SC440AMLTRT;中文规格书,Datasheet资料
SC440中文资料
Wide input range 4.5V to 21V 36V maximum output voltage with adjustable OVP for smaller output capacitor Drives up to 60 WLEDs in 6 strings Programmable WLED current for up to 30mA per string 1% string-to-string current matching 2.5A integrated power switch Up to 91% efficiency 0.2% to 100% PWM dimming Analog dimming 800KHz switching frequency for small external component Open/short LED protection Short LED protection disable <1uA shut-down current Thermal protection 4mm x 4mm x1mm MLPQ-24 package (WEEE & RoHS compliant)
The SC440 is a high-efficiency multiple string WLED driver with an integrated boost converter. It operates over a wide input range from 4.5V to 21V with a maximum output voltage of 36V and a 2.5A internal power switch. It can drive up to 36V output voltage in 6 strings with current up to 30mA per string. The string-to-string current matching is 1% typical, 3% maximum and the overall efficiency is greater than 90% due to the low current sense voltage and a low-impedance internal power switch. The wide PWM dimming range boasts a ratio of 500: 1. The 800kHz switching frequency enables the user to optimize the external component sizes for high efficiency. When there are fewer LEDs in each string, users can use a lower output voltage protection level which yields an allowable reduction in associated costs, size and voltage ratings of the output capacitor. The SC440 also features a comprehensive open and short circuit LED protection functions. It disables the corresponding strings with LED open or LED short conditions while keeping other strings under normal operation. This feature allows LCD panels to remain viewable even under LED failure, wire disconnect, or shortcircuit conditions. The short LED protection function can be disabled. The internal thermal shutdown protects the IC from overheating at abnormal conditions. The SC440 is available in a common 4mm x 4mm x1mm MLPQ-24 package.
MMPQ2222A;FFB2222A;中文规格书,Datasheet资料
ON CHARACTERISTICS
hFE DC Current Gain IC = 0.1 mA, VCE = 10 V IC = 1.0 mA, VCE = 10 V IC = 10 mA, VCE = 10 V IC = 150 mA, VCE = 10 V* IC = 150 mA, VCE = 1.0 V* IC = 500 mA, VCE = 10 V* IC = 150 mA, IB = 15 mA IC = 500 mA, IB = 50 mA IC = 150 mA, IB = 15 mA IC = 500 mA, IB = 50 mA 35 50 75 100 50 40
*Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%
Spice Model
NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307 Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75 Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)
Thermal Characteristics
Symbol
PD RθJA
TA = 25°C unless otherwise noted
Characteristic
Total Device Dissipation Derate above 25°C Thermal Resistance, Junction to Ambient Effective 4 Die Each Die FFB2222A 300 2.4 415
微斯米微波式芯片公司2014年产品说明书
1FeaturesInputs/Outputs •Accepts differential or single-ended input •LVPECL, LVDS, CML, HCSL, LVCMOS •On-chip input termination resistors and biasing for AC coupled inputs•Six precision LVPECL outputs •Operating frequency up to 750 MHzPower •Options for 2.5 V or 3.3 V power supply •Core current consumption of 110 mA•On-chip Low Drop Out (LDO) Regulator for superior power supply rejectionPerformance •Ultra low additive jitter of 36 fs RMSApplications•General purpose clock distribution •Low jitter clock trees •Logic translation•Clock and data signal restoration•Wired communications: OTN, SONET/SDH, GE,10 GE, FC and 10G FC•PCI Express generation 1/2/3 clock distribution •Wireless communications•High performance microprocessor clock distributionApril 2014Figure 1 - Functional Block DiagramZL40205Precision 1:6 LVPECL Fanout Bufferwith On-Chip Input TerminationData SheetOrdering InformationZL40205LDG1 32 Pin QFN TraysZL40205LDF132 Pin QFNTape and ReelMatte TinPackage Size: 5 x 5 mm-40o C to +85o CTable of ContentsFeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Change Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.0 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52.0 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73.1 Clock Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73.2 Clock Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123.3 Device Additive Jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163.4.1 Sensitivity to power supply noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163.4.2 Power supply filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163.4.3 PCB layout considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164.0 AC and DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175.0 Performance Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206.0 Typical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217.0 Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238.0 Mechanical Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24List of FiguresFigure 1 - Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 3 - Simplified Diagram of Input Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 4 - Clock Input - LVPECL - DC Coupled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 5 - Clock Input - LVPECL - AC Coupled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 6 - Clock Input - LVDS - DC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 7 - Clock Input - LVDS - AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 8 - Clock Input - CML- AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 9 - Clock Input - HCSL- AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 10 - Clock Input - AC-coupled Single-Ended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 11 - Clock Input - DC-coupled 3.3V CMOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 12 - Simplified Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 13 - LVPECL Basic Output Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 14 - LVPECL Parallel Output Termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 15 - LVPECL Parallel Thevenin-Equivalent Output Termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 16 - LVPECL AC Output Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 17 - LVPECL AC Output Termination for CML Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 18 - Additive Jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 19 - Decoupling Connections for Power Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 20 - Differential and Single-Ended Output Voltages Parameter Definitions . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 21 - Input To Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Change SummaryPage Item Change1Applications Added PCI Express clock distribution.6Pin Description Added exposed pad to Pin Description.8Figure 4 and Figure 5Removed 22 ohm series resistors from Figure 4 and 5. These resistor are not required; however there is no impact to performance if the resistors are included.16Power supply filtering 18Figure 20Clarification of V ID and V OD .Below are the changes from the February 2013 issue to the April 2014 issue:Page Item Change8Figure 4Changed text to indicate the circuit is not recommended for VDD_driver=2.5V.Below are the changes from the November 2012 issue to the February 2013 issue:Corrected typo of 0.3 Ohm to 0.15 Ohm.1.0 Package DescriptionThe device is packaged in a 32 pin QFNFigure 2 - Pin Connections2.0 Pin DescriptionPin # Name Description3, 6clk_p, clk_n,Differential Input (Analog Input). Differential (or single ended) input signals.For all input configurations see “Clock Inputs” on page 728, 27, 26, 25, 24, 23, 18, 17, 16, 15, 14, 13out0_p, out0_nout1_p, out1_nout2_p, out2_nout3_p, out3_nout4_p, out4_nout5_p, out5_nDifferential Output (Analog Output). Differential outputs.9, 19,22, 32vdd Positive Supply Voltage. 2.5 V DC or 3.3 V DC nominal.1, 8vdd_core Positive Supply Voltage. 2.5 V DC or 3.3 V DC nominal.2, 7,20, 21gnd Ground. 0 V.4vt On-Chip Input Termination Node (Analog). Center tap between internal 50 Ohmtermination resistors.The use of this pin is detailed in section 3.1, “Clock Inputs“, for various input signal types.5ctrl Digital Control for On-Chip Input Termination (Input). Selects differential input mode;0: DC coupled LVPECL or LVDS modes1: AC coupled differential modesThis pin are internally pulled down to GND. The use of this pin is detailed in section 3.1,“Clock Inputs“, for various input signal types.10, 11,12, 29,30, 31NC No Connection. Leave unconnected.Exposed Pad Device GND.3.0 Functional DescriptionThe ZL40205 is an LVPECL clock fan out buffer with six output clock drivers capable of operating at frequencies up to 750MHz.The ZL40205 provides an internal input termination network for DC and AC coupled inputs; optional input biasing for AC coupled inputs is also provided. The ZL40205 can accept DC or AC coupled LVPECL and LVDS input signals, AC coupled CML or HCSL input signals, and single ended signals. A pin compatible device with external termination is also available.The ZL40205 is designed to fan out low-jitter reference clocks for wired or optical communications applications while adding minimal jitter to the clock signal. An internal linear power supply regulator and bulk capacitors minimize additive jitter due to power supply noise. The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its operation is guaranteed over the industrial temperature range -40°C to +85°C.The device block diagram is shown in Figure 1; its operation is described in the following sections.3.1 Clock InputsThe device has a differential input equipped with two on-chip 50 Ohm termination resistors arranged in series with a center tap. The input can accept many differential and single-ended signals with AC or DC coupling as appropriate. A control pin is available to enable internal biasing for AC coupled inputs. A block diagram of the input stage is in Figure 3.Receiverclk_n 50clk_pVt 50BiasctrlFigure 3 - Simplified Diagram of Input StageThis following figures give the components values and configuration for the various circuits compatible with the input stage and the use of the Vt and ctrl pins in each case.In the following diagrams where the ctrl pin is logically one and the Vt pin is not connected, the Vt pin can be instead connected to VDD with a capacitor. A capacitor can also help in Figure 4 between Vt and VDD. This capacitor will minimize the noise at the point between the two internal termination resistors and improve the overall performance of the device.Figure 4 - Clock Input - LVPECL - DC CoupledFigure 5 - Clock Input - LVPECL - AC CoupledFigure 6 - Clock Input - LVDS - DC CoupledFigure 7 - Clock Input - LVDS - AC CoupledFigure 8 - Clock Input - CML- AC CoupledFigure 9 - Clock Input - HCSL- AC CoupledFigure 10 - Clock Input - AC-coupled Single-EndedFigure 11 - Clock Input - DC-coupled 3.3V CMOS3.2 Clock OutputsLVPECL has a very low output impedance and a differential signal swing between 1V and 1.6 V. A simplified diagram for the output stage is shown in Figure 12.The LVPECL to LVDS output termination is not shown since there is a different device with the same inputs and LVDS outputs.out_pout_nFigure 12 - Simplified Output DriverThe methods to terminate the ZL40205 LVPECL drivers are shown in the following figures.Figure 15 - LVPECL Parallel Thevenin-Equivalent Output TerminationFigure 16 - LVPECL AC Output TerminationFigure 17 - LVPECL AC Output Termination for CML Inputs3.3 Device Additive JitterThe ZL40205 clock fanout buffer is not intended to filter clock jitter. The jitter performance of this type of device is characterized by its additive jitter. Additive jitter is the jitter the device would add to a hypothetical jitter-free clock as it passes through the device. The additive jitter of the ZL40205 is random and as such it is not correlated to the jitter of the input clock signal.The square of the resultant random RMS jitter at the output of the ZL40205 is equal to the sum of the squares of the various random RMS jitter sources including: input clock jitter; additive jitter of the buffer; and additive random jitter due to power supply noise. There may be additional deterministic jitter sources, but they are not shown in Figure 18.Figure 18 - Additive Jitter3.4 Power SupplyThis device operates employing either a 2.5V supply or 3.3V supply.3.4.1 Sensitivity to power supply noisePower supply noise from sources such as switching power supplies and high-power digital components such as FPGAs can induce additive jitter on clock buffer outputs. The ZL40205 is equipped with a low drop out (LDO) regulator and on-chip bulk capacitors to minimize additive jitter due to power supply noise. The on-chip regulation, recommended power supply filtering, and good PCB layout all work together to minimize the additive jitter from power supply noise.3.4.2 Power supply filteringJitter levels may increase when noise is present on the power pins. For optimal jitter performance, the device should be isolated from the power planes connected to its power supply pins as shown in Figure 19. •10 µF capacitors should be size 0603 or size 0805 X5R or X7R ceramic, 6.3 V minimum rating •0.1 µF capacitors should be size 0402 X5R ceramic, 6.3 V minimum rating •Capacitors should be placed next to the connected device power pins •A 0.15 Ohm resistor is recommended3.4.3 PCB layout considerationsThe power nets in Figure 19 can be implemented either as a plane island or routed power topology without changing the overall jitter performance of the device.ZL402051891922320.1 µF 0.1 µFvdd_core10 µF 0.1 µF0.15 Ωvdd0.1 µF 10 µFFigure 19 - Decoupling Connections for Power PinsAbsolute Maximum Ratings*Parameter Sym.Min.Max.Units 1Supply voltage V DD_R-0.5 4.6V 2Voltage on any digital pin V PIN-0.5VDD V 4LVPECL output current I out30mA 5Soldering temperature T260 °C 6Storage temperature T ST-55125 °C 7Junction temperature T j125 °C 8Voltage on input pin V input VDD V 9Input capacitance each pin C p500fF 4.0 AC and DC Electrical Characteristics* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.* Voltages are with respect to ground (GND) unless otherwise statedRecommended Operating Conditions*Characteristics Sym.Min.Typ.Max.Units1Supply voltage 2.5 V mode V DD25 2.375 2.5 2.625V2Supply voltage 3.3 V mode V DD33 3.135 3.3 3.465V3Operating temperature T A-402585°C* Voltages are with respect to ground (GND) unless otherwise statedDC Electrical Characteristics - Current ConsumptionCharacteristics Sym.Min.Typ.Max.Units Notes 1Supply current LVPECL drivers -unloadedI dd_unload110mA Unloaded2Supply current LVPECL drivers - loaded (all outputs are active)I dd_load209mA Including powerto R L = 50DC Electrical Characteristics - Inputs and Outputs - for 3.3 V SupplyCharacteristics Sym.Min.Typ.Max.Units Notes1CMOS control logic high-level inputvoltageV CIH0.7*V DD V2CMOS control logic low-level inputvoltageV CIL0.3*V DD V3CMOS control logic Input leakagecurrentI IL1µA V I = V DD or 0 V4Differential input common modevoltageV CM 1.1 2.0V5Differential input voltage difference V ID0.251V6Differential input resistance V IR80100120ohm* This parameter was measured from 125 MHz to 750 MHz.* This parameter was measured from 125 MHz to 750 MHz.Figure 20 - Differential and Single-Ended Output Voltages Parameter Definitions7LVPECL output high voltage V OH V DD -1.40V 8LVPECL output low voltage V OL V DD - 1.62V 9LVPECL output differential voltage*V OD0.50.9VDC Electrical Characteristics - Inputs and Outputs - for 2.5 V SupplyCharacteristicsSym.Min.Typ.Max.Units Notes1Differential input common mode voltageV CM 1.1 1.6V 2Differential input voltage difference V ID 0.251V 3Differential input resistance V IR 80100120ohm 4LVPECL output high voltage V OH V DD -1.40V 5LVPECL output low voltage V OL V DD - 1.62V 6LVPECL output differential voltage*V OD0.40.9VDC Electrical Characteristics - Inputs and Outputs - for 3.3 V SupplyCharacteristicsSym.Min.Typ.Max.Units NotesAC Electrical Characteristics* - Inputs and Outputs (see Figure 21) - for 2.5/3.3 V supply.Characteristics Sym.Min.Typ.Max.Units Notes 1Maximum Operating Frequency1/t p750MHz2Input to output clock propagation delay t pd012ns3Output to output skew t out2out50100ps4Part to part output skew t part2part80300ps5Output clock Duty Cycle degradation t PWH/ t PWL-202Percent6LVPECL Output clock slew rate r SL0.75 1.2V/ns* Supply voltage and operating temperature are as per Recommended Operating ConditionsInputt Pt PWL t pdt PWHOutputFigure 21 - Input To Output TimingAdditive Jitter at 2.5 V*Output Frequency (MHz)Jitter MeasurementFilterTypical RMS (fs)Notes112512 kHz - 20 MHz 1392212.512 kHz - 20 MHz 1093311.0412 kHz - 20 MHz 85442512 kHz - 20 MHz 57550012 kHz - 20 MHz 506622.0812 kHz - 20 MHz 40775012 kHz - 20 MHz36Additive Jitter at 3.3 V*Output Frequency (MHz)Jitter MeasurementFilterTypical RMS (fs)Notes112512 kHz - 20 MHz 1152212.512 kHz - 20 MHz 853311.0412 kHz - 20 MHz 72442512 kHz - 20 MHz 55550012 kHz - 20 MHz 486622.0812 kHz - 20 MHz 41775012 kHz - 20 MHz395.0 Performance Characterization*The values in this table were taken with an approximate slew rate of 0.8 V/ns.*The values in this table were taken with an approximate slew rate of 0.8 V/ns.Additive Jitter from a Power Supply Tone*Carrier frequencyParameterTypicalUnitsNotes125MHz 25 mV at 100 kHz 115fs RMS 750MHz25 mV at 100 kHz59fs RMS* The values in this table are the additive periodic jitter caused by an interfering tone typically caused by a switching power supply. For this test, measurements were taken over the full temperature and voltage range for V DD = 2.5 V. The magnitude of the interfering tone is measured at the DUT.6.0 Typical BehaviorTypical Phase Noise at 622.08 MHzTypical Waveformat 155.52 MHzV OD versus FrequencyPropagation Delay versus TemperatureNote:This is for a single device. For more details see thePower Supply Tone Frequency (at 25 mV) versus PSRR at 125 MHz Power Supply Tone Frequency (at 25 mV) versus Additive Jitter at 125 MHzPower Supply Tone Magnitude (at 100 kHz) versus PSRR at 125 MHz Power Supply Tone Magnitude (at 100 kHz) versus Additive Jitter at 125 MHz7.0 Package CharacteristicsThermal DataParameter Symbol Test Condition Value UnitJunction to Ambient Thermal Resistance ΘJA Still Air1 m/s2 m/s 37.433.131.5o C/WJunction to Case Thermal Resistance ΘJC24.4o C/W Junction to Board Thermal Resistance ΘJB19.5o C/W Maximum Junction Temperature*T jmax125o C Maximum Ambient Temperature T A85o C© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world’s standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at .Microsemi Corporate Headquarters One One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (800) 713-4113Outside the USA: +1 (949) 380-6100Sales: +1 (949) 380-6136Fax: +1 (949) 215-4996E-mail: ***************************Information relating to products and services furnished herein by Microsemi Corporation or its subsidiaries (collectively “Microsemi”) is believed to be reliable. However, Microsemi assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Microsemi or licensed from third parties by Microsemi, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Microsemi, or non-Microsemi furnished goods or services may infringe patents or other intellectual property rights owned by Microsemi.This publication is issued to provide information only and (unless agreed by Microsemi in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Microsemi without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical and other products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Microsemi’s conditions of sale which are available on request.For more information about all Microsemi productsvisit our website at TECHNICAL DOCUMENTATION – NOT FOR RESALE。
BC447;BC447G;BC449;BC449A;BC449AG;中文规格书,Datasheet资料
100 70 50
−5.0 V VCE = −1.0 V
30 −1.0
−2.0 −3.0 −5.0 −7.0 −10 −20 −30 −50 −70 −100 IC, COLLECTOR CURRENT (mA)
Figure 1. Current−Gain — Bandwidth Product
Figure 3. Switching Times
IC , COLLECTOR CURRENT (mA)
−1.0 k −700 −500
−300 −200
−100 −70 −50
−30 −20
−10 −1.0
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
VCEO
Vdc
80
100
Collector-Base Voltage BC447 BC449, BC449A
VCBO
Vdc
80
100
Emitter-Base Voltage
Collector Current − Continuous
Total Device Dissipation @ TA = 25°C Derate above 25°C
IC =
IC =
100 mA 200 mA
0.8
0.4
TJ = 25°C
0 0.02 0.05 0.1
0.2 0.5 1.0 2.0 IB, BASE CURRENT (mA)
5.0 10 20
Figure 7. Collector Saturation Region
RqVB , TEMPERATURE COEFFICIENT (mV/° C)
Series SCT电流变压器商品说明说明书
The Series SCT Current Transformers continuously measure the current consumption of pumps, fans, boilers, solar panels and chillers for use in energy monitoring. Current or voltage outputs can be scaled using a slider switch to select between three factory set ranges. Split core configuration allows the current transformer to be installed on new and existing installations. Snap-on mounting bracket allows for quick installation of replacement transformers. An optional 10 A command relay can snap onto the current switch which eliminates the need to mount an additional relay.INSTALLATIONMOUNTING1. Detach the plastic mounting bracket from the current switch housing.2. Using the two included screws, attach the mounting bracket to the rear of the electrical panel or enclosure.3. Re-attach the current switch housing to the plastic mounting bracket.WIRING1. Disconnect the power to the conductor cable from the power source.2. Open the core using the release tab. Snap the core closed around the power conductor cable. Make sure that the core release tab is locked in its original position.3. Wire the Series SCT as shown in the below wiring diagrams.4. Reconnect the power conductor cable.SPECIFICATIONSAmperage Range: 30/60/120 A or 20/100/150 A (depending on model).Continuous Operating Current: 120 A or 150 A (depending on model).Output: 4 to 20 mA, 0 to 5 VDC, 0 to 10 VDC (depending on model).Optional relay N.O. SPST; 10 A @ 260 VAC, 5 A @ 30 VDC.Power Requirements:Self-powered or 24 VDC (depending on model).Accuracy:±2% from 10 to 100% of selected range.Temperature Limits: 5 to 140°F (-15 to 60°C).Humidity Limits: 0 to 95% non-condensing.Response Time: 2 seconds.Isolation Voltage: 600 VAC RMS.Frequency: 50/60 Hz.Enclosure Rating: UL, V-O flammability rated, type 66 nylon. Agency Approvals: CE, RoHS, UL.Disconnect the power supply before making electricalconnections. Contact with components carrying hazardousvoltage can cause electrical shock and may result in severe personal injury or death.The Series SCT Current Transformers are intended to provide an input to equipment under normal operating conditions.Additional precautions must be designed into the control system where failure or malfunction of the current transformer could lead to personal injury or property damage to the controlled equipment or other property. Incorporate and maintain other devices such as supervisory, alarm systems, safety or limit controls intended to warn of or protect against failure or malfunction of the SCT.Figure 1: Wiring Diagram for Current Output Models.Figure 2: Wiring Diagram for 0 to 5 and 0 to 10 VDC Models. SCALING OUTPUT RANGESet the amperage range at a level appropriate for the load. Use the slide switch onFigure 3: Selection of Output Scaling. INCREASING/DECREASING MEASURED CURRENTIf the measured current is too low to be detected or is higher than the maximum current rating of the SCT, use the following methods to increase or decrease current.If measured current is too low to be detected:Wrap the conductor (wire) through the sensing hole and around the SCT body to produce multiple turns to increase the measured current. Use the below equation to determine how many wraps are necessary:: number of turns: actual current: measured currentFigure 4: Wind the conductor through the core to increase current e the following formula to determine the new maximum current:: number of turns: SCT current rating: new maximum currentFor example, Model SCT10-100 with 4 turns: , new maximum current.If measured current is above ratings of the switch:Use a 5 A Current Transformer (CT) to reduce the current passing through the SCT.Run the current transformer secondary wire through the sensing hole. Terminate the 2 secondary wires of the 5 A current transformer to each other, and then install the 5 A current transformer on the monitored conductor.Figure 5: Use a 5 A current transformer’s secondaryloop to reduce amount of current sensed.MAINTENANCE/REPAIRUpon final installation of the Series SCT, no routine maintenance isrequired. The Series SCT is not field serviceable and should be returned if repair is needed. Field repair should not be attempted and may void warranty.WARRANTY/RETURNRefer to “Terms and Conditions of Sales” in our catalog and on our website. Contact customer service to receive a Return Goods Authorization number before shipping the product back for repair. Be sure to include a brief description of the problem plus any additional application notes.SCT20-10320/100/150 A0 to 10 VDC Self-powered150 A Icr N=Inm NInmIcrN x Ia=Im N IaImFailure to de-rate the current capacity could result in damage tothe Series SCT when using multiple turns to increase the measured current.120A4=30.0 A©Copyright 2018 Dwyer Instruments, Inc.FR# 443900-00 Rev. 1。
MICROMASTER 440通用变频器
目录1 MICROMASTER 440 变频器的参数.................................................................... ................................... 1-1 1.1 MICROMASTER 440 变频器的系统参数.................简介.......................................................................1-2 1.2 快速调试(P0010=1)..... ................... ....................................................................................................1-4 1.3 命令和驱动数据组一概览........ ............. ......................... ......................................................................1-51.4 参数的说明......................................... .................................................................................................1-62 功能框图.............................................. .................................................................................................... 2-13 二进制互联连接(BiCo)功能................................................................................................................ 3-1 3.1 概述..................................................................................................................................................... 3-2 3.2 怎样进行BiCo 设置?......................................................................................................................... 3-2 3.3 BiCo 控制字和状态字的用法................................................................................................................. 3-43.4 BiCo 的连接............................................................ ............................................................................. 3-54 通讯....................................................................... .................................................................................. 4-1 4.1 采用的串行通讯接口............................................................................................................................ 4-2 4.2 串行通讯的工作情况............................ ................................................................................................. 4-2 4.2.1 概述.................................................................................................................................................... 4-2 4.2.2 RS485 的排障..................................................................................................................................... 4-3 4.3 采用通用的串行接口协议................................................................................ ................... ...................4-3 4.3.1 通讯报文的结构............................................................ ...................................................................... 4-4 4.3.2 USS 协议有关信息的详细说明........................................... .............................................................. 4-4 4.3.3 有效的数据字符.................................................................... .............................................................. 4-5 4.3.4 USS 的任务和应答.............................................................................................................................. 4-7 4.3.5 PKW 举例:..................................................................... .................................................................4-10 4.3.6 PZD 区域(过程数据区)................................................... .................................................................4-12 4.3.7 任务报文(主站→MICROMASTER4)................................................................................................4-12 4.3.8 应答报文(MICROMASTER4→主站)............................. ..................................................................4-13 4.3.9 MICROMASTER4 有关USS 通讯的参数设置.................. ..................................................................4-15 4.3.10 基本设定................................................................................................................... ........................4-16 4.3.11 一般的高级设置.................................................................................................................................4-16 4.3.12 较复杂的高级设置.............................................................................................................................4-17 4.3.13 与早期MICROMASTER 产品的兼容性....... . ...................................................................................4-17 4.3.14 读出和写入参数............................................... .................................................................................4-18 4.3.15 广播方式............................................................................................................................................4-19 4.3.16 通过USS 利用BiCo(二进制互联连接)...... . ....................................................................................4-19 4.4 PROFIBUS....................................................... . .................................................................................. 4-20 4.4.1 概况............................................................... . .................................................................................. 4-20 4.4.2 PROFIBUS 的使用........................................ .................................................................................... 4-20 4.5 PROFIBUS 模板............................................. . .................................................................................... 4-214.5.1 PROFIBUS 模板的特点................................. . .................................................................................. 4-215 高级操作板(AOP)..................................................... . .......................................................................... 5-1 5.1 警告和说明........................................................................ .................................................................... 5-4 5.1.1 特殊键的功能...................................................................................................................................... 5-4 5.2 应用举例............................................................................... . .............................................................. 5-5 5.2.1 采用AOP 控制单台变频器.......................................................... ....................................................... 5-55.2.2.3 网络控制-PC 方式.................................................................................................................... 5-7 5.2.3 参数的“读出”.............................................................. ................................................................. 5-8 5.2.4 参数的“下载”.................................................................. ............................................................... 5-9 5.2.5 AOP 的参数.................................................................... . ..................................................................5-10 5.2.6 从站方式和DriveMonitor 的操作................ . ....................................................................................5-10 5.2.7 MM3 参数的读出..................................... . .........................................................................................5-11 5.2.8 定时器的操作........................................... . .........................................................................................5-11 5.3 AOP 开始工作........................................................................................................................................5-14 5.3.1 接通电源和初始化............. . ...............................................................................................................5-14 5.3.2 语言文本的选择...................................... . ..........................................................................................5-15 5.3.3 开机“帮助”............................... . .....................................................................................................5-15 5.3.4 常规的操作屏幕.............................. . ..................................................................................................5-15 5.3.5 主菜单(机旁操作方式).................................... . ..............................................................................5-16 5.3.6 请求等待................................................................ ............................................................................5-17 5.4 操作菜单................................................................................................................................................5-17 5.4.1 机旁操作方式下的操作........................................................................................................................5-17 5.4.1.1 通讯故障..........................................................................................................................................5-18 5.4.1.2 显示变频器的状态............... ............................................................................................................5-18 5.4.1.3 变频器类型的检验..................... ......................................................................................................5-18 5.4.2 主站方式下的操作................ . ............................................................................................................5-18 5.4.2.1 广播操作方式........................................... . .....................................................................................5-19 5.4.2.2 通讯故障..........................................................................................................................................5-19 5.5 选择操作方式.........................................................................................................................................5-19 5.5.1 机旁操作方式........................................................................................................... ......................... 5-20 5.5.2 主站方式................................................................................................................... ......................... 5-20 5.5.3 内部方式................................................................................................................... .........................5-20 5.5.4 从站方式.............................................................................................. ............................................. 5-20 5.5.5 PC 方式..................................................................................................... ........................................ 5-21 5.6 参数的访问............................................................................................................................................ 5-21 5.6.1 标准访问级的参数....................................................................... ...................................................... 5-21 5.6.2 功能键的使用................................................................................ .................................................... 5-22 5.6.2.1 屏幕显示滚动功能................................................................ .......................................................... 5-22 5.6.2.2 修改参数数值的某一位数字................................................ ............................................................ 5-22 5.6.2.3 跳转功能.......................................................................................................................................... 5-22 5.6.3 专家级参数................................................................................. ....................................................... 5-23 5.6.3.1 下标参数.............................................................................. ........................................................... 5-23 5.6.4 AOP 存储的参数组................................................................... ......................................................... 5-24 5.6.5 工程设计.................................................................................... ........................................................ 5-24 5.7 AOP 设定和组态.................................................................................................................................... 5-25 5.7.1 设定菜单..................................................................... ....................................................................... 5-25 5.7.1.1 背景亮度......................................................................................................................................... 5-25 5.7.1.2 屏幕对比度............................................................. ....................................................................... 5-26 5.7.1.3 用大字符显示.................................................................................................................................. 5-265.7.1.7 参数组的名称..................................................................................... ........................................... 5-27 5.7.1.8 设定时间/日期.......................................... ..................................................................................... 5-28 5.7.1.9 AOP 复位....................................................................................................................................... 5-28 5.8 故障指示............................................................................................................................................... 5-29 5.8.1 故障屏幕...................................................................................... ..................................................... 5-29 5.8.2 报警屏幕............................................................................................................................................ 5-30 5.8.3 多重故障................................................................................. .......................................................... 5-30 5.8.4 多重报警................................................................................. .......................................................... 5-30 5.8.5 故障和报警同时发生............................................................... .......................................................... 5-31 5.8.6 变频器的故障码....................................................................... ......................................................... 5-31 5.8.7 变频器的报警码........................................................................................ ........................................ 5-315.8.8 变频器的故障/ 报警记录(P0947).............................................................................................. 5-316 编码器模板.............................................................................................................................................. 6-1 6.1 前言...................................................................................................................................................... 6-2 6.2 一般情况............................................................................................................................................... 6-3 6.3 安装...................................................................................................................................................... 6-4 6.3.1 准备工作................................................................................... ........................................................ 6-4 6.3.1.1 变频器的准备工作........................................................................................................................... 6-4 6.3.1.2 编码器模板的准备工作.......................................................... ......................................................... 6-5 6.3.2 接线方法的举例.................................................................................................................................. 6-8 6.4 调试................................................................................................................................................................. 6-9 6.4.1 TTL 编码器............................................................. ...........................................................................6-10 6.4.2 HTL 编码器................................................................... .....................................................................6-11 6.4.3 外接电源......................................................................... ...................................................................6-11 6.4.4 编码器模板的参数化........................................................ ..................................................................6-12 6.5 故障的排除............................................................................................................................................6-14 6.5.1 LED 指示灯............................................................ ...........................................................................6-14 6.5.2 故障码....................................................................... ........................................................................6-156.6 编码器模板的技术规格................................................... ......................................................................6-157 MICROMASTER 440 变频器的制动电阻..................................... ...........................................................7-1 7.1 技术数据...................................................................................... .........................................................7-2 7.2 安装.......................................................................................................................................................7-2 7.3 接线.......................................................................................................................................................7-2 7.4 制动电阻的接线和外形尺寸...................................................................................................................7-37.5 制动电阻的选型........................................................... .........................................................................7-48 选件安装图............................................................................................................................................... 8-1插图图4-1 典型的RS485 多站接口.................................................................................................................... 4-3 图4-2 通讯报文的结构................................................................................................................................. 4-4 图4-3 地址(ADR)的位号......................................................................................................................... 4-4图6-1 编码器模板的外观........................................................................................ .................................... 6-3 图6-2 变频器的铭牌........................................................................................................... ........................ 6-4 图6-3 选件的安装顺序........................................................................................................ ....................... 6-5图6-4 屏蔽接线端和PE 端子.......................................................................................... ......................... 6-5 图6-5 编码器模板上的LED 指示灯................................................................................. ......................... 6-6 图6-6 编码器模板的DIP 开关................................................................................................ .................... 6-7 图6-7 TTL 编码器的接线(5V DC) ................................................................................ ............................ 6-8 图6-8 HTL 编码器的接线(18V DC) .................................................................................. ........................ 6-8 图6-9 具有外接电源的编码器............................................................................................. ........................ 6-9 图6-10 编码器模板的安装方法....................................................................................... ............................ 6-9 图6-11 编码器模板上的LED 指示灯..........................................................................................................6-14表格表3-1 BiCo 的连接(r0019 至r0054)..................................... ................................................................. 3-5 表3-2 BiCo 的连接(r0055 至r1119)....................................... ............................................................. 3-6 表3-3 BiCo 的连接(r1170 至r2050).......................................... .......................................................... 3-7 表3-4 BiCo 的连接(r2053 至r2294)............................................ ........................................................ 3-8 表4-1 任务识别标记ID 的定义............................................................ ....................................................... 4-7 表4-2 应答识别标记ID 的定义............................................................ ....................................................... 4-8 表4-3 对应答识别标记ID 的错误数值=“任务不能执行”的定义............... .................................................. 4-9 表4-4 PZD 区的结构..................................................................................... ..............................................4-12 表4-5 变频器的控制字(STW)................................................................ ................................................4-12 表4-6 变频器的状态字(PZD).................................................................. ...............................................4-13 表4-7 实际例子........................................................................................ ....................................................4-14 表4-8 比较表(MICROMASTER4/早期生产的MIsCROMASTER 变频器). ............................................4-18 表4-9 PROFIBUSSUB-D 插座的插针功能分配.............................................. ............................................ 4-23 表4-10 与数据传输速率相应的最大电缆长度................................................. ............................................ 4-23 表4-11 插头/座和电缆的订货号........................................................................ ............................. ........... 4-23 表4-12 技术数据.............................................................................................. ........................... .............. 4-24 表4-13 有关PROFIBUS 的订货资料................................................................... ...................................... 4-241 MICROMASTER 440 变频器的参数1.1 MICROMASTER 440 变频器的系统参数简介“参数说明”的编排格式如下。
ZXT2M322TA;中文规格书,Datasheet资料
SUMMARYV CEO = 20V;R SAT = 64m ;I C = -3.5A DESCRIPTIONPackaged in the innovative 2mm x 2mm MLP (Micro Leaded Package)outline,this new 4th generation low saturation transistors offers extremely low on state losses making it ideal for use in DC-DC circuits and various driving and power management functions.Additionally users will also gain several other key benefits :Performance capability equivalent to much larger packages Improved circuit efficiency & power levels Lower package height (nom 0.9mm)PCB area and device placement savings Reduced component countFEATURES•Low Equivalent On Resistance•Extremely Low Saturation Voltage (-220mV @-1A)•h FE characterised up to -6A•I C = -3.5A Continuous Collector Current •2mm x 2mm MLPAPPLICATIONS•DC - DC Converters (FET Drivers)•Charging Circuits •Power switches •Motor controlORDERING INFORMATIONDEVICE MARKINGS2ZXT2M322ISSUE 3 - JANUARY 20071MPPS™Miniature Package Power Solutions20V PNP LOW SATURATION SWITCHING TRANSISTOR2mm x 2mm Single MLPunderside viewPINOUTDEVICE REEL TAPE WIDTH QUANTITY PER REELZXT2M322TA 78mm 3000ZXT2M322TC138mm100002mm x 2mm MLP(single die)ZXT2M322ISSUE 3 - JANUARY 20072PARAMETERSYMBOL VALUE UNIT Junction to Ambient (a)R θJA 83°C/W Junction to Ambient (b)R θJA 51°C/W Junction to Ambient (d)R θJA 125°C/W Junction to Ambient (e)R θJA42°C/WTHERMAL RESISTANCENOTES(a) For a single device surface mounted on 10sq cm1oz copper on FR4 PCB in still air conditions with all exposed pads attached .(b) For a single device surface mounted on 10sq cm1oz copper on FR4 PCB in still air conditions measured at t р5 secs with all exposed pads attached.(c) Repetitive rating - pulse width limited by max junction temperature. refer to Transient Thermal Impedance graph.(d) For a single device surface mounted on 10sq cm1oz copper on FR4 PCB in still air conditions with minimal lead connections only .(e) For a single device surface mounted on 65sq cm2oz copper on FR4 PCB in still air conditions with all exposed pads attached .(f) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device, as shown in the package dimensions data. The thermal resistance for a device mounted on 1.5mm thick FR4 board using minimum copper of 1oz weight is Rth=300°C/W giving a power rating of Ptot=420mW.PARAMETERSYMBOL LIMIT UNIT Collector-Base Voltage V CBO -25V Collector-Emitter Voltage V CEO -20V Emitter-Base Voltage V EBO -7.5V Peak Pulse Current (c)I CM -6A Continuous Collector Current (a)I C -3.5A Base CurrentI B -1000mA Power Dissipation at TA=25°C (a)Linear Derating FactorP D 1.512W mW/°C Power Dissipation at TA=25°C (b)Linear Derating FactorP D 2.4519.6W mW/°C Power Dissipation at TA=25°C (d)Linear Derating FactorP D 18W mW/°C Power Dissipation at TA=25°C (e)Linear Derating FactorP D 324W mW/°C Operating and Storage Temperature RangeT j :T stg-55 to +150°CABSOLUTE MAXIMUM RATINGS.ZXT2M322ISSUE 3 - JANUARY 20073CHARACTERISTICSCHARACTERISTICSZXT2M322ISSUE 3 - JANUARY 20074PARAMETERSYMBOL MIN.TYP.MAX.UNIT CONDITIONS.Collector-Base Breakdown VoltageV (BR)CBO -25-35V I C =-100A Collector-Emitter Breakdown VoltageV (BR)CEO -20-25V I C =-10mA*Emitter-Base Breakdown Voltage V (BR)EBO -7.5-8.5V I E =-100A Collector Cut-Off Current I CBO -25nA V CB =-20V Emitter Cut-Off CurrentI EBO -25nA V EB =-6V Collector Emitter Cut-Off Current I CES -25nA V CES =-16VCollector-Emitter Saturation VoltageV CE(sat)-19-170-190-240-225-30-220-250-350-300mV mV mV mV mVI C =-0.1A,I B =-10mA*I C =-1A,I B =-20mA*I C =-1.5A,I B =-50mA*I C =-2.5A,I B =-150mA*I C =-3.5A,I B =-350mA*Base-Emitter Saturation Voltage V BE(sat)-1.01-1.075V I C =-3.5A,I B =-350mA*Base-Emitter Turn-On Voltage V BE(on)-0.87-0.95VI C =-3.5A,V CE =-2V*Static Forward Current Transfer Ratioh FE3003001501547545023030I C =-10mA,V CE =-2V*I C =-0.1A,V CE =-2V*I C =-2A,V CE =-2V*I C =-6A,V CE =-2V*Transition Frequency f T 150180MHz I C =-50mA,V CE =-10V f=100MHzOutput Capacitance C obo 2130pF V CB =-10V,f=1MHz Turn-On Time t (on)40ns V CC =-10V,I C =-1A I B1=I B2=10mATurn-Off Timet (off)670nsELECTRICAL CHARACTERISTICS (at T amb = 25°C unless otherwise stated).*Measured under pulsed conditions. Pulse width=300µs. Duty cycle ≤2%ISSUE 3 - JANUARY 20075ZXT2M322ISSUE 3 - JANUARY 20076EuropeZetex GmbH Balan-straße 59D-81541 München GermanyTelefon: (49) 89 45 49 49 0Fax: (49) 89 45 49 49 49europe.sales@AmericasZetex Inc700 Veterans Memorial Hwy Hauppauge, NY11788USATelephone: (631) 360 2222Fax: (631) 360 8222usa.sales@Asia PacificZetex (Asia) Ltd3701-04Metroplaza, Tower 1Hing Fong Road Kwai Fong Hong KongTelephone: (852) 26100 611Fax: (852) 24250 494asia.sales@Corporate Headquarters Zetex Semiconductors plc Zetex Technology Park ChaddertonOldham, OL9 9LL United KingdomTel: (44) 161 622 4444Fax: (44) 161 622 4446hq@These offices are supported by agents and distributors in major countries world-wide.This publication is issued to provide outline information only which (unless agreed by the Company in writing)may not be used,applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.The Company reserves the right to alter without notice the specification,design,price or conditions of supply of any product or service.For the latest product information,log on to©ZetexSemiconductors plc 2007CONTROLLING DIMENSIONS IN MILLIMETRES APPROX. CONVERTED DIMENSIONS IN INCHESMLP322 PACKAGE OUTLINE (2mm x 2mm Micro Leaded Package)DIM MILLIMETRESINCHES DIM MILLIMETRES INCHES MIN.MAX.MIN.MAX.MIN.MAX.MIN.MAX.A 0.80 1.000.03150.0393e 0.65REF 0.0255REF A10.000.050.000.002E 2.00BSC 0.0787BSC A20.650.750.02550.0295E20.790.990.0310.039A30.150.250.00590.0098E40.480.680.01880.0267b 0.180.280.00700.0110L 0.200.450.00780.0177b10.170.300.00660.0118L20.125MAX.0.005REF D 2.00BSC 0.0787BSCr 0.075BSC 0.0029BSC D2 1.22 1.420.04800.0559⍜0Њ12Њ0Њ12ЊD40.560.760.02200.0299PACKAGE DIMENSIONS分销商库存信息: DIODESZXT2M322TA。
SX440,STAMFORD,调压板英文说明书
DESIGN DETAILTD_SX440 AVR_03.05_03_GBSX440 AUTOMATIC VOLTAGEREGULATOR (AVR)SPECIFICATION, INSTALLATION AND ADJUSTMENTSGeneral descriptionTechnical specificationSX440 is a half-wave phase-controlled thyristor type Automatic Voltage Regulator (AVR) and forms part of the excitation system for a brush-less generator.In addition to regulating the generator voltage, the AVR circuitry includes under-speed and sensing loss protection features. Excitation power is derived directly from the generator terminals.Positive voltage build up from residual levels is ensured by the use of efficient semiconductors in the power circuitry of the AVR.The AVR is linked with the main stator windings and the exciter field windings to provide closed loop control of the output voltage with load regulation of +/- 1.0%.In addition to being powered from the main stator, the AVR also derives a sample voltage from the output windings for voltage control purposes. In response to this sample voltage, the AVR controls the power fed to the exciter field, and hence the main field, to maintain the machine output voltage within the specified limits, compensating for load, speed, temperature and power factor of the generator.A frequency measuring circuit continually monitors thegenerator output and provides output under-speed protection of the excitation system, by reducing the output voltage proportionally with speed below a pre-settable threshold. A manual adjustment is provided for factory setting of the under frequency roll off point, (UFRO). This can easily be changed to 50 or 60 Hz in the field by push-on link selection.Provision is made for the connection of a remote voltage trimmer, allowing the user fine control of the generator's output.An analogue input is provided allowing connection to a Newage Power Factor controller or other external devices with compatible output.The AVR has the facility for droop CT connection, to allow parallel running with other similarly equipped generators.INPUTVoltage 190-264V ac Frequency 50-60 Hz nominal Phase 1 Wire 2 OUTPUT Voltage max 90V dc at 207V ac input Current continuous 4A dc Intermittent 6A for 10 secs Resistance 15 ohms minimum REGULATION +/- 1% (see note 1)THERMAL DRIFT 0.04% per deg. C change in AVR ambient (note 2)TYPICAL SYSTEM RESPONSE AVR response 20ms Filed current to 90% 80 ms Machine Volts to 97% 300msEXTERNAL VOLTAGE ADJUSTMENT +/-10% with 1 k ohm 1 watt trimmer (see note 3)UNDER FREQUENCY PROTECTION Set point 95% Hz (see note 4) Slope 170% down to 30 HzUNIT POWER DISSIPATION 12 watts maximum BUILD UP VOLTAGE 4 Volts @ AVR terminals ANALOGUE INPUT Maximum input +/- 5V dc (see note 5) Sensitivity 1v for 5% Generator Volts (adjustable) Input resistance 1k ohm QUADRATURE DROOP INPUT 10 ohms burden Max. sensitivity: 0.07 A for 5% droop 0PF Max. input: 0.33A ENVIRONMENTAL Vibration 20-100 Hz 50mm/sec 100Hz – 2kHz 3.3gOperating temperature -40 to +70 oCRelative Humidity 0-70 oC95% (see note 6) Storage temperature -55 to +80 oC NOTES1. With 4% engine governing.2. After 10 minutes.3. Applies to Mod status S onwards. Generator de-ratemay apply. Check with factory.4. Factory set, semi-sealed, jumper selectable.5. Any device connected to the analogue input must befully floating (galvanically isolated from ground), with an insulation strength of 500V ac. 6. Non condensing.DESIGN DETAILTD_SX440 AVR_03.06_03_GBThe main functions of the AVR are:Potential Divider and Rectifier takes a proportion of the generator output voltage and attenuates it. The potential divider is adjustable by the AVR Volts potentiometer and external hand trimmer (when fitted). The output from the droop CT is also added to this signal. An isolating transformer is included allowing connection to various winding configurations. A rectifier converts the a.c. input signal into d.c. for further processing.The Sensing Loss Detector is an electronic changeover switch, which normally connects the Amplifier (Amp) to the Voltage Sensing input and automatically changes over to the Power input when the normal sensing voltage is lost.The DC Mixer adds the Analogue input signal the Sensing signal.The Amplifier (Amp) compares the sensing voltage to the Reference Voltage and amplifies the difference (error) to provide a controlling signal for the power devices. The Ramp Generator and Level Detector and Driver infinitely control the conduction period of the Power Control Devices and hence provides the excitation system with the required power to maintain the generator voltage within specified limits.The Stability Circuit provides adjustable negative ac feedback to ensure good steady state and transient performance of the control system.The Low Hz Detector measures the period of each electrical cycle and causes the reference voltage to be reduced approximately linearly with speed below a presettable threshold. A Light Emitting Diode gives indication of underspeed running.The Synchronising circuit is used to keep the Ramp Generator and Low Hz Detector locked to the generator waveform period.The Low Pass Filter prevents distorted waveforms affecting the operation of the AVR control circiutPower Control Devices vary the amount of exciter field current in response to the error signal produced by the Amplifier.Suppression components are included to prevent sub cycle voltage spikes damaging the AVR components and also to reduce the amount of conducted noise on the generator terminals..The Power Supply provides the required voltages for the AVR circuitry.Hand TrimmerAnalogue InputDroopFITTING AND OPERATINGTD_SX440 AVR _03.06_03_GBSUMMARY OF AVR CONTROLSCONTROL FUNCTIONDIRECTIONVOLTS TO ADJUST GENERATOR OUTPUT VOLTAGE CLOCKWISE INCREASES OUTPUT VOLTAGE STABILITY TO PREVENT VOLTAGE HUNTING CLOCKWISE INCREASE THE DAMPING EFFECT UFRO TO SET THE UFRO KNEE POINTCLOCKWISE REDUCES THE KNEE POINT FREQUENCYDROOP TO SET THE GENERATOR DROOP TO 5% AT 0PF CLOCKWISE INCREASES THE DROOPVTRIMTO OPTIMISE ANALOGUE INPUT SENSITIVITYCLOCKWISE INCREASES THE GAIN OR SENSITIVITYADJUSTMENT OF AVR CONTROLSVOLTAGE ADJUSTMENTThe generator output voltage is set at the factory, but can be altered by careful adjustment of the VOLTS control on the AVR board, or by the external hand trimmer if fitted. Terminals 1 and 2 on the AVR will be fitted with a shorting link if no hand trimmer is required.CAUTION Do not increase the voltage above the rated generator voltage. If in doubt, refer to the rating plate mounted on the generator case.CAUTION Do not ground any of the hand trimmer terminals as these could be above earth potential. Failure to observe this could cause equipment damage.If a replacement AVR has been fitted or re-setting of the VOLTS adjustment is required, proceed as follows:CAUTION1. Before running generator, turn the VOLTS control fully anti-clockwise.2. Turn remote volts trimmer (if fitted) to midway position.3. Turn STABILITY control to midway position.4. Connect a suitable voltmeter (0-300V ac) across line to neutral of the generator.5. Start generator set, and run on no load at nominal frequency e.g. 50-53Hz or 60-63Hz.6. If the red Light Emitting Diode (LED) is illuminated, refer to the Under Frequency Roll Off (UFRO) adjustment.7. Carefully turn VOLTS control clockwise until rated voltage is reached.8. If instability is present at rated voltage, refer to stability adjustment, then re-adjust voltage if necessary.9. Voltage adjustment is now completed.FITTING AND OPERATINGTD_SX440 AVR_03.06_04_GBBarnack Road • Stamford • Lincolnshire • PE9 2NB Tel: 00 44 (0)1780 484000 • Fax: 00 44 (0)1780 484100© 2006 Cummins Generator Technologies Limited.Printed in England.STABILITY ADJUSTMENTThe AVR includes a stability or damping circuit to provide good steady state and transient performance of the generator.The correct setting can be found by running the generator at no load and slowly turning the stability control anti-clockwise until the generator voltage starts to become unstable.The optimum or critically damped position is slightly clockwise from this point (i.e. where the machine volts are stable but close to the unstable region).OPTIMUM RESPONSE SELECTIONThe stability selection ‘jumper’ should be correctly linked, A-B, B-C or A-C at the bottom of the board for the frame size of the generator, (see drawing).UNDER FREQUENCY ROLL OFF (UFRO) ADJUSTMENTThe AVR incorporates an underspeed protection circuit which gives a volts/Hz characteristic when the generator speed falls below a presettable threshold known as the "knee" point.The red Light Emitting Diode (LED) gives indication that the UFRO circuit is operating.The UFRO adjustment is preset and sealed and only requires the selection of 50 / 60Hz using the jumper link.For optimum setting, the LED should illuminate as the frequency falls just below nominal, i.e. 47Hz on a 50Hz system or 57Hz on a 60Hz system.DROOP ADJUSTMENTGenerators intended for parallel operation are fitted with a quadrature droop C.T. which provides a power factor dependent signal for the AVR. The C.T. is connected to S1, S2 on the AVR.The DROOP adjustment is normally preset in the works to give 5% voltage droop at full load zero power factor.Clockwise increases the amount of C.T. signal injected into the AVR and increases the droop with lagging power factor (cos Ø). With the control fully anti-clockwise there is no droop.TRIM ADJUSTMENTAn analogue input (A1 A2) is provided to connect to the Newage Power Factor Controller or other devices. It is designed to accept dc signals up to +/- 5 volts.CAUTION Any devices connected to this input must be fully floating and galvanically isolated from ground, with an insulation capability of 500 Vac. Failure to observe this could result in equipment damage.The dc signal applied to this input adds to the AVR sensing circuit. A1 is connected to the AVR 0 volts. Positive on A2 increases excitation. Negative on A2 decreases excitation.The TRIM control allows the user to adjust the sensitivity of the input. With TRIM fully anti-clockwise the externally applied signal has no effect. Clockwise it has maximum effect.Normal setting is fully clockwise when used with a Newage Power Factor Controller.。
TCA440T中文资料
AM -Receiver CircuitPackageTechnical DataTCA 440 / TEdition 12/95DescriptionThis is an efficient bipolar monolithic circuit to apply in battery -powered or mains -operated radio receivers up to 30 MHz. It contains controlled RF stage, mixer, separated oscillator and regulated multistage IF amplifier.Features• symmetrical structured circuitry • controlled RF prestage• multiplicative balanced mixer, separated oscillator • very well implemented large -signal characteristic begins already from 4.5 V supply voltage • terminals for indicating instrument• controlled IF amplifier implementing 60 dB control range• external demodulator (diode)• wide range of supply voltage between 4.5 and 15 VPin configuration1RF prestage, input 19input IF control amplifier2RF prestage, input 210indicator output IF control amplifier 3RF control amplifier input11IF blocking4oscillator circuit pin 112input lF amplifier5oscillator circuit pin 213IF blocking6oscillator circuit pin 314supply voltage7IF output15mixer output 18ground16mixer output 2Block diagramFunctional descriptionIt contains several function units, which enable designing and assembling of efficient AM tuners. Caused by internal voltage stabilization characteristics are rather independent from supply voltage.The RF input signal reaches via a controllable and overdriving proof preselector stage a balanced mixer. By means of a RF -signal generated by a separated oscillator the input signal is transported into IF. Multiplicative mixing causes only few harmonic content. Gain control is carried out by means of two separated feedback control loops for preselector stage and IF amplifier. By these a loop bandwidth of approximately 100 dB is obtained. The control voltage of the IF -amplifier can be used to drive a moving -coil instrument (field strength indicator). The IF amplifier consists of 4 amplifier stages, the first, second and third can be controlled. The bandwidth of the IF amplifier is approximately 2 MHz and on that account sufficient for usual IF frequencies in the AM range of approximately 460 kHz.The symmetrical arrangement of the entire circuitry guarantees well oscillating. The bridge of the mixer avoids direct breakdown.Absolute maximum ratingsmin max unitSupply voltage V CC 4.515.0VJunction temperature T j150°CAmbient operating temperature T a-1580°CStorage temperature T s-40125°CTotal thermal resistance R thja120K/W Recommended operational conditionsmin max unitSupply voltage V CC 4.515VAmbient operating temperature T a-1070°CCharacteristicsrefer to application examples, f i= 1 MHz, f osc= 1.455 kHz, f lF= 455 kHz, V CC= 9 V, f m= 1 kHz, m = 0.8, voltages refer to ground, T a= 20 to 25 °C, unless specified otherwisemin typ max unit Current and voltage supply(no RF signal)Supply voltage V14-8 4.5915V Current consumptionV14-8= 4.5 V I147mAV14-8= 9 V I1410.516mAV14-8= 15 V I1412mA Entire receiverRF level variationwith ∆V NF= 6 dB∆V RF65dBwith ∆V NF= 10 dB∆V RF80dBNF output voltages(symmetrically measured at 1-2)V iHF= 20 µV, m = 0.8V NF(rms)60140mVV iHF= 1 mV, m = 0.8V NF(rms)260mVV iHF= 500 mV, m = 0.8V NF(rms)100350560mVV iHF= 20 µV, m = 0.3V NF(rms)50mVV iHF= 1 mV, m = 0.3V NF(rms)100mVV iHF= 500 mV, m = 0.3V NF(rms)130mVRF input sensitivitymeasured at 60 Ω, m = 0.3,R G= 540 Ωsignal-to-noise ratioS + N/N = 6 dB V iRF1µVS + N/N = 26 dB V iRF7µVS + N/N = 58 dB V iRF1mVMaximum RF input voltage V iHF 1.5V (THD = 10 %)Total harmonic distortionV HF= 500 mV THD 4.510%V HF= 30 mV THD 2.88%RF partInput frequency range f iHF050MHz Output frequencyf|F= f osc-f iHF f IF455kHz Control range∆G V38dB412/95min typ max unitIF suppression a lF20dB between 1 -2 and 15RF input impedanceunbalanced couplingV iHFmax Z i 2 II 5kΩIIpF V iHFmin Z i 2.2 II 1.5kΩIIpF balanced couplingV iHFmax Z i 4.5kΩV iHFmin Z i 4.5 II 1.5kΩIIpFMixer output impedance(pin 15 or 16)Z o250 II 4.5kΩIIpF Steepness S HF28mS IF partInput frequency range f ilF02MHzControl range∆G V62dB f ilF= 455 kHz, ∆V NF= 10 dBStart of control V ctrlF140µV (∆V iIF/ ∆V NF= 10 dB / 3 dB)maximum IF input voltage V ilFmax200mV (THD NF= 10 %)NF output voltageapplied to 60 ΩV ZF= 30 µV V NF(rms)50mV V ZF= 3 mV V NF(rms)200mV V ZF= 3 mV; m = 0.3V NF(rms)70mVIF input impedance(unbanlanced coupling)Z ilF 3 II 3kΩllpFIF output impedance Z O200 II 8kΩIIpF (pin 7)Indication instrumentRecommended indication instruments: 500 µA (R i= 800 Ω)300 µA (R i= 1.5 kΩ)For indication a voltage source of 600 m V(EMF)and an internal source impedance of 400 Ωis available.Dependences612/95812/95Application examples1012/95元器件交易网Application hintsThe PCB is to arrange such that there are maximum ground lines (ground area) voltage supply has to be blocked to ground by a capacitor of 10...100 nF in order to avoid distortions. Blocking should be as close as possible to the circuit.The RF circuit has to layout such that 150 mV(rms)oscillator voltage are applied to pin 5. Symmetrically applying an external oscillator is possible to pin 4 or pin 5. The unused input must be connected to ground via capacitor and in the same time be connected to supply voltage at pin 6.It is recommendable to profide off earth connections 1 and 3, because in this way common -mode interferences more effectively can be suppessed. Single -sided capacitive control of pin 1 and 2 is possible, the unused input must be connected to ground via capacitor.Mixer outputs 15 and 16 can be used equivalently.Load resistances of the mixer (IF selection) at pin 15 respectively pin 16 should run to approximately 7 kΩ.To avoid saturation of the multiplier the maximum peak voltage occuring during operation should not exceed the level (V CC-3 V) IF response to voltage from pin 15 respectively pin 16 to pin 12 should be approximately -18 dB that the control characteristics of IF -and RF -part optimally be matched.Peak voltage at pin 7 occuring during operation should not exceed 2 V that the IF output does not go intosaturation.All the RF bypass capacitors should amount to 100 nF. Sufficient decoupling of wavemagnet and oscillator coil is to be taken into consideration.All components and parts must be carefully proportioned in order to obtain optimum wise characteristics.Wavemagnets applied should so much mass as possible. The transformation ratio of the input circuitry should run to 10...12.In order to improve RF response characteristic a RF preselector can be additionally preceded or the wavemagnet can be tighty coupled by means of an emitter follower impedance transformer.Improvement of signal -to -noise ratio at average input voltages can be obtained by delayed control of the RF part. Control should be start at approximately 1...2 mV.Reprinting is generally permitted, indicating the source. However, our consent must be obtained in all cases.SMI reserves the right to make changes in specifications at any time and without notice.The information and suggestions are given without obligation and cannot given rise to any liability, they do not indicate theavailability of the components mentioned.The information included herein is believed to be accurate and reliable. However, the SMI assumes no responsibility for its use; nor for any infringements of patents or of other rights of third parties which may result from its use.12/9511 TCA 440 / T。
KW006A0A41-SRZ;中文规格书,Datasheet资料
Data SheetOctober 5, 2009KW006-010 Series (Sixteenth-Brick) DC-DC Converter Power Modules:36–75Vdc Input; 3.3Vdc to 5.0Vdc Output; 6A to 10A Output Current* UL is a registered trademark of Underwriters Laboratories, Inc. † CSA is a registered trademark of Canadian Standards Association. ‡ VDE is a trademark of Verband Deutscher Elektrotechniker e.V.§ This product is intended for integration into end-user equipment. All of the required procedures of end-user equipment should be followed.ApplicationsDistributed power architectures Wireless networksAccess and optical network Equipment Enterprise NetworksLatest generation IC’s (DSP, FPGA, ASIC) and Microprocessor powered applicationsOptionsNegative Remote On/Off logicFeaturesCompliant to RoHS EU Directive 2002/95/EC (-Z versions)Compliant to RoHS EU Directive 2002/95/EC with lead solder exemption (non-Z versions)Delivers up to 33W output power: 3.3V(10A), 5.0V(6A)Small size and low profile:33.0 mm x 22.9 mm x 8.75 mm (1.30 in x 0.9 in x 0.344 in) Industry standard DOSA footprintOutput voltage adjustment trim (-20%, +10%) Remote On/Off, Positive logic Remote SenseOver-temperature protection (non-latching) Output over-current protection (non-latching) Output over-voltage protection (latching)Wide operating temperature range (-40°C to 85°C) Meets the voltage isolation requirements forETSI 300-132-2 and complies with and is licensed for Basic Insulation rating per EN60950-1 CE mark meets the 2006/95/EC directive §UL * 60950-1Recognized, CSA † C22.2 No. 60950-1-03 Certified, and VDE ‡ 0805 (EN60950 3rd Edition) LicensedISO** 9001 and ISO 14001 certified manufacturing facilitiesSurface Mount (Tape and Reel, -SR Suffix)DescriptionThe KW (Sixteenth-brick) series power modules are isolated dc-dc converters that operate over a wide input voltage range of 36 to 75Vdc and provide a single precisely regulated output. The output is fully isolated from the input, allowing versatile polarity configurations and grounding connections. The modules exhibit high efficiency, typical efficiency of 87% for 3.3V/10A. These open frame modules are available in surface-mount (-SR) form.RoHS CompliantAbsolute Maximum RatingsStresses in excess of the absolute maximum ratings can cause permanent damage to the device. These areabsolute stress ratings only, functional operation of the device is not implied at these or any other conditions inexcess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings forextended periods can adversely affect the device reliability.Parameter Device Symbol Min Max UnitInput VoltageV IN -0.3 80 V dc Continuous AllTransient (100 ms) All V IN,trans -0.3 100 V dcOperating Ambient Temperature All T A -40 85 °C (see Thermal Considerations section)Storage Temperature All T stg -55 125 °CI/O Isolation voltage (100% Factory tested) All ⎯⎯1500 V dc Electrical SpecificationsUnless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions.Parameter Device Symbol Min Typ Max UnitOperating Input Voltage All V IN 36 48 75 V dcA dcMaximum Input Current All I IN,max 1.5(V IN= V IN, min to V IN, max, I O=I O, max)mA Input No Load Current All I IN,No load 4075(V IN = V IN, nom, I O = 0, module enabled)Input Stand-by Current All I IN,stand-by 3 5 mA(V IN = V IN, nom, module disabled)Inrush Transient All I2t 0.1 A2sInput Reflected Ripple Current, peak-to-peakAll 30 mA p-p(5Hz to 20MHz, 1μH source impedance; V IN, min toV IN, max, I O= I Omax ; See Test configuration section)Input Ripple Rejection (120Hz) All 50 dBEMC, EN55022 See EMC Considerations sectionCAUTION: This power module is not internally fused. An input line fuse must always be used.This power module can be used in a wide variety of applications, ranging from simple standalone operation to anintegrated part of sophisticated power architectures. To preserve maximum flexibility, internal fusing is not included, however, to achieve maximum safety and system protection, always use an input line fuse. The safety agenciesrequire a time-delay fuse with a maximum rating of 5 A (see Safety Considerations section). Based on theinformation provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with alower rating can be used. Refer to the fuse manufacturer’s data sheet for further information.Electrical Specifications(continued)Parameter Device Symbol Min Typ Max UnitV O, setOutput Voltage Set-point All V O, set -1.5 ⎯+1.5 %=25°C)(V IN=V IN, min, I O=I O, max, T AV O, setOutput Voltage All V O -3.0 ⎯+3.0 % (Over all operating input voltage, resistive load,and temperature conditions until end of life)Adjustment Range All V O,adj -20.0 +10.0 V dc Selected by an external resistorOutput RegulationLine (V IN=V IN, min to V IN, max) AllV O, set⎯⎯0.1 % Load (I O=I O, min to I O, max) All⎯⎯ 5 mVV O, set Temperature (T ref=T A, min to T A, max) All ⎯⎯±1.0 % Output Ripple and Noise on nominal output(V IN=V IN, nom ,I O= I O, max , T A=T A, min to T A, max)(see Figure 14 for test conditions)RMS (5Hz to 20MHz bandwidth) F ⎯⎯20 mV rmsPeak-to-Peak (5Hz to 20MHz bandwidth) F ⎯⎯60 mV pk-pk RMS (5Hz to 20MHz bandwidth) A ⎯⎯25 mV rmsPeak-to-Peak (5Hz to 20MHz bandwidth) A ⎯⎯75 mV pk-pk External Capacitance F C O, max 0* ⎯5,000 μFC O, max 0* ⎯2,000 μFAOutput Current A I o 0 ⎯ 6 A dcI o 0 ⎯10 A dcFOutput Current Limit Inception (Hiccup Mode )All I O, lim 101 130 % I o(V O= 90% of V O, set)Output Short-Circuit CurrentAll I O, s/c ⎯ 1 ⎯A rms (V O≤250mV) ( Hiccup Mode )η87.0 % Efficiency AllV IN= V IN, nom, T A=25°C I O=I O, max , V O= V O,setSwitching Frequency All f sw 300 kHz Dynamic Load Response(dIo/dt=1.0A/μs; V IN = V IN, nom; T A=25°C)Load Change from Io= 50% to 75% or 25% to50% of Io,max; 470µF external capacitance(ESR max< 20 mΩ)Peak Deviation All V pk ⎯ 3 ⎯% V O, set Settling Time (Vo<10% peak deviation) All t⎯200 ⎯μss(* See Output Overvoltage Protection Information in the Feature Specifications and Feature Descriptions for advise on minimumoutput capacitance)Isolation SpecificationsParameterDevice Symbol Min Typ Max Unit Isolation Capacitance All C iso ⎯ 120 ⎯ pF Isolation Resistance All R iso 10 ⎯ ⎯M ΩI/O Isolation VoltageAllAll⎯⎯1500 V dcGeneral SpecificationsParameterDeviceMinTypMaxUnitCalculated MTBF Based upon Telcordia SR-332 Issue 2: Method 1 Case 3, 90% confidence (I O =80%I O, max , T A =40°C, Airflow = 200 lfm)F 3,765,608 Hours Powered Random Vibration (V IN =V IN, min , I O =I O, max , T A =25°C, 0 to 5000Hz, 10Grms)All 90 MinutesWeight All ⎯ 10 (0.35) ⎯g (oz.)Feature SpecificationsUnless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperatureconditions. See Feature Descriptions for additional information.ParameterDeviceSymbolMin Typ Max UnitRemote On/Off Signal Interface(V IN =V IN, min to V IN, max ; open collector or equivalent, Signal referenced to V IN (-) terminal) Negative Logic: device code suffix “1”Logic Low = module On, Logic High = module Off Positive Logic: No device code suffix required Logic Low = module Off, Logic High = module OnLogic Low - Remote On/Off Current All I on/off ⎯ 0.37 1.0 mA Logic Low - On/Off Voltage All V on/off -0.7⎯1.2 VLogic Threshold – change of stateAll V on/off 2.4VLogic High Voltage – (Typ = Open Collector) AllV on/off3 3.45 V Logic High maximum allowable leakage current (current flow sourced from the unit)All I on/off ⎯ ⎯ 10 μA External voltage allowed on on/off pin 15 V Turn-On Delay and Rise Times(I O =I O, max , V IN =V IN, nom, T A = 25 oC) Case 1: On/Off input is set to Logic Low (Module ON) and then input power is applied (delay from instant at which V IN = V IN, min until Vo=10% of Vo,set) All T delay ― 2 5 msec Case 2: Input power is applied for at least 1 second and then the On/Off input is set from OFF to ON (T delay = from instant at which V IN =V IN, min until V O = 10% of V O, set ). All T delay ― 2 5 msec Output voltage Rise time (time for Vo to rise from 10% of V o,set to 90% of V o, set , with 0 to max ext capacitance) All T rise ― 8 12 msecOutput voltage overshoot – StartupI O = I O, max ; V IN =V IN, min to V IN, max , T A = 25 oCAll ―3% V O, set Remote Sense RangeAllAll10% V O, setOutput Overvoltage Protection (requires 660 µF outputA V O, limit 5.75 ⎯ 7 V dc capacitance to meet limits, when Output Overvoltage is caused by internal module failure; see Feature Descriptions for further detail )F V O, limit 3.8 ⎯ 4.6 V dc Input Undervoltage LockoutTurn-on Threshold All V uv/on ⎯34 36 V dcTurn-off ThresholdAllV uv/off24 27 ⎯V dc Hysterisis All V hyst ⎯ 6 ⎯V dcLINEAGE POWER 5Characteristic CurvesThe following figures provide typical characteristics for the KW010A0F (3.3V, 10A) at 25oC. The figures are identical for either positive or negative remote On/Off logic.E F F I C I E N C Y , η (%)O U T PUT C U R R E N T , I o (A )AMBIENT TEMPERATURE, T A OCFigure 4. Derating Output Current versus Local Ambient Temperature and Airflow.O U T P U T V O L T A G EV O (V ) (20m V /d i v )TIME, t (1μs/div)O n /O f f V O L T A G E O U T P U T V O L T A G EV o n /o f f (V ) (5V /d i v ) V O (V ) (1V /d iv )TIME, t (5ms/div)Figure 2. Typical output ripple and noise (V IN = V IN,NOM , I o = I o,max ).Figure 5. Typical Start-up Using Remote On/Off, negative logic version shown (V IN = V IN,NOM , I o = I o,max ).O U T P U T C U R R E N T , O U T P U T V O L T A G EI o (A ) (5A /d i v ) V O (V ) (100m V /d i v )TIME, t (400 μs /div) I N P U T V O L T A G E O U T P U T V O L T A G E V I N (V ) (50V /d i v ) V O (V ) (1V /d i v )TIME, t (5ms/div)Figure 3. Transient Response to Dynamic LoadChange from 75% to 50% to 75% of full load with an external 470uF tantalum capacitor (dI/dt =1.0A/μs).Figure 6. Typical Start-up Using Input Voltage (V IN = V IN,NOM , I o = I o,max ).Characteristic Curves (continued)The following figures provide typical characteristics for the KW006A0A (5.0V, 6A) at 25oC. The figures are identical for either positive or negative remote On/Off logic.E F F I C I E N C Y , η (%)O U T P U T C U R R E N T , I o (A )A Figure 10. Derating Output Current versus Local Ambient Temperature and Airflow.O U T P U T V O L T A G EV O (V ) (20m V /d i v )TIME, t (1μs/div)O U T P U T V O L T A G E O n /O f f V O L T A G EV O N /O F F (V ) (5V /d i v ) V o (V ) (2V /d i v )TIME, t (5ms/div)Figure 8. Typical output ripple and noise (V IN = V IN,NOM I o = I ). Figure 11. Typical Start-up Using Remote On/Off,negative logic version shown (V IN = V IN,NOM , I o = I o,max ).O U T P U T C U R R E N T , O U T P U T V O L T A G EI o (A ) (2A /d i v ) V O (V ) (50m V /d i v )TIME, t (1ms/div)O U T P U T V O L T A G E I N P U T V O L T A G EV I N (V ) (50V /d i v ) V o (V ) (2V /d i v )TIME, t (5ms/div)Figure 9. Transient Response to Dynamic LoadChange from 50% to 75% to 50% of full load with an external 470uF tantalum capacitor (dI/dt =1.0A/μs).Figure 12. Typical Start-up Using Input Voltage (V IN = V IN,NOM , I o = I o,max ).Test ConfigurationsNOTE: Measure input reflected ripple current with a simulatedsource inductance (L TEST) of 12μH. Capacitor C S offsetspossible battery impedance. Measure current as shownabove.Figure 13. Input Reflected Ripple Current Test Setup.NOTE: All voltage measurements to be taken at the moduleterminals, as shown above. If sockets are used thenKelvin connections are required at the module terminalsto avoid measurement errors due to socket contactresistance.Figure 14. Output Ripple and Noise Test Setup.NOTE: All voltage measurements to be taken at the moduleterminals, as shown above. If sockets are used thenKelvin connections are required at the module terminalsto avoid measurement errors due to socket contactresistance.Figure 15. Output Voltage and Efficiency Test Setup.η= V O. I OV IN. I INx100%Efficiency Design ConsiderationsInput FilteringThe power module should be connected to a lowac-impedance source. Highly inductive source impedance can affect the stability of the power module. For the test configuration in Figure 13, a 33μF electrolytic capacitor (ESR<0.1Ω at 100kHz), mounted close to the power module helps ensure the stability of the unit. Consult the factory for further application guidelines.Safety ConsiderationsFor safety-agency approval of the system in which the power module is used, the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standard, i.e., UL 60950-1-3, CSA C22.2 No. 60950-00, and VDE 0805:2001-12 (IEC60950-1).If the input source is non-SELV (ELV or a hazardous voltage greater than 60 Vdc and less than or equal to 75Vdc), for the module’s output to be considered as meeting the requirements for safety extra-low voltage (SELV), all of the following must be true:The input source is to be provided with reinforced insulation from any other hazardous voltages,including the ac mains.One V IN pin and one V OUT pin are to be grounded, or both the input and output pins are to be keptfloating.The input pins of the module are not operator accessible.Another SELV reliability test is conducted on the whole system (combination of supply source andsubject module), as required by the safetyagencies, to verify that under a single fault,hazardous voltages do not appear at the module’s output.Note:Do not ground either of the input pins of the module without grounding one of the outputpins. This may allow a non-SELV voltage toappear between the output pins and ground. The power module has extra-low voltage (ELV) outputs when all inputs are ELV.All flammable materials used in the manufacturing of these modules are rated 94V-0, or tested to theUL60950 A.2 for reduced thickness.For input voltages exceeding –60 Vdc but less than or equal to –75 Vdc, these converters have been evaluated to the applicable requirements of BASIC INSULATION between secondary DC MAINS DISTRIBUTION input (classified as TNV-2 in Europe) and unearthed SELV outputs (-B option only).The input to these units is to be provided with a maximum 5 A time-delay fuse in the ungrounded lead.Feature DescriptionRemote On/OffTwo remote on/off options are available. Positive logic turns the module on during a logic high voltage on the ON/OFF pin, and off during a logic low. Negative logic remote On/Off, device code suffix “1”, turns the module off during a logic high and on during a logic low.Figure 16. Remote On/Off Implementation.To turn the power module on and off, the user must supply a switch (open collector or equivalent) to control the voltage (V on/off) between the ON/OFF terminal and the V IN(-) terminal (see Figure 16). Logic low is0V ≤ V on/off≤ 1.2V. The maximum I on/off during a logic low is 1mA, the switch should be maintain a logic low level whilst sinking this current.The typical open circuit V on/off generated by the module is 3.4V. The I ON/OFF leakage current, through the switch, is required to be less than 10uA otherwise the unit will reach the threshold at which it switches.If not using the remote on/off feature:For positive logic, leave the ON/OFF pin open.For negative logic, short the ON/OFF pin to V IN(-). Remote SenseRemote sense minimizes the effects of distribution losses by regulating the voltage at the remote-sense connections (See Figure 17). The voltage between the remote-sense pins and the output terminals must not exceed the output voltage sense range given in the Feature Specifications table:[V O(+) – V O(–)] – [SENSE(+) – SENSE(–)] ≤ 10% V O,Set Although the output voltage can be increased by both the remote sense and by the trim, the maximum increase for the output voltage is not the sum of both. The maximum increase is the larger of either the remote sense or the trim.The amount of power delivered by the module is defined as the voltage at the output terminals multiplied by the output current. When using remote sense and trim, the output voltage of the module can be increased, which at the same output current would increase the power output of the module. Care should be taken to ensure that the maximum output power of the module remains at or below the maximum rated power (Maximum rated power = V o,set x I o,max).Figure 17. Circuit Configuration for remotesense .Input Under-Voltage LockoutAt input voltages below the input under-voltage lockout limit, the module operation is disabled. The module will only begin to operate once the input voltage is raised above the undervoltage lockout turn-on threshold,V uv/on.Once operating, the module will continue to operate until the input voltage is taken below the undervoltage turn-off threshold, V uv/off.Over-Temperature ProtectionTo provide protection under certain fault conditions, the unit is equipped with a thermal shutdown circuit. The unit will shutdown if the thermal reference test pointRT1 (Figure 19), exceeds 110o C (typical), but the thermal shutdown is not intended as a guarantee that the unit will survive temperatures beyond its rating. The module will automatically restart upon cool-down to a safe temperature.Output Over-Voltage ProtectionThe output over-voltage protection scheme of the modules has an independent over-voltage loop to prevent single point of failure. This protection feature latches-off the module in the event of over-voltage across the output. Recycling the input voltage or momentarily switching-off the module via the remote on/off pin resets the latch.The independent over-voltage loop has a relatively slow response time. There are no precautions necessary to meet the output over-voltage protection limits for externally caused over-voltage conditions, such as excessive remote sense or output trim adjustments. However, special precautions are necessary to insure the over-voltage limits are met when the over-voltage is caused by internal module control loop failure. Either a minimum of 660 µF external output capacitance is required, or an externalFeature Descriptions (continued)OVP pull-down circuit is required. The OVP pull-down circuit will also provide significantly lower peak output over-voltages for applications that are particularly sensitive to over-voltage stress. Please contact your local Lineage Power sales representative for further information on the external OVP pull-down circuit.Over-Current ProtectionTo provide protection in a fault (output overload)condition, the unit is equipped with internalcurrent-limiting circuitry and can endure current limiting continuously. At the point of current-limit inception, the unit enters hiccup mode. The unit will remain in the hiccup mode as long as the overcurrentcondition exists; it operates normally, once the output current is brought back into its specified range. The average output current during hiccup is < 1A.Output Voltage ProgrammingTrimming allows the output voltage set point to be increased or decreased. This is accomplished byconnecting an external resistor between the TRIM pin and either the V O (+) pin or the V O (-) pin.LOADFigure 18. Circuit Configuration to Trim Output Voltage.Connecting an external resistor (R trim-down ) between the TRIM pin and the V O (-) (or Sense(-)) pin decreases the output voltage set point. To maintain set pointaccuracy, the trim resistor tolerance should be ±1.0%. The following equation determines the requiredexternal resistor value to obtain a percentage output voltage change of Δ%For trimming the output voltage lower:ΚΩ⎥⎦⎤⎢⎣⎡−Δ=−22.10%511down trim R Where 100%,,×⎟⎟⎠⎞⎜⎜⎝⎛−=Δset o desired seto V V V For example, to trim-down the output voltage of 3.3V module (KW010A0F/F1) by 8% to 3.036V, R trim-down is calculated as follows:8%=ΔΚΩ⎥⎦⎤⎢⎣⎡−=−22.108511down trim RΚΩ=−655.53down trim RConnecting an external resistor (R trim-up ) between the TRIM pin and the V O (+) (or Sense (+)) pin increases the output voltage set point. The following equations determine the required external resistor value to obtain a percentage output voltage change of Δ%: For trimming the output voltage higher:ΚΩ⎥⎦⎤⎢⎣⎡−Δ−Δ×Δ+××=−22.10%511%225.1%)100(11.5,set o up trim V RWhere 100%,,×⎟⎟⎠⎞⎜⎜⎝⎛−=Δset o desired set o V V VFor example, to trim-up the output voltage of 3.3V module (KW010A0F/F1) by 6% to 3.498V, R trim-up is calculated is as follows:6%=Δ ΚΩ⎥⎦⎤⎢⎣⎡−−×+××=−22.1065116225.1)6100(3.311.5up trim R ΚΩ=−8.147up trim RThe voltage between the V O (+) and V O (–) terminalsmust not exceed the minimum output overvoltage protection value shown in the Feature Specifications table. This limit includes any increase in voltage due to remote-sense compensation and output voltage set-point adjustment trim.Although the output voltage can be increased by both the remote sense and by the trim, the maximumincrease for the output voltage is not the sum of both. The maximum increase is the larger of either the remote sense or the trim. The amount of powerdelivered by the module is defined as the voltage at the output terminals multiplied by the output current. When using remote sense and trim, the output voltage of the module can be increased, which at the same output current would increase the power output of the module. Care should be taken to ensure that the maximum output power of the module remains at or below the maximum rated power (Maximum rated power = V o,set x I o,max ).EMC ConsiderationsThe KW006/010 power module is designed to meet EN55022 Class B Conducted emissions with a simple filter, as shown in Figure 19. Test results are shown in Figure 20. Further improvement to the emissions at the fundamental can be achieved by increasing the value of C3 and C4. Please contact your Lineage Power sales representative, if you need further information.Figure 19. EMC Filter.Thermal ConsiderationsThe power modules operate in a variety of thermalenvironments; however, sufficient cooling should beprovided to help ensure reliable operation.Considerations include ambient temperature, airflow,module power dissipation, and the need for increasedreliability. A reduction in the operating temperature ofthe module will result in an increase in reliability. Thethermal data presented in this data sheet is based onphysical measurements taken in a wind tunnel. The testset-up is shown in Figure 21. Please refer to theApplication Note “Thermal Characterization ProcessFor Open-Frame Board-Mounted Power Modules” for adetailed discussion of thermal aspects includingmaximum device temperatures.The thermal reference point, T ref , used in thespecifications, is shown in Figure 22. For reliableoperation this temperature should not exceed 125o C.Figure 21. T ref Temperature MeasurementLocations.Figure 22. T ref Temperature MeasurementLocations.C3AIRFLOWC4 = 1nF CeramicL1 = P0354 (1.17mH, 1.2A rated)分销商库存信息: GEKW006A0A41-SRZ。
SC1485ITSTRT资料
SC1485
The SC1485 is a dual output constant-on synchronous buck PWM controller intended for use in notebook computers and other battery operated portable devices. Features include high efficiency and a fast dynamic response with no minimum on time. The excellent transient response means that SC1485 based solutions will require less output capacitance than competing fixed frequency converters. The switching frequency is constant until a step in load or line voltage occurs at which time the pulse density and frequency will increase or decrease to counter the change in output or input voltage. After the transient event, the controller frequency will return to steady state operation. At light loads, Power-Save Mode enables the SC1485 to skip PWM pulses for better efficiency. Each output voltage can be independently adjusted from 0.5V to VCCA. Two frequency setting resistors set the on-time for each buck controller. The frequency can thus be tailored to minimize crosstalk. The integrated gate drivers feature adaptive shoot-through protection and soft switching. Additional features include cycle-by-cycle current limit, digital soft-start, over-voltage and undervoltage protection, and a PGOOD output for each controller.
BT136-600,127;中文规格书,Datasheet资料
GENERAL DESCRIPTIONQUICK REFERENCE DATAPassivated triacs in a plastic envelope,SYMBOLPARAMETERMAX.UNITintended for use in applications requiring high bidirectional transient and blocking BT136-600voltage capability and high thermal cycling BT136-600F performance.Typical applications include motor control,industrial and domestic V DRM Repetitive peak off-state 600V lighting,heating and static switching.voltagesI T(RMS)RMS on-state current4A I TSMNon-repetitive peak on-state 25AcurrentPINNING - TO220ABPIN CONFIGURATIONSYMBOLLIMITING VALUESLimiting values in accordance with the Absolute Maximum System (IEC 134).SYMBOL PARAMETERCONDITIONSMIN.MAX.UNIT V DRM Repetitive peak off-state -6001V voltagesI T(RMS)RMS on-state current full sine wave; T mb ≤ 107 ˚C-4A I TSMNon-repetitive peak full sine wave; T j = 25 ˚C prior to on-state current surge t = 20 ms -25A t = 16.7 ms -27A I 2t I 2t for fusingt = 10 ms- 3.1A 2s dI T /dtRepetitive rate of rise of I TM = 6 A; I G = 0.2 A;on-state current after dI G /dt = 0.2 A/µstriggeringT2+ G+-50A/µs T2+ G--50A/µs T2- G--50A/µs T2- G+-10A/µs I GM Peak gate current -2A V GM Peak gate voltage -5V P GM Peak gate power -5W P G(AV)Average gate power over any 20 ms period-0.5W T stg Storage temperature -40150˚C T jOperating junction -125˚Ctemperature1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 3 A/µs.THERMAL RESISTANCESSYMBOL PARAMETERCONDITIONSMIN.TYP.MAX.UNIT R th j-mb Thermal resistance full cycle -- 3.0K/W junction to mounting base half cycle -- 3.7K/W R th j-aThermal resistance in free air -60-K/Wjunction to ambientSTATIC CHARACTERISTICST j = 25 ˚C unless otherwise stated SYMBOL PARAMETER CONDITIONSMIN.TYP.MAX.UNITBT136-......F I GTGate trigger currentV D = 12 V; I T = 0.1 AT2+ G+-53525mA T2+ G--83525mA T2- G--113525mA T2- G+-307070mA I LLatching currentV D = 12 V; I GT = 0.1 AT2+ G+-72020mA T2+ G--163030mA T2- G--52020mA T2- G+-73030mA I H Holding current V D = 12 V; I GT = 0.1 A -51515mA V T On-state voltage I T = 5 A- 1.4 1.70V V GT Gate trigger voltage V D = 12 V; I T = 0.1 A -0.7 1.5V V D = 400 V; I T = 0.1 A;0.250.4-V T j = 125 ˚C I DOff-state leakage currentV D = V DRM(max);-0.10.5mA T j = 125 ˚CDYNAMIC CHARACTERISTICST j = 25 ˚C unless otherwise stated SYMBOL PARAMETER CONDITIONSMIN.TYP.MAX.UNIT BT136-......F dV D /dtCritical rate of rise of V DM = 67% V DRM(max);10050250-V/µsoff-state voltage T j = 125 ˚C; exponential waveform; gate open circuitdV com /dtCritical rate of change of V DM = 400 V; T j = 95 ˚C;--50-V/µscommutating voltage I T(RMS) = 4 A;dI com /dt = 1.8 A/ms; gate open circuitt gtGate controlled turn-on I TM = 6 A; V D = V DRM(max);--2-µstimeI G = 0.1 A; dI G /dt = 5 A/µsMECHANICAL DATANotes1. Refer to mounting instructions for SOT78 (TO220) envelopes.2. Epoxy meets UL94 V0 at 1/8".DEFINITIONSDATA SHEET STATUSDATA SHEET PRODUCT DEFINITIONSSTATUS2STATUS3Objective data Development This data sheet contains data from the objective specification forproduct development. Philips Semiconductors reserves the right tochange the specification in any manner without noticePreliminary data Qualification This data sheet contains data from the preliminary specification.Supplementary data will be published at a later date. PhilipsSemiconductors reserves the right to change the specification withoutnotice, in ordere to improve the design and supply the best possibleproductProduct data Production This data sheet contains data from the product specification. PhilipsSemiconductors reserves the right to make changes at any time inorder to improve the design, manufacturing and supply. Changes willbe communicated according to the Customer Product/ProcessChange Notification (CPCN) procedure SNW-SQ-650ALimiting valuesLimiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application informationWhere application information is given, it is advisory and does not form part of the specification.Philips Electronics N.V. 2001All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.LIFE SUPPORT APPLICATIONSThese products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.2 Please consult the most recently issued datasheet before initiating or completing a design.3 The product status of the device(s) described in this datasheet may have changed since this datasheet was published. The latest information is available on the Internet at URL .分销商库存信息: NXPBT136-600,127。
KBMF01SC6;中文规格书,Datasheet资料
®1/8KBMFEMI FILTER AND LINE TERMINATION FOR PS/2 MOUSE OR KEYBOARD PORTSREV. 2October 2004MAIN APPLICATIONSEMI Filter and line termination for mouse and key-board ports on:■Desktop computers ■Notebooks ■Workstations ■ServersFEATURES■Integrated low pass filters for Data and Clock lines■Integrated ESD protection ■Integrated pull-up resistors ■Small package size■Breakdown voltage: V BR = 6V min.DESCRIPTIONOn the implementation of computer systems, the radiated and conducted EMI should be kept within the required levels as stated by the FCC regulations. In addition to the requirements of EMC compatibility, the computing devices are required to tolerate ESD events and remain operational without user intervention.The KBMF implements a low pass filter to limit EMI levels and provide ESD protection which exceeds IEC 61000-4-2 level 4 standard. The device also implements the pull up resistors needed to bias the data and clock lines. The package is the SOT23-6L which is ideal for situations where board space is at a premium.BENEFITS■EMI / RFI noise suppression■ESD protection exceeding IEC61000-4-2 level 4■High flexibility in the design of high density boardsIPAD™Table 1: Order CodePart NumberMarking KBMF01SC6KM1TM: IPAD is a trademark of STMicroelectronics.COMPLIES WITH THE FOLLOWING ESD STANDARDS:IEC 61000-4-2 (R = 330Ω C = 150pF)Level 4±15 kV (air discharge)±8 kV (contact discharge)MIL STD 883C, Method 3015-6Class 3 C = 100pF R = 1500Ω3 positive strikes and3 negative strikes (F = 1 Hz)KBMF2/8Table 2: Absolute Maximum Ratings (T amb = 25°C)Table 3: Electrical Characteristics (T amb = 25°C)TECHNICAL INFORMATION 1. EMI FILTERINGThe KBMFxxSC6 ensure a filtering protection against ElectroMagnetic and RadioFrequency Interferences thanks to its low-pass filter structure. This filter is characterized by the following parameters :- cut-off frequency - Insertion loss- high frequency rejection Symbol ParameterValue Unit V PP ESD discharge R = 330W C = 150pF contact discharge ESD discharge - MIL STD 883 - Method 3015-6±12±25kV T j Junction temperature 150°C T stg Storage temperature range- 55 to +150°C T L Lead solder temperature (10 second duration)260°C T op Operating temperature Range 0 to 70°C P rPower rating per resistor100mWSymbol ParametersTest conditions MinTypMax Unit I R Diode leakage current V RM = 5.0V 10µA V BR Diode breakdown voltage I R = 1mA 6V V FDiode forward voltage dropI F = 50mA0.9VFigure 2: Measurements configurationFigure 3: KBMF attenuation curveKBMF3/82. ESD PROTECTIONThe KBMFxxSC6 is particularly optimized to perform ESD protection. ESD protection is based on the use of device which clamps at:V output = V BR + R d .I PPThis protection function is splitted in 2 stages. As shown in figure 4, the ESD strikes are clamped by the first stage S1 and then its remaining overvoltage is applied to the second stage through the resistor R.Such a configuration makes the output voltage very low at the V output level.To have a good approximation of the remaining voltages at both V input and V output stages, we give the typical dynamical resistance value Rd. By taking into account these following hypothesis : R t >R d , R g >R d and R load >R d , it gives these formulas:The results of the calculation done for V PP =8kV, R g =330Ω (IEC 61000-4-2 standard), V BR =7V (typ.) and R d = 1Ω (typ.) give:V input = 31.2 V V output = 7.8 VThis confirms the very low remaining voltage across the device to be protected. It is also important to note that in this approximation the parasitic inductance effect was not taken into account. This could be few tenths of volts during few ns at the input side. This parasitic effect is not present at the output side due the low current involved after the resistance R S .The measurements done here after show very clearly (figure 6) the high efficiency of the ESD protection :- no influence of the parasitic inductances on output stage- V output clamping voltage very close to V BR (positive strike) and -V F (negative strike)V input =R g V BR R d V g⋅+⋅R g -----------------------------------------------------V output =R s V BR R d V input⋅+⋅R t----------------------------------------------------------------KBMFFigure 6: Remaining voltage at both stages S1 (V input) and S2 (V output) during ESD surgePositive surge Negative surgePlease note that the KBMF01SC6 is not only acting for positive ESD surges but also for negative ones. For these kind of disturbances it clamps close to ground voltage as shown in the Negative Surge figure.3. LATCH-UP PHENOMENAThe early ageing and destruction of IC’s is often due to latch-up phenomena which is mainly induced by dV/dt. Thanks to its structure, the KBMF01SC6 provides a high immunity to latch-up phenomena by smoothing very fast edges.4/8KBMF5/84. CROSSTALK BEHAVIOR The crosstalk phenomena is due to the coupling between 2 lines. The coupling factor ( β12 or β21 )increases when the gap across lines decreases, this is the reason why we provide crosstalk measurements for monolithic device to guarantee negligeable crosstalk between the lines. In the example above the expected signal on load R L2 is α2V G2, in fact the real voltage at this point has got an extra value β21V G1. This part of the V G1 signal represents the effect of the crosstalk phenomenon of the line 1 on the line 2. This phenomenon has to be taken into account when the drivers impose fast digital data or high frequency analog signals in the disturbing line. The perturbed line will be more affected if it works with low voltage signal or high load impedance (few k Ω).Figure 8 gives the measurement circuit for the analog crosstalk application. In figure 9, the curve shows the effect of the Data line on the CLK line. In usual frequency range of analog signals (up to 100MHz) the effect on disturbed line is less than -37dB.Figure 7: Crosstalk phenomenaFigure 8: Analog Crosstalk measurementsFigure 9:Typical Analog Crosstalk meas-KBMF6/8Figure 10 shows the measurement circuit used to quantify the crosstalk effect in a classical digital appli-cation.Figure 11 shows that in such a condition signal from 0 to 5V and rise time of few ns, the impact on the other line is less than 50mV peak to peak (below the logic high threshold voltage). The measurements performed with falling edges gives the results within the same range.5. APPLICATION EXAMPLEThe KBMF01SC6 device could be used on PS/2 mouse or keyboard as indicated by figure 12.Figure 10: Digital crosstalk measurementsFigure11:Digital crosstalk measurementsFigure 12: Implementation of KBMFxxSC6 in a typical applicationKBMF7/8Figure 13: SOT23-6L Package Mechanical DataEHLA1ce ebDA2AθFigure 14: SOT23-6L Foot print dimensions (in millimeters)Table 4: Mechanical Specifications0.601.201.100.952.303.50REF.DIMENSIONSMillimeters Inches Min.Typ.Max.Min.Typ.Max.A0.90 1.450.0350.057A100.100.004A20.90 1.300.0350.051b 0.350.500.0140.02C 0.090.200.0040.008D 2.80 3.050.1100.120E 1.501.750.0590.069e 0.950.037H 2.60 3.000.1020.118L 0.100.600.0040.024θ10°10°Table 5: Ordering Information Ordering code Marking Package Weight Base qty Delivery mode KBMF01SC6KM1SOT23-6L16.7 mg3000Tape & reelTable 6: Revision HistoryDate Revision Description of ChangesFeb-20031D Last update.28-Oct-20042SOT23-6L package dimensions change for reference “D” from 3.0 millimeters (0.118 inches) to 3.05 millimeters (0.120 inches).Lead plating Tin-lead Lead plating thickness5µm min.25µm max.Lead material Sn / Pb(70% to 90%Sn)Lead coplanarity 10µm max Body material Molded epoxy FlammabilityUL94V-0KBMFInformation furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics.All other names are the property of their respective owners© 2004 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America8/8分销商库存信息: STMKBMF01SC6。
SC338IMSTRT中文资料
-1
0
+1
tr
Measured at ADJ pin VADJ = 0.4V, IPGD = -1mA VADJ = 0.5V, 0V ≤ VPGD ≤ VIN
-15
-12
-9 0.4
%VADJ V µA
Output Logic Low Voltage Power Good Leakage Current Soft Start Output Rise Time 10% VOUT to 90% VOUT, VOUT = 1.05V
Applications
Notebook PCs Simple dual power supplies
Typical Application Circuit
5V or 12V IN
1.2V +/-5% IN C1 0.1uF (1) 8 1 C3 Q1 IRF7311 or similar 2 4 7 6 5 3 C4 C2 0.1uF (1)
1.8V +/-5% IN
1.05V @ 3A
1.5V @ 1.5A
100uF, 25mOhm POSCAP
R1 11.0k
R5 2k (2)
1 2
U1 DRV1 ADJ1 EN1 PGD1 GND
SC338(A) IN DRV2 ADJ2 EN2 PGD2
10 9 8 7 6 C6 0.1uF C7 10nF (2) R6 2k (2)
SC338(A)
Features
±1.5% and ±2.5% reference voltage options
available Two independant and fully adjustable outputs Wide supply voltage range permits operation from 5V or 12V rails Very low quiescent current (500µA typical with both outputs enabled and 5V input) Indivdual Enable control for each output Individual Power Good monitoring and signalling for each output Gate drives from input supply enable use of N-channel MOSFETs User selectable dropout voltage Individual under-voltage protection for each output MSOP-10 surface mount package
西门子变频器产品样本
本产品样本中包含的产品已录入产品样本光盘 CA01 中 订货号: E86060-D4001-A110-B4-7600
订货时请与您当地的西门子办事处联系
本样本中列出的产品和 系统在制造和销售中通 过了 DIN EN ISO 9001 ( 认证号:N o . D E 000357 QM))和DIN EN ISO 14001(认证号:No. 0813420 UM 和 EMS 57390)。认证证书在所 有的 IQNet 国家都已注 册。
主要特征
调试简单
模块化的结构,因而组态 具有最大的灵活性
具有三个完全可编程的隔 离的数字输入
一个可标定的模拟输入 (0V 至 10V) ;它也可以作为第 4 个数字输入来使用。
一个可编程的模拟输出 (0mA 至 20mA)
一个完全可编程的继电器 输出 (30V ,直流 /5A,电阻 负载或 250V,交流 /2A, 感 性负载)
3
MICROMASTER420/430/440
一般介绍
选件
MICROMASTER 4 系列变频 器有以下选件可供用户选用:
滤波器 电抗器 操作面板 PROFIBUS 通讯模块 DeviceNet 通讯模块 CAN open 通讯模块 脉冲编码器脉冲计数模块 密封盖板 安装组合件等
变频器各个系列适用的操作面板和功能模块的配置
节能运行方式 负载转矩监控 ( 水泵的无水空转运行检测) 电动机的分级 (多泵循环) 控制
有 3 组驱动数据可供选择 集成的制动斩波器 (75 kW 以下) 转矩控制 具有二进制互联连接(BiCo)功能
MM430 变频器
110kW 至 250kW(VT)MM430 变频器是 MICROMASTER 变频器系列新的扩展型号。它的主要特点有:
ZXSC440中文资料(Diodes)中文数据手册「EasyDatasheet - 矽搜」
(测试条件V
CC= 3V,T = 25°C除非另有说明)
条件
MIN. TYP.
1.8
VCC =8V 4.5
85
1.8V V CC
-3.0 0.005
1.8V V CC
1.7
MAX. 8 220
3.0
200
UNIT V A A % %
%/°C s
kHz
检测电压 检测输入电流 反馈电压 反馈输入电流 关闭阈值 关闭阈值 线路电压调整
驱动输出.通常情况下,驱动器输出为“高”;该
外部开关晶体管被接通.当前
斜升在电感,开关晶体管和
外部电流传感电阻器.这个电压是
感测到比较器,器Comp2,在输入感.一度
穿过传感电阻的电流检测电压
超过28MV,比较器,器Comp2,通过门U1,
触发重新触发的单稳态和关闭
输出驱动级的1.7秒.电感放电
到储电容器.经过1.7秒的新收费
LIMIT
UNIT
-0.3至+10
V
-0.3到V CC + 0.3
V
-0.3到V CC + 0.3
V
-0.3至(5.0)或较低(Ⅴ
CC +0.3)
V
-0.3至(5.0)或较低(Ⅴ
CC +0.3)
V
-40至+85
°C
-55到+150
°C
450
mW
电气特性
符号
VCC Iq (1) ISTDN Eff (2) Acc REF TCO REF TDRV FOSC
(对于在V典型应用电路
IN= 3V和T A= 25°C除非另有说明 2005年 1月 5
Slant Fin商业放热元件说明书
DampersDampers are available as options on most enclosures, and are shown in diagrams wherever applicable. Ratings are for enclo-sures without dampers, or with dampers in fully open position.Water ContentSlant/Fin commercial radiation elements contain the following volume of water: 3⁄4" copper tube.................................0.023 gal./ft. Model C440, 1" copper tube........................................0.040 gal./ft. Model C540, 11⁄4" copper tube.....................................0.063 gal./ft. Model S532, S540, 11⁄4" steel pipe..............................0.077 gal./ft. Model S832, 2” steel pipe............................................0.174 gal./ft.NOTE:All ratings have been determined in the Slant/Fin Environmental Laboratory in conformance with accepted industry practice concerning testing and rating procedures for finned tube (commercial) radiation. Fin-tube must be installed in accordance with installation diagrams on Form CP-10 and 90-40 to obtain the ratings indicated. Use of material or installation methods other than those specified by Slant/Fin may result in a change in the ratings.* Engineering data pertains to all products in this publication except Multi/Pak 80 and H and E Series bare elements.Ratings are based on active (finned) length. Active length of “S” and “C” ele-ments is 51⁄4" less than total length. Fin size of “S” and “C” elements is 41⁄4" x 41⁄4". Active length of “H” and “E” elements is 3" less than total length. See p. 26-27 for the specifications of individual “H” and “E” elements.Water Ratings And Flow RatesThe hot water ratings shown in this catalog are based on the following Water velocity: 3 or more feet per second Entering air temp: 65oSteam temperature: 215oProceed as follows to determine output under conditions different than above:Water velocity less than 3 feet per second: multiply the hot water ratings by the factors shown in T able 1.TABLE 1FACTORS FOR DETERMINING BTUH OUTPUTS AT WATER FLOW RATES OF LESS THAN 3 FEET PER SECOND. AHRI RECOMMENDS THAT A MINIMUM VELOCITY OF 0.25 ft/s BE USED IN SYSTEM DESIGN TO PREVENT A LAMINAR FLOW CONDITION.Flow Rate Ft./Sec. Factor Flow Rate Ft./Sec. Factor 3.0______________ 1.00 1.5______________ .973 2.75____________ .996 1.25_____________ .966 2.5______________ .992 1.0______________ .957 2.25____________ .988 .75______________ .946 2.0______________ .984 .5_______________ .931 1.75____________ .979 .25______________ .905Factor from Table 3 for actual installed height÷ Factor from Table 3 for recommended installed height Rating shown on pages5, 11, 13, 15, 21 & 27X Installed height 36" [1.00 ÷ 1.15] x 1500 = 1304 Btu/Hr./Ft. Recommended height 14" Water Temperature 200oFCover type 95-10 Element C-540The installed height for enclosures is defined as the distance from the fin-ished floor to the center of the outlet. Recommended height is based on a mini-mum mounting height for all covers and enclosures of 41⁄4" from finished floor to bottom of front panel.S P E C I F I C A T I O N SSteam RatingsSteam ratings are expressed in BTU per hour per lineal foot of activelength,based on steam or 215o F, 1 PSI, (101.5o C) and 65o F (18.3oC) entering air.Recommended Installed Height(Does not apply to units with horizontal outlet)Ratings include the factor shown in T able 3 for the recommended installed height. If the unit is to be installed at a height other than that recommend-ed, the rating must be adjusted as follows:Example for installed heights other than recommended (example based on Multi/Pak 95-10): Given:† Use the values in T able 3 below for both the “RECOMMENDED HEIGHT” factors and for the “ACTUAL HEIGHT” factors.† Also applies to equivalent saturated steam temperatures.Entering air temperature other than 65o F: multiply the catalog steam rating by the factors shown in Table 2. Water temperature other than 215o F: multiply the catalog steam rating by the factors shown in Table 2.TABLE 3CORRECTION FACTORS FOR WATER TEMPERATURES† AND AIR TEMPERATURES OTHER THAN STANDARDNOTE:All ratings have been determined in the Slant/Fin Environmental Laboratory in conformance with accepted industry practice con-cerning testing and rating procedures for finned tube (commercial) radiation. Fin-tube must be installed in accordance with instal-lation diagrams on Form CP-10 and 90-40 to obtain the ratings indicated. Use of material or installation methods other than those specified by Slant/Fin may result in a change in the ratings.* Engineering data pertains to all products in this publication except Multi/Pak 80 and H and E Series bare elements.BTUH = GPM x 500 x ΔT˚FBTU = GPM x 500 x Temp. Drop for Water ˚FTUBE/PIPE WATER CAPACITIES AND QUANTITIESCIRCULATED AT VELOCITY OF 3* FEET PER SECONDTube/Pipe Gals. Per Gals./Min. @Lbs./Hr. @ Size Linear Ft. 3'/Sec. Vel.*3'/Sec. Vel.* 3/4" Copper Tube 0.023 4.142,070 1" Copper Tube 0.0407.203,6001-1/4" Copper Tube 0.06311.345,6701-1/4"NPT Steel Pipe0.07713.866,930 2" NPT Steel Pipe0.17431.3215,660 *3'/Sec. Velocity is Basis for Hot Water Rating Factors.Pressure drop columns are in ounces per 100 feet, equivalent length of run. Equivalent length of run can be approximated as double the actual length of pipe.T otal pressure drop for the entire system should not exceed one-half the normal boiler-guage pressure. Supply and return mains must be sized for a uniform pressure drop for each system. T o convert to pounds, divide above figure by 4.T o convert to Btu’s, multiply above figures by 240.Pipe capacities are based on a normal pitch of 1/4” in 10 feet for two-pipe steam, and 1/2” pitch in 10 feet for one-pipe steam. If pitch is increased to 2” in 10”, the runout capacities above may be increased by 20%.The maximum lengths of fin-pipe listed above may also be increased by 20% if 2” pitch is used.STEAM CAPACITIES OF PIPING (Low Pressure, 1psig) “Square Feet, EDR”* Made of schedule 40 seamed pipe。
Xitanium LED驱动器 datasheet说明书
Xitanium Prog/Prog+ LED Xtreme driversXitanium 75W 0.1-1.05A Prog+ GL-F sXt9290 007 08903Xitanium Prog/Prog+ LED Xtreme driversPhilips Xitanium Prog/Prog+ Programmable LED drivers are specifically designed to deliver the highest performance, protection andconfigurability. The portfolio offers both central and standalone dimming protocols further increasing the energy savings and CO2 reductions achieved with LED lighting. The Xtreme technology ensures maximum robustness and protection combined with a very long lifetime.Benefits•Ultimate robustness, offering peace of mind and lower maintenance costs•Fully programmable LED-drivers designed for the new digital and connected lighting world •Extended diagnostics via MultiOne •Easy to design-in, configure and install•Energy savings through high efficiency and via multiple dimming optionsFeatures•High surge protection (CM/DM)•Long lifetime and robust protection against moisture, vibration and temperature •Configurable operating windows (AOC)•Multiple control interfaces: DALI, 1-10V (Prog+ : also AmpDim)•Autonomous dimming via integrated DynaDimmer •Suitable for DC operation•Thermal protection for driver and for module (MTP)•Constant Light Output (CLO)•Adjustable Start-up Time (AST)•End-Of-Life indicator (EOL)Application•Road and street lighting•Area lighting•Industrial lighting August 2021Electrical input dataSpecification item Value Unit ConditionRated input voltage range108...305V ac Performance rangeRated input voltage230V acRated input frequency range47...63Hz Performance rangeRated input current0.37A@ rated output power @ rated input voltageMax. input current0.79A@ rated output power @ minimum performance input voltage Rated input power85W@ rated output power @ rated input voltagePower factor0.98@ rated output power @ rated input voltageTotal harmonic distortion10%@ rated output power @ rated input voltageEfficiency90%@ratedoutputpower@*************************** Rated input voltage DC range186...250V dc Performance rangeRated input current DC range0.47A dcInput voltage AC range108...305V ac Operational rangeInput frequency AC range45...66Hz Operational rangeInput voltage DC range168...275V dc Operational rangeStandby Power0.50WIsolation input to output BasicElectrical output dataSpecification item Value Unit ConditionRegulation method Constant CurrentOutput voltage36...75V dcOutput voltage max.81V Maximum voltage at open loadOutput current0.05...1.05AOutput current min programmable100mAOutput current min dimming50mAOutput current tolerance ±5%Output current ripple LF≤ 15%Ripple = peak / average, < 3kHzOutput current ripple HF≤ 15%Output power 2...75WElectrical data controls inputSpecification item Value Unit ConditionControl method1-10V, AmpDim, DALI, Dynadimmer Output current amplitude dimming, 1-10V: 1-8V curve, acc.IEC60929. Please refer to design-in guide at/oem for more controllability details. Dimming range10...100%For latest DALI certification status please visit/productsIsolation controls input to output Basic acc. IEC61347-1Wiring and ConnectionsSpecification item Value Unit TypeInput wire cross-section0.82 / 18mm2 / AWG solid wire, double-insulatedInput wire strip length8...12mmOutput wire cross-section0.82 / 18mm2 / AWG solid wire, double-insulatedOutput wire strip length8...12mmMaximum cable length10m CISPR15: between driver and LED module Maximum NTC output cable length0.6mInsulationInsulation per IEC61347-1Mains LED + NTC DALI/1-10V Housing Mains Basic Basic Double LED + NTC Basic Basic Double DALI/1-10V Basic Basic Double Housing Double Double DoubleDimensions and weightSpecification item Value Unit Tolerance (mm)Length (A1)240.5mmMounting hole distance (A2)226mmWidth (B1)59.8mmWidth (B2)42.88mmHeight (C1)37.6mmMounting hole diameter (D1)6mmWeight1270gramLogistical dataSpecification item ValueProduct name Xitanium 75W 0.1-1.05A Prog+ GL-F sXtEOC871829121200300Logistic code 12NC9290 007 08903EAN1 (GTIN)8718291212003EAN3 (box)8718291212003Pieces per box10Operational temperatures and humiditySpecification item Value Unit ConditionAmbient temperature-40...+55ºC Higher ambient temperature allowed as long as Tcase-max is notexceededTcase-max80ºC Maximum temperature measured at T case-pointTcase-life70ºC Measured at T case-pointMaximum housing temperature100ºC In case of a failure, inherent by designRelative humidity10...90%Non-condensingDriver lifetime100,000hours Measured temperature at Tcase-point is Tcase-life. Maximumfailures = 10%Storage temperature and humiditySpecification item Value Unit ConditionAmbient temperature-40...+80ºCRelative humidity 5...95%Non-condensingProgrammable featuresSpecification item Available Default setting ConditionSet Adjustable Output Current (AOC)Programmable, Rset21050 mALED Module Temperature Protection (MTP)Yes ONDriver Temperature Limit (DTL)NoAdjustable Light Output (ALO)NoConstant Light Output (CLO)Yes OFFAdjustable Start-up Time (AST)Yes 1 sDALI 253 M No1-10V Yes ONIntegrated Dynadimmer Yes OFF5-step, light turn-off possible, Dynadimmer and DALI cannot beused simultaneously.LineSwitch single-step NoAmpDim Yes OFFMin Dim Level Yes10 %DC emergency (DCemDim)No EOFi = 100%. No external DC rated fuse required.DALI control supported at DC operation Yes ONEnd Of Life indicator (EOL)Yes OFFOEM Write Protection (OWP)NoLuminaire Info (DALI part 251)NoOpen load protection Yes Automatic recoveringShort circuit protection Yes Automatic recoveringOver power protection Yes Automatic recoveringHot wiring NoSuitable for fixtures with protection class I per IEC60598Overtemperature protection Yes Automatic recoveringEnergy metering (DALI part 252)NoDiagnostics YesDiagnostics (DALI part 253)NoInrush currentSpecification item Value Unit ConditionInrush current100A Input voltage 230VInrush peak width160µs Input voltage 230 V, measured at 50% heightDrivers / MCB 16A type B≤ 7pcs Indicative valuePlease refer to the driver design in guide if you use other MCB-types.Driver touch current / protective conductor currentSpecification item Value Unit ConditionTypical Protective Conductor Current (ins. Class I)0.5mA rms Acc. IEC60598-1. LED module contribution not includedSurge immunitySpecification item Value Unit ConditionMains surge immunity (diff. mode)4kV Acc. IEC61000-4-5. 2 Ohm, 1.2/50us, 8/20usMains surge immunity (comm. mode)4kV Acc. IEC61000-4-5. 12 Ohm 1.2/50us,8/20usControl surge immunity (diff. mode)0.5kV Acc. IEC61000-4-5. 2 Ohm, 1.2/50us, 8/20usControl surge immunity (comm. mode)4kV Acc. IEC61000-4-5. 12 Ohm 1.2/50us,8/20usControl surge immunity (comm. mode)4kV Acc. IEC61000-4-5. 12 Ohm 1.2/50us,8/20usApplication InfoSpecification item ValueApproval marks BIS / CE / DALI 2 / EAC / ENEC / NOM / Type HL / UA / UL Recognized US & Can / WEEEIngress Protection classification (IP)20Application OutdoorMounting Type Built-inOperating windowThermal GuardPower factor versus output powerEfficiency versus output powerTHD versus output powerI out as function of 1-10V interfaceNotesInstallation & Application Notes:1: By factory default, the 1-10V interface is enabled and DALI interface is disabled.These controls are mutually exclusive.2: Integrated Dynadimmer cannot be overruled by DALI. These controls are mutually exclusive.3: Driver is for built-in use only and must not be exposed to the elements such as snow, waterand ice or to any other chemical agent which can be expected to have an adverse effect on the driver(e.g. corrosive environments). It is the responsibility of both luminaire manufacturer and installer toprevent exposure. Common sense needs to be used in order to define the proper luminaire or application IP rating.4: Suitable for UL Damp & Dry locations5: IEC: driver housing is only allowed to be connected to protective earth. Driver is suitable for insulation Class I application only.6: Standard lead length on all wires: 500 +/- 30mm solid copper. Insulation rating: 105°C/600V.7: Driver complies with the requirements of UL, CSA, CE, ENEC, CISPR15, FCC 47CFR15 Class A©2021 Signify Holding, IBRS 10461, 5600 VB, NL. All rights reserved.UK importer address: Signify Commercial UK Limited, 3, Guildford Business Park, GU2 8XG.The information provided herein is subject to change without notice. Signify does not give any representation or warranty as to the accuracy orcompleteness of the information included herein and shall not be liable for any action in reliance thereon. The information presented in this documentis not intended as any commercial offer and does not form part of any quotation or contract, unless otherwise agreed by Signify.Philips and the Philips Shield Emblem are registered trademarks of Koninklijke Philips N.V. All other trademarks are owned by Signify Holding or theirrespective owners.Date of release: August 25, 2021 v2/oem。
LIXISE力可赛 SX440自励式发电机自动励磁调压板说明书-中文
励式无刷式发电机1發電机自動電壓調節器使用手冊适用于自SX440___________________________________SX440______________________________________________________________________________________21. 技術參數检测与检测与电源电源电源输入输入 电压 190 ~ 264 V AC 单相二线 电压建立 在A VR 输入端子需剩磁电压5 V AC 以上频率 50/60 Hz 以跨接铜片设定 消耗功率 最大12 Watt输 出 电压 207 V AC 输入时 最大90 VDC 低频保护 出厂预设:95% Hz 电流 连续4A ,非连续为10秒内10A 斜率:下降至30 Hz 时为170%电阻 最小15 Ohm电压修正 最大输入:±5 VDC调压精度 < ±1% (发动机转速变动在4%内) (模拟输入) 灵敏度:每1VDC 可调节5%发电机电压 温差稳定度 每℃变化,电压漂移0.05%输入电阻:1K Ohm 外部电压调节 用1K Ohms 1 Watt 电位器时为±8% 电流补偿 负 载:10 Ohm电压缓慢建立时间 2秒尺 寸 150mm L * 135mm W * 40mm H DROOP 无功调差 最高灵敏度0.07A 对应5%压降(PF=0时) 重 量 418公克 ± 2%最大输入0.33A2. 接線2.1 K1、K2:为磁场开关,不使用时须短路跨接. 2.2 P2、P3:为磁场电源输入端子. 2.3 3、2:为检测电源输入端子.2.4 1、2:为外接VR ,不使用时须短路跨接. 2.5 、 : 磁场+端、 磁场−端. 2.6 S1、S2:DROOP CT 输入端.2.7 A1、A2:V AR / PF 控制输入(V / TRIM). 2.8 AB 、C :90KW 以下 A 、C 跨接,90KW~ 550KW B 、C 跨接,550KW 以上 A 、B 跨接. 2.9 J1 ~ J8:选择跨接线2-3、4-5、6-7. (如图二) 2.10 建议使用一较高遮断容量之保险加装于励磁场电源,熔丝容量须依实际满载励磁场电流的120%.注意!! 熔丝熔丝加装位置须能有效切断励磁加装位置须能有效切断励磁场回路场回路,,且勿与励磁场串接.3. 調節3.1 低频调节 (U/F).3.1.1 在50Hz 使用时,将 “跨接线” 插于COM 与50Hz 之间,在60Hz 使用时,将“跨接线” 插于COM 与60Hz 之间. 3.1.2 U/F 旋钮为设定低频保护之频率拐点值,其设定步骤为:(1) 使发动机启动,且电压建立.(2) 调节发动机转速至所须之低频值.(3) 缓慢调节U/F 旋钮,使低频保护红色LED 灯亮起即可 (出厂预设50Hz 时45Hz 、60Hz 时55Hz)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ESD Protection Level(2) ………………………………… 2000V
Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not recommended. NOTES(1) Calculated from package in still air, mounted to 3” x 4.5”, 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards. (2) Tested according to JEDEC standard JESD22-A114-B.
IN
Oscillator
U VLO-TH
U VLO-H IIN-Q I IN-S
V rising IN
No switching EN / PWM = low
Switching Frequency(1) Maximum Duty Cycle (1) Minimum Duty Cycle (1) Minimum On-Time Minimum Off-Time Internal Power Switcher
gen free, WEEE & RoHS compliant)
Applications
Medium-sized LCD panel Notebook Display White LED Power Supplies Sub-Notebook and Tablet Computer Displays Portable Media Players LCD Monitors Digital Video Cameras
V Pin: Supply Voltage …………………………… -0.3 to 30V IN
Maximum Output Power……………………………… 7.5W
Supply Input Voltage …………………………… 4.5V to 27V
Maximum Output Voltage …………………………
OVPIN PGND
SW SW N/C PGND
4mm x 4mm x1mm MLPQ - 24 θ = 29°C/W
JA
Marking Information
Top View
440A yyww xxxxx xxxxx
Nnnnn = Part number (Example: 440A)
yyww = Date Code (Example: 0752)
EN, PWM, FFLAG Voltage …………………… -0.3 to V +0.3V IN
PGND to AGND and I …………………………… ± 0.3V OGND
Peak IR Reflow Temperature …………………………. 260°C
Storage Temperature ………………………… -65 to +150°C
Typical Application Circuit
The SC440A is a high-efficiency multiple string WLED driver with an integrated boost converter. It operates over a wide input range from 4.5V to 27V with a maximum output voltage of 42V and a 2A internal power switch.
smaller output capacitor Drives up to 72 WLEDs in 6 strings Programmable WLED current for up to 30mA per
string 1% string-to-string current matching 2A integrated power switch Up to 91% efficiency 0.2% to 100% PWM dimming Analog dimming 800KHz switching frequency for small external com-
IO-H
VCOMP = 0.5V
I
V = 2V
SS, COMP Voltage …………………………………… -0.3 to 3V Junction to Ambient(1) ……………………………… 29°C/W
SCP_EN Voltage …………………………………… -0.3 to 3.5V Maximum Junction Temperature……………………… 150°C
Electrical Characteristics
Unless otherwise noted, V = 12V, -40°C < T = T < 85°C, R = 2kΩ.
IN
AJ
IOSET
Parameter
Symbol
Conditions
Input Supply
Under-Voltage Lockout Threshold UVLO Hysteresis VIN Quiescent Supply C in Shutdown
SC440A
POWER MANAGEMENT
High Efficiency Integrated Driver for 6-Strings of 30mA LEDs
Features
Description
Wide input range 4.5V to 27V 42V maximum output voltage with adjustable OVP for
F S
D MAX
D MIN
T ON-MIN
TON-MIN
Switch Current Limit Switch Saturation Voltage Switch Leakage Current Compensation
I
SW
V SAT
I
S-LEAK
I = 1A
SW
V = 12V SW
Sourcing Current Sinking Current
Ordering Information
Device SC440AMLTRT(1)(2)
SC440AEVB
Package 4mm x 4mm x1mm MLPQ - 24
Evaluation Board
Notes: (1) Available in tape and reel only. A reel contains 3,000 devices. (2) Available in Pb-free and Halogen free package only. Device is WEEE and RoHS compliant.
SC440A
Pin Configuration
IO2 IO3 IOGND IO4 IO5 IO6
IO1 AGND FFLAG
EN SS OVPRTN
24 23 22 21 20 19
1
18 PWM
2
TOP VIEW
17
VOUT
3
16 COMP
4
15
SCP_EN
5
14
IOSET
T
6
13
VIN
7
8
9
10 11 12
It can drive up to 42V output voltage in 6 strings with current up to 30mA per string. The string-to-string current matching is 1% typical, 3% maximum and the overall efficiency is greater than 90% due to the low current sense voltage and a low-impedance internal power switch. The wide PWM dimming range boasts a ratio of 500: 1.
xxxxx = Semtech Lot No. (Example: E9010
xxxxx =
01-10)
© 2010 Semtech Corp.
/
2
SC440A
Absolute Maximum Ratings
Recommended Operating Conditions
The SC440A also features a comprehensive open and short circuit LED protection functions. It disables the corresponding strings with LED open or LED short conditions while keeping other strings under normal operation. This feature allows LCD panels to remain viewable even under LED failure, wire disconnect, or shortcircuit conditions. The short LED protection function can be disabled. The internal thermal shutdown protects the IC from overheating at abnormal conditions. The SC440A is available in a common 4mm x 4mm x1mm MLPQ-24 package.