2mx −1的图象有两个交点,12则实数m 的取值范围是(0,),12故答案为:(0,).1218.【答案】 (,0) .【解析】解:y ′=﹣,∴斜率k=y ′|x=3=﹣2,∴切线方程是:y ﹣3=﹣2(x ﹣3),整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题. 三、解答题19.【答案】【解析】(1)证明:连接AC 1与A 1C 相交于点F ,连接DF ,由矩形ACC 1A 1可得点F 是AC 1的中点,又D 是AB 的中点,∴DF ∥BC 1,∵BC 1⊄平面A 1CD ,DF ⊂平面A 1CD ,∴BC 1∥平面A 1CD ;…(2)解:由(1)可得∠A 1DF 或其补角为异面直线BC 1和A 1D 所成角.DF=BC 1==1,A 1D==,A 1F=A 1C=1.在△A 1DF 中,由余弦定理可得:cos ∠A 1DF==,∵∠A 1DF ∈(0,π),∴∠A 1DF=,∴异面直线BC 1和A 1D 所成角的大小;…(3)解:∵AC=BC ,D 为AB 的中点,∴CD ⊥AB ,∵平面ABB 1A 1∩平面ABC=AB ,∴CD ⊥平面ABB 1A 1,CD==1.∴=﹣S △BDE ﹣﹣=∴三棱锥C ﹣A 1DE 的体积V=…【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,考查异面直线BC1和A1D所成角,是中档题,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用.20.【答案】【解析】解:(1)将点(0,4)代入椭圆C的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.21.【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林局要求.22.【答案】【解析】解:(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2﹣3x+2=0的两个实数根,且b>1.由根与系的关系得,解得,所以得.(2)由于a=1且b=2,所以不等式ax2﹣(ac+b)x+bc<0,即x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0.①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};②当c <2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x|c <x <2};③当c=2时,不等式(x ﹣2)(x ﹣c )<0的解集为∅.综上所述:当c >2时,不等式ax 2﹣(ac+b )x+bc <0的解集为{x|2<x <c};当c <2时,不等式ax 2﹣(ac+b )x+bc <0的解集为{x|c <x <2};当c=2时,不等式ax 2﹣(ac+b )x+bc <0的解集为∅.【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题. 23.【答案】(1);(2)设当时,取得最大值,即当cos ,0,3CD πθθθ⎛⎫=∈ ⎪⎝⎭∴6πθ=()L θ6πθ=时,观光道路最长.【解析】试题分析:(1)在中,由正弦定理得:OCD ∆sin sin sin CD OD COCOD DCO CDO==∠∠∠,2cos 3CD πθθθ⎛⎫∴=-=+ ⎪⎝⎭OD θ=1sin 03OD OB πθθθ<<∴<<<cos ,0,3CD πθθθ⎛⎫∴=+∈ ⎪⎝⎭(2)设观光道路长度为,()L θ则()L BD CD AC θ=++弧的长= = ,1cos θθθθ++cos 1θθθ++0,3πθ⎛⎫∈ ⎪⎝⎭∴()sin 1L θθθ=-+'由得:,又()0L θ'=sin 6πθ⎛⎫+= ⎪⎝⎭0,3πθ⎛⎫∈ ⎪⎝⎭6πθ∴=列表:θ0,6π⎛⎫ ⎪⎝⎭6π,63ππ⎛⎫ ⎪⎝⎭()L θ'+-()L θ↗极大值↘当时,取得最大值,即当时,观光道路最长.∴6πθ=()L θ6πθ=考点:本题考查了三角函数的实际运用点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。
荔湾区实验中学2018-2019学年上学期高二数学12月月考试题含解析
荔湾区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知偶函数f(x)=log a|x﹣b|在(﹣∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系是()A.f(a+1)≥f(b+2)B.f(a+1)>f(b+2)C.f(a+1)≤f(b+2)D.f(a+1)<f(b+2)2.已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于()A.8B.1C.5D.﹣13.函数y=2sin2x+sin2x的最小正周期()A.B.C.πD.2π4.已知双曲线(a>0,b>0)的右焦点F,直线x=与其渐近线交于A,B两点,且△ABF为钝角三角形,则双曲线离心率的取值范围是()A.B.C.D.5.函数的定义域为()A.{x|1<x≤4}B.{x|1<x≤4,且x≠2}C.{x|1≤x≤4,且x≠2}D.{x|x≥4}6.设为虚数单位,则()A. B. C. D.7.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为()A.M∪N B.(∁U M)∩N C.M∩(∁U N)D.(∁U M)∩(∁U N)8.空间直角坐标系中,点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C的坐标为()A.(4,1,1)B.(﹣1,0,5)C.(4,﹣3,1)D.(﹣5,3,4)9.设函数f(x)在x0处可导,则等于()A.f′(x0)B.f′(﹣x0)C.﹣f′(x0)D.﹣f(﹣x0)10.P是双曲线=1(a>0,b>0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则△PF1F2的内切圆圆心的横坐标为()A.a B.b C.c D.a+b﹣c11.如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的表面积是()A .8cm 2B . cm 2C .12 cm 2D . cm 212.圆心为(1,1)且过原点的圆的方程是()A .2=1B .2=1C .2=2D .2=2二、填空题13.定积分sintcostdt= .14.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .15.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .16.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .17.已知△的面积为,三内角,,的对边分别为,,.若,ABC S A B C 2224S a b c +=+则取最大值时.sin cos(4C B π-+C =18.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .三、解答题19.已知函数f (x )=log 2(m+)(m ∈R ,且m >0).(1)求函数f (x )的定义域;(2)若函数f (x )在(4,+∞)上单调递增,求m 的取值范围.20.(本小题满分12分)已知圆与圆:关于直线对称,且点在圆上.M N 22235(35(r y x =++-x y =35,31(-D M (1)判断圆与圆的位置关系;M N (2)设为圆上任意一点,,,三点不共线,为的平分线,且交P M 35,1(-A )35,1(B B A P 、、PG APB ∠于. 求证:与的面积之比为定值.AB G PBG ∆APG ∆21.已知数列{a n }的首项为1,前n 项和S n 满足=+1(n ≥2).(Ⅰ)求S n 与数列{a n }的通项公式;(Ⅱ)设b n =(n ∈N *),求使不等式b 1+b 2+…+b n >成立的最小正整数n .22.已知点F(0,1),直线l1:y=﹣1,直线l1⊥l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H.设点H的轨迹为曲线r.(Ⅰ)求曲线r的方程;(Ⅱ)过点P作曲线r的两条切线,切点分别为C,D,(ⅰ)求证:直线CD过定点;(ⅱ)若P(1,﹣1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由.阿啊阿23.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.24.已知数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{a n}的通项公式;(2)设数列{b n}满足b n=,证明b n≤.荔湾区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:∵y=log a|x﹣b|是偶函数∴log a|x﹣b|=log a|﹣x﹣b|∴|x﹣b|=|﹣x﹣b|∴x2﹣2bx+b2=x2+2bx+b2整理得4bx=0,由于x不恒为0,故b=0由此函数变为y=log a|x|当x∈(﹣∞,0)时,由于内层函数是一个减函数,又偶函数y=log a|x﹣b|在区间(﹣∞,0)上递增故外层函数是减函数,故可得0<a<1综上得0<a<1,b=0∴a+1<b+2,而函数f(x)=log a|x﹣b|在(0,+∞)上单调递减∴f(a+1)>f(b+2)故选B.2.【答案】B【解析】解:∵函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.3.【答案】C【解析】解:函数y=2sin2x+sin2x=2×+sin2x=sin(2x﹣)+1,则函数的最小正周期为=π,故选:C.【点评】本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.4.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目. 5.【答案】B【解析】解:要使函数有意义,只须,即,解得1<x≤4且x≠2,∴函数f(x)的定义域为{x|1<x≤4且x≠2}.故选B6.【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C7.【答案】B【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},∴∁U M={0,1},∴N∩(∁U M)={0,1},故选:B.【点评】本题主要考查集合的子交并补运算,属于基础题.8.【答案】C【解析】解:设C(x,y,z),∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,∴,解得x=4,y=﹣3,z=1,∴C(4,﹣3,1).故选:C.9.【答案】C【解析】解:=﹣=﹣f′(x0),故选C.10.【答案】A【解析】解:如图设切点分别为M,N,Q,则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.由双曲线的定义,PF1﹣PF2=2a.由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,∵F1Q+F2Q=F1F2=2c,∴F2Q=c﹣a,OQ=a,Q横坐标为a.故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.11.【答案】C【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积S=2×2+4××2×2=12cm2,故选:C.【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键.12.【答案】D【解析】解:由题意知圆半径r=,∴圆的方程为2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.二、填空题13.【答案】 .【解析】解:0sintcostdt=0sin2td(2t)=(﹣cos2t)|=×(1+1)=.故答案为:14.【答案】 .【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(﹣,),故AB的斜率为﹣,故直线AB的方程为y﹣=﹣(x﹣3),即x+3y﹣12=0,所以O点到直线AB的距离是=,故答案为:.【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.15.【答案】 30° .【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,故∠GEF即为EF与CD所成的角.又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.16.【答案】 (±,0) y=±2x .【解析】解:双曲线的a=2,b=4,c==2,可得焦点的坐标为(±,0),渐近线方程为y=±x,即为y=±2x.故答案为:(±,0),y=±2x.【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.17.【答案】4【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现 及ab 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为2b 2a 正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式.111sin ,,(),2224abc ab C ah a b c r R++18.【答案】 25 【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km ,由正弦定理可得AC==25km ,故答案为:25.【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.三、解答题19.【答案】【解析】解:(1)由m+>0,(x ﹣1)(mx ﹣1)>0,∵m >0,∴(x ﹣1)(x ﹣)>0,若>1,即0<m <1时,x ∈(﹣∞,1)∪(,+∞);若=1,即m=1时,x ∈(﹣∞,1)∪(1,+∞);若<1,即m >1时,x ∈(﹣∞,)∪(1,+∞).(2)若函数f (x )在(4,+∞)上单调递增,则函数g (x )=m+在(4,+∞)上单调递增且恒正.所以,解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档. 20.【答案】(1)圆与圆相离;(2)定值为2.【解析】试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M 的圆心,,然后根据圆心距与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和BP DM r =MN 的距离相等,所以两个三角形的面积比值,根据点P 在圆M 上,代入两点间距离公式求和PAPB S S APG PBG =∆∆PB ,最后得到其比值.PA 试题解析:(1) ∵圆的圆心关于直线的对称点为,N 35,35(-N x y =)35,35(-M ∴,916)34(||222=-==MD r ∴圆的方程为.M 916)35()35(22=-++y x ∵,∴圆与圆相离.3823210)310()310(||22=>=+=r MN M N考点:1.圆与圆的位置关系;2.点与圆的位置关系.121.【答案】【解析】解:(Ⅰ)因为=+1(n ≥2),所以是首项为1,公差为1的等差数列,…则=1+(n ﹣1)1=n ,…从而S n =n 2.…当n=1时,a 1=S 1=1,当n >1时,a n =S n ﹣S n ﹣1=n 2﹣(n ﹣1)2=2n ﹣1.因为a1=1也符合上式,所以a n=2n﹣1.…(Ⅱ)由(Ⅰ)知b n===,…所以b1+b2+…+b n===,…由,解得n>12.…所以使不等式成立的最小正整数为13.…【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想 22.【答案】【解析】满分(13分).解:(Ⅰ)由题意可知,|HF|=|HP|,∴点H到点F(0,1)的距离与到直线l1:y=﹣1的距离相等,…(2分)∴点H的轨迹是以点F(0,1)为焦点,直线l1:y=﹣1为准线的抛物线,…(3分)∴点H的轨迹方程为x2=4y.…(4分)(Ⅱ)(ⅰ)证明:设P(x1,﹣1),切点C(x C,y C),D(x D,y D).由y=,得.∴直线PC:y+1=x C(x﹣x1),…(5分)又PC过点C,y C=,∴y C+1=x C(x﹣x1)=x C x1,∴y C+1=,即.…(6分)同理,∴直线CD的方程为,…(7分)∴直线CD过定点(0,1).…(8分)(ⅱ)由(Ⅱ)(ⅰ)P(1,﹣1)在直线CD的方程为,得x1=1,直线CD的方程为.设l:y+1=k(x﹣1),与方程联立,求得x Q=.…(9分)设A(x A,y A),B(x B,y B).联立y+1=k(x﹣1)与x2=4y,得x2﹣4kx+4k+4=0,由根与系数的关系,得x A+x B=4k.x A x B=4k+4…(10分)∵x Q﹣1,x A﹣1,x B﹣1同号,∴+=|PQ|==…(11分)==,∴+为定值,定值为2.…(13分)【点评】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力.23.【答案】【解析】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.24.【答案】【解析】(1)解:∵数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),∴a2=3+3p,a3=3+12p,∵a1,a2+6,a3成等差数列.∴2a2+12=a1+a3,即18+6p=6+12p 解得p=2.∵a n+1=a n+p•3n,∴a2﹣a1=2•3,a3﹣a2=2•32,…,a n﹣a n﹣1=2•3n﹣1,将这些式子全加起来得a n﹣a1=3n﹣3,∴a n=3n.(2)证明:∵{b n}满足b n=,∴b n=.设f(x)=,则f′(x)=,x∈N*,令f′(x)=0,得x=∈(1,2)当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,且f(1)=,f(2)=,∴f(x)max=f(2)=,x∈N*.∴b n≤.【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用. 。
荔湾区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
荔湾区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 双曲线的焦点与椭圆的焦点重合,则m 的值等于( )A .12B .20C .D .2. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题. 其中真命题为( )A .①②B .①③C .②③D .③④3. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .44. 以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是( )A .B .C .D .5. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >86. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .7. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 8. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-<9.已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为()A.{x|x<﹣1或x>﹣lg2} B.{x|﹣1<x<﹣lg2}C.{x|x>﹣lg2} D.{x|x<﹣lg2}10.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A.i≤21 B.i≤11 C.i≥21 D.i≥1111.若a>0,b>0,a+b=1,则y=+的最小值是()A.2 B.3 C.4 D.512.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为()A.B.C.D.二、填空题13.若函数f(x)=log a x(其中a为常数,且a>0,a≠1)满足f(2)>f(3),则f(2x﹣1)<f(2﹣x)的解集是.14.过原点的直线l与函数y=的图象交于B,C两点,A为抛物线x2=﹣8y的焦点,则|+|=.15.已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为.16.在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;②若点P到点A的距离为,则动点P的轨迹所在曲线是圆;③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;④若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.其中真命题是(写出所有真命题的序号)17.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x﹣y+1=0相交所得的弦长为,则圆的方程为.18.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m中的整数m的值是.三、解答题19.证明:f(x)是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.18.已知函数f(x)=是奇函数.20.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.21.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.22.(本题满分15分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上.(1)求抛物线C 的方程;(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于M ,N 两点,求MN 最小时直线AB 的方程.【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.23.已知圆的极坐标方程为ρ2﹣4ρcos (θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P 在该圆上,求线段OP 的最大值和最小值.24.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角θ的正弦值;(2)证明:B1F∥平面A1BE.荔湾区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A.2.【答案】B【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B.【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.3.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.4.【答案】D【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P==,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.5.【答案】C【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m>6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值6.【答案】C【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知AH的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,1AO1=3,由A1O1•A1A=h•AO1,可得A1H=,故选:C.【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.7. 【答案】B 【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.x(1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y fx =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.本题的解答就利用了方法③. 8. 【答案】D 9. 【答案】D【解析】解:由题意可知f (x )>0的解集为{x|﹣1<x <},故可得f (10x )>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x<﹣lg2故选:D10.【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.11.【答案】C【解析】解:∵a>0,b>0,a+b=1,∴y=+=(a+b)=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4.故选:C.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.12.【答案】D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D.【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.二、填空题13.【答案】(1,2).【解析】解:∵f(x)=log a x(其中a为常数且a>0,a≠1)满足f(2)>f(3),∴0<a<1,x>0,若f(2x﹣1)<f(2﹣x),则,解得:1<x<2,故答案为:(1,2).【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.14.【答案】4.【解析】解:由题意可得点B和点C关于原点对称,∴|+|=2||,再根据A为抛物线x2=﹣8y的焦点,可得A(0,﹣2),∴2||=4,故答案为:4.【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.15.【答案】(±,0)y=±2x.【解析】解:双曲线的a=2,b=4,c==2,可得焦点的坐标为(±,0),渐近线方程为y=±x,即为y=±2x.故答案为:(±,0),y=±2x.【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.16.【答案】①②④【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,∴P点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.17.【答案】(x﹣1)2+(y+1)2=5.【解析】解:设所求圆的圆心为(a,b),半径为r,∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,∴圆心(a,b)在直线x+y=0上,∴a+b=0,①且(2﹣a)2+(1﹣b)2=r2;②又直线x﹣y+1=0截圆所得的弦长为,且圆心(a,b)到直线x﹣y+1=0的距离为d==,根据垂径定理得:r2﹣d2=,即r2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x﹣1)2+(y+1)2=5.故答案为:(x﹣1)2+(y+1)2=5.18.【答案】6.【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;∴判断框中的条件为i<6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题三、解答题19.【答案】【解析】(1)证明:由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1﹣x),即有f(﹣x)=f(x+2).又函数f(x)是定义在R上的奇函数,有f(﹣x)=﹣f(x).故f(x+2)=﹣f(x).从而f(x+4)=﹣f(x+2)=f(x).即f(x)是周期为4的周期函数.(2)解:由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[﹣1,0)时,﹣x∈(0,1],.故x∈[﹣1,0]时,.x∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x∈[﹣5,﹣4]时,函数f(x)的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.20.【答案】【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为﹣=1(λ≠0),由题意可得c 2=4|λ|+9|λ|=13,解得λ=±1.即有双曲线的方程为﹣=1或﹣=1.21.【答案】(1)21sin 212cos a S a a θθ=⋅+- (2)2a =【解析】试题解析:(1)设边BC x =,则AC ax =, 在三角形ABC 中,由余弦定理得:22212cos x ax ax θ=+-,所以22112cos x a a θ=+-, 所以211sin 2212cos a S ax x sin a a θθθ=⋅⋅=⋅+-,(2)因为()()222cos 12cos 2sin sin 1212cos a a a a a S a a θθθθθ+--⋅=+-'⋅,()()2222cos 121212cos a a aa a θθ+-=⋅+-, 令0S '=,得022cos ,1aa θ=+ 且当0θθ<时,022cos 1aa θ>+,0S '>, 当0θθ>时,022cos 1aaθ<+,0S '<, 所以当0θθ=时,面积S 最大,此时0060θ=,所以22112a a =+,解得2a = 因为1a >,则2a =点睛:解三角形的实际应用,首先转化为几何思想,将图形对应到三角形,找到已知条件,本题中对应知道一个角,一条边,及其余两边的比例关系,利用余弦定理得到函数方程;面积最值的处理过程中,若函数比较复杂,则借助导数去求解最值。
2019届广东省广州市荔湾区高三上学期调研测试一文科数学试卷【含答案及解析】
2019届广东省广州市荔湾区高三上学期调研测试一文科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 若为实数,且,则A .B .C .D .2. 集合,,,则A .B .C .D .3. 已知点,,向量,则向量A. B. C. D.4. 设,,则是成立的A. 充分必要条件 ________B. 充分不必要条件C . 必要不充分条件______________D . 既不充分也不必要条件5. 已知抛物线(为常数)的准线经过点,则抛物线的焦点坐标为A . ________B .C .D .6. 已知等比数列的前项和,则的值为A .B .C . ________D .7. 某单位为了了解办公楼用电量(度)与气温( o C )之间的关系,随机统计了四个工作日的用电量与当天平均气温,并制作了对照表:p8. ly:宋体; font-size:10.5pt">气温( o C )用电量(度)由表中数据得到线性回归方程,当气温为时,预测用电量约为A. 度B. 度C. 度D. 度9. 下列程序框图中,输出的的值A . ___________B . ______________C .________________________ D .10. 已知中,内角 , , 所对的边长分别为 , , ,若,且,,则的面积等于A .B .C .D .11. 某几何体的三视图如图所示,图中的四边形都是边长为的正方形,两条虚线互相垂直,则该几何体的体积是A. _________B. ___________C. ___________D.12. 已知函数()的部分图像如图所示,则的图象可由的图象A. 向右平移个长度单位B. 向左平移个长度单位C. 向右平移个长度单位D. 向左平移个长度单位13. 已知函数,若的图像与轴有个不同的交点,则实数的取值范围是A . ______________B . ______________C . ______________D .二、填空题14. 函数的最大值为____________________ .15. 若变量满足约束条件,则的最小值为____________________ .16. 已知直三棱柱中,,侧面的面积为,则直三棱柱外接球表面积的最小值为____________________ .17. 如图,、是双曲线的左、右焦点,过的直线与双曲线的左右两支分别交于点、 .若为等边三角形,则双曲线的离心率为____________________ .三、解答题18. (本小题满分12分)已知是公差不为零的等差数列,且, ,, 成等比数列.(1)求数列的通项公式;( 2 )设,求数列的前项和.19. (本小题满分12分)为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率;(2)检验结束后,甲、乙两名运动员的成绩如下:甲:,,,,乙:,,,,根据两组数据完成图示的茎叶图,并通过计算说明哪位运动员的成绩更稳定.20. (本小题满分12分)已知四边形为平行四边形,,,,四边形为正方形,且平面平面.(1)求证:平面;(2)若为中点,证明:在线段上存在点,使得∥ 平面,并求出此时三棱锥的体积.21. (本小题满分12分)已知函数(为自然对数的底数),曲线在点处的切线方程为.(1)求,的值;( 2 )任意,时,证明:.22. (本小题满分12分)已知圆的圆心为,,半径为,圆与离心率的椭圆的其中一个公共点为,、分别是椭圆的左、右焦点.(1)求圆的标准方程;(2)若点的坐标为,试探究直线与圆能否相切,若能,求出椭圆和直线的方程;若不能,请说明理由.23. (本小题满分10分)选修4-1:几何证明选讲如图,是⊙ 的直径,是弧的中点,,垂足为,交于点 .( 1 )求证:;( 2 )若,⊙ 的半径为6,求的长.24. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为 , (为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.( 1 )求曲线的普通方程与曲线的直角坐标方程;( 2 )设为曲线上的动点,求点到上点的距离的最小值.25. (本小题满分10分)选修4-5:不等式选讲设函数.( 1 )解不等式:;( 2 )若对一切实数均成立,求的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
荔湾区第三中学2018-2019学年上学期高二数学12月月考试题含解析
荔湾区第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A .B .C .D .2. 集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩B=( )A .{x|x <1}B .{x|﹣1≤x ≤2}C .{x|﹣1≤x ≤1}D .{x|﹣1≤x <1}3. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20484. 设D 为△ABC 所在平面内一点,,则( )A .B .C .D .5. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .566. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A7. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .4D .28. 函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2)B .(e ﹣2,+∞)C .(﹣∞,e ﹣2)D .(e ﹣2,+∞)9. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅ B .{x|x >0} C .{x|x <1} D .{x|0<x <1}可.11.若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)12.已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z <<二、填空题13.已知含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则 =+20042003b a .14.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .15.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.16.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_______元.17.满足关系式{2,3}⊆A⊆{1,2,3,4}的集合A的个数是.18.抛物线y2=﹣8x上到焦点距离等于6的点的坐标是.三、解答题19.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD长;(2)当CE⊥OD时,求证:AO=AD.20.(本小题满分12分)在多面体ABCDEFG中,四边形ABCD与CDEF均为正方形,CF⊥平面ABCD,AB BG BH==.BG⊥平面ABCD,且24(1)求证:平面AGH⊥平面EFG;--的大小的余弦值.(2)求二面角D FG E21.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,PD=AD=2EC,EC∥PD.(Ⅰ)求异面直线BD与AE所成角:(Ⅱ)求证:BE∥平面PAD;(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由.22.求曲线y=x3的过(1,1)的切线方程.23.在平面直角坐标系中,已知M(﹣a,0),N(a,0),其中a∈R,若直线l上有且只有一点P,使得|PM|+|PN|=10,则称直线l为“黄金直线”,点P为“黄金点”.由此定义可判断以下说法中正确的是①当a=7时,坐标平面内不存在黄金直线;②当a=5时,坐标平面内有无数条黄金直线;③当a=3时,黄金点的轨迹是个椭圆;④当a=0时,坐标平面内有且只有1条黄金直线.24.已知函数f(x)=|x﹣a|.(Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若∃x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求实数m的取值范围.荔湾区第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。
荔湾区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析
荔湾区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,)时,f (x )=e x +sinx ,则()A .B .C .D .2. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为()A .a <c <bB .b <a <cC .c <a <bD .c <b <a3. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( )A .0B .1C .2D .34. 执行如图的程序框图,则输出S 的值为()A .2016B .2C .D .﹣15. 两个随机变量x ,y 的取值表为x 0134y2.24.34.86.7若x ,y 具有线性相关关系,且=bx +2.6,则下列四个结论错误的是()y ^A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.656. 若,,则不等式成立的概率为()[]0,1b ∈221a b +≤A .B .C .D .16π12π8π4π7. 已知变量满足约束条件,则的取值范围是( ),x y 20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩y x A . B .C .D .9[,6]59(,][6,)5-∞+∞ (,3][6,)-∞+∞ [3,6]8. 下列函数中,既是奇函数又是减函数的为( )A .y=x+1B .y=﹣x 2C .D .y=﹣x|x|9. 复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i10.直线的倾斜角是( )A .B .C .D .11.已知向量,,若,则实数( )(,1)a t = (2,1)b t =+ ||||a b a b +=-t =A. B. C. D. 2-1-12【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.12.已知,其中i 为虚数单位,则a+b=()A .﹣1B .1C .2D .3二、填空题13.若函数的定义域为,则函数的定义域是 .()f x []1,2-(32)f x -14.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π;②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题;④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.其中正确命题的序号是 . 15.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .16.函数y=lgx 的定义域为 . 17.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .18.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单P t 位:小时)间的关系为(,均为正常数).如果前5个小时消除了的污染物,为了0ektP P -=0P k 10%消除的污染物,则需要___________小时.27.1%【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.三、解答题19.已知数列{a n }满足a 1=,a n+1=a n +,数列{b n }满足b n =(Ⅰ)证明:b n ∈(0,1)(Ⅱ)证明:=(Ⅲ)证明:对任意正整数n 有a n.20.(本小题满分12分)一直线被两直线截得线段的中点是12:460,:3560l x y l x y ++=--=P 点, 当点为时, 求此直线方程.P ()0,021.已知圆C 经过点A (﹣2,0),B (0,2),且圆心在直线y=x 上,且,又直线l :y=kx+1与圆C 相交于P 、Q 两点.(Ⅰ)求圆C 的方程;(Ⅱ)若,求实数k 的值;(Ⅲ)过点(0,1)作直线l 1与l 垂直,且直线l 1与圆C 交于M 、N 两点,求四边形PMQN 面积的最大值.22.已知三次函数f (x )的导函数f ′(x )=3x 2﹣3ax ,f (0)=b ,a 、b 为实数.(1)若曲线y=f (x )在点(a+1,f (a+1))处切线的斜率为12,求a 的值;(2)若f (x )在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a <2,求函数f (x )的解析式. 23.(本题满分14分)已知函数.x a x x f ln )(2-=(1)若在上是单调递减函数,求实数的取值范围;)(x f ]5,3[a (2)记,并设是函数的两个极值点,若,x b x a x f x g )1(2ln )2()()(--++=)(,2121x x x x <)(x g 27≥b 求的最小值.)()(21x g x g -24.已知定义域为R的函数是奇函数.(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)<0.荔湾区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:由f(x)=f(π﹣x)知,∴f()=f(π﹣)=f(),∵当x∈(﹣,)时,f(x)=e x+sinx为增函数∵<<<,∴f()<f()<f(),∴f()<f()<f(),故选:D2.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C3.【答案】C【解析】解:命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题;综上,以上3个命题中真命题的个数是2.故选:C4.【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k<2016,s=﹣1,k=1满足条件k<2016,s=,k=2满足条件k<2016,s=2.k=3满足条件k<2016,s=﹣1,k=4满足条件k<2016,s=,k=5…观察规律可知,s的取值以3为周期,由2015=3*671+2,有满足条件k<2016,s=2,k=2016不满足条件k<2016,退出循环,输出s的值为2.故选:B.【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查.5.【答案】^【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入=bx+2.6得b=0.95,即=0.95x+y^y2.6,当=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差的均值为0,∴C正确.样y^e本点(3,4.8)的残差=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.e^6.【答案】D【解析】考点:几何概型.7.【答案】A【解析】试题分析:作出可行域,如图内部(含边界),表示点与原点连线的斜率,易得,ABC ∆y x (,)x y 59(,)22A ,,,所以.故选A .(1,6)B 992552OAk ==661OB k ==965y x ≤≤考点:简单的线性规划的非线性应用.8. 【答案】D【解析】解:y=x+1不是奇函数;y=﹣x 2不是奇函数;是奇函数,但不是减函数;y=﹣x|x|既是奇函数又是减函数,故选:D .【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题. 9. 【答案】A【解析】解:由复数虚部的定义知,i ﹣1的虚部是1,故选A .【点评】该题考查复数的基本概念,属基础题. 10.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tan α=,∵0°<α<180°,∴α=30°故选A .【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握. 11.【答案】B 【解析】由知,,∴,解得,故选B.||||a b a b +=- a b ⊥ (2)110a b t t ⋅=++⨯=1t =-12.【答案】B 【解析】解:由得a+2i=bi ﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i (a ,b ∈R ),则﹣a=1,b=2,a+b=1.故选B .【点评】本题考查复数相等的意义、复数的基本运算,是基础题. 二、填空题13.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意得.11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦考点:抽象函数定义域.14.【答案】 ①③④ .【解析】解:①∵,∴T=2π,故①正确;②当x=5时,有x 2﹣4x ﹣5=0,但当x 2﹣4x ﹣5=0时,不能推出x 一定等于5,故“x=5”是“x 2﹣4x ﹣5=0”成立的充分不必要条件,故②错误;③易知命题p 为真,因为>0,故命题q 为真,所以p ∧(¬q )为假命题,故③正确;④∵f ′(x )=3x 2﹣6x ,∴f ′(1)=﹣3,∴在点(1,f (1))的切线方程为y ﹣(﹣1)=﹣3(x ﹣1),即3x+y ﹣2=0,故④正确.综上,正确的命题为①③④.故答案为①③④. 15.【答案】V【解析】【分析】四棱锥B ﹣APQC 的体积,底面面积是侧面ACC ′A ′的一半,B 到侧面的距离是常数,求解即可.【解答】解:由于四棱锥B ﹣APQC 的底面面积是侧面ACC ′A ′的一半,不妨把P 移到A ′,Q 移到C ,所求四棱锥B ﹣APQC 的体积,转化为三棱锥A ′﹣ABC 体积,就是:故答案为:16.【答案】 {x|x >0} .【解析】解:对数函数y=lgx 的定义域为:{x|x >0}.故答案为:{x|x >0}.【点评】本题考查基本函数的定义域的求法. 17.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >->⇒-<<-考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.18.【答案】15【解析】由条件知,所以.消除了的污染物后,废气中的污染物数量为5000.9ekP P -=5e0.9k-=27.1%,于是,∴,所以小时.00.729P 000.729e kt P P -=315e 0.7290.9e kt k --===15t =三、解答题19.【答案】【解析】证明:(Ⅰ)由b n =,且a n+1=a n +,得,∴,下面用数学归纳法证明:0<b n <1.①由a 1=∈(0,1),知0<b 1<1,②假设0<b k <1,则,∵0<b k <1,∴,则0<b k+1<1.综上,当n ∈N *时,b n ∈(0,1);(Ⅱ)由,可得,,∴==.故;(Ⅲ)由(Ⅱ)得:,故.由知,当n ≥2时,=.【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题. 20.【答案】.16y x =-【解析】试题分析:设所求直线与两直线分别交于,根据因为分别在直线12,l l ()()1122,,,A x y B x y ()()1122,,,A x y B x y 上,列出方程组,求解的值,即可求解直线的方程. 112,l l 11,x y考点:直线方程的求解.21.【答案】【解析】【分析】(I )设圆心C (a ,a ),半径为r ,利用|AC|=|BC|=r ,建立方程,从而可求圆C 的方程;(II )方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l :kx ﹣y+1=0的距离,即可求得实数k 的值;方法二:设P (x 1,y 1),Q (x 2,y 2),直线方程代入圆的方程,利用韦达定理及=x 1•x 2+y 1•y 2=,即可求得k 的值;(III )方法一:设圆心O 到直线l ,l 1的距离分别为d ,d 1,求得,根据垂径定理和勾股定理得到,,再利用基本不等式,可求四边形PMQN 面积的最大值;方法二:当直线l 的斜率k=0时,则l 1的斜率不存在,可求面积S ;当直线l 的斜率k ≠0时,设,则,代入消元得(1+k 2)x 2+2kx ﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN 面积的最大值.【解答】解:(I )设圆心C (a ,a ),半径为r .因为圆经过点A (﹣2,0),B (0,2),所以|AC|=|BC|=r ,所以解得a=0,r=2,…(2分)所以圆C 的方程是x 2+y 2=4.…(4分)(II )方法一:因为,…(6分)所以,∠POQ=120°,…(7分)所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)又,所以k=0.…(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)由题意得:…(7分)因为=x1•x2+y1•y2=﹣2,又,所以x1•x2+y1•y2=,…(8分)化简得:﹣5k2﹣3+3(k2+1)=0,所以k2=0,即k=0.…(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)又根据垂径定理和勾股定理得到,,…(11分)而,即…(13分)当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)方法二:设四边形PMQN的面积为S.当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)当直线l的斜率k≠0时,设则,代入消元得(1+k2)x2+2kx﹣3=0所以同理得到.…(11分)=…(12分)因为,所以,…(13分)当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)22.【答案】【解析】解:(1)由导数的几何意义f′(a+1)=12∴3(a+1)2﹣3a(a+1)=12∴3a=9∴a=3(2)∵f′(x)=3x2﹣3ax,f(0)=b∴由f′(x)=3x(x﹣a)=0得x1=0,x2=a∵x∈[﹣1,1],1<a<2∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.∴f (x )在区间[﹣1,1]上的最大值为f (0)∵f (0)=b ,∴b=1∵,∴f (﹣1)<f (1)∴f (﹣1)是函数f (x )的最小值,∴∴∴f (x )=x 3﹣2x 2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系. 23.【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2)∵,x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(22--+=--++-=24.【答案】【解析】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;…经检验,符合题意;…(2)由(1)知,f(x)==﹣+;由y=2x的单调性可推知f(x)在R上为减函数;…(3)因为f(x)在R上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)<0等价于f(1+|x|)<﹣f(x),即f(1+|x|)<f(﹣x);…又因f(x)是R上的减函数,由上式推得1+|x|>﹣x,…解得x∈R.…。
荔湾区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
荔湾区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知两条直线,其中为实数,当这两条直线的夹角在内变动12:,:0L y x L ax y =-=0,12π⎛⎫⎪⎝⎭时,的取值范围是( )A .B .C .D .()0,1(⎫⎪⎪⎭(2. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于()A .2017B .﹣8C .D .3. 已知函数,其中,对任意的都成立,在122()32f x x ax a =+-(0,3]a ∈()0f x ≤[]1,1x ∈-和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )T T =A .B .C .D .20152201532015232015224. 已知一三棱锥的三视图如图所示,那么它的体积为( )A .B .C .D .1323125. 已知抛物线的焦点为,,点是抛物线上的动点,则当的值最小时,24y x =F (1,0)A -P ||||PF PA PAF ∆的面积为( )B. C. D. 24【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.6. 过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A .﹣=1B .﹣=1C .﹣=1D .﹣=17. 已知i 为虚数单位,则复数所对应的点在()A .第一象限B .第二象限C .第三象限D .第四象限8. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为()A .y=x+2B .y=C .y=3xD .y=3x 39. 在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案10.数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)11.底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( )A .36πB .48πC .60πD .72π12.设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是()A .B .C .D .二、填空题13.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a的标准差是,则.a =14.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .15.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间()ln 4f x x x =+-内,则正整数的值为________.()1k k +,k 17.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 . 18.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .三、解答题19.已知函数f (x )=ax 2+2x ﹣lnx (a ∈R ).(Ⅰ)若a=4,求函数f (x )的极值;(Ⅱ)若f ′(x )在(0,1)有唯一的零点x 0,求a 的取值范围;(Ⅲ)若a ∈(﹣,0),设g (x )=a (1﹣x )2﹣2x ﹣1﹣ln (1﹣x ),求证:g (x )在(0,1)内有唯一的零点x 1,且对(Ⅱ)中的x 0,满足x 0+x 1>1.20.在△ABC 中,内角A ,B ,C 的对边分别为a 、b 、c ,且bsinA=acosB .(1)求B ;(2)若b=2,求△ABC 面积的最大值.21.已知函数f (x )=xlnx ,求函数f (x )的最小值.22.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.[)[)[)0,0.5,0.5,1,,4,4.5(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.23.如图所示,在边长为的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.24.根据下列条件求方程.(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.荔湾区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C 【解析】1111]试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以1:L y x =045α=0,12π⎛⎫⎪⎝⎭直线的倾斜角的取值范围是且,所以直线的斜率为2:0L ax y -=03060α<<045α≠且或,故选C.00tan 30tan 60a<<0tan 45α≠1a <<1a <<考点:直线的倾斜角与斜率.2. 【答案】D【解析】解:∵f (x+2)=﹣f (x ),∴f (x+4)=﹣f (x+2)=f (x ),即f (x+4)=f (x ),即函数的周期是4.∴a 2017=f (2017)=f (504×4+1)=f (1),∵f (x )为偶函数,当﹣2≤x ≤0时,f (x )=2x ,∴f (1)=f (﹣1)=,∴a 2017=f (1)=,故选:D .【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键. 3. 【答案】C 【解析】试题分析:因为函数,对任意的都成立,所以,解得22()32f x x ax a =+-()0f x ≤[]1,1x ∈-()()1010f f -≤⎧⎪⎨≤⎪⎩或,又因为,所以,在和两数间插入共个数,使之与,构成等3a ≥1a ≤-(0,3]a ∈3a =122015,...a a a 2015比数列,,,两式相乘,根据等比数列的性质得,T 122015...a a a =A 201521...T a a a =A ()()2015201521201513T a a ==⨯,故选C.T =201523考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.4. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为的正方体21111ABCD A B C D -中的一个四面体,其中,∴该三棱锥的体积为,选B .1ACED 11ED =112(12)2323⨯⨯⨯⨯=5. 【答案】B【解析】设,则又设,则,,所以2(,)4y P y 2||||PF PA=214y t +=244y t =-1t …,当且仅当,即时,等号成立,此时点,||||PF PA ==2t =2y =±(1,2)P ±的面积为,故选B.PAF ∆11||||22222AF y ⋅=⨯⨯=6. 【答案】A【解析】解:设所求双曲线方程为﹣y 2=λ,把(2,﹣2)代入方程﹣y 2=λ,解得λ=﹣2.由此可求得所求双曲线的方程为.故选A .【点评】本题考查双曲线的渐近线方程,解题时要注意公式的灵活运用.7. 【答案】A 【解析】解: ==1+i ,其对应的点为(1,1),故选:A . 8. 【答案】 C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x 的图象上.故选:C .【点评】本题考查了程序框图的应用问题,是基础题目. 9. 【答案】D【解析】【知识点】线性规划【试题解析】设购买一、二等奖奖品份数分别为x,y,则根据题意有:,作可行域为:A(2,6),B(4,12),C(2,16).在可行域内的整数点有:(2,6),(2,7),…….(2,16),(3,9),(3,10),……..(3,14),(4,12),共11+6+1=18个。
2019~2020学年度广东省广州市荔湾区高2021届高2018级高二上学期期末教学质量检测数学试题参考答案
31.故选 B.
2
9. 解:若{an}是等比数列,则 an 是 ank 与 ank 的等比中项,所以原命题是真命题,
从而,逆否命题是真命题;
反之,若 an ank
ank an
(n k,n,k N*) ,则当 k
1
时,
an an1
an1 (n 1,n N*) ,所 an
以{an}是等比数列,所以逆命题是真命题,从而,否命题是真命题.故选 A.
13a7
260 .
15. 解法一: 如图,因为△POF2 为正三角形,所以| OF1 || OP || OF2 | ,
所以 F1PF2 是直角三角形.
因为 PF2F1 60 ,| F2F1 | 2c ,所以| PF2 | c,| PF1 | 3c .
因为| PF2 | | PF |1 2a ,所以 c 3c 2a
即c a
2 3 1
3 1,所以 e
3 1.
-3-
y P
F1
O A F2
x
解法二:如图,易得点 P(1 c, 2
3 2
c) ,代入
x2 a2
y2 b2
1 ,得
(
1 c) 2 a2
2
(
3 c)2 2 b2
1,解得 e
c a
b2 a2 c2
3 1.
16. 解析: 因为 BD1 AD1 AB AD AA1 AB ,
D(0,0, 2 3), AD (0, 2, 2 3), DC (0, 2, 2 3) .
设 M (a, 2 a,0)(0 a 2) , uuur
则 AM (a, 4 a,0) .
设平面 DAM 的法向量 n (x, y, z) .
广东省广州市荔湾区2018-2019学年高二上学期期末教学质量监测文科数学试题-
2018学年第一学期期末教学质量检测高二数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线的渐近线方程为A. B. C. D.【答案】B【解析】【分析】双曲线的的渐近线方程.【详解】a=4,b=3,所以渐近线方程,故选 B.【点睛】考查双曲线的基本性质,渐近线的求法.属于基础题。
2.命题“如果,那么”的逆否命题是A. 如果,那么B. 如果,那么C. 如果,那么D. 如果,那么【答案】D【解析】【分析】根据命题的逆否命题的概念,即是逆命题的否命题,也是原命题的逆否命题;写出逆命题,再求其否命题即可.【详解】因为原命题的逆命题是:如果,那么,其否命题为:如果,那么,所以原命题的逆否命题是:如果,那么,故选C.【点睛】本题主要考查四种命题间的关系.解答与四个命题有关的问题时,要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地确定了它的“逆命题”“否命题”“逆否命题”,注意利用“原命题”与“逆否命题”同真假.3.根据给出的程序框图(如图),计算A. 0B. 1C. 2D. 4【答案】A【解析】试题分析:输入,满足,所以;输入,不满足,所以,即.故选.考点:算法与程序框图,函数的概念.4.某学校共有教师120人,老教师、中年教师、青年教师的比例为,其中青年男教师24人. 现用分层抽样的方式从该校教师中选出一个30人的样本,则被选出的青年女教师的人数为A. 12B. 6C. 4D. 3【答案】D【解析】【分析】求出该校青年教师的人数,再根据男青年教师求出其所占比例,所以样本中青年教师所占比例以及男女青年教师所占比例都可得到。
【详解】根据题意该校青年教师人数人,男青年教师所占比例,所以样本中的女青年教师人数=3人。
故选D。
【点睛】本题主要考查了分层抽样,样本中各类人群所占比例和总体中的比例相同。
属于基5.为了测试小班教学的实践效果,王老师对A、B两班的学生进行了阶段测试,并将所得成绩统计如图所示;记本次测试中,A、B两班学生的平均成绩分别为,,A、B两班学生成绩的方差分别为,,则观察茎叶图可知A. <,<B. >,<C. <,>D. >,>【答案】B【解析】【分析】根据茎叶图中数据的分布可得,班学生的分数多集中在之间,班学生的分数集中在之间,班学生的分数更加集中,班学生的分数更加离散,从而可得结果.【详解】班学生的分数多集中在之间,班学生的分数集中在之间,故;相对两个班级的成绩分布来说,班学生的分数更加集中,班学生的分数更加离散,故,故选B.【点睛】平均数与方差都是重要的数字特征,是对总体简明的描述,它们所反映的情况有着重要的实际意平均数、中位数、众数描述其集中趋势, 方差和标准差描述其波动大小. 随机变量的均值反映了随机变量取值的平均水平;方差反映了随机变量稳定于均值的程度, 它们从整体和全局上刻画了随机变量,是生产实际中用于方取舍的重要的理论依据,?般先比较均值, 若均值相同再用方差来决定.6.设是椭圆的一个焦点,是经过另一个焦点的弦,则的周长是A. B. C. D.【答案】A【解析】由椭圆的定义易知的周长等于.【详解】的周长=而a=3,所以的周长是12。
广东省广州市荔湾区2019-2020学年高二上学期期末教学质量监测文科数学试题Word版含答案
广东省广州市荔湾区2019-2020学年上学期期末教学质量监测高二文科数学试题本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,写在本试卷上无效. 3.考试结束后,将答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线221169x y -=的渐近线方程为 A .43y x =±B .34y x =±C .916y x =±D .169y x =± 2.命题“如果22b a x +≥,那么ab x 2≥”的逆否命题是 A. 如果22b a x +<,那么ab x 2< B. 如果22b a x +≥,那么ab x 2< C. 如果ab x 2<,那么22b a x +< D. 如果ab x 2≥,那么22b a x +≥3.根据给出的程序框图(如右图),计算(1)(2)f f -+= A .0 B .1 C .2 D .44.某学校共有教师120人,老教师、中年教师、青年教师的比例为3:4:3,其中青年男教师24人. 现用分层抽样的方式从该校教师中选出一个30人的样本,则被选出的青年女教师的人数为 A .12 B .6 C .4 D .35.为了测试班级教学的实践效果,王老师对A 、B 两班的学生进行了阶段测试,并将所得成绩统计如图所示;记本次测试中,A 、B 两班学生的平均成绩分别为A x ,B x ,A 、B 两班学生成绩的方差分别为2A s ,2B s ,则观察茎叶图可知A .A x <B x ,2A s <2B s B .A x >B x ,2A s <2B sC .A x <B x ,2A s >2B sD .A x >B x ,2A s >2B s(第5题图)(第3题图)6.设1F 是椭圆22194x y +=的一个焦点,AB 是经过另一个焦点 2F 的弦,则1AF B △的周长是A .12B .8C .6D .47.将一颗质地均匀的骰子(一种各个面分别标有1,2,3,4,5,6个点的正方体玩具)先 后抛掷2次,则出现向上的点数之和等于9的概率为 A .14B .16C .19D .1128.港珠澳大桥于2018年10月24日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米,桥面为双向六车道高速公路, 大桥通行限速100 km/h. 现对大桥某路段上汽车行驶速度进行抽样调查,画出频率分布直方图 (如右图).根据直方图估计在此路段上汽车 行驶速度的众数和行驶速度超过90 km/h 的概率 分别为A. 85,0.25B. 90,0.35C. 87.5,0.25D. 87.5,0.359.函数y =()f x 的图象如图所示,下列数值排序正 确的是A .0(1)(2)(2)(1)f f f f ''<<<-B .0(1)(2)(1)(2)f f f f ''<<-<C .0(2)(2)(1)(1)f f f f ''<<-<D .0(2)(1)(2)(1)f f f f ''<<<- 10.函数321()3f x x x ax =+-在R 上是增函数, 则实数a 的取值范围是A .[1,)-+∞ B. (,1]-∞- C. (1,)-+∞ D. (,1)-∞-11.设命题:p 函数()22x xf x -=+在R 上单调递增,命题:q 在△ABC 中,A B >是sin sin A B >的充要条件.则下列命题为真命题的是 A .p q ∧ B .()p q ∨⌝C .()p q ⌝∧D .()()p q ⌝∧⌝(km/h)(第8题图)(第9题图)12.1F 、2F 为双曲线2222:1x y C a b-=的左、右焦点,过1F 作x 轴的垂线与双曲线交于M ,N 两点,27cos 8MF N ∠=,则C 的离心率为 AB .32CD .2二、填空题:本题共4小题,每小题5分,共20分.13.已知命题:p “22xx x ∃∈≥N ,”,则:p ⌝________________. 14.执行如图所示的程序框图,那么输出S 的值是________. 15.已知{}(,)||2,||2M x y x y =≤≤,点P 的坐标为(,)x y ,当P M ∈时,则x , y 满足22(2)(2)4x y -+-≥的概率为___.16.抛物线24x y =的焦点为F ,P 为抛物线上一点,O 为坐标原点.△OPF 的外接圆与抛物线的准线相切,则此外接圆的半径为________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知抛物线:C 22y px =经过点(1,2)M . (1)求C 的标准方程和焦点坐标;(2)斜率为1的直线l 经过抛物线C 的焦点,且与抛物线相交于A ,B 两点,求线段AB的长.18.(12分)某电视台为宣传本市,随机对本市内岁的人群抽取了人,回答问题“本市内著名旅游景点有哪些” ,统计结果如图表所示.(第14题图)(1)分别求出的值; (2)根据频率分布直方图估计这组数据的中位数(保留小数点后两位)和平均数;(3)若第1组回答正确的人员中,有2名女性,其余为男性,现从中随机抽取2人,求至少抽中1名女性的概率.19.(12分)设函数32()41f x x ax x =+++在2x =-时取得极值. (1)求实数a 的值;(2)求函数()f x 在区间[3,0]-上的最值.20.(12分)下图是某公司2001年至2017年新产品研发费用y (单位:万元)的折线图.为了预测该公司2019年的新产品研发费用,建立了y 与时间变量t 的两个线性回归模型.根据2001年至2017年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:ˆ218.2y t =-+;根据2011年至2017年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:ˆ5311.5yt =+.年份研发费用12010080406020201720152013201120092007200520032001O 681217192224293138647786101110120135(1)分别利用这两个模型,求该公司2019年的新产品研发费用的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.21.(12分)已知椭圆2222:1x y C a b +=(0)a b >>1,2⎛⎫⎪ ⎪⎝⎭.直线l 与C 交于A ,B 两点,点1F 是C 的左焦点. (1)求椭圆C 的方程;(2)若l 过点1F 且不与x 轴重合,求AOB △面积S 的最大值.22.(12分) 已知函数21()1ax f x x -=+,a ∈R . (1)讨论()f x 的单调性;(2)若1a =,证明:当[1,)x ∈+∞时,ln ()2xf x ≤.广东省广州市荔湾区2019-2020学年上学期期末教学质量监测高二文科数学试题参考答案说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题.(每小题5分,共12小题,共60分)二、填空题(每小题5分,共4小题,共20分) 13.2,2xx x ∀∈<N 14.12 15.1616π- 16. 32三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)解:(1)由已知抛物线经过点(1,2)M ,代入22y px =得222p = 2p = ……………………………2 分所以 抛物线C 的标准方程为 24y x = …………………3 分 所以 抛物线的焦点为(1,0) …………………4 分 (2)设11(,)A x y ,22(,)B x y ,由已知得直线l 的方程为 1y x =- …………………5 分 联立方程214y x y x=-⎧⎨=⎩ 消去y 得 2610x x -+= …………………7 分解得13x =+23x =-…………………8 分 所以 126x x +=(也可以由韦达定理直接得到126x x +=) ………………………9 分 于是 1228AB x x =++= …………………………………………10 分 18.(本小题满分12分)解:(1) 由频率表中第组数据可知,第组的人数为,再结合频率分布直方图可知, ………………1分,………………2分, ………………3分………………4分(2) 设中位数为,由频率分布直方图可知,且有, ………………5分解得………………6分故估计这组数据的中位数为;估计这组数据的平均数为()()()200.01010300.02010400.03010x =⨯⨯+⨯⨯+⨯⨯()()500.02510600.03010+⨯⨯+⨯⨯ ………………7分2+6+12+12.5+9==41.5 ………………8分(3)由(1)知5a =,则第一组中回答正确的人员中有3名男性,2名女性.男性分别记为,,a b c ,女性分别记为1,2. ………………9分先从5人中随机抽取2人,共有()()()()(),,,,,1,,2,,a b a c a a b c ,()()(),1,,2,,1,b b c()(),2,1,2c 共10个基本事件 . ………………10分记“至少抽中一名女性”为事件A ,共有()()()()()()(),1,,2,,1,,2,,1,,2,1,2a a b b c c 共7个事件. ………………11分 则()710P A =. ………………12分19.(本小题满分12分)解:2()324f x x ax '=++, ……………2 分 因为 ()f x 在2x =-处取得极值,所以(2)0f '-=解得 4a = ……………4 分当 4a =时,2()384f x x x '=++,令()0f x '=,得2x =- 或23x =-当2x <-时,()0f x '>,()f x 在(,2)-∞-上单调递增, 当223x -<<-时,()0f x '<,()f x 在2(2,)3--上单调递减, 当23x >-时,()0f x '>,()f x 在2(,)3-+∞上单调递增, 所以 当4a =时,()f x 在2x =-取得极大值. ……………5 分(2)由(1)可列表得由表可知,在[3,0]-上,当2x =-时函数()f x 取得极大值(2)1f -= 当23x =-时函数()f x 取得极小值25()327f -=- ……………9 分 又由于(3)2f -=-,(0)1f = ……………11 分 所以 函数()f x 在[3,0]-上的最大值是1,最小值是2-. ……………12 分20.(本小题满分12分)(1)利用模型①,该公司2019年的新产品研发费用的预测值为ˆ218.219134.8y=-+⨯=(万元). ……………3 分 利用模型②,该公司2019年的新产品研发费用的预测值为ˆ5311.59156.5y=+⨯=(万元). ……………6 分 (2)利用模型②得到的预测值更可靠. ……………8 分 理由如下:(i )从折线图可以看出,2001年至2017年的数据对应的点没有随机散布在直线ˆ218.2yt =-+上下,这说明利用2001年至2017年的数据建立的线性模型①不能很好地描述新产品研发费用的变化趋势.2011年相对2010年的新产品研发费用有明显增加,2011年至2017年的数据对应的点位于一条直线附近,这说明从2011年开始新产品研发费用的变化规律呈线性增长趋势,利用2011年至2017年的数据建立的线性模型ˆ5311.5yt =+可以较好地描述2011年以后的新产品研发费用的变化趋势,因此利用模型②得到的预测值更可靠. ……………12 分(ii )从计算结果看,相对于2017年的新产品研发费用135万元,由模型①得到的预测值134.8万元明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. ……………12 分 (以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.)21.(本小题满分12分) 解:(1)依题意得c a =设2a λ=,则c =,由222a b c =+ ……………1 分得 b λ=,此时椭圆方程为222214x y λλ+=,将点⎛ ⎝⎭代入得 2213144λλ+=,解得 1λ=,所以2,1,a b c === ……………3 分 所以椭圆C 的方程为 2214x y +=. ……………4 分 (2)依题意得1(F 解法1:设直线l的方程为x my =2214x my xy ⎧=-⎪⎨+=⎪⎩ 消去x 整理得22(4)10m y +--= ……………6 分 因为1F 在椭圆内部,所以 0∆> 设11(,)A x y ,22(,)B x y ,则12y y +=,12214y y m -=+ ……………7 分 12112AOBS OF y y =-△=== ……………9 分t =,则1t ≥,233AOB S t t t==++△, ……………10 分因为 当1t >时,3t t+≥,当且仅当t =时“=”号成立,所以1AOB S ≤=△, 所以 AOB △的面积S 的最大值是1. ……………12 分 解法2:当直线l 垂直于x轴时,将x =21y +=,解得 12y =±,此时,1112AOB S OF =⨯⨯=△ ………5 分 当直线l 不垂直于x 轴时,设直线l的方程为(y k x =+(0)k ≠,联立椭圆方程得22(14y k x xy ⎧=+⎪⎨+=⎪⎩ 消去y 整理得2222(41)1240k x x k +++-= ………6 分 因为1F 在椭圆内部,所以 0∆>设11(,)A x y ,22(,)B x y ,则212241x x k -+=+,212212441k x x k -=+ ……………7 分12AB x =-==224(1)41k k +=+ 点O 到AB的距离d =所以12AOBSAB d =⋅⋅=△ 因为0k ≠ 所以令1m k =,则24AOB S m =+△, ……………9 分t =,则1t ≥,233AOB S t t t==++△, ……………10 分因为 当1t >时,3t t+≥,当且仅当t =时“=”号成立,所以1AOB S ≤=△, ……………11 分 综上得 AOB △的面积S 的最大值是1. ……………12 分22.(本小题满分12分)解:(1)222222(1)(1)2(2)()(1)(1)a x ax x ax x a f x x x +--⋅---'==++ ……………1 分 当0a =时,222()(1)x f x x '=+ 当0x <时,()0f x '<,()f x 单调递减,当0x >时,()0f x '>,()f x 单调递增,所以 ()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. ……………2 分 当0a ≠时,令()0f x '=得 220ax x a --= (*)因为 2440a ∆=+> 所以方程(*)有两根,由求根公式得11x a =,21x a+= ……………3 分 当0a >时,120x x <<,当1x x <或2x x >时,()0f x '<,()f x 单调递减,当12x x x <<时,()0f x '>,()f x 单调递增,所以()f x 在1(,)x -∞和2()x +∞上单调递减,在12(,)x x 上单调递增.………4 分 当0a <时,210x x <<,当2x x <或1x x >时,()0f x '>,()f x 单调递增,当21x x x <<时,()0f x '<,()f x 单调递减,所以()f x 在2(,)x -∞和1()x +∞上单调递增,在21(,)x x 上单调递减.………5 分 综上所述,当0a =时,()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增; 当0a >时,()f x 在1(,)x -∞和2()x +∞上单调递减,在12(,)x x 上单调递增; 当0a <时,()f x 在2(,)x -∞和1()x +∞上单调递增,在21(,)x x 上单调递减.……6 分(2)当1a =时,21()1x f x x -=+,由题意知,要证21ln 12x x x -≤+在[1,)+∞上恒成立, 即证明2(1)ln 22x x x +≥-,2(1)ln 220x x x +-+≥在[1,)+∞上恒成立. ……7 分 设2()(1)ln 22g x x x x =+-+,则1()2ln 2g x x x x x'=++-, ……8 分因为1x ≥,所以2ln 0x x ≥,122x x +≥≥(当且仅当1x =时等号成立), 即()0g x '≥, ……10 分 所以()g x 在[1,)+∞上单调递增,()(1)0g x g ≥=, 所以ln ()2x f x ≤在[1,)+∞上恒成立. ……12 分。
2019学年广东省高二上期末文科数学试卷【含答案及解析】
2019学年广东省高二上期末文科数学试卷【含答案及解析】姓名____________ 班级_______________ 分数____________ 题号-二二三总分得分、选择题1. 已知命题p:? x € R ,x 2 - 2x+4 < 0,贝V ?为()A . ? x € R, x 2 - 2x+4> 0 ______________B .弓科€尺’肩* 2盂*q〉QC . ? x ? R , x 2 - 2x+4< 0 ____________D.弓科钗" 2z n+4?>02. 设f (x) =xe x的导函数为f '(x),则f '(1)的值为()A. e B . e+1 C . 2e D . e+23. 已知条件p: x 2 - 3x+2v 0;条件q: |x - 2| v 1,则p是q成立的()A •充分不必要条件________________B .必要不充分条件C .充分必要条件_________________D.既不充分也不必要条件2 24. 已知双曲线C: 耳・2■二1的焦距为10,点P (2, 1 )在C的渐近线上,则C的35. 如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过 分钟漏完•已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的距离, 则H 与下落时间t (分)的函数关系表示的图象只可能是(7. 已知圆的方程为x 2 +y 2 - 6x - 8y=0,设该圆内过点(-3, 5)的最长弦和最短 弦分别为AC 和BD,贝V 四边形ABCD 勺面积为() 6. 一个几何体的三视图如图所示,则该几何体的表面积为2 n +4 Dn +4A . 10 拆_____________B . 20 皿 ___________ C. 30 拆 _____________ D . 403+x )上是单调增函数,则 a 的取值范围是()C . (-x, 3)D . [3 ,② AH 垂直平面CB 1 D 1③ 直线AH 和 BB 1所成角为45 °;④ AH 的延长线经过点 其中假命题的个数为(B. 1(衣丈5) C . ⑸严)A . 取值范围是()8. 已知f A .(-x, +s ) (x ) =x 3 - ax 在[1 , 3 ] _________ B . ( 1, 3) 9. 若直线 2 2 I : mx+ny=4和圆 O: x 2 +y 2 =4 的交点个数为()至多有一个 C没有交点,则过点 (m n )的直线与椭圆10. 如图所示,过抛物线 y 2 =2px (p > 0) 其准线 l '点 C,若 |BC|=2|BF|,且 |AF|=3 , 「的焦点F 的直线l 则此抛物线的方程为交抛物线于点A B ,交 ()y 2 =6x .y 2 =3x D11. 如图,正方体 四个命题:① 点日是厶A 1 BD AC 1的棱长为 1,过点 A 作平面A 1 BD 的垂线,垂足为点 H,以下的垂心;12. 已知函数f (x ) =x 3 +bx 2 +cx+d (b 、a 、d 为常数)的极大值为f (x 1 )、极小值为f ( x2 ),且 x 1 € ( 0, 1) A . 0 BD.( 5, 25)、填空题13. 已知直线ax-by-2=0与曲线y=x 2在点P (1, 1)处的切线互相垂直,则二为卜14. 若函数f(x)=x 3 +x 2 +ax+1 既有极大值也有极小值,则实数a的取值范围是2 215. 已知点F是椭圆才上1 (白二0)的右焦点,点B是短轴的一个端点,线段BF的延长线交椭圆C于点D,且刚沖而,则椭圆C的离心率为___________________ .16. 命题p:关于x的不等式x 2 +2ax+4 >0,对一切x € R恒成立;命题q:函数f(x) = (3 - 2a) x在R上是增函数.若p或q为真,p且q为假,则实数a的取值范围为 .三、解答题17. 已知锐角三角形ABC的内角A、B、C的对边分别为a、b、c,且a=2bsinA .(1 )求B的大小;(2)若a 2 +c 2 =7 ,三角形ABC的面积为1,求b的值.18. 已知函数f (x) =ax 3 +bx 2 的图象经过点M( 1 , 4),且在x= - 2取得极值.(1)求实数a, b的值;(2)若函数f (x)在区间(m, m+1)上单调递增,求m的取值范围.19. 如图,AB是圆O的直径,C是圆O上除A、B外的一点,DC丄平面\BC四边形CBED为矩形,CD=1 AB=4.20. 已知函数 f ( x ) =x 2 - lnx .(1) 求曲线f (x )在点(1, f (1))处的切线方程;(2) 求函数f (x )的单调递减区间:(3) 设函数 g (x ) =f (x ) - x 2 +ax , a >0,若 x €( O, e ] 时,g (x )的最小值是3,求实数a 的值.(e 为自然对数的底数) 21. 如图,已知椭圆 C : - +y 2 =1 ( a > 1)的左、右顶点为 A , B ,离心率为 —点S 是椭圆C 上位于x 轴上方的动点,直线 AS, BS 与直线I : x=- 斗分别交于M N 两(2) 若A 为线段MS 的中点,求△ SAB 的面积;(3) 求线段MN 长度的最小值.E - ADC 体积取最大值时,求此刻点 C 到平面ADE 的距离.当三棱锥参考答案及解析第1题【答案】【解析】试题分析:利用全称命题的否定是特称命题写出结果m可・解:因九仝称命戦前否宗帛特称命题』所以,命题p=我€戏,才-2監亠4冬0卩刚申为: 3 IQ E R.IQ- 2i g+4^0 .故选,B-第2题【答案】C【解析】试题分析;求出导函魏,再尸1代入导跚计篡’解:£' (x)£' (1) =e+e=2& .故选:J第3题【答案】A【解析】试题分析;分别化简命题A 4即可判断出结论.解:条件P:^-3x43<Q h解得L<x<2j料牛q= I x -2||< 1*「■-bO-K—解得K.则r■是戚立的充分不老雯条件・故选:A.【解析】22试题分析;利用戏曲线6 冷■专二1的焦距为垃,点F (2, 1)在C的渐逅线上,建立方程虬束出 a b 巧b的值[即可求得双曲线的方程.2 2解:丁双曲线G &一&二1的焦距为KS点P⑵1)在C的渐近线上,a b.'^+b2=25T—=1,a-'■l=V5 ;a=2V52 2二双曲线的方程対务-吕=1 -2U bJS J S: A.第5题【答案】A【解析】试题分析;利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下的体积相同・当时间取1•讲钟时』液面下隆高站漏斗高度的寺比较.解:由于所给的圆锥形漏斗上口大于下口,当时间取寺时漏斗中漓面下落的高度不会达到漏斗高度的寺,H比四个选项的圉象可得结果.故选応【解析】试题分析;根据几何体的三视風得出该几诃体是圆柱体的一部分,利用图中数据求出它的表面积.解;抿据几何体的三视图,得』该几何体是圆柱体的一半I•・•该几何体的表面积为Ern 塞二IT -l J+n X1X2+2 x 2=37T+4 ・故选:D”第7题【答案】【解析】第8题【答案】试题分析:圆x£ty*_6x-8y=0的圆心0 (3> 4),半^2x=y V36+64 =5>点 ⑵5>在圆内,最长弦 肚为圆的宜径.设A 产切的交电为爪他5」ED 为最短弦’AC 与ED 相垂直』垂足为町所以 jM=d=l ; DD=2BM=2- 1 2由此能求出四边形ABCD 的面积.K :卧廿f …产o 的圆心o 他4> ,半径耳讥应4=5,点(3 5)和(毎 4)两点间的距^=7(3-3)24(5-4)2 =1<5,二点⑶5)在圆内,二最长弦M 为圆的直径-设曲与口D 的交点为Nl (3, 5) *•・EP 为最短弦;.AC^BD 相垂亘,垂足为见所法。
广东省广州市荔湾区2018-2019学年高二第一学期期末教学质量监测文科数学试题(解析版)
2018学年第一学期期末教学质量检测高二数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线的渐近线方程为A. B. C. D.【答案】B【解析】【分析】双曲线的的渐近线方程.【详解】a=4,b=3,所以渐近线方程,故选B.【点睛】考查双曲线的基本性质,渐近线的求法.属于基础题。
2.命题“如果,那么”的逆否命题是A. 如果,那么B. 如果,那么C. 如果,那么D. 如果,那么【答案】D【解析】【分析】根据命题的逆否命题的概念,即是逆命题的否命题,也是原命题的逆否命题;写出逆命题,再求其否命题即可.【详解】因为原命题的逆命题是:如果,那么,其否命题为:如果,那么,所以原命题的逆否命题是:如果,那么,故选C.【点睛】本题主要考查四种命题间的关系.解答与四个命题有关的问题时,要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地确定了它的“逆命题”“否命题”“逆否命题”,注意利用“原命题”与“逆否命题”同真假.3.根据给出的程序框图(如图),计算A. 0B. 1C. 2D. 4【答案】A【解析】试题分析:输入,满足,所以;输入,不满足,所以,即.故选.考点:算法与程序框图,函数的概念.4.某学校共有教师120人,老教师、中年教师、青年教师的比例为,其中青年男教师24人. 现用分层抽样的方式从该校教师中选出一个30人的样本,则被选出的青年女教师的人数为A. 12B. 6C. 4D. 3【答案】D【解析】【分析】求出该校青年教师的人数,再根据男青年教师求出其所占比例,所以样本中青年教师所占比例以及男女青年教师所占比例都可得到。
【详解】根据题意该校青年教师人数人,男青年教师所占比例,所以样本中的女青年教师人数=3人。
故选D。
【点睛】本题主要考查了分层抽样,样本中各类人群所占比例和总体中的比例相同。
属于基础题。
5.为了测试小班教学的实践效果,王老师对A、B两班的学生进行了阶段测试,并将所得成绩统计如图所示;记本次测试中,A、B两班学生的平均成绩分别为,,A、B两班学生成绩的方差分别为,,则观察茎叶图可知A. <,<B. >,<C. <,>D. >,>【答案】B【解析】【分析】根据茎叶图中数据的分布可得,班学生的分数多集中在之间,班学生的分数集中在之间,班学生的分数更加集中,班学生的分数更加离散,从而可得结果.【详解】班学生的分数多集中在之间,班学生的分数集中在之间,故;相对两个班级的成绩分布来说,班学生的分数更加集中,班学生的分数更加离散,故,故选B.【点睛】平均数与方差都是重要的数字特征,是对总体简明的描述,它们所反映的情况有着重要的实际意平均数、中位数、众数描述其集中趋势, 方差和标准差描述其波动大小. 随机变量的均值反映了随机变量取值的平均水平;方差反映了随机变量稳定于均值的程度, 它们从整体和全局上刻画了随机变量,是生产实际中用于方取舍的重要的理论依据,ᅳ般先比较均值, 若均值相同再用方差来决定.6.设是椭圆的一个焦点,是经过另一个焦点的弦,则的周长是A. B. C. D.【答案】A【解析】【分析】由椭圆的定义易知的周长等于.【详解】的周长=而a=3,所以的周长是12。
荔湾区高中2018-2019学年高二上学期第一次月考试卷数学
荔湾区高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( ) A .等腰直角 B .等腰或直角 C .等腰 D .直角2. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:23. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .4. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.255. 已知||=||=1,与夹角是90°,=2+3, =k ﹣4,与垂直,k 的值为( )A .﹣6B .6C .3D .﹣36. 已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )A .1<e <B .e >C .e >D .1<e <7. 函数的定义域是( )A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)8. (2011辽宁)设sin (+θ)=,则sin2θ=( )A .﹣B .﹣C .D .9. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个10.函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( )A .()B .(,]C .() D .(]11.已知函数f (x )=,则的值为( )A .B .C .﹣2D .312.已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z <<二、填空题13.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 14.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 . 15.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面其中正确命题的序号是 .16.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ . 17.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .18.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .三、解答题19.已知函数f (x )=e ﹣x (x 2+ax )在点(0,f (0))处的切线斜率为2. (Ⅰ)求实数a 的值;(Ⅱ)设g (x )=﹣x (x ﹣t ﹣)(t ∈R ),若g (x )≥f (x )对x ∈[0,1]恒成立,求t 的取值范围;(Ⅲ)已知数列{a n }满足a 1=1,a n+1=(1+)a n ,求证:当n ≥2,n ∈N 时 f ()+f ()+L+f ()<n •()(e 为自然对数的底数,e ≈2.71828).20.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,,E ,F 分别是A 1C 1,AB 的中点.(I )求证:平面BCE ⊥平面A 1ABB 1; (II )求证:EF ∥平面B 1BCC 1; (III )求四棱锥B ﹣A 1ACC 1的体积.21.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.22.(本小题满分10分)选修4-1:几何证明选讲1111]CP=.如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3(1)若PE交圆O于点F,16EF=,求CE的长;5⊥于D,求CD的长.(2)若连接OP并延长交圆O于,A B两点,CD OP23.已知f()=﹣x﹣1.(1)求f(x);(2)求f(x)在区间[2,6]上的最大值和最小值.24.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.荔湾区高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B2.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.3.【答案】D【解析】解:A、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,A不正确;B、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,B不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是减函数,D正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.4.【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P=310.5.【答案】B【解析】解:∵=(2+3)(k﹣4)=2k+(3k﹣8)﹣12=0,又∵=0.∴2k﹣12=0,k=6.故选B【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的6.【答案】B【解析】解:设点F2(c,0),由于F2关于直线PF1的对称点恰在y轴上,不妨设M在正半轴上,由对称性可得,MF1=F1F2=2c,则MO==c,∠MF1F2=60°,∠PF1F2=30°,设直线PF1:y=(x+c),代入双曲线方程,可得,(3b2﹣a2)x2﹣2ca2x﹣a2c2﹣3a2b2=0,则方程有两个异号实数根,则有3b2﹣a2>0,即有3b2=3c2﹣3a2>a2,即c>a,则有e=>.故选:B.7.【答案】A【解析】解:由题意得:2x﹣1≥0,即2x≥1=20,因为2>1,所以指数函数y=2x为增函数,则x≥0.所以函数的定义域为[0,+∞)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域.8.【答案】A【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,则sin2θ=2sinθcosθ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.9.【答案】B【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.10.【答案】A【解析】解:∵函数g(x)是偶函数,函数f(x)=g(x﹣m),∴函数f(x)关于x=m对称,若φ∈(,),则sinφ>cosφ,则由f(sinφ)=f(cosφ),则=m,即m==(sinφ×+cosαφ)=sin(φ+)当φ∈(,),则φ+∈(,),则<sin (φ+)<,则<m <,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.11.【答案】A【解析】解:∵函数f (x )=,∴f ()==﹣2,=f (﹣2)=3﹣2=.故选:A .12.【答案】A 【解析】考点:对数函数,指数函数性质.二、填空题13.【答案】6π,18+ 【解析】14.【答案】(﹣∞,3].【解析】解:f′(x)=3x2﹣2ax+3,∵f(x)在[1,+∞)上是增函数,∴f′(x)在[1,+∞)上恒有f′(x)≥0,即3x2﹣2ax+3≥0在[1,+∞)上恒成立.则必有≤1且f′(1)=﹣2a+6≥0,∴a≤3;实数a的取值范围是(﹣∞,3].15.【答案】③.【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;②经过空间不共线三点有且只有一个平面,故错误;③过两平行直线有且只有一个平面,正确;④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误, 故正确命题的序号是③, 故答案为:③16.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.17.【答案】 2 .【解析】解:∵一组数据2,x ,4,6,10的平均值是5, ∴2+x+4+6+10=5×5, 解得x=3,∴此组数据的方差 [(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8,∴此组数据的标准差S==2.故答案为:2.【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.18.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c cb b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.1 三、解答题19.【答案】【解析】解:(Ⅰ)∵f(x)=e﹣x(x2+ax),∴f′(x)=﹣e﹣x(x2+ax)+e﹣x(2x+a)=﹣e﹣x(x2+ax﹣2x﹣a);则由题意得f′(0)=﹣(﹣a)=2,故a=2.(Ⅱ)由(Ⅰ)知,f(x)=e﹣x(x2+2x),由g(x)≥f(x)得,﹣x(x﹣t﹣)≥e﹣x(x2+2x),x∈[0,1];当x=0时,该不等式成立;当x∈(0,1]时,不等式﹣x+t+≥e﹣x(x+2)在(0,1]上恒成立,即t≥[e﹣x(x+2)+x﹣]max.设h(x)=e﹣x(x+2)+x﹣,x∈(0,1],h′(x)=﹣e﹣x(x+1)+1,h″(x)=x•e﹣x>0,∴h′(x)在(0,1]单调递增,∴h′(x)>h′(0)=0,∴h(x)在(0,1]单调递增,∴h(x)max=h(1)=1,∴t≥1.(Ⅲ)证明:∵a n+1=(1+)a n,∴=,又a1=1,∴n≥2时,a n=a1••…•=1••…•=n;对n=1也成立,∴a n=n.∵当x∈(0,1]时,f′(x)=﹣e﹣x(x2﹣2)>0,∴f(x)在[0,1]上单调递增,且f(x)≥f(0)=0.又∵f()(1≤i≤n﹣1,i∈N)表示长为f(),宽为的小矩形的面积,∴f()<f(x)dx,(1≤i≤n﹣1,i∈N),∴ [f ()+f ()+…+f ()]= [f ()+f ()+…+f ()]<f (x )dx .又由(Ⅱ),取t=1得f (x )≤g (x )=﹣x 2+(1+)x ,∴f (x )dx ≤g (x )dx=+,∴ [f ()+f ()+…+f ()]<+,∴f ()+f ()+…+f ()<n (+).【点评】本题考查函数、导数等基础知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.20.【答案】 【解析】(I )证明:在三棱柱ABC ﹣A 1B 1C 1中,BB 1⊥底面ABC ,所以,BB 1⊥BC .又因为AB ⊥BC 且AB ∩BB 1=B , 所以,BC ⊥平面A 1ABB 1.因为BC ⊂平面BCE ,所以,平面BCE ⊥平面A 1ABB 1. (II )证明:取BC 的中点D ,连接C 1D ,FD .因为E ,F 分别是A 1C 1,AB 的中点,所以,FD ∥AC 且.因为AC ∥A 1C 1且AC=A 1C 1, 所以,FD ∥EC 1且 FD=EC 1. 所以,四边形FDC 1E 是平行四边形.所以,EF ∥C 1D .又因为C 1D ⊂平面B 1BCC 1,EF ⊄平面B 1BCC 1, 所以,EF ∥平面B 1BCC 1.(III )解:因为,AB ⊥BC所以,.过点B 作BG ⊥AC 于点G ,则.因为,在三棱柱ABC ﹣A 1B 1C 1中,AA 1⊥底面ABC ,AA 1⊂平面A 1ACC 1所以,平面A 1ACC 1⊥底面ABC .所以,BG ⊥平面A 1ACC 1.所以,四棱锥B ﹣A 1ACC 1的体积.【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.21.【答案】【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08, 由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a 1,a 2,a 3,[90,100)之间的2个分数编号为b 1,b 2,在[80,100)之间的试卷中任取两份的基本事件为:(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.22.【答案】(1)4CE =;(2)CD =. 【解析】试题分析:(1)由切线的性质可知ECP ∆∽EFC ∆,由相似三角形性质知::EF CE CE EP =,可得4CE =;(2)由切割线定理可得2(4)CP BP BP =+,求出,BP OP ,再由CD OP OC CP ⋅=⋅,求出CD 的值. 1 试题解析:(1)因为CP 是圆O 的切线,CE 是圆O 的直径,所以CP CE ⊥,090CFE ∠=,所以ECP ∆∽EFC ∆,设CE x =,EP =,又因为ECP ∆∽EFC ∆,所以::EF CE CE EP =,所以2x =4x =.考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质. 23.【答案】【解析】解:(1)令t=,则x=,∴f (t )=,∴f (x )=(x ≠1)…(2)任取x 1,x 2∈[2,6],且x 1<x 2,f (x 1)﹣f (x 2)=﹣=,∵2≤x 1<x 2≤6,∴(x 1﹣1)(x 2﹣1)>0,2(x 2﹣x 1)>0, ∴f (x 1)﹣f (x 2)>0, ∴f (x )在[2,6]上单调递减,…∴当x=2时,f (x )max =2,当x=6时,f (x )min =…24.【答案】【解析】解:(1)依题意,知f (x )的定义域为(0,+∞).… 当a=2,b=1时,f (x )=lnx ﹣x 2﹣x ,f ′(x )=﹣2x ﹣1=﹣.令f ′(x )=0,解得x=.…当0<x <时,f ′(x )>0,此时f (x )单调递增;当x>时,f′(x)<0,此时f(x)单调递减.所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+∞).…(2)F(x)=lnx+,x∈[2,3],所以k=F′(x0)=≤,在x0∈[2,3]上恒成立,…所以a≥(﹣x02+x0)max,x0∈[2,3]…当x0=2时,﹣x02+x0取得最大值0.所以a≥0.…(3)当a=0,b=﹣1时,f(x)=lnx+x,因为方程f(x)=mx在区间[1,e2]内有唯一实数解,所以lnx+x=mx有唯一实数解.∴m=1+,…设g(x)=1+,则g′(x)=.…令g′(x)>0,得0<x<e;g′(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…所以m=1+,或1≤m<1+.…。
荔湾区一中2018-2019学年高二上学期第二次月考试卷数学
荔湾区一中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)2.复数=()A.B.C.D.3.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为()A.80+20πB.40+20πC.60+10πD.80+10π4.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是()A.2 B.C.D.35.过点P(﹣2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有()A .3条B .2条C .1条D .0条6. 定义集合运算:A*B={z|z=xy ,x ∈A ,y ∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为( ) A .0B .2C .3D .67. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .48. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-549. 已知x ,y 满足约束条件,使z=ax+y 取得最小值的最优解有无数个,则a 的值为( )A .﹣3B .3C .﹣1D .110.过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°11.函数y=2sin 2x+sin2x 的最小正周期( )A .B .C .πD .2π12.如图是一个多面体的三视图,则其全面积为( )A .B .C .D .二、填空题13.定义在R上的可导函数()f x,已知()f xy e=′的图象如图所示,则()y f x=的增区间是▲..已知某几何体的三视图如图所示,则该几何体的体积为.15.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角的余弦值是.16.对于|q|<1(q为公比)的无穷等比数列{a n}(即项数是无穷项),我们定义S n(其中S n是数列{a n}的前n项的和)为它的各项的和,记为S,即S=S n=,则循环小数0.的分数形式是.17.设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.18.定义)}(),(min{xgxf为)(xf与)(xg中值的较小者,则函数},2min{)(2xxxf-=的取值范围是三、解答题19.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=,=(Ⅰ)求矩阵M;(Ⅱ)求M5.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.21.如图,在四棱锥中,等边所在的平面与正方形所在的平面互相垂直,为的中点,为的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,求出的长,若不存在,请说明理由.22.已知数列{a n }中,a 1=1,且a n +a n+1=2n , (1)求数列{a n }的通项公式;(2)若数列{a n }的前n 项和S n ,求S 2n .23.如图,已知AC ,BD 为圆O 的任意两条直径,直线AE ,CF 是圆O 所在平面的两条垂线,且线段AE=CF=,AC=2.(Ⅰ)证明AD ⊥BE ;(Ⅱ)求多面体EF ﹣ABCD 体积的最大值.24.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;(2)令()()g x xf x =,区间1522,D e e -⎛⎫= ⎪⎝⎭,e 为自然对数的底数。
荔湾区三中2018-2019学年上学期高二数学12月月考试题含解析
荔湾区三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15C .10,10,30D .10,20,202. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 3. 在下列区间中,函数f (x )=()x ﹣x 的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3 ) D .(3,4)4. 函数y=|a|x﹣(a ≠0且a ≠1)的图象可能是( )A . B. C. D.5. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-6. 双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A.1+ B.4- C.5- D.3+7. 下列函数中,既是奇函数又是减函数的为( ) A .y=x+1B .y=﹣x 2C .D .y=﹣x|x|8. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A. B.C.D.9. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )为奇函数 B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数10.定义行列式运算:.若将函数的图象向左平移m(m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( )A .B .C .D .11.数列{a n }满足a 1=, =﹣1(n ∈N *),则a 10=( )A .B .C .D .12.对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1 B-1 C0 D二、填空题13.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想. 14.的展开式中的系数为 (用数字作答).15.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .16.在(x 2﹣)9的二项展开式中,常数项的值为 .17.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .18.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .三、解答题19.已知集合A={x|2≤x ≤6},集合B={x|x ≥3}. (1)求C R (A ∩B );(2)若C={x|x ≤a},且A ⊆C ,求实数a 的取值范围.20.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集; (2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.21.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;22.长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点. (1)求证:BD 1∥平面A 1DE ; (2)求证:A 1D ⊥平面ABD 1.23.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.24.已知函数f(x)=|x﹣a|.(1)若f(x)≤m的解集为{x|﹣1≤x≤5},求实数a,m的值.(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).荔湾区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B .【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.2. 【答案】B 【解析】试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系31y 22x z =+,直线系在可行域内的两个临界点分别为)2,0(A 和)0,1(C ,当直线过A 点时,32224z x y =-=-⨯=-,当直线过C 点时,32313z x y =-=⨯=,即的取值范围为]3,4[-,所以Z 的最小值为4-.故本题正确答案为B.考点:线性规划约束条件中关于最值的计算. 3. 【答案】A【解析】解:函数f (x )=()x﹣x ,可得f (0)=1>0,f (1)=﹣<0.f (2)=﹣<0, 函数的零点在(0,1).故选:A .4. 【答案】D【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A ,B当|a|<1时且a ≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C .故选:D .5. 【答案】C【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n-,选C .6. 【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m --=,解得4a =,所以21AF m ⎛=- ⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方] 7. 【答案】D【解析】解:y=x+1不是奇函数; y=﹣x 2不是奇函数;是奇函数,但不是减函数; y=﹣x|x|既是奇函数又是减函数, 故选:D .【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.8. 【答案】B【解析】解:由于α是△ABC的一个内角,tanα=,则=,又sin2α+cos2α=1,解得sinα=,cosα=(负值舍去).则cos(α+)=cos cosα﹣sin sinα=×(﹣)=.故选B.【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.9.【答案】C【解析】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.10.【答案】C【解析】解:由定义的行列式运算,得====.将函数f(x)的图象向左平移m(m>0)个单位后,所得图象对应的函数解析式为.由该函数为奇函数,得,所以,则m=.当k=0时,m有最小值.故选C.【点评】本题考查了二阶行列式与矩阵,考查了函数y=Asin(ωx+Φ)的图象变换,三角函数图象平移的原则是“左加右减,上加下减”,属中档题.11.【答案】C【解析】解:∵=﹣1(n∈N*),∴﹣=﹣1,∴数列是等差数列,首项为=﹣2,公差为﹣1.∴=﹣2﹣(n﹣1)=﹣n﹣1,∴a n=1﹣=.∴a10=.故选:C.【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.12.【答案】B【解析】由题意,可取,所以二、填空题13.【答案】【解析】14.【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:15.【答案】60°.【解析】解:∵|﹣|=,∴∴=3,∴cos<>==∵∴与的夹角为60°.故答案为:60°【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.16.【答案】84.【解析】解:(x2﹣)9的二项展开式的通项公式为T r+1=•(﹣1)r•x18﹣3r,令18﹣3r=0,求得r=6,可得常数项的值为T7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.17.【答案】0.3.【解析】离散型随机变量的期望与方差.【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550<ξ<600).【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500,∵P(400<ξ<450)=0.3,∴根据对称性,可得P(550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键. 18.【答案】 (﹣3,21) .【解析】解:∵数列{a n }是等差数列,∴S 9=9a 1+36d=x (a 1+2d )+y (a 1+5d )=(x+y )a 1+(2x+5y )d , 由待定系数法可得,解得x=3,y=6.∵﹣3<3a 3<3,0<6a 6<18,∴两式相加即得﹣3<S 9<21.∴S 9的取值范围是(﹣3,21).故答案为:(﹣3,21).【点评】本题考查了等差数列的通项公式和前n 项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.三、解答题19.【答案】【解析】解:(1)由题意:集合A={x|2≤x ≤6},集合B={x|x ≥3}.那么:A ∩B={x|6≥x ≥3}.∴C R (A ∩B )={x|x <3或x >6}.(2)C={x|x ≤a},∵A ⊆C ,∴a ≥6∴故得实数a 的取值范围是[6,+∞).【点评】本题主要考查集合的基本运算,比较基础.20.【答案】(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎝⎭,,. 【解析】试题分析:(1)由于122a -==⇒()14127222x x ---<⇒()127412x x -<--⇒158x <⇒原不等式的解集为158⎛⎫-∞ ⎪⎝⎭,;(2)由()()274144227lg241lg lg lg 0128x x a a x x a x a --<⇒-<-⇒+<.设()44lg lg 128a g x x a =+,原命题转化为()()1012800g a g <⎧⎪<<⎨<⎪⎩⇒又0a >且1a ≠⇒()11128a ⎫∈⎪⎪⎝⎭,,.考点:1、函数与不等式;2、对数与指数运算.【方法点晴】本题考查函数与不等式、对数与指数运算,涉及函数与不等式思想、数形结合思想和转化化高新,以及逻辑思维能力、等价转化能力、运算求解能力与能力,综合性较强,属于较难题型. 第一小题利用函数与不等式思想和转化化归思想将原不等式转化为()127412x x -<--,解得158x <;第二小题利用数学结合思想和转化思想,将原命题转化为()()1012800g a g <⎧⎪<⎨<⎪⎩,进而求得:()11128a ⎫∈⎪⎪⎝⎭,,. 21.【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.(2)当0a =时,()ln f x bx x =-. 假设存在实数b ,使()(]()ln 0,e g x bx x x =-∈有最小值3, 11()bx f x b x x-'=-=.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4()e 13,f x f be b e ==-==(舍去).………8分 ②当10e b <<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤ ⎥⎝⎦上单调递增, ∴2min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭,满足条件.……………………………10分 ③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4()e e 13,ef xg b b ==-==(舍去),………11分 综上,存在实数2e b =,使得当(]0,e x ∈时,函数()f x 最小值是3.……………………………12分22.【答案】【解析】证明:(1)连结A 1D ,AD 1,A 1D ∩AD 1=O ,连结OE ,∵长方体ABCD ﹣A 1B 1C 1D 1中,ADD 1A 1是矩形,∴O 是AD 1的中点,∴OE ∥BD 1,∵OE ∥BD 1,OE ⊂平面ABD 1,BD 1⊄平面ABD 1,∴BD 1∥平面A 1DE .(2)∵长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点,∴ADD 1A 1是正方形,∴A 1D ⊥AD 1,∵长方体ABCD ﹣A 1B 1C 1D 1中,AB ⊥平面ADD 1A 1,∴A 1D ⊥AB ,又AB ∩AD 1=A ,∴A 1D ⊥平面ABD 1.23.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a 【解析】【试题分析】(1)先对函数()()323131,02f x x a x ax a =+--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值()01,f =()3213122f a a a =--+=()()211212a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年广东省广州市荔湾区高二上学期期末教学质量监测文科数学试题★祝考试顺利★注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线的渐近线方程为A. B. C. D.【答案】B【解析】【分析】双曲线的的渐近线方程.【详解】a=4,b=3,所以渐近线方程,故选B.【点睛】考查双曲线的基本性质,渐近线的求法.属于基础题。
2.命题“如果,那么”的逆否命题是A. 如果,那么B. 如果,那么C. 如果,那么D. 如果,那么【答案】D【解析】【分析】根据命题的逆否命题的概念,即是逆命题的否命题,也是原命题的逆否命题;写出逆命题,再求其否命题即可.【详解】因为原命题的逆命题是:如果,那么,其否命题为:如果,那么,所以原命题的逆否命题是:如果,那么,故选C.【点睛】本题主要考查四种命题间的关系.解答与四个命题有关的问题时,要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地确定了它的“逆命题”“否命题”“逆否命题”,注意利用“原命题”与“逆否命题”同真假.3.根据给出的程序框图(如图),计算A. 0B. 1C. 2D. 4【答案】A【解析】试题分析:输入,满足,所以;输入,不满足,所以,即.故选.考点:算法与程序框图,函数的概念.4.某学校共有教师120人,老教师、中年教师、青年教师的比例为,其中青年男教师24人. 现用分层抽样的方式从该校教师中选出一个30人的样本,则被选出的青年女教师的人数为A. 12B. 6C. 4D. 3【答案】D【解析】【分析】求出该校青年教师的人数,再根据男青年教师求出其所占比例,所以样本中青年教师所占比例以及男女青年教师所占比例都可得到。
【详解】根据题意该校青年教师人数人,男青年教师所占比例,所以样本中的女青年教师人数=3人。
故选D。
【点睛】本题主要考查了分层抽样,样本中各类人群所占比例和总体中的比例相同。
属于基础题。
5.为了测试小班教学的实践效果,王老师对A、B两班的学生进行了阶段测试,并将所得成绩统计如图所示;记本次测试中,A、B两班学生的平均成绩分别为,,A、B两班学生成绩的方差分别为,,则观察茎叶图可知A. <,<B. >,<C. <,>D. >,>【答案】B【解析】【分析】根据茎叶图中数据的分布可得,班学生的分数多集中在之间,班学生的分数集中在之间,班学生的分数更加集中,班学生的分数更加离散,从而可得结果.【详解】班学生的分数多集中在之间,班学生的分数集中在之间,故;相对两个班级的成绩分布来说,班学生的分数更加集中,班学生的分数更加离散,故,【点睛】平均数与方差都是重要的数字特征,是对总体简明的描述,它们所反映的情况有着重要的实际意平均数、中位数、众数描述其集中趋势, 方差和标准差描述其波动大小. 随机变量的均值反映了随机变量取值的平均水平;方差反映了随机变量稳定于均值的程度, 它们从整体和全局上刻画了随机变量,是生产实际中用于方取舍的重要的理论依据,ᅳ般先比较均值, 若均值相同再用方差来决定.6.设是椭圆的一个焦点,是经过另一个焦点的弦,则的周长是A. B. C. D.【答案】A【解析】【分析】由椭圆的定义易知的周长等于.【详解】的周长=而a=3,所以的周长是12。
故选A。
【点睛】本题主要考查了椭圆的定义,到两个定点的距离之和等于定值的点的集合,属于基础题.7.将一颗质地均匀的骰子(一种各个面分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和等于的概率为A. B. C. D.【答案】C【解析】【分析】基本事件总数n=6×6=36,利用穷举法得到向上的点数之和等于9包含的基本事件有4个,由此能求出出现向上的点数之和等于9的概率.【详解】将一颗质地均匀的骰子(一种各个面分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数n=6×6=36,出现向上的点数之和等于9包含的基本事件有:(3,6),(6,3),(4,5),(5,4),共4个,∴出现向上的点数之和等于9的概率为p.故选:C.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是8.港珠澳大桥于2018年10月24日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米,桥面为双向六车道高速公路,大桥通行限速100 km/h. 现对大桥某路段上汽车行驶速度进行抽样调查,画出频率分布直方图(如图).根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过90 km/h的概率分别为A. ,B. ,C. ,D. ,【答案】D【解析】【分析】由频率分布直方图中最高矩形的中点可得众数,先计算行驶速度超过90 km/h的矩形面积,再乘以组距即可得频率.【详解】由频率分布直方图估计在此路段上汽车行驶速度的众数为:87.5,由频率分布直方图估计在此路段上汽车行驶速度超过90km/h的频率为:(0.05+0.02)×5=0.35,∴由频率分布直方图估计在此路段上汽车行驶速度超过90km/h的概率为:0.35,故选:D.【点睛】本题考查众数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.9.函数y =的图象如图所示,下列数值排序正确的是A.B.C.D.【答案】C【解析】【分析】由选项中各式子代表的几何意义,结合图像比较斜率即可得解.【详解】f′(2)、f′(3)是x分别为2、3时对应图象上点的切线斜率,,∴为图象上x为2和1对应两点连线的斜率,由图可知,,故选:C.【点睛】考查了导数的概念和对概念的简单应用,属于基础题.10.函数在上是增函数,则实数的取值范围是A. B.C. D.【答案】B【解析】【分析】由函数单调递增可得在上恒成立,由二次函数的性质可得:,从而得解. 【详解】函数在上是增函数,则在上恒成立.由二次函数的性质可得:,解得.故选B.【点睛】该题考查的是有关根据函数在某个区间上单调递减求参数的取值范围的问题,涉及到的知识点是导数和单调性的关系,注意其等价条件为其导数在给定区间上小于等于零或大于等于零,属于基础题.11.设命题函数在上单调递增,命题在△中,是的充要条件.则下列命题为真命题的是A. B. C. D.【答案】C【解析】【分析】由可知命题p为假命题,命题q:在△ABC中,由正弦定理及大角对大边即可得命题q为真,从而得解.【详解】命题p:对于函数,易知,所以在上不单调,故命题p为假命题.命题q:在△ABC中,A>B⇔a>b,由正弦定理可得:,因此sin A>sin B,反之也成立,是真命题.则下列命题为真命题的是(¬p)∧q.故选:C.【点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.12.、为双曲线的左、右焦点,过作轴的垂线与双曲线交于,两点,,则的离心率为A. B. C. D.【答案】A【解析】【分析】由直线与双曲线垂直得|MF1|,利用双曲线定义可得|MF2|,进而得cos,再由二倍角公列方程即可得离心率.【详解】由题意可知:|MF1|=|MF2|=2a+|MF1|2a,cos.,可得:,可得:8e,解得e或e(舍去).故选:A.【点睛】本题考查双曲线的离心率,属于中档题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解.二、填空题:本题共4小题,每小题5分,共20分.13.已知命题“”,则________________.【答案】【解析】【分析】由特称命题的否定为全称命题可得解.【详解】由特称命题的否定为全称命题可知:命题“”,则.【点睛】本题主要考查了含有量词的命题的否定,除了需要将结论进行否定外,还需将量词进行否定,全称量词换成特称量词,特称量词换成全称量词,属于基础题.14.执行如图所示的程序框图,那么输出S的值是________.【答案】【解析】【分析】执行程序框图,当不成立时结束循环计算输出结果即可.【详解】执行程序框图:,,,,,不成立,输出.故答案为:.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.15.已知,点的坐标为,则当时,且满足的概率为__________.【答案】【解析】【分析】根据题意,满足|x|≤2且|y|≤2的点P在如图的正方形ABCD及其内部运动,而满足(x﹣2)2+(y﹣2)2≥4的点P在以C为圆心且半径为2的圆及其外部运动.因此,所求概率等于阴影部分的面积与正方形ABCD的面积之比,根据扇形面积和正方形面积计算公式,即可求出本题的概率.【详解】如图,点P所在的区域为正方形ABCD及其内部满足(x﹣2)2+(y﹣2)2≥4的点位于的区域是以C(2,2)为圆心,半径等于2的圆及其外部∴P满足(x﹣2)2+(y﹣2)2≥4的概率为P1===.故答案为:【点睛】几何概型概率公式的应用:(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型.16.抛物线的焦点为,为抛物线上一点,为坐标原点.△的外接圆与抛物线的准线相切,则此外接圆的半径为________.【答案】【解析】【分析】求得抛物线的焦点和准线方程,由外接圆圆心在线段OF的垂直平分线上,可得圆心的纵坐标为,再由直线和圆相切的条件:d=r,计算可得所求半径.【详解】抛物线x2=4y的焦点为F(0,1),抛物线的准线方程为y=﹣1,设△OPF的外接圆的圆心C为(m,n),半径为r,可得C在线段OF的垂直平分线上,即有n,由外接圆与准线相切可得n+1=r,即有r.故答案为:.【点睛】本题考查抛物线的焦点和准线方程,以及直线和圆相切的条件:d=r,考查运算能力,属于基础题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知抛物线经过点.(1)求的标准方程和焦点坐标;(2)斜率为的直线经过抛物线的焦点,且与抛物线相交于,两点,求线段的长.【答案】(1)方程为,焦点为;(2)8.【解析】【分析】(1)设出抛物线方程,利用已知条件求出p,得到抛物线的方程,然后求解焦点坐标.(2)设A(x1,y1),B(x2,y2),求出直线方程与抛物线联立,利用韦达定理结合抛物线的定义,求解弦长即可.【详解】(1)由已知抛物线经过点,代入得所以抛物线的标准方程为所以抛物线的焦点为(2)设,,由已知得直线的方程为联立方程消去得解得,所以(也可以由韦达定理直接得到)于是.【点睛】题考查直线与抛物线的位置关系的应用,抛物线的方程的求法,考查计算能力,属于基础题.18.某电视台为宣传本市,随机对本市内岁的人群抽取了人,回答问题“本市内著名旅游景点有哪些” ,统计结果如图表所示.(1)分别求出的值;(2)根据频率分布直方图估计这组数据的中位数(保留小数点后两位)和平均数;(3)若第1组回答正确的人员中,有2名女性,其余为男性,现从中随机抽取2人,求至少抽中1名女性的概率.【答案】(1);(2)中位数为41.67,平均数为41.5;(3). 【解析】【分析】(1)由频率表中第4组数据可知,第4组的人数为25,再结合频率分布直方图可知n=100,由此有求出a,b,x,y;(2)设中位数为x,由频率分布直方图可知x∈[35,45),且有0.010×10+0.020×10+(x﹣35)×0.030=05,得x≈41.67,由此能估计这组数据的中位数和平均数;(3)第一组中回答正确的人员中有3名男性,2名女性,男性分别记为a,b,c,女性分别记为1,2,先从5人中随机抽取2人,利用列举法能求出至少抽中一名女性的概率.【详解】(1)由频率表中第4组数据可知,第4组的人数为25,再结合频率分布直方图可知n100,a=100×(0.010×10)×0.5=5,b=100×(0.030×10)×9=27,x0.9,y0.2.(2) 设中位数为x,由频率分布直方图可知x∈[35,45),且有0.010×10+0.020×10+(x﹣35)×0.030=05,解得x≈41.67,故估计这组数据的中位数为41.67,估计这组数据的平均数为:20×0.010×10+30×0.020×10+40×0.030×10+50×0.025×10+60×0.030×10=41.5. (3)由(1)知,则第一组中回答正确的人员中有3名男性,2名女性.男性分别记为,女性分别记为.先从5人中随机抽取2人,共有,共10个基本事件 .记“至少抽中一名女性”为事件,共有共7个事件. 则.【点睛】本题考查中位数、平均数、概率的求法,考查频率分布直方图、列举法等基础知识,考查运算求解能力,是基础题.19.设函数在时取得极值.(1)求实数的值;(2)求函数在区间上的最值.【答案】(1)(2)最大值是,最小值是【解析】【分析】(1)求函数导数,根据导数等于零,结合函数单调性可得值;(2)利用导数求得函数的单调性,进而可得最值.【详解】(1),因为在处取得极值,所以解得当时,,令,得或当时,,在上单调递增,当时,,在上单调递减,当时,,在上单调递增,所以当时,在取得极大值.(2)由(1)可列表得由表可知,在上,当时函数取得极大值当时函数取得极小值又由于,所以函数在上的最大值是,最小值是.【点睛】本题主要考查了利用函数导数求解函数的单调性及极值,属于基础题.20.如图是某公司2001年至2017年新产品研发费用(单位:万元)的折线图.为了预测该公司2019年的新产品研发费用,建立了与时间变量的两个线性回归模型.根据2001年至2017年的数据(时间变量的值依次为1,2,…,17)建立模型①:;根据2011年至2017年的数据(时间变量的值依次为1,2,…,7)建立模型②:.(1)分别利用这两个模型,求该公司2019年的新产品研发费用的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)利用模型①,预测值为134.8(万元),利用模型②,预测值为156.5(万元)(2)利用模型②得到的预测值更可靠,理由见解析【解析】【分析】(1)根据模型①计算t=19时的值,根据模型②计算t=9时的值即可;(2)从总体数据和2001年到2010年间递增幅度以及2011年到2017年间递增的幅度比较,即可得出模型②的预测值更可靠些.(1)利用模型①,该公司2019年的新产品研发费用的预测值为【详解】(万元).利用模型②,该公司2019年的新产品研发费用的预测值为(万元). (2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2001年至2017年的数据对应的点没有随机散布在直线上下,这说明利用2001年至2017年的数据建立的线性模型①不能很好地描述新产品研发费用的变化趋势.2011年相对2010年的新产品研发费用有明显增加,2011年至2017年的数据对应的点位于一条直线附近,这说明从2011年开始新产品研发费用的变化规律呈线性增长趋势,利用2011年至2017年的数据建立的线性模型可以较好地描述2011年以后的新产品研发费用的变化趋势,因此利用模型②得到的预测值更可靠. (ii)从计算结果看,相对于2017年的新产品研发费用135万元,由模型①得到的预测值万元明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.(以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.)【点睛】本题考查了线性回归方程的应用问题,属于基础题.21.已知椭圆的离心率为,且过点.直线与交于,两点,点是的左焦点.(1)求椭圆的方程;(2)若过点且不与轴重合,求面积的最大值.【答案】(1);(2)1.【解析】【分析】(1)通过椭圆离心率为,过点,列式值计算即得a,b即可;(2)解法1:设直线l的方程为代入椭圆方程,整理,利用韦达定理,计算三角形的面积,换元,利用函数的单调性,即可求得结论.解法2:当直线l垂直于x轴时,将代入椭圆方程得,解得,此时,当直线l不垂直于x轴时,设直线l的方程为(k≠0),代入椭圆方程,整理,利用韦达定理,计算三角形的面积,换元,利用函数的单调性,即可求得结论.【详解】(1)依题意得,解得,所以椭圆的方程为.(2)依题意得解法1:设直线的方程为,联立椭圆方程得消去整理得因为在椭圆内部,所以设,,则,. 令,则,,因为当时,,当且仅当时“”号成立,所以,所以的面积的最大值是.解法2:当直线垂直于轴时,将代入椭圆方程得,解得,此时,当直线不垂直于轴时,设直线的方程为,联立椭圆方程得消去整理得因为在椭圆内部,所以设,,则,.点到的距离,所以因为所以令,则,令,则,,因为当时,,当且仅当时“”号成立,所以,综上得的面积的最大值是.【点睛】本题是一道直线与圆锥曲线的综合题,考查三角形面积的计算,考查运算求解能力,属于中档题.22.已知函数,.(1)讨论的单调性;(2)若,证明:当时,.【答案】(1)见解析(2)见解析【解析】【分析】(1)求函数导数,讨论a,根据导数的正负分析函数单调性即可;(2)要证在上恒成立,即证明,在上恒成立,设,求函数导数,利用单调性求最值证明即可. 【详解】(1)当时,当时,,单调递减,当时,,单调递增,所以在上单调递减,在上单调递增.当时,令得(*)因为所以方程(*)有两根,由求根公式得, .当时,,当或时,,单调递减,当时,,单调递增,所以在和上单调递减,在上单调递增.当时,,当或时,,单调递增,当时,,单调递减,所以在和上单调递增,在上单调递减.综上所述,当时,在上单调递减,在上单调递增;当时,在和上单调递减,在上单调递增;当时,在和上单调递增,在上单调递减.(2)当时,,由题意知,要证在上恒成立,即证明,在上恒成立.设,则,因为,所以,(当且仅当时等号成立),即,所以在上单调递增,,所以在上恒成立.【点睛】本题主要考查了利用函数的导数研究函数的单调性,求函数最值证明不等式,考查了学生分类讨论和构造函数的思想,属于中档题.。