组合图形的面积计算练习课
《组合图形的面积》教案优秀8篇
《组合图形的面积》教案优秀8篇《组合图形的面积》教案篇一一、知识要点在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
二、精讲精练【例题1】求图中阴影部分的面积(单位:厘米)。
【思路导航】如图所示的特点,阴影部分的面积可以拼成圆的面积。
62×3.14× =28.26(平方厘米)答:阴影部分的面积是28.26平方厘米。
练习1:1.求下面各个图形中阴影部分的面积(单位:厘米)。
2.求下面各个图形中阴影部分的面积(单位:厘米)。
3.求下面各个图形中阴影部分的面积(单位:厘米)。
【例题2】求图中阴影部分的面积(单位:厘米)。
【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。
从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。
3.14× -4×4÷2÷2=8.56(平方厘米)答:阴影部分的面积是8.56平方厘米。
练习2:1.计算下面图形中阴影部分的面积(单位:厘米)。
2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。
【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。
又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。
所以3.14×12×1/4×2=1.57(平方厘米)答:长方形长方形ABO1O的面积是1.57平方厘米。
练习3:1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。
苏教版五年级数学下册第六单元《组合图形的面积计算》说课稿
苏教版五年级数学下册第六单元《组合图形的面积计算》说课稿一. 教材分析苏教版五年级数学下册第六单元《组合图形的面积计算》的内容主要包括组合图形的定义、组合图形的面积计算方法以及实际应用等。
本节课通过让学生自主探究、合作交流,培养学生的空间观念和动手操作能力,提高学生解决实际问题的能力。
二. 学情分析五年级的学生已经掌握了基本图形的面积计算方法,具备了一定的空间观念和动手操作能力。
但是,对于组合图形的面积计算,他们可能还存在着一定的困难。
因此,在教学过程中,我们需要关注学生的个体差异,引导他们通过实际操作、自主探究和合作交流,逐步掌握组合图形的面积计算方法。
三. 说教学目标1.知识与技能:让学生掌握组合图形的定义,学会计算组合图形的面积,能运用所学知识解决实际问题。
2.过程与方法:培养学生自主探究、合作交流的能力,提高空间观念和动手操作能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和团队协作精神。
四. 说教学重难点1.教学重点:组合图形的定义,组合图形的面积计算方法。
2.教学难点:如何引导学生自主探究组合图形的面积计算方法,以及如何运用所学知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用自主探究、合作交流、教师引导相结合的教学方法。
2.教学手段:利用多媒体课件、实物模型、操作卡片等教学辅助工具,引导学生直观地认识组合图形,提高学生的空间观念。
六. 说教学过程1.导入新课:通过展示一些生活中的组合图形,引导学生发现组合图形的特点,引发学生对组合图形面积计算的兴趣。
2.自主探究:让学生分组讨论,尝试计算组合图形的面积。
教师在这个过程中给予适当的引导和提示。
3.交流分享:各小组汇报自己的探究成果,其他小组进行评价、补充。
教师在这个过程中引导学生总结组合图形的面积计算方法。
4.实践应用:让学生运用所学知识解决实际问题,如计算一些组合图形的面积,并进行交流分享。
5.总结提升:教师引导学生总结本节课所学内容,强化组合图形的面积计算方法。
五年级上册数学一课一练-第6单元第4课时《组合图形的面积及不规则图形的面积》
第6单元第4课时《组合图形的面积及不规则图形的面积》同步练习一、选择题。
1、如图是一个直角梯形,图中阴影部分面积是100平方厘米,空白部分面积是()平方厘米.A.140 B.120 C.100 D.702、下面三个完全一样的直角梯形中,阴影部分的面积().A.甲最大B.乙最大 C.丙最大 D.一样大3、如图的长方形的面积是96,空白部分的面积().A.24 B.32 C.484、如图,平行四边形的面积是24cm2,则阴影部分的面积是().A.2cm2B.4cm2C.10cm2D.12cm25、如图所示,正方形的边长6厘米,计算阴影部分的面积,方法正确的是().A.6×6﹣×3×3 B.6×6﹣×6×6÷2C.×3×3×2 D.3×3×÷46、图中阴影部分的面积是()平方厘米.A.24 B.28 C.327、如图阴影部分的面积是().A.36cm2B.42cm2C.48cm2D.56cm28、如图中,阴影部分的面积是()平方厘米.A.400 B.200 C.314 D.1579、估算方格纸中不规则图形的面积时,下列说法不正确的是().A、可以采用数方格的方法。
B、可以把它看成近似规则图形进行估算。
C、方格纸中每个方格的边长表示的长度越长,估算的结果也就越准确。
10、如图A、B分别是长方形长和宽的中点,阴影部分面积是长方形的().A. B. C. D.二、填一填。
1、如图,四边形ABCD是一个梯形,由三个直角三角形拼成,它的面积是平方厘米.2、如图,边长相等的两个正方形中,画了甲、乙两个三角形(用阴影表示),它们的面积相比 .3、如图中阴影部分的面积是60平方厘米,空白部分的面积是平方厘米.4、(1)亮亮刚出生时脚印的面积约 cm²(假设每个小方格的面积是1cm²)(2)亮亮5岁时脚印的面积约是 cm²。
五年级组合图形的面积典型例题全面复习
五年级上册组合图形面积计算题求下列图形的面积:(单位:cm )435254367886101:一个等腰直角三角形,最长的边是10厘米,这个三角形的面积是多少平方厘米?【巩固练习1】:如图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
2:求右面平行四边形的周长。
8612【巩固练习2】:求右面三角形的AB 上的高。
典型例题3:求右图等腰直角三角形中阴影部分的面积。
(单位:厘米)【巩固练习3】:求四边形ABCD 的面积。
(单位:厘米)典型例题4:有一种将正方形内接于等腰直角三角形。
已知等腰直角三角形的面积是72平方厘米,正方形的面积分别是多少?【巩固练习4】:有一种将正方形内接于等腰直角三角形。
已知等腰直角三角形的面积是72平方厘米,正方形的面积分别是多少?典型例题5:图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
410CBA543【巩固练习5】:图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。
【巩固练习6】求右图等腰直角三角形中阴影部分的面积。
(单位:厘米)典型例题7:在一个直角三角形铁皮上剪下一块正方形,剩下两个三角形,已知AD=3cm ,DB=4cm ,两个三角形面积和是多少?2、已知正方形ABCD 的边长是7厘米,求正方形EFGH 的面积。
3、求下图长方形ABCD 的面积(单位:厘米)。
4、如图,用48m 长的篱笆靠墙围了一个梯形养鸡场,求养鸡场的面积?5、在一个直角三角形铁皮上剪下一块正方形,剩下两个三角形,已知AD=4cm ,DB=6cm ,两个三角形面积和是多少?DCBA610DCBA20m 墙【典型例题】【例1】已知平行四边表的面积是28平方厘米,求阴影部分的面积。
【练一练】如果用铁丝围成如下图一样的平行四边形,需要用多少厘米铁丝?(单位:厘米)【例2】下图中甲和乙都是正方形,求阴影部分的面积。
数学组合图形的面积教案(10篇)
数学组合图形的面积教案(10篇)数学组合图形的面积教案篇一教学目标1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。
2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。
教学重点能根据条件求组合图形的面积。
教学难点理解分解图形时简单图形的差较难分解。
教具、学具教师指导与教学过程学生学习活动过程设计意图一、试一试教师引导学生读题,理解题意。
二、练一练第1题1、请学生任意分割,后说说分割的是什么已经学过的图形2、老师要求再分割3、想一想出了分割还有没有其他方法。
这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。
学生自己进行分割,再分割为最少的学过的图形,比一比谁分的最少,而且还是我们学过的`图形。
适当地添上相关的条件进行分割,要求分割的合理,能够计算。
培养学生的空间分析能力。
通过三个层次的分割,使学生明白在组合图形的分割中,学要根据所给的条件进行合理的分割和添补。
教师指导与教学过程学生学习活动过程设计意图三、练一练第3题学生看书上的图。
教师读题,要求学生想一想,并观察教室里的门,如果学生能发现要油漆门的两侧,教师要加以鼓励,还要注意些什么?四、作业完成练一练的第2题。
理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的两侧。
除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。
独立完成练习。
学生能正确进行组合图形的实际运用。
再进行组合图形的面积。
书设计:图形的面积数学组合图形的面积教案篇二教学内容:教材第68—69页含有圆的组合图形的面积。
教学目标:1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
组合图形的面积及练习题
方法二:
梯形×2
上底: 5m
2m
下底: 5+2=7m 5m 高: 5÷2=2.5m
5m
(5+5+2)×(5÷2)÷2×2 =12×2.5÷2×2 =30(平方米) 答:它的面积是30平方米。
方法三:
2m
5m
5m
长方形 - 两个三角形
(5+2)×5 -(5÷ 2)×2÷2×2 =35-5 =30(平方米)
虚线把组合图形分割或填补成我们知道的 简单的图形,从而方便我们的计算。在数 学中这些虚线叫做辅助线。
求组合图形面积的一般方法: ⑴分割法:可以把一个组合图形分成几个简 单的图形,分别求出这几个简单图形的面 积,再求和。 ⑵添补法:可以把一个组合图形看作是从一 个简单图形中减去几个简单的图形,求出 它们的面积差。
4m
3m 3m
(2) (7-4+7)×3÷2=15 ( m2 ) (3)18+15=33( m2 ) 答:这个图形的面积是33平方米。
6m
3m 7m
(6-3+6)×4÷2+(7-4+7)×3÷2 =9×4÷2+10×3÷2 =18+15 =33(m2)
方法4:
补上一个小的正方形,使 它成了一个大的长方形
已经学过的几种平面图形的面积计算公式
b a
S=ab
a
a
S=a2
h a
平行四边形的面积=底×高 长方形的面积=长×宽 正方形的面积=边长×边长
S=ah
a h a
三角形的面积=底×高 ÷2
b
h b a
梯形的面积=﹙上底+下底﹚×高÷2
S=ah÷2
S=(a+b)h÷2
这些都是简单的、基本的图形。
苏教版五年级上册电子教案第二单元《第9课时组合图形面积练习课》
苏教版五年级上册电子教案第二单元《第9课时组合图形面积练习课》一. 教材分析苏教版五年级上册第二单元《第9课时组合图形面积练习课》的教材内容主要包括两个方面:一是组合图形的面积计算方法,二是运用组合图形的面积计算方法解决实际问题。
通过本节课的学习,让学生掌握组合图形的面积计算方法,提高学生的空间想象能力和解决问题的能力。
二. 学情分析五年级的学生已经掌握了基本图形的面积计算方法,对组合图形有一定的认识。
但在解决实际问题时,部分学生可能会对复杂组合图形的拆分和计算方法感到困惑。
因此,在教学过程中,要关注学生的个体差异,引导学生逐步掌握组合图形的面积计算方法,并能够灵活运用解决实际问题。
三. 教学目标1.知识与技能:掌握组合图形的面积计算方法,能够正确计算简单组合图形的面积。
2.过程与方法:通过观察、操作、交流等活动,提高学生的空间想象能力和解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生探究问题的积极性。
四. 教学重难点1.重点:组合图形的面积计算方法。
2.难点:灵活运用组合图形的面积计算方法解决实际问题。
五. 教学方法1.情境教学法:通过生活情境,引导学生理解组合图形的面积计算方法。
2.启发式教学法:引导学生主动探究,发现组合图形的面积计算规律。
3.合作学习法:鼓励学生互相交流、讨论,提高解决问题的能力。
六. 教学准备1.教学课件:制作组合图形面积计算的教学课件。
2.练习题:准备一些组合图形的练习题,用于课堂练习和巩固。
3.实物模型:准备一些组合图形的实物模型,帮助学生直观理解。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的组合图形,如教室、房屋等,引导学生关注组合图形。
提问:这些组合图形是由哪些基本图形组成的?它们的面积如何计算?2.呈现(10分钟)呈现一组组合图形,如一个长方形里面包含一个三角形和一个圆形。
引导学生观察并思考:如何计算这个组合图形的面积?3.操练(10分钟)学生分组讨论,探索组合图形的面积计算方法。
【分层作业】6.1 组合图形的面积(同步练习) 五年级上册数学同步课时练 (北师大版,含答案)
第六单元组合图形的面积6.1 组合图形的面积【基础巩固】一、选择题1.图①和图②的面积相比较()。
A.图①的面积大B.图②的面积大C.图①和图②相等2.如下图,图中阴影部分的面积是()cm2。
A.12 B.16 C.18 D.363.如图,平行四边形的面积是484平方厘米,梯形(阴影)的面积是()平方厘米。
A.185 B.370 C.740 D.4074.一张边长4cm的正方形纸(如图),从相邻两边的中点连一条线段,沿这条线段剪去一个角,剩下的面积是()cm2。
A.14 B.12 C.10 D.85.求组合图形的面积用不到的公式是()。
A.S=ab B.S=ah C.C=(a+b)×2 D.S=ah÷2二、填空题6.如图,涂色部分的面积是12平方厘米,则图中空白部分的面积是______平方厘米,平行四边形的面积是______平方厘米。
7.图中阴影部分的面积是( )2cm。
(每个小方格的边长为1cm)8.如图,阴影部分的面积是18cm2,正方形的面积是( )cm2。
9.如图,所示图形(边长单位:cm)的面积为________cm2。
10.探究。
如图:已知大小正方形边长分别为5cm,2cm,两正方形空白处的面积之差是( )cm2。
三、图形计算题11.求下面图形的面积。
(左侧图形单位:cm)【能力提升】四、解答题12.一块梯形小麦地里有一条平行四边形的小路(如下图),种小麦的面积是多少平方米?13.如图,有一块五边形的沙发巾,制作这样一块沙发巾至少需要多少平方厘米的布料?【拓展实践】14.学校要为班级制作流动红旗,如图所示。
(1)这面流动红旗的面积是多少?(2)一块边长为2m的正方形布,最多能做多少面这样的流动红旗?(提示:流动红旗不能拼接,可以画图帮助思考哦!)15.在举行庆祝建党100周年活动前,同学们布置会场。
(1)舞台前面的嘉宾座位区摆椅子(如图),每排座位宽度不少于0.8m,嘉宾座位区宽10m,最多可以摆多少排椅子?(2)在长方形舞台的周围摆放鲜花(如图阴影部分),鲜花区的占地面积是多少平方米?参考答案1.C【分析】图①是正方形,图②是不规则图形,利用割补法,把不规则图形上部分的三角形割下来,再利用平移的方法补到图形下部的空缺部分,可以发现两个图形面积相等。
2.9简单的组合图形的面积数学五年级上册
随堂练习
一块麦田,去年共收小麦54吨, 平均每公顷收小麦多少吨?
600×100+600×100÷2=90000(平方米) 90000平方米=9公顷 54÷9=6(吨)
随堂练习 志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。
贫困能造就男子气概。 立志是事业的大门,工作是登门入室的旅程。 以天下为己任。 学做任何事得按部就班,急不得。 沧海可填山可移,男儿志气当如斯。
随堂练习
给这些门刷油漆的费用一共是56×17=952(元)。
合作探索
一张边长8厘米的正方形纸,从一边的 组合图形中的面点积时到,要邻根据边原来的图形的中特点点进行连思考一;条线段。沿这条 线段剪去一个角,剩下的面积是多少? (1)维修校舍时,要给10扇门的正面刷上油漆,刷油漆的面积一共是多少平方厘米?
随堂练习
25×17×4 这个牧场的面积是多少平方米?是多少公顷? 53×28+72×53
一块麦田,去年共收小麦54吨,平均每公顷收小麦多少吨?
=(25×4)×17 这个牧场的面积是多少平方米?是多少公顷? =(28+72)×53 (2)刷油ቤተ መጻሕፍቲ ባይዱ每平方米的材料费和人工费按56元算,给这些门的正面刷油漆一共需要多少元? =100×17 丈夫清万里,谁能扫一室。 =100×53 600×100+600×100÷2=90000(平方米) =1700 组合图形的面积时,要根据原来图形的特点进行思考; =5300 9 组合图形的面积的练习
(2)刷油漆每平方米的材料费和人工费按56元算,给这些门的正面刷油漆一共需要多少元? 90000平方米=9公顷
也可以看作一个正方形(8×8)与一个三角形 (4×4÷2)的面积之差。
《组合图形面积》教案_教案教学设计
《组合图形面积》教案一:教学目标1、掌握组合图形面积计算的方法,并能正确进行计算。
2、培养学生识图的能力和综合运用有关知识的能力。
二:教学难点:能正确将一个组合图形进行分解,让学生学会这类题目的思考方法。
三:教学准备:组合图形纸片、剪刀、胶带四:教学设想:以“妙”调趣,导入新课。
让学生以原有的知识为基础,通过学生亲手的“拼”、“剪”将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。
五:教学过程一、创设情境,激趣导入1、欣赏建筑图片媒体出示图片,让学生说出有哪些基本图形组成。
2、学生动手操作,拼摆平面图形,并说说有哪些基本图形拼摆成的。
3、复习平面图形面积计算。
二、自主学习,探究新知1媒体提供学生自学例题的材料。
学生自学例题及补充题,然后交流各题的解题策略,并引导比较异同。
2、练一练:教材的练一练及补充一题。
(任选一题计算)反馈(1)说说你是怎样计算组合图形的面积的,并实物投影展示出学生解答过程。
(2)结合例题故设陷阱:出示例题的另一种分法,让学生观察能否解答,从而得出要正确合理地分析图形的组成,以正确解答。
(3)小组讨论:怎样求出组合图形面积的方法。
(依据学生回答,教师适时板书:合理割补、分块求积、加减组合)三、巩固练习,深化理解1、教材练习的第1、2题。
学生任选两题,独立解答,实物投影展示校对。
2、教材第3题小组合作、测量所需条件并计算面积。
指名交流计算方法,媒体随机出示学生解题策略。
四、应用知识,拓展延伸出示草坪平面图,让学生计算草坪面积。
五、小结知识,质疑问难你认为这节课掌握了什么知识,能说出来给大家听吗?(让学生小结,老师电脑显示)感谢您的阅读,本文如对您有帮助,可下载编辑,谢谢。
五年级上数学试题——-第16讲-组合图形的面积(沪教版)有答案
1.掌握割补法求组合图形的面积;2.会求阴影部分的面积。
案例1、下面图形的面积同学们你们会求吗?教法参考:本题包含多种割补法,所以师生共同完成,教师起引导作用,把分割法和添补法给到学生。
用尽量的方法解决本题参考答案:此处给出其中一种解法S=4200cm2练习:求下面图形的面积?你能想出几种方法?教法参考:学生在做的过程中会有不同的方法,教师可以让学生到黑板上演示自己的方法;或者让学生在一起探讨各自方法。
参考答案:总面积是525。
案例2、下图中甲和乙都是正方形,求阴影部分的面积教法参考:本题可以让学生在一起探究,教师从旁引导,在学生探究过程中遇到问题的时候给予一点的指导,并针对学生讨论时出现障碍以提问的形式引导学生思考,找到解决方法。
参考答案:阴影部分面积为18.练习:求图中阴影部分的面积。
教法参考:求阴影部分的面积同样引导学生用割补法的方法求出图形的面积。
参考答案:阴影部分面积为45.5知识点归纳:求组合图形的一般的方法:1.分割法:把一个组合图形分割成几个基础图形(平行四边形、正方形,矩形、三角形和梯形),分别求出面积,再求和;2.添补法:把一个组合图形补成一个基础图形,在从这个基础图形的面积减去几个基础图形的面积,求出它们的面积差。
(本环节可以采用学生轮流答题说解题方法,其他学生给予补充不同的解题方法)例题1、求下面图形的面积参考答案:总面积为209试一试:求下面图形的面积参考答案:1208 135.75例题2、求图形中阴影部分的面积参考答案:104 9试一试:求图形中阴影部分的面积参考答案:24例题3、如图,已知三角形ABC的面积是36平方厘米,D是AC的中点,BE=2ED,求阴影部的面积。
教法参考:本题有一定的难度,由教师主讲,引出同底等高的面积求法。
参考答案:因为D是AC的中点,所以S△ABD=S△BDC=S△ABC/2=18平方厘米因为BE=2ED,△ABE与△ADB同高,所以S△ABE=2/3*18=12.试一试:如图,已知平行四边形BCEF与长方形ABCD同底等高,AB=6厘米,BC=3厘米,CG=2DG,求梯形GFEC的面积。
苏教版数学五年级上册2.6 组合图形面积的计算课件(共24张PPT)
补成一个简单的图形,从 补成的图形中去掉一部分。
10 m 4m
10 m 4m
知识讲解
12 m
15 m 12 m
15 m
长方形+梯形
12×4+(12+15) ×(10-4) ÷2 =129(平方米)
长方形+三角形
12×10+(15-12) ×(10-4) ÷2 =129(平方米)
10 m 4m
知识讲解
(40+20)×10÷2+20×20 12×16+20×9÷2 10×8-(6+10)×2÷2
=700(cm²)
=282(cm²)
=64(cm²)
练习巩固 绿波小区有一块梯形草坪,草坪的中 间有一个长方形的花坛(如右图), 草坪的面积是多少平方米? (20+36)×20÷2-12×4 =512(平方米)
组合图形面积的计算
复习导入
S=a×b
S=a×a
你们知道哪些图 形面积的计算呢?
S=a×h÷2
S=a×h
S=(a+b)×h÷2
知识讲解
10 华丰小学校园里有一块草坪(如右图),
它的面积是多少平方米?
12 m
10 m 4m
你准备怎样算? 与同学交流。
15 m
知识讲解
分割成两个简单的图形, 分别算出面积,再求和。
12 m
15 m
梯形+三角形
(10+4)×12 ÷2 +15×(10-4) ÷2 =129(平方米)
10 m 4m
12 m 15 m
长方形-梯形
15×10 - (10+4)×(15-12)÷2 =129(平方米)
五年级上册数学6.4.2 组合图形的面积
组 图
合
形 的
积 面
你还记得哪些图形的 面积计算方法呢?让 我们一起看一看。
面积=长×宽 面积=边长×边长
S=ɑb
S=ɑh
S=ɑh÷2
S=(ɑ+b)h÷2
下面这些物品里有哪些图形?
长方形 三角形
长方形 三角形 平行四边形 正方形
组合图形
下图表示的是一间房子侧 面墙的形状。它的面积是 多少平方米?
4m
6m 3m
①长方形
7m
②长+正
③梯
④大长
4m
6m
3m
7m
S组= S上长 + S下长
3×4=12(m2) 7×3=21(m2) 12+21=33( m2 )
4m
6m 3m
7m
S组 = S长 + S正
6 ×4=24(m2) 3×3=9( m2 ) 24+9=33( m2 )
4m
6m
3m
(6+3)×4 ÷2=18 ( m2 )
10.请你采集几片树叶,利用方格纸估计叶子的面积?
先通过数方格确定图形 面积的范围,再估算图 形的面积。
不规则的图形可 以转化为学过的 图形进行估算。
三、巩固练习
图中每个小方格的面积是1cm²。
先在方格纸上描出叶子的轮廓图 。
数方格法
这片叶子的面积大概有 27 cm2。
三、巩固练习
转化法
将叶子的图形近似转 化成长方形。
三、巩固练习
4.在一块梯形的地中间有一个长方形的游泳池,其余的地方是草 地。草地的面积是多少平方米?
(70+40)×30÷2-30×15
小学五年级数学教案 组合图形面积的计算9篇
小学五年级数学教案组合图形面积的计算9篇组合图形面积的计算 1教学内容:92和93页例4、练习十八第1、2题。
教学目标:1、结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算面积。
2、能根据图形的特点,选择合适而又简便的方法计算组合图形的面积。
3、能灵活思考解决实际生活中的问题,进一步发展学生的空间观念。
教学过程:一、复习。
“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:s=ab“第二个图形呢?”……学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.?可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。
二、认识组合图形1、让学生指出有哪些图形?师:计算这些图形的面积我们已经学会了,今天老师带来了几张图片(92页的四幅图),认一认,它们是什么?这些图片分别是由哪几个平面图形组成的?这几张图片显示的都是组合图形,你觉得什么样的图形是组合图形?师:组合图形是由几个简单的图形组合而成的。
问:说一说,生活中哪些物体的表面可以看到组合图形?同学们现在已知认识了组合图形,这就是这节课我们重点学习的内容。
[板书课题]三、组合图形面积的计算。
1.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。
图表示的是一间房子侧面墙的形状,它的面积是多少平方米?2.如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?先在小组内讨论方法,再后打开书计算,同时指名板演。
5×5+5×2÷2[5+(2+5)]×(5÷2)÷2×2集体订正时问:你将组合图形分成了哪几个基本图形?算式的每一步求的是什么?比较一下,你喜欢哪种算法?为什么?师:我们在计算组合图形面积时,要根据已知条件对图形进行分解,分解图形要尽量选择最简便的方法进行计算,特别要有计算面积所必需的数据。
第6单元 组合图形的面积公顷、平方千米学习
2000 1000
2000×1000 =2000000(平方米)
1500000+2000000=3500000(平方米)
1000
3500000平方米=350公顷
答:占地面积是350公顷。
2.鹤城新建一座大型游乐场,长2000米,宽1000米。
这座大型游乐场占地多少平方千米?
2000×1000=2000000(平方米) 2000000平方米=2平方千米
答:这座大型游乐场占地2平方千米。
3.有一个占地1公顷的正方形果园,如果它的边各
延长200米,那么果园的面积增加多少公顷?
1公顷=10000平方米 10000÷100=100(米)
100+200=300(米) 300×300=90000(平方米) 90000平方米=9公顷 9-1=8(公顷)
答:果园的面积增加8公顷。
测量和计算土地面积时,通常 用公顷、平方千米(km²)作单位。
100米
面积是1公顷。
1公顷=10000平方米
我们学校教室面积大约是50平方米。 我们学校操场面积大约是4500平方米。 请你算算1公顷大约相当于多少个这样的面积?
1公顷相当于(200)个教室面积。 1公顷相当于(2)个操场的面积。
请你将下列数据改用公顷作单位。 (1)北京中华世纪坛占地面积大约是45000平方米。
4.我国已经有13个省约为33万平方千米土地受到
沙漠威胁。如果不采取措施,每年沙漠化土地还 在以1200平方米的速度扩展,如果不治理,50年 后我国沙漠化土地可能达到多少公顷?
1200×50=60000(平方米)
60000平方米=6公顷
答:50年后我国沙漠化土地可能达到6公顷。
返回目录
小学数学《组合图形面积计算》综合练习试题
组合图形(一)一、考点、热点回顾二、典型例题【典型例题】(一)、基础图形(割补、整体-空白)【例1】已知平行四边表的面积是28平方厘米,求阴影部分的面积。
练习、如果用铁丝围成如下图一样的平行四边形,需要用多少厘米铁丝?(单位:厘米)【例2】下图中甲和乙都是正方形,求阴影部分的面积。
(单位:厘米)练习、1 、已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积。
2、求图中阴影部分的面积。
(单位:厘米)【例3】将如图(1)所示的三角形纸片沿粗虚线折叠,成如图(2)所示的图形.。
已知图(1)三角形的面积是图(2)图形面表的1.5倍,图(2)中阴影部分的面积之和为1平方厘米。
求重叠部分的面积。
练习、将如图所示的三角形沿虚线折叠,得到如图所示的多边形。
这个多边5,已知图中阴影部分的面积和为6平方厘米,求形面积是原三角形面积的7原三角形的面积。
(二)、差不变【例4】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE 的长度。
练习、1、右图是两个相同的直角三角形叠在一起,求阴影部分的面积。
(单位:厘米)2、平行四边形ABCD的边长,BC=10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米。
求CF的长。
(三)、三角形等积变换我们已经掌握了三角形面积的计算公式:三角形面积=底×高÷2这个公式告诉我们:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小).同样若三角形的高不变,底越大(小),三角形面积也就越大(小).为便于实际问题的研究,我们还会常常用到以下结论:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对的角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.③若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.【例5】已知三角形ABC的面积为1,BE= 2AB,BC=CD,求三角形BDE的面积?练习、1、如图,已知平行四边形ABCD的面积是60平方分米,E、F分别是AB、AD边上的中点,图中阴影部分的面积是多少平方分米?2、右图中的长方形ABCD的长是20厘米,宽是12厘米,AF=BE,图中阴影部分的面积是多少平方厘米?【例6】用三种不同的方法,把任意一个三角形分成四个面积相等的三角形.【例7】在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
小升初数学组合图形的面积+数学趣题+分数计算技巧+奥数题训练及答案解析
小升初数学组合图形的面积+数学趣题+分数计算技巧+奥数题训练及答案解析组合图形的面积一、 知识要点:1. 我们学过的常见多边形的周长和面积求法:2.计算不规则图形的面积,常用到哪些方法?二、知识运用典型例题。
例题1:如图,两条对角线把梯形ABCD 分割成四个三角形,(1) 请写出图中面积相等的三角形?(2) 已知两个三角形的面积,求另两个三角形的面积各是多少? (3) 求梯形ABCD 的面积?B C例2:长方形ABCD 的面积是24平方厘米,三角形EBC 的面积是30平方厘米,两块阴影部分的面积相差多少?例3:如下图,长方形ABCD 的面积是20平方厘米,三角形ADF 的面积为5平方厘米,三角形ABE 的面积为7平方厘米,求三角形AEF 的面积。
例4:如下图,已知四条线段长分别是AB=2,CE=6,CD=5,AF=4,并有两个直角,求四边形ABCD 的面积。
D BCA D三、知识运用课堂练习。
1、三角形EBC的面积是40平方厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形ABCD的面积?2、如下图,长方形的长和宽分别是12和9,把三角形的三条边分别平均分成三段,得到A,B,C,D,E,F六个点,连接AF、BC、DE,得到一个六边形。
这个六边形的面积是多少?3、在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD 的面积大18厘米2。
求ED的长。
4、下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积。
课后练习 等级1、下图中的甲和乙都是正方形,求阴影部分的面积。
2、下图中,矩形ABCD 的边AB 为4厘米,BC 为6厘米,三角形ABF 比三角形E DF 的面积大9厘米2,求ED 的长。
3、(动手操作题)右图是一个4×4的方格纸,请在保持每个小方格完整的情况下,将它分割成大小、形状完全相同的两部分。
(至少要有4种不同的方法)甲乙生活中的数学趣题一、知识要点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2m
4m
5m
(7)如图所示,已知四边 形ABCD中, AB=10cm,CD=4cm,
∠ABC= 45 。求这个 四边形ABCD的面积。 ∠DAB=∠DCB= 90,
E
C
D A B
(8)求阴影部分的面积。
4dm
2.2dm
40m 30m
30m 70m
15m
(4)下图是一个 零件的横截面, 计算它的面积。
பைடு நூலகம்
20mm
10mm
27mm
30mm
54mm
(5)有一块菜地的 形状如图所示。①这 块地的面积是多少? ②如果没平方米需施 肥0.25kg,这块菜地 共需施肥多少kg?
40m
24m 36m
60m
(6)下图是教室的一 堵墙,如果砌这面墙 每平方米用砖185块, 一共需要多少块砖?
练一练
(1)求下列图形的 面积。(单位:cm)
8
12 14
25
20
10 12 16
12 4
12
4
12
8 4
(2)学校开运动会 要制作一些锦旗,式 样如图所示。一面锦 旗需要多少平方厘米 的布料?
45cm
60cm
(3)在一块梯形的 地中间有一个长方形 的游泳池,其余的地 方是草地。草地的面 积是多少平方米?