高中物理知识点大全

合集下载

高中物理必修知识点全归纳

高中物理必修知识点全归纳

高中物理必修知识点全归纳一、运动的描述专题一描述物体运动的几个基本概念1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。

2.参考系:被假定为不动的物体系。

对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。

3.质点:用来代替物体的有质量的点。

它是在研究物体的运动时,为使问题简化,而引入的理想模型。

仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。

物体可视为质点主要是以下三种情形:(1)物体平动时;(2)物体的位移远远大于物体本身的限度时;(3)当只研究物体的平动,而不考虑其转动效应时。

4.时刻和时间(1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2 秒末”,“速度达 2m/s 时”都是指时刻。

(2)时间是两时刻的间隔,是时间轴上的一段。

对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。

5.位移和路程(1)位移表示质点在空间的位置的变化,是矢量。

位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。

当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。

(2)距离是空间中一个质点的轨迹长度,它是一个标量。

物体在两个确定位置之间的距离不是唯一的,这与一个质点的具体运动过程有关。

(3)位移和距离在一定时间内发生,是过程量,两者都与参考系的选择有关。

一般情况下,位移不等于距离,只有当质点沿一个方向直线运动时,它们才相等。

6.速度(1).速度:是描述物体运动方向和快慢的物理量。

(2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

(3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。

①平均速度是矢量,方向与位移方向相同。

高中物理知识点大全

高中物理知识点大全

高中物理知识点大全一、力物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度的原因.力是矢量。

2.重力(1重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力(2重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h]2g(3重力的方向:竖直向下(不一定指向地心。

(4重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力(1产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2产生条件:①直接接触;②有弹性形变.(3弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力或相对运动的趋势(静摩擦力,这三点缺一不可.(2摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μF N进行计算,其中F N是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与f max之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上.(2按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2力合成与分解的根本方法:平行四边形定则.(3力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1和F 2合力大小F的取值范围为:|F 1-F 2|≤F≤F 1+F 2.(4力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算.在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡(1共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.(3★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑F x=0,∑F y=0.(4解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体,对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。

高中物理知识点总结(完整版)

高中物理知识点总结(完整版)

高中物理知识点总结(完整版)一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。

高中物理知识点总结(最全版)

高中物理知识点总结(最全版)

高中物理知识点总结(经典版)第一章、力一、力F:物体对物体的作用。

1、单位:牛(N)2、力的三要素:大小、方向、作用点。

3、物体间力的作用是相互的。

即作用力与反作用力,但它们不在同一物体上,不是平衡力。

作用力与反作用力是同性质的力,有同时性。

二、力的分类:1、按按性质分:重力G、弹力N、摩擦力f按效果分:压力、支持力、动力、阻力、向心力、回复力。

按研究对象分:外力、内力。

2、重力G:由于受地球吸引而产生,竖直向下。

G=mg重心的位置与物体的质量分布与形状有关。

质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。

弹力:由于接触形变而产生,与形变方向相反或垂直接触面。

F=k×Δx摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。

滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。

)相同条件下,滚动摩擦<滑动摩擦。

静摩擦力:用二力平衡来计算。

用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。

力的合成与分解:遵循平行四边形定则。

以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。

|F1-F2|≤F合≤F1+F2F合2=F12+F22+ 2F1F2cosQ平动平衡:共点力使物体保持匀速直线运动状态或静止状态。

解题方法:先受力分析,然后根据题意建立坐标系,将不在坐标系上的力分解。

如受力在三个以内,可用力的合成。

利用平衡力来解题。

Fx合力=0Fy合力=0注:已知一个合力的大小与方向,当一个分力的方向确定,另一个分力与这个分力垂直是最小值。

转动平衡:物体保持静止或匀速转动状态。

解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。

分析正、负力矩。

利用力矩来解题:M 合力矩=FL 合力矩=0 或 M 正力矩= M 负力矩第二章、直线运动一、运动:1、 参考系:可以任意选取,但尽量方便解题。

高中物理知识点总结归纳

高中物理知识点总结归纳

高中物理知识点总结归纳第一章:力学1. 直线运动- 平均速度与瞬时速度- 速度与位移的关系- 加速度与减速度- 动力学方程- 自由落体运动2. 曲线运动- 圆周运动的描述- 角速度与角位移- 牛顿第一、第二定律- 受力分析- 弹力与弹性势能- 惯性与质量3. 力学中的能量- 功与功率- 动能与动能定理- 机械能守恒- 力与势能- 能量守恒定律第二章:热学1. 热力学基本概念- 温度与热量- 冷热与温度的比较- 气体理论与状态方程2. 热学过程- 等温过程与等容过程- 等压过程与绝热过程- 对流、传导与辐射3. 热学定律- 热平衡定律- 热传导定律- 热辐射定律- 热力学第一、第二定律4. 热力学技术- 工作与热机效率- 热量测量与热量传递- 热泵与制冷机第三章:振动与波动1. 振动- 平衡位置与振幅- 周期与频率- 圆周振动与简谐振动- 受迫振动与共振2. 波动- 横波和纵波- 波的特征量:波长、频率和波速- 线性媒介中的波动- 波的反射、折射和干涉3. 声学基础- 声波的传播、速度与频率- 声的强度与音量- 声音的特征:音高、音质和音色- 共振和驻波4. 光学基础- 光线与视线- 光的行进速度与传播性质- 光的反射与折射- 光的干涉与衍射第四章:电学1. 电荷与电场- 电荷的性质与带电体- 电场的定义与性质- 电荷在电场中的受力与电势差2. 电流与电阻- 电流的定义与电子流动方向- 静电场与恒定电流- 电阻与电阻率3. 电路- 串联与并联电路- 配分与戴维南定理- 电流、电压与电阻之间的关系4. 电势与电容- 电势能与电位- 电容与电容量- 平行板电容器与电势差5. 磁学基础- 磁场的特性与定义- 磁感线与磁场的切线方向- 磁场对电荷与电流的作用力第五章:电磁感应1. 电磁感应定律- 法拉第电磁感应定律- 感应电动势与磁能的转化- 楞次定律与电动机2. 电磁感应定律的应用- 互感与自感- 变压器与感应电动机- 电磁波和电磁振荡第六章:原子与分子物理1. 光电效应- 光电子的特性与发射原理- 照射光强度与阻挡电压的关系- 光电效应的应用2. 原子物理- 原子结构与量子理论- 分子结构与化学键3. 核物理- 放射性衰变与探测技术- 原子核能量与核反应的释放以上是高中物理主要的知识点总结归纳,希望对您有所帮助!。

高中全部物理知识点总结

高中全部物理知识点总结

高中全部物理知识点总结第一章:力学1.1 运动的描述1.1.1 位移、速度、加速度的定义和计算公式1.1.2 平均速度、平均加速度的计算公式1.1.3 匀速直线运动、变速直线运动的描述和计算1.1.4 直线运动图像的绘制1.1.5 二维运动的描述和计算1.2 牛顿运动定律1.2.1 牛顿第一定律1.2.2 牛顿第二定律1.2.3 牛顿第三定律1.2.4 物体的运动和力的关系1.2.5 弹力、摩擦力、重力的性质和计算1.3 动能和动能定理1.3.1 动能的定义和计算公式1.3.2 动能定理的概念和计算1.3.3 动能定理的应用1.4 势能和势能定理1.4.1 势能的定义和计算公式1.4.2 势能定理的概念和计算1.4.3 势能定理的应用1.4.4 弹簧弹力的势能和应用1.5 力的做功和功1.5.1 力的做功的定义和计算公式1.5.2 功率的定义和计算1.5.3 功的计算和应用1.5.4 功的加减法第二章:热学与物态变化2.1 物态变化和热量2.1.1 基本概念:凝固、熔化、气化、凝华2.1.2 物态变化的热量计算2.1.3 变态物质的能量转化2.1.4 水的异常膨胀2.2 热力学定律2.2.1 热平衡和热传导2.2.2 火焰的构成和燃烧过程2.2.3 热的传播和传热的应用2.2.4 热功当量和物质内能的计算第三章:波动3.1 机械波3.1.1 波的概念3.1.2 机械波的特点和参数3.1.3 立体波和平面波的传播3.1.4 波的叠加和干涉3.1.5 波的频率和波长的计算3.2 声波3.2.1 声波的产生和传播3.2.2 声波和噪声的特点3.2.3 声速的测量和计算3.2.4 声的反射、折射和衍射3.2.5 声的共振和声音的应用3.3 光波3.3.1 光的特点:直线传播、波粒二象性3.3.2 光的波动理论和光的波动模型3.3.3 光的反射、折射和衍射3.3.4 光的干涉和衍射实验第四章:电学4.1 电荷和电场4.1.1 电荷的带电特点4.1.2 电荷守恒定律和库仑定律4.1.3 电场的产生和描述4.1.4 电场的强度和公式计算4.1.5 电势差和电势能的概念和计算4.2 电流和电路4.2.1 电流的定义和计算4.2.2 电阻和电阻率4.2.3 串联和并联电路的分析和计算4.2.4 电功和电功率的概念和计算4.2.5 电路中的电流和电压4.2.6 电源和电路的能量转化4.3 磁场和电磁感应4.3.1 磁场的产生和描述4.3.2 磁感线和磁场的强度计算4.3.3 洛伦兹力和安培环路定理4.3.4 电流产生磁场和磁能4.3.5 电磁感应现象和法拉第电磁感应定律4.4 电磁波和电磁谱4.4.1 电磁波的产生和传播4.4.2 电磁谱的组成和特点4.4.3 电磁波的应用和危害第五章:光学5.1 光的传播和折射5.1.1 光的直线传播和光速5.1.2 折射定律和绝对折射定律5.1.3 透镜的成像和应用5.2 光的成像和透镜5.2.1 成像规律和公式计算5.2.2 成像的特点和应用5.2.3 透镜的种类和功能5.3 光的干涉和衍射5.3.1 光的干涉现象5.3.2 干涉条纹的间距计算5.3.3 光的衍射现象5.3.4 衍射格的规律和应用5.4 光的偏振和波粒二象性5.4.1 光的偏振现象5.4.2 光的波粒二象性5.4.3 光的量子论和光的粒子性第六章:原子与分子6.1 原子结构和粒子模型6.1.1 原子的组成和结构6.1.2 原子的构建和粒子模型6.1.3 原子的尺度和电子云6.1.4 原子的质谱和元素周期表6.2 电子和核的结构6.2.1 电子的波粒二象性6.2.2 原子核的结构和尺度6.2.3 原子核的组成和放射性6.2.4 放射性的装置和应用6.3 分子结构和化学键6.3.1 分子的结构和形状6.3.2 化学键的类型和特点6.3.3 成键能和分子间相互作用6.3.4 分子的种类和性质第七章:一维运动7.1 平抛运动7.1.1 平抛运动的概念和参数7.1.2 平抛运动的计算和规律7.1.3 平抛运动的应用7.2 圆周运动7.2.1 圆周运动的概念和参数7.2.2 圆周运动的计算和规律7.2.3 圆周运动的应用7.3 万有引力7.3.1 万有引力的概念和公式7.3.2 行星运动和人造卫星的动力学7.3.3 引力场和引力的关系第八章:流体力学8.1 流体的性质和参数8.1.1 流体的密度、压强、密度和速度的关系8.1.2 流体的连贯和牛顿流体力学定律8.2 流体的运动和压强计算8.2.1 流体的运动和速度计算8.2.2 流体的压强和流速计算8.3 流体的压力和浮力8.3.1 流体的压力和压力计算8.3.2 流体的浮力和浮力计算8.3.3 流体的应用和压力控制总结:以上就是高中物理的全部知识点总结,这些知识点涵盖了力学、热学、波动、电学、光学、原子与分子、一维运动和流体力学等多个领域,在高中物理课程中占据重要地位。

所有高中物理知识点归纳

所有高中物理知识点归纳

所有高中物理知识点归纳一. 力学1.运动学–速度和加速度的定义–位移、速度和加速度之间的关系–直线运动和曲线运动的区别2.牛顿力学–牛顿第一定律:惯性定律–牛顿第二定律:力和加速度的关系–牛顿第三定律:作用力和反作用力3.力的合成与分解–多个力的合成与分解–物体在斜面上的分解力4.动量与能量–动量的定义和守恒定律–动能的定义和转化–功的定义和能量转化定律5.万有引力–万有引力定律的表达式和含义–地球上物体自由落体的运动规律–行星运动和卫星轨道的解释二. 热学1.温度与热量–温度的定义和温标–热量的传递方式:传导、对流和辐射2.热力学第一定律–系统内能的变化和热量、功的关系–系统的热平衡和热力学过程3.热力学第二定律–热力学过程的可逆性和不可逆性–熵的概念和熵增加原理4.理想气体–理想气体状态方程和理想气体的性质–理想气体的温度和压强的关系5.相变–固体的熔化和凝固–液体的沸腾和凝结–气体的升华和凝华三. 光学1.光的直线传播–光的直线传播的条件–光在介质中传播的折射现象2.光的反射和折射–光的反射定律和折射定律–光的全反射现象和应用3.光的波动性–光的干涉和衍射现象–光的波长和频率4.光的光谱和色散–光的光谱分解和合成–光的色散现象和原理5.光的反射和成像–镜面反射和成像–球面镜反射和折射成像四. 电磁学1.静电学–电荷和电场的概念–静电力和电场力的计算2.电流和电路–电流的定义和电流强度的计算–电阻和电阻率的概念3.欧姆定律–欧姆定律的表达式和含义–串联和并联电阻的计算4.磁场与电磁感应–磁场的产生和磁感线的性质–法拉第电磁感应定律的表达式和应用5.电磁波–电磁波的概念和特性–光是一种电磁波的证据以上是高中物理知识点的一个简要归纳,涵盖了力学、热学、光学和电磁学的基本概念和原理。

希望这篇文章能够帮助你梳理和理解高中物理知识,为后续的学习打下坚实的基础。

高中物理知识点大全

高中物理知识点大全

高中物理知识点大全物理是一门探究自然界运动的科学,对于高中生来说,物理学习是非常重要的一门课程。

本文将详细介绍高中物理的重要知识点,以帮助同学们更好地理解和掌握物理学。

1. 运动学1.1 位移、速度、加速度1.2 直线运动与曲线运动1.3 匀速直线运动、匀变速直线运动、自由落体运动1.4 速度-时间图、加速度-时间图2. 力学2.1 牛顿三定律2.2 质点的平衡条件2.3 力的合成与分解2.4 动量、冲量2.5 机械能守恒定律、功与功率2.6 弹簧力、摩擦力2.7 平抛运动3. 能量与功3.2 功与能量转化3.3 功率的计算公式3.4 功率单位的换算4. 电学4.1 静电现象、电荷、电场 4.2 电流、电阻、电势4.3 欧姆定律4.4 串联与并联电路4.5 电功和电功率4.6 电容、电感4.7 磁场与电磁感应5. 光学5.1 光的反射、折射、散射 5.2 凹凸透镜的成像规律 5.3 光的波粒二象性5.4 迈克尔逊干涉实验6. 热学6.1 温度与热平衡6.2 热传递与传热方式6.3 热膨胀与热收缩6.4 热力学第一定律与第二定律7. 原子物理7.1 基本粒子及其属性7.2 量子力学基本原理7.3 原子结构和原子能级8. 核物理8.1 反应堆与核能8.2 激光与核聚变8.3 放射性衰变与辐射防护以上是高中物理的重要知识点大全。

希望这篇文章能够帮助同学们更好地理解物理知识,提升学习效果。

同学们在学习物理时,可以结合课本和教师的指导进行深入学习和思考,并通过实验和练习题来巩固知识。

祝愿同学们在物理学习中取得优异的成绩!。

高中物理知识点

高中物理知识点

高中物理知识点
高中物理主要包括力学、光学、电磁学、热学、声学等方面的内容。

下面是一些常见的高中物理知识点:
1.力学
-牛顿第一定律:惯性定律
-牛顿第二定律:动力学方程
-牛顿第三定律:作用-反作用定律
-平衡条件:静力学方程
-动量守恒定律
-转动定律:转动动力学方程、转动惯量、角动量守恒
2.光学
-光的传播:直线传播、反射、折射
-光的波动性
-光的粒子性:光量子、光电效应
-光的干涉与衍射
-光的偏振与散射
-光的色散:折射率与波长的关系
3.电磁学
-电荷与电场:库仑定律、电场强度、电势能
-电场中的带电粒子:电势、电势差、电场力与电场能
-电流与电阻:欧姆定律、电功、电功率
-磁场与静电场:磁感应强度、磁场力、洛伦兹力
-电磁感应:电动势、感应电流、法拉第定律
-交流电与电磁波:交流电的产生、电阻、电容和电感的交流电特性、电磁波的特性
4.热学
-温度与热量:温度计、热容、比热容
-热传递:传导、辐射、对流
-热力学第一定律:能量守恒定律
-理想气体状态方程:气体压强、体积、温度的关系
-理想气体的分子运动:动能、分子运动速率分布、麦克斯韦速度分
布定律
5.声学
-声的传播:机械波、波长、频率、波速
-声音的特性:音高、音强、音量、音色
-声波的反射与折射:声音的反射定律、折射定律
-声音的干涉与共振
这些知识点只是高中物理的一部分,还有许多其他的知识点,如动力学、量子力学、原子物理、相对论等。

希望以上内容能对您有所帮助。

(完整版)高中物理知识点总结大全

(完整版)高中物理知识点总结大全
)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间

7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导
,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(5)振动图象与波动图象;

(完整版)高中物理知识点总结(超详细)

(完整版)高中物理知识点总结(超详细)

物理知识点总结一、速度加速度1.t v a t x v ,为比值定义式2.at v v 0用来计算速度3.平均速度公式20v v v ,只适用于匀变速直线运动4.2021at t v x ,推导可得at v t x 210,即t t x 图像斜率代表2a ,截距代表0v 。

5.ax v v 2202,推导可得2022v ax v ,即x v 2图像斜率代表a 2,截距代表20v 。

6.打点计时器①使用交流电源,使用时应先接通电源后释放纸带。

②每0.02秒打一个点,如果题中有“相邻两个点还有未画出的点”,则需要另外计算。

③已经平衡好摩擦力的依据:打出的点是一系列间距相等的点。

④纸带上的长度需要用刻度尺测量,单位一般为cm ,计算时需要化成m 。

⑤逐差法计算纸带加速度2T x a ,两种一般用法:(设每段位移分别为61~x x )2213212)(2T n m x x T x x T x x a n m )3()()()2()()(212345621234212T x x x x x x T x x x x T x x a 7.光电门(记录通过光电门的时间)①已经平衡好摩擦力的依据:遮光条通过两个光电门的时间相同②逐差法计算纸带加速度:t d v ③画出一次函数的两种横纵坐标:)(1122F a t x t 或和。

④有关函数:2122221221212)()(t x d a t ax t d t d二、力1.重力mg G ,重力加速度在极地最大,在赤道最小。

2.弹力kx F ,弹簧在剪断一瞬间弹力不变。

3.摩擦力N F f ,有摩擦力就一定有支持力;此公式只能计算滑动摩擦力。

4.牛二ma F ①整体法(两个物体相对静止,a 、v 一直相同):隔离时对受力少的做分析,整体事忽略连个物体之间的里。

摩擦力的方向可以用相互作用力判断。

②版块模型(恰好不掉下去求木板最大长度):若地面光滑可以用动量做。

③传送带:注意有先加速后匀速的情况,向下运物体时还有先加速后加速但是加速度不同的情况。

高中物理知识点全总结

高中物理知识点全总结

高中物理知识点全总结第一章:力学1. 力力是物体相互之间的作用,通常用矢量表示,有大小和方向。

它是产生或改变物体运动状态的原因。

2. 牛顿定律牛顿第一定律:物体静止或匀速运动时,如果受力平衡,就保持原来的状态。

即物体要么静止,要么匀速直线运动,直到受到外力的作用。

牛顿第二定律:物体所受外力的大小与物体的加速度成正比,与物体质量成反比,且方向与外力方向相同。

牛顿第三定律:所有相互作用的两个物体之间,彼此的作用力大小相等,方向相反。

3. 运动学加速度是速度随时间的变化率。

加速度的大小等于速度的变化量除以时间的变化量,方向与速度变化的方向一致。

4. 动能和动能定理物体的动能是物体由于运动而具有的能量。

动能定理表明,如果物体的速度改变,它的动能也会改变。

5. 势能和力学能量高度为h的物体具有重力势能mgΔh。

机械能守恒定律可以描述封闭系统中机械能的守恒。

第二章:热学1. 热力学基本概念温度是描述物体热量状态的物理量。

热量是能量传递的方式,是由高温物体传递给低温物体的。

热能是物体因温度而具有的能量,是物体微观粒子的平均动能。

2. 热容和比热容热容是物体对热量的吸收能力,是物质单位温度升高1摄氏度所吸收的热量。

比热容是单位质量物质温度升高1摄氏度所需的热量。

3. 热传递和传导热传递是热量在不同温度之间的传递过程。

传导是指材料内部热量的传递过程。

4. 热力学定律热力学第一定律:能量守恒定律,热量和功是能量的转移方式,可以相互转化。

热力学第二定律:热量自发地只能从高温区传递到低温区,永远不会自发地从低温区传递到高温区。

5. 热力学功和热机热力学功是由热量转化而成的功。

热机是利用温度差使热量转化为功的装置。

6. 热力学逆过程热力学逆过程是指系统的状态经由取得外界功和放出热量,恢复到原来的状态的过程。

第三章:电磁学1. 电荷和电场原子的结构中带正电的质子和带负电的电子组成了物质的基本结构。

电场是电荷产生的力场,描述了电荷之间相互作用的情况。

高中物理知识点清单(非常详细)

高中物理知识点清单(非常详细)

高中物理知识点清单第一章 运动的描述第一节 描述运动的基本概念一、质点、参考系1.质点:用来代替物体的有质量的点.它是一种理想化模型.2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动.二、位移和速度 1.位移和路程(1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t,是矢量.(2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率(1)速率:瞬时速度的大小,是标量.(2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度1.定义式:a =Δv Δt ;单位是m/s 2.2.物理意义:描述速度变化的快慢.3.方向:与速度变化的方向相同.考点一对质点模型的理解1.质点是一种理想化的物理模型,实际并不存在.2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断.3.物体可被看做质点主要有三种情况:(1)多数情况下,平动的物体可看做质点.(2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点.(3)有转动但转动可以忽略时,可把物体看做质点.考点二平均速度和瞬时速度1.平均速度与瞬时速度的区别平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度.2.平均速度与瞬时速度的联系(1)瞬时速度是运动时间Δt→0时的平均速度.(2)对于匀速直线运动,瞬时速度与平均速度相等.考点三速度、速度变化量和加速度的关系1.速度、速度变化量和加速度的比较2.物体加、减速的判定(1)当a 与v 同向或夹角为锐角时,物体加速. (2)当a 与v 垂直时,物体速度大小不变. (3)当a 与v 反向或夹角为钝角时,物体减速物理思想——用极限法求瞬时物理量1.极限法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的.那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思想方法.极限法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况.2.用极限法求瞬时速度和瞬时加速度 (1)公式v =ΔxΔt 中当Δt →0时v 是瞬时速度.(2)公式a =ΔvΔt 中当Δt →0时a 是瞬时加速度.第二节 匀变速直线运动的规律及应用一、匀变速直线运动的基本规律1.速度与时间的关系式:v =v 0+at . 2.位移与时间的关系式:x =v 0t +12at 2.3.位移与速度的关系式:v 2-v 20=2ax . 二、匀变速直线运动的推论 1.平均速度公式:v =v t 2=v 0+v2.2.位移差公式:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2. 可以推广到x m -x n =(m -n )aT 2.3.初速度为零的匀加速直线运动比例式 (1)1T 末,2T 末,3T 末……瞬时速度之比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)1T 内,2T 内,3T 内……位移之比为:x 1∶x 2∶x 3∶…∶x n =1∶22∶32∶…∶n 2.(3)第一个T 内,第二个T 内,第三个T 内……位移之比为:x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x n =1∶3∶5∶…∶(2n -1).(4)通过连续相等的位移所用时间之比为:t 1∶t 2∶t 3∶…∶t n三、自由落体运动和竖直上抛运动的规律 1.自由落体运动规律 (1)速度公式:v =gt . (2)位移公式:h =12gt 2.(3)速度—位移关系式:v 2=2gh . 2.竖直上抛运动规律 (1)速度公式:v =v 0-gt . (2)位移公式:h =v 0t -12gt 2.(3)速度—位移关系式:v 2-v 20=-2gh .(4)上升的最大高度:h =v 202g.(5)上升到最大高度用时:t =v 0g. 考点一 匀变速直线运动基本公式的应用1.速度时间公式v =v 0+at 、位移时间公式x =v 0t +12at 2、位移速度公式v 2-v 20=2ax ,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.2.匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v 0=0时,一般以a 的方向为正方向.3.求解匀变速直线运动的一般步骤画过程分析图→判断运动性质→选取正方向→选用公式列方程→解方程并讨论4.应注意的问题①如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.②对于刹车类问题,当车速度为零时,停止运动,其加速度也突变为零.求解此类问题应先判断车停下所用时间,再选择合适公式求解.③物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,可以将全程看做匀减速直线运动,应用基本公式求解.考点二 匀变速直线运动推论的应用 1.推论公式主要是指:①v =v t 2=v 0+v t2,②Δx =aT 2,①②式都是矢量式,在应用时要注意v 0与v t 、Δx 与a 的方向关系.2.①式常与x =v ·t 结合使用,而②式中T 表示等时间隔,而不是运动时间. 考点三 自由落体运动和竖直上抛运动1.自由落体运动为初速度为零、加速度为g 的匀加速直线运动. 2.竖直上抛运动的重要特性 (1)对称性 ①时间对称物体上升过程中从A →C 所用时间t AC 和下降过程中从C →A 所用时间t CA 相等,同理t AB =t BA .②速度对称物体上升过程经过A 点的速度与下降过程经过A 点的速度大小相等.(2)多解性当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成双解,在解决问题时要注意这个特点.3.竖直上抛运动的研究方法在涉及多体问题和不能视为质点的研究对象问题时,应用“转化”的思想方法转换研究对象、研究角度,就会使问题清晰、简捷.通常主要涉及以下两种转化形式:(1)将多体转化为单体:研究多物体在时间或空间上重复同样运动问题时,可用一个物体的运动取代多个物体的运动.(2)将线状物体的运动转化为质点运动:长度较大的物体在某些问题的研究中可转化为质点的运动问题.如求列车通过某个路标的时间,可转化为车尾(质点)通过与列车等长的位移所经历的时间.第三节运动图象追及、相遇问题一、匀变速直线运动的图象1.直线运动的x-t图象(1)物理意义:反映了物体做直线运动的位移随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体速度的大小,斜率正负表示物体速度的方向.2.直线运动的v-t图象(1)物理意义:反映了物体做直线运动的速度随时间变化的规律.(2)斜率的意义:图线上某点切线的斜率大小表示物体加速度的大小,斜率正负表示物体加速度的方向.(3)“面积”的意义①图线与时间轴围成的面积表示相应时间内的位移大小.②若面积在时间轴的上方,表示位移方向为正方向;若面积在时间轴的下方,表示位移方向为负方向.(4).相同的图线在不同性质的运动图象中含义截然不同,下面我们做一全面比较(见下表).二、追及和相遇问题1.两类追及问题(1)若后者能追上前者,追上时,两者处于同一位置,且后者速度一定不小于前者速度.(2)若追不上前者,则当后者速度与前者相等时,两者相距最近.2.两类相遇问题(1)同向运动的两物体追及即相遇.(2)相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇.考点一运动图象的理解及应用1.对运动图象的理解(1)无论是x-t图象还是v-t图象都只能描述直线运动.(2)x-t图象和v-t图象都不表示物体运动的轨迹.(3)x-t图象和v-t图象的形状由x与t、v与t的函数关系决定.2.应用运动图象解题“六看”1.分析追及问题的方法技巧可概括为“一个临界条件”、“两个等量关系”.(1)一个临界条件:速度相等.它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断问题的切入点.(2)两个等量关系:时间关系和位移关系,通过画草图找出两物体的时间关系和位移关系是解题的突破口.2.能否追上的判断方法(1)做匀速直线运动的物体B追赶从静止开始做匀加速直线运动的物体A:开始时,两个物体相距x0.若v A=v B时,x A+x0<x B,则能追上;若v A=v B时,x A+x0=x B,则恰好不相撞;若v A =v B 时,x A +x 0>x B ,则不能追上.(2)数学判别式法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相遇.3.注意三类追及相遇情况(1)若被追赶的物体做匀减速运动,一定要判断是运动中被追上还是停止运动后被追上. (2)若追赶者先做加速运动后做匀速运动,一定要判断是在加速过程中追上还是匀速过程中追上.(3)判断是否追尾,是比较后面减速运动的物体与前面物体的速度相等的位置关系,而不是比较减速到0时的位置关系.4.解题思路分析物体运动过程→画运动示意图→找两物体位移关系→列位移方程(2)解题技巧①紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式. ②审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,它们往往对应一个临界状态,满足相应的临界条件.方法技巧——用图象法解决追及相遇问题(1)两个做匀减速直线运动物体的追及相遇问题,过程较为复杂.如果两物体的加速度没有给出具体的数值,并且两个加速度的大小也不相同,如果用公式法,运算量比较大,且过程不够直观,若应用v -t 图象进行讨论,则会使问题简化.(2)根据物体在不同阶段的运动过程,利用图象的斜率、面积、交点等含义分别画出相应图象,以便直观地得到结论.巧解直线运动六法在解决直线运动的某些问题时,如果用常规解法——一般公式法,解答繁琐且易出错,如果从另外角度入手,能够使问题得到快速、简捷解答.下面便介绍几种处理直线运动的巧法.一、平均速度法在匀变速直线运动中,物体在时间t 内的平均速度等于物体在这段时间内的初速度v 0与末速度v 的平均值,也等于物体在t 时间内中间时刻的瞬时速度,即v =x t =v 0+v 2=v t2.如果将这两个推论加以利用,可以使某些问题的求解更为简捷.二、逐差法匀变速直线运动中,在连续相等的时间T内的位移之差为一恒量,即Δx=x n+1-x n=aT2,一般的匀变速直线运动问题,若出现相等的时间间隔,应优先考虑用Δx=aT2求解.三、比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用初速度为零的匀加速直线运动的相关比例关系求解.四、逆向思维法把运动过程的末态作为初态的反向研究问题的方法.一般用于末态已知的情况.五、相对运动法以系统中的一个物体为参考系研究另一个物体运动情况的方法.六、图象法应用v-t图象,可把较复杂的问题转变为较简单的数学问题解决.尤其是用图象定性分析,可避开繁杂的计算,快速找出答案.实验一研究匀变速直线运动一、实验目的1.练习使用打点计时器,学会用打上点的纸带研究物体的运动情况.2.会利用纸带求匀变速直线运动的速度、加速度.3.利用打点纸带探究小车速度随时间变化的规律,并能画出小车运动的v-t图象,根据图象求加速度.二、实验器材电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、电源、复写纸片.三、实验步骤1.把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路.2.把一条细绳拴在小车上,细绳跨过滑轮,下边挂上合适的钩码,把纸带穿过打点计时器,并把它的一端固定在小车的后面.实验装置见上图,放手后,看小车能否在木板上平稳地加速滑行.3.把小车停在靠近打点计时器处,先接通电源,后放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次.4.从几条纸带中选择一条比较理想的纸带,舍掉开始一些比较密集的点,在后面便于测量的地方找一个开始点,以后依次每五个点取一个计数点,确定好计数始点,并标明0、1、2、3、4、…,测量各计数点到0点的距离x,并记录填入表中.位置编号01234 5t/sx/mv/(m·s-1)5.1236.利用一段时间内的平均速度等于这段时间中间时刻的瞬时速度求得各计数点1、2、3、4、5的瞬时速度,填入上面的表格中.7.增减所挂钩码数,再做两次实验.四、注意事项1.纸带、细绳要和长木板平行.2.释放小车前,应使小车停在靠近打点计时器的位置.3.实验时应先接通电源,后释放小车;实验后先断开电源,后取下纸带.一、数据处理1.匀变速直线运动的判断:(1)沿直线运动的物体在连续相等时间T内的位移分别为x1、x2、x3、x4、…,若Δx=x 2-x 1=x 3-x 2=x 4-x 3=…则说明物体在做匀变速直线运动,且Δx =aT 2.(2)利用“平均速度法”确定多个点的瞬时速度,作出物体运动的v -t 图象.若v -t 图线是一条倾斜的直线,则说明物体的速度随时间均匀变化,即做匀变速直线运动.2.求速度的方法:根据匀变速直线运动某段时间中间时刻的瞬时速度等于这段时间内的平均速度v n =x n +x n +12T. 3.求加速度的两种方法:(1)逐差法:即根据x 4-x 1=x 5-x 2=x 6-x 3=3aT 2(T 为相邻两计数点之间的时间间隔),求出a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T2,再算出a 1、a 2、a 3的平均值a =a 1+a 2+a 33=13×⎝ ⎛⎭⎪⎫x 4-x 13T 2+x 5-x 23T 2+x 6-x 33T 2=x 4+x 5+x 6-x 1+x 2+x 39T2,即为物体的加速度. (2)图象法:以打某计数点时为计时起点,利用v n =x n +x n +12T求出打各点时的瞬时速度,描点得v -t 图象,图象的斜率即为物体做匀变速直线运动的加速度.二、误差分析1.纸带上计数点间距测量有偶然误差,故要多测几组数据,以尽量减小误差. 2.纸带运动时摩擦不均匀,打点不稳定引起测量误差,所以安装时纸带、细绳要与长木板平行,同时选择符合要求的交流电源的电压及频率.3.用作图法作出的v -t 图象并不是一条直线.为此在描点时最好用坐标纸,在纵、横轴上选取合适的单位,用细铅笔认真描点.4.在到达长木板末端前应让小车停止运动,防止钩码落地,小车与滑轮碰撞. 5.选择一条点迹清晰的纸带,舍弃点密集部分,适当选取计数点.6.在坐标纸上,纵、横轴选取合适的单位(避免所描点过密或过疏,而导致误差过大),仔细描点连线,不能连成折线,应作一条平滑曲线,让各点尽量落到这条曲线上,落不到曲线上的各点应均匀分布在曲线的两侧.第二章相互作用第一节重力弹力摩擦力一、重力1.产生:由于地球的吸引而使物体受到的力.2.大小:G=mg.3.方向:总是竖直向下.4.重心:因为物体各部分都受重力的作用,从效果上看,可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心.二、弹力1.定义:发生弹性形变的物体由于要恢复原状,对与它接触的物体产生力的作用.2.产生的条件(1)两物体相互接触;(2)发生弹性形变.3.方向:与物体形变方向相反.三、胡克定律1.内容:弹簧发生弹性形变时,弹簧的弹力的大小F跟弹簧伸长(或缩短)的长度x成正比.2.表达式:F=kx.(1)k是弹簧的劲度系数,单位为N/m;k的大小由弹簧自身性质决定.(2)x是弹簧长度的变化量,不是弹簧形变以后的长度.四、摩擦力1.产生:相互接触且发生形变的粗糙物体间,有相对运动或相对运动趋势时,在接触面上所受的阻碍相对运动或相对运动趋势的力.2.产生条件:接触面粗糙;接触面间有弹力;物体间有相对运动或相对运动趋势.3.大小:滑动摩擦力F f=μF N,静摩擦力:0≤F f≤F fmax.4.方向:与相对运动或相对运动趋势方向相反.5.作用效果:阻碍物体间的相对运动或相对运动趋势.考点一弹力的分析与计算1.弹力有无的判断方法(1)条件法:根据物体是否直接接触并发生弹性形变来判断是否存在弹力.此方法多用来判断形变较明显的情况.(2)假设法:对形变不明显的情况,可假设两个物体间弹力不存在,看物体能否保持原有的状态,若运动状态不变,则此处不存在弹力;若运动状态改变,则此处一定有弹力.(3)状态法:根据物体的运动状态,利用牛顿第二定律或共点力平衡条件判断弹力是否存在.2.弹力方向的判断方法(1)根据物体所受弹力方向与施力物体形变的方向相反判断.(2)根据共点力的平衡条件或牛顿第二定律确定弹力的方向.3.计算弹力大小的三种方法(1)根据胡克定律进行求解.(2)根据力的平衡条件进行求解.(3)根据牛顿第二定律进行求解.考点二摩擦力的分析与计算1.静摩擦力的有无和方向的判断方法(1)假设法:利用假设法判断的思维程序如下:(2)状态法:先判明物体的运动状态(即加速度的方向),再利用牛顿第二定律(F=ma)确定合力,然后通过受力分析确定静摩擦力的大小及方向.(3)牛顿第三定律法:先确定受力较少的物体受到的静摩擦力的方向,再根据“力的相互性”确定另一物体受到的静摩擦力方向.2.静摩擦力大小的计算(1)物体处于平衡状态(静止或匀速运动),利用力的平衡条件来判断其大小.(2)物体有加速度时,若只有静摩擦力,则F f=ma.若除静摩擦力外,物体还受其他力,则F合=ma,先求合力再求静摩擦力.3.滑动摩擦力的计算滑动摩擦力的大小用公式F f=μF N来计算,应用此公式时要注意以下几点:(1)μ为动摩擦因数,其大小与接触面的材料、表面的粗糙程度有关;F N为两接触面间的正压力,其大小不一定等于物体的重力.(2)滑动摩擦力的大小与物体的运动速度和接触面的大小均无关.方法技巧:(1)在分析两个或两个以上物体间的相互作用时,一般采用整体法与隔离法进行分析.(2)受静摩擦力作用的物体不一定是静止的,受滑动摩擦力作用的物体不一定是运动的.(3)摩擦力阻碍的是物体间的相对运动或相对运动趋势,但摩擦力不一定阻碍物体的运动,即摩擦力不一定是阻力.考点三摩擦力突变问题的分析1.当物体受力或运动发生变化时,摩擦力常发生突变,摩擦力的突变,又会导致物体的受力情况和运动性质的突变,其突变点(时刻或位置)往往具有很深的隐蔽性.对其突变点的分析与判断是物理问题的切入点.2.常见类型(1)静摩擦力因其他外力的突变而突变.(2)静摩擦力突变为滑动摩擦力.(3)滑动摩擦力突变为静摩擦力.物理模型——轻杆、轻绳、轻弹簧模型三种模型轻杆轻绳轻弹簧模型图示模型特形变特点只能发生微小形变柔软,只能发生微小形变,各处张力大小相等既可伸长,也可压缩,各处弹力大小相等方向特点不一定沿杆,可以是任意方向只能沿绳,指向绳收缩的方向一定沿弹簧轴线,与形变方向相反点作用效果可提供拉力、推力只能提供拉力可以提供拉力、推力特点大小突变可以发生突变可以发生突变一般不能发生突变特点弹簧与橡皮筋的弹力特点:(1)弹簧与橡皮筋产生的弹力遵循胡克定律F=kx.(2)橡皮筋、弹簧的两端及中间各点的弹力大小相等.(3)弹簧既能受拉力,也能受压力(沿弹簧轴线),而橡皮筋只能受拉力作用.(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧或橡皮筋剪断时,其弹力立即消失.第二节力的合成与分解一、力的合成1.合力与分力(1)定义:如果一个力产生的效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力.(2)关系:合力和分力是一种等效替代关系.2.力的合成:求几个力的合力的过程.3.力的运算法则(1)三角形定则:把两个矢量首尾相连从而求出合矢量的方法.(如图所示)(2)平行四边形定则:求互成角度的两个力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.二、力的分解1.概念:求一个力的分力的过程.2.遵循的法则:平行四边形定则或三角形定则. 3.分解的方法(1)按力产生的实际效果进行分解. (2)正交分解. 三、矢量和标量 1.矢量既有大小又有方向的物理量,相加时遵循平行四边形定则. 2.标量只有大小没有方向的物理量,求和时按算术法则相加.考点一 共点力的合成 1.共点力合成的方法 (1)作图法(2)计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力,是解题的常用方法.2.重要结论(1)二个分力一定时,夹角θ越大,合力越小. (2)合力一定,二等大分力的夹角越大,二分力越大. (3)合力可以大于分力,等于分力,也可以小于分力. 3.几种特殊情况下力的合成(1)两分力F 1、F 2互相垂直时(如图甲所示):F 合=F 21+F 22,tan θ=F 2F 1.甲 乙(2)两分力大小相等时,即F 1=F 2=F 时(如图乙所示):F 合=2F cos θ2.(3)两分力大小相等,夹角为120°时,可得F 合=F .解答共点力的合成时应注意的问题(1)合成力时,要正确理解合力与分力的大小关系:合力与分力的大小关系要视情况而定,不能形成合力总大于分力的思维定势.(2)三个共点力合成时,其合力的最小值不一定等于两个较小力的和与第三个较大的力之差.考点二 力的两种分解方法 1.力的效果分解法(1)根据力的实际作用效果确定两个实际分力的方向; (2)再根据两个实际分力的方向画出平行四边形; (3)最后由平行四边形和数学知识求出两分力的大小. 2.正交分解法(1)定义:将已知力按互相垂直的两个方向进行分解的方法.(2)建立坐标轴的原则:一般选共点力的作用点为原点,在静力学中,以少分解力和容易分解力为原则(即尽量多的力在坐标轴上);在动力学中,以加速度方向和垂直加速度方向为坐标轴建立坐标系.(3)方法:物体受到多个力作用F 1、F 2、F 3…,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解.x 轴上的合力: F x =F x 1+F x 2+F x 3+… y 轴上的合力: F y =F y 1+F y 2+F y 3+…合力大小:F =F 2x +F 2y合力方向:与x 轴夹角为θ,则tan θ=F yF x.一般情况下,应用正交分解法建立坐标系时,应尽量使所求量(或未知量)“落”在坐标轴上,这样解方程较简单,但在本题中,由于两个未知量F AC 和F BC 与竖直方向夹角已知,所以坐标轴选取了沿水平和竖直两个方向.方法技巧——辅助图法巧解力的合成和分解问题对力分解的唯一性判断、分力最小值的计算以及合力与分力夹角最大值的计算,当力的大小不变方向改变时,通常采取作图法,优点是直观、简捷.第三节 受力分析 共点力的平衡一、受力分析 1.概念把研究对象(指定物体)在指定的物理环境中受到的所有力都分析出来,并画出物体所受力的示意图,这个过程就是受力分析.2.受力分析的一般顺序先分析场力(重力、电场力、磁场力等),然后按接触面分析接触力(弹力、摩擦力),最后分析已知力.二、共点力作用下物体的平衡 1.平衡状态物体处于静止或匀速直线运动的状态.2.共点力的平衡条件:F 合=0或者⎩⎪⎨⎪⎧Fx 合=0Fy 合=0三、平衡条件的几条重要推论1.二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相等,。

高中物理知识点归纳大全

高中物理知识点归纳大全

高中物理知识点归纳大全以下是对高中物理知识点的全面归纳:一、力和运动1.牛顿第一定律:物体在没有受到外力作用的时候,总保持静止状态或匀速直线运动状态。

2.牛顿第二定律:物体的加速度与所受的合力成正比,跟物体的质量成反比。

即F=ma。

3.牛顿第三定律:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。

4.重力:由于地球的吸引而使物体受到的力。

重力的方向总是竖直向下。

5.弹力:由于发生弹性形变的物体要恢复原状,对阻碍它恢复原状的物体产生力的作用。

弹力的方向总是与物体形变的方向相反。

6.摩擦力:两个相互接触的物体有相对运动或相对运动趋势时,在接触面上产生的阻碍相对运动的力。

摩擦力的方向与物体运动的方向相反或相对运动趋势的方向相反。

7.惯性:物体具有保持原来匀速直线运动状态或静止状态的性质。

二、功和能1.功:功是标量,只有大小,没有方向,但有正功和负功之分。

功的大小只与力、位移及力与位移间的夹角θ有关,θ=90°时,功为零。

2.功率:功率是表示物体做功快慢的物理量。

功率的大小只与功和时间有关,而与功的大小和做功时间的长短无关。

3.重力势能:地球上的物体由于被举高而具有的能叫重力势能,重力势能具有相对性。

4.动能:物体由于运动而具有的能叫动能,动能是标量,只有大小,没有方向。

5.机械能:动能和势能统称为机械能。

三、动量和冲量1.动量:物体在某一瞬时的速度v和它的质量m的乘积叫物体在这个瞬时的动量,用符号p表示,单位为kg·m/s。

动量是矢量,方向与速度方向相同。

2.冲量:力对时间的积累效应可用冲量表示。

恒力的冲量等于该力与时间的乘积,用I表示,单位为N·s。

四、曲线运动和万有引力定律1.曲线运动:物体运动轨迹是曲线的运动叫曲线运动。

曲线运动是变速运动。

2.万有引力定律:万有引力是与质量乘积成正比,与距离的平方成反比的力。

五、振动和波1.简谐振动:物体受一回复力作用,使它关于平衡位置为中心作往复运动,振动具有周期性,频率越高,周期越小。

(超详)高中物理知识点归纳汇总

(超详)高中物理知识点归纳汇总

(超详)高中物理知识点归纳汇总
1. 力学
- 基本概念:力、质量、加速度、牛顿三定律
- 运动学:位移、速度、加速度、匀速直线运动、匀加速直线
运动
- 牛顿定律与运动:惯性、力的合成、平衡、斜面静摩擦、弹
簧力、万有引力定律
- 动量与能量:动量定理、动能定理、功与功率、机械能守恒、碰撞、弹性碰撞和非弹性碰撞
2. 热学
- 温度与热量:热平衡、热膨胀、理想气体状态方程
- 热能传递:传导、对流、辐射、功与热的转化
- 理想气体与热力学:理想气体的分子速率与平均动能、分子
碰撞频率、内能与温度的关系、理想气体定律
- 热力学第一定律:内能变化、等容过程、等压过程、等温过程、绝热过程、焦耳定律
3. 光学
- 几何光学:直线传播、反射、折射、光的全反射、光的成像
- 光的波动性:光的干涉、光的衍射、光的偏振
- 光的光电效应:光电效应、康普顿散射、玻尔模型与能级、
激光
4. 电磁学
- 静电场:电荷与库仑定律、电场、电势能与电势差、静电场
中的运动带电粒子
- 电流和电阻:电流、电阻、欧姆定律、电功率、串联和并联、电阻的温度效应
- 磁场和电磁感应:磁场、洛伦兹力、电磁感应、电磁感应定律、自感与互感、交变电流
5. 原子物理
- 元素周期表与原子结构:元素周期表、原子核结构、玻尔模型、量子力学模型
- 放射性与核能:放射性、半衰期、核反应、核能的利用
- 核物理与粒子物理:核聚变、核裂变、粒子的分类、强相互
作用、弱相互作用、电磁相互作用
6. 特殊相对论
- 狭义相对论:光速不变原理、相对性原理、时空间隔、洛仑兹变换、质能关系
以上是高中物理的主要知识点归纳汇总,希望对你的学习有所帮助!。

高中物理知识点大全

高中物理知识点大全

高中物理知识点大全物理是一门研究物质、能量及其相互作用的自然科学,它是一门贯穿于自然科学中的基础学科。

在高中物理学习中,学生将接触到许多重要的知识点,本文将为你提供一份高中物理知识点的大全,帮助你更好地理解和掌握这门学科。

一、运动学1. 位移与位移的性质2. 速度与速度的计算方法3. 加速度与加速度的计算方法4. 驱动与阻力5. 牛顿第一定律6. 牛顿第二定律7. 牛顿第三定律8. 弹性碰撞与非弹性碰撞9. 功与功的计算方法10. 动能与动能定理11. 动量与动量守恒定律12. 圆周运动与向心力二、力学1. 弹簧的周期及相关公式2. 简谐振动与振幅、频率、周期的关系3. 牛顿万有引力定律与万有引力公式4. 万有引力场与引力势能5. 重力与重力势能6. 引力、弹力与弹性势能7. 阻力与黏滞阻力、速度阻力的关系8. 滑稽摩擦、滚动摩擦与静摩擦9. 斜面静力学与平衡条件10. 刚体力学与质心、转动惯量、角动量、动量矩守恒定律11. 原子核的组成与结构三、热学1. 温度与温度的测量方法2. 热平衡与热平衡的特性3. 热传导与导热系数4. 热膨胀与线膨胀系数、体膨胀系数的关系5. 内能与焓的概念6. 比热与比热容7. 理想气体的状态方程8. 气体的内能与气体的做功9. 气体的等温过程、绝热过程与绝热指数10. 热力学第一定律11. 热力学第二定律12. 热力学第三定律四、电学1. 电荷与电荷守恒定律2. 电场与电势3. 电容与电容器4. 并联电容与串联电容的计算方法5. 电流与电流的计算方法6. 电阻与电阻的计算方法7. 欧姆定律8. 电功与电功率9. 电路的分类与串联与并联电路10. 简单电路中的电流、电势差与电阻关系11. 磁场与磁感应强度12. 电磁感应与法拉第电磁感应定律五、光学1. 光的传播与光的速度2. 光的反射与反射定律3. 镜面反射与像的成像规律4. 光的折射与折射定律5. 光的色散与色散定律6. 凸透镜与凹透镜的成像规律7. 透镜组与光的成像8. 光的干涉与光的干涉现象9. 杂色与光的加色混合规律10. 光的衍射与衍射定律六、原子物理1. 原子结构与元素周期表2. 光电效应与光电效应定律3. 布拉格反射与X射线衍射4. 量子力学与波粒二象性5. 玻尔模型与玻尔半径6. 德布罗意波与薛定谔方程7. 电子的能级与电子的跃迁8. 原子核的结构与放射性衰变9. 拉曼散射与拉曼光谱综上所述,以上是一份高中物理知识点的大全,涵盖了运动学、力学、热学、电学、光学和原子物理等领域。

高中的物理知识点大全

高中的物理知识点大全

高中物理知识点力 学.1 第一章 力 第四章 物体的平衡1. 力是物体间的相互作用.[注意]:①受力物和施力物同时存在,受力物同时也是施力物,施力物同时也是受力物. ②不接触的物体也可产生力,例如:重力等.2.[注意]:①力不是维持物体运动,而是改变速度大小和运动方向.②物体的受力(不)改变,它的运动状态(不)改变.(×)[合力改变,运动状态才跟随改变,如一运动物体只摩擦力至静止]3. 力的三要素:力的大小,方向,作用点,都能够影响力的作用效果.用带箭头的线段把力的三要素表示出来的做法叫做力的图示.力的示意图:只表示力的方向,作用点.[注意]:效果不同的力,性质可能相同;性质不同的力,效果可能相同.4. 地面附近的物体由于地球的吸引受到力叫做重力.地面附近一切物体都受到重力,重力简称物重.物体所受的重力跟它的质量成正比,比值为9.8N/kg.含义:质量每千克受到重力9.8N.[注意]:①重力的施力物是地球,受力物是物体,重力的方向是竖直向下.②重力不一定严格等于地球对物体的吸引力,但近似相等.③重力大小:称量法(条件:在竖直方向处于平衡状态).④重力不一定过地心.5. 重力在物体上的作用点叫做重心.[注意]:①质量均匀分布的物体,重心的位置只跟物体的形状有关(外形规则的重心,在它们几何中心上);质量分布不均匀的物体,重心的位置除跟物体的形状有关外,还跟物体内质量分布有关.②采用二次悬挂法可以确定任意薄板的重心.③重心可在物体上,也可在物体外(质心也是一样).④物体的重心和质心是两个不同的概念,当物体远离地球而不受重力作用时,重心这个概念就失去意义,但质心依然存在,对于地球上体积不大的物体,重心与质心的位置是重合的. ⑤物体的形状改变,物体的重心不一定改变.6. 发生形变的物体,由于要恢复原状,对跟它接触的物体会产生力的作用,这种力叫弹力.[注意]:①弹力的产生条件:弹力产生在直接接触并发生形变的物体之间.(两物体必须接触,与重力不同)②任何物体都能发生形变,不能发生形变的物体是不存在的.③通常所说的压力、支持力、拉力都是弹力.弹力的方向与受力物体的形变方向相反.(压力的方向垂直于支持面而指向被压的物体;支持力的方向垂直于支持面而指向被支持的物体;绳的拉力的方向总是沿着绳而指向绳收缩的方向)力可以改变物体的运动状态(力是改变物体运动状态的原因)速度大小运动方向力的作用效果力积④两物之间一定有弹力,若无弹力,绝无摩擦力.若两物体间有摩擦力,就一定有弹力,但有弹力,不一定有摩擦力.⑤杆对球的弹力方向:方向不沿杆的方向方向与杆同方向图B 方向与杆反方向⑥胡克定律F=kx -,负号表示回复力的方向跟振子偏离平衡位置的位移方向相反. ⑦弹簧的弹力总是与弹簧的伸长量成正比.(×)[应在弹性限度内]7. 摩擦力产生的条件:两物体直接接触且接触面上是粗糙的;接触面上要有挤压的力(压力);接触面上的两物体之间要有滑动或滑动的趋势.F =μ(动摩擦因数)F N (压力大小)[注意]:①摩擦力方向始终接触面切线,与压力正交,跟相对运动方向相反.(摩擦力是阻碍物体相对运动,不是阻碍物体运动)②相对运动趋势是指两个相互接触的物体互为参照物时所具有的一种运动趋势.③动摩擦因数是反映接触面的物理性质,它只与接触面的粗糙程度;接触面的材料有关,与接触面积的大小和接触面上的受力无关.此外,动摩擦因数无单位,而且永远小于1.④增大/减小有益/有害摩擦的方法:增大/减小压力;用滑动/滚动代替滚动/滑动;增大/减小接触面粗糙程度.⑤摩擦力方向可能与运动方向相同,也可能相反,但与相对运动或趋势方向相反. ⑥皮带传动原理:主动轮受到皮带的摩擦力是阻力,但从动轮受到的摩擦力是动力.8. 静摩擦力的作用:阻碍物体间的滑动产生.[注意]:①静摩擦力大小与相对运动趋势强弱有关,趋势越强,静摩擦力越大.②静摩擦力可能与运动方向垂直.(例:匀速圆周运动)③运动物体所受摩擦力也可能是静摩擦力.(例:相对运动的物体)④一般说来,F MAX 静>F 滑.⑤当静摩擦力未达到最大值时,静摩擦力大小与压力无关,但最大静摩擦力与压力成正比.9. 力既有大小,又有方向,力的合成要遵守平形四边形法则的物理量叫做矢量.只有大小,没有方向的物理量叫做标量.10. 物体的平衡的状态:静止状态;匀速直线状态;匀速转动状态.11. 共点力作用下物体的平衡条件:一是合外力为零;二是所受外力是共点力.[注意]:①几个共点力在某一条直线的同一侧合外力不可能为零,物体受这样几个力的作用不可能平衡.②三个等大而互成120°的合力为0. ③两个共点力F 1 和F 2的合力计算公式:F 1 和F 2的夹角为θ,则: F = F 和F 1的夹角α=arctan )sin arcsin(cos sin 2211θθθF F F F F =+;θθαθαcos sin tan ;)180sin(sin 2122F F F ACOA BC OC BC F F +=+==-=θcos 221222F F F F ++C④在F 1、F 2大小一定时,合力F 随θ角的增大而减小,随θ角的减小而增大.(θ= 0,F Max = F 1+F 2;θ= 180,F =F F F ∆=-21; F 的范围F ∆≤F ≤F 1+F 2⇒力的矢量三角形)合力F 一定,随夹角θ减小而减小;随夹角θ增大而增大.若分力F 1一定,则F 2随夹角θ减小(增大)而减小(增大),合力F 随θ角的增大(减小)而减小(增大).⑤F 有可能大于任一个合力,也可能小于任一个分力,还可能等于某一个分力的大小(共点力最小合力为零,最大合力同向,即所有力之和).12. 一个力有确定的两个分力的条件:两个分力的方向一定(两个分力不在同一直线上);一个分力的大小、方向一定(两个分力一定要互成一定角度,即两个分力不能共线).[注意]:①已知两个分力的大小,没能唯一解(立体).②已知合力F 和分力F 1的大小及F 2的方向,设F 2与F 的交角为θ,则当F 1<F sin θ时无解;当F 1=F sin θ时有一组解;当F sin θ<F 1<F 时有二组解;当F 1≥F 时有一组解.13. 共点力平衡条件的应用:⑴正弦定理:三个共点力平衡时,三力首尾顺次相连,成为一个封闭的三角形,且每个力与所对角的正弦成正比. 即:332211sin sin sin θθθF F F ==即:332211sin sin sin αααF F F == [注意]:静止的物体速度一定为零,但速度为零的物体不一定静止(即不一定处于平衡状态). §.2 第二章 直线运动1. 物体相对于其他物体的位置变化,叫做机械运动.[注意]:运动是绝对的,静止是相对的.2. 在描述一个物体运动时,选作标准的另外的物体,叫做参考系.3. 用来代替物体的有质量的点叫做质点.4. 质点实际运动轨迹的长度是路程(标量).如果质点运动的轨迹是直线,这样的运动叫直线运动.如果是曲线,就叫做曲线运动.[注意]:①当加速度方向与速度方向平行时,物体做直线运动;当加速度方向与速度方向不平行时,物体作曲线运动.②直线运动的条件:加速度与初速度的方向共线.5. 表示质点位置变动的物理量是位移(初位置到末位置的有向线段).[注意]:①在一直线上运动的物体,路程就等于位移大小.(×)[位移是矢量,路程是标量,只有在单方向直线运动中,路程才等于位移大小]②物体的位移可能为正值,可能为负值,且可以描述任何运动轨迹.6. 速度的意义:表示物体运动的快慢的物理量.速度公式:t s v =[注意]:①平均速度用v 表示.平均速度是位移与时间之比值;平均速率是路程与时间之比值.(速率定义:物体的运动路程(轨迹长度)与这段路程所用时间之比值)对运动的物体,平均速率不可能为零.瞬时速度与时刻(位置)对应;平均速度与时间(位移)对应. 113②速率是标量.③速度方向是物体的速度方向,不是位移方向.④瞬时速度是描述物体通过某位置或者某时刻物体运动的快慢.7. 加速度是表示速度改变的快慢与改变方向的物理量.加速度公式:tv a ∆∆=,加速度方向与合外力方向一致(或速度的变化方向),加速度的国际制单位是米每二次方秒,符号m/s 2.匀变速直线运动是加速度不变的运动.[注意]:①加速度与速度无关.只要运动在变化,无论速度的大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度大、小或零,物体的加速度大.②速度的变化就是指末速度与初速度的矢量差.③加速度与速度的方向关系:方向一致,速度随时间增大而增大,物体做加速度运动;方向相反,速度随时间的增大而减小,物体做减速度运动;加速度等于零时,速度随时间增大不变化,物体做匀速运动.④在“速度-时间”图象中,各点斜率 ,表示物体在这一时刻的加速度(匀变速直线运动的“速度-时间”的图象是一条直线.(×)[应为倾斜直线]). ⑤速度为负方向时位移也为负.(×)[竖直上抛运动]8. ⑴匀变速直线运动的速度公式:v t =v 0+at[注意]:匀变速...直线运动规律:①连续相等时间t 内发生的位移之差相等.△s =at 2②初速度为零,从运动开始的连续相等时间t 内发生的位移(或平均速度)之比为1:3:5…..③物体做匀速直线运动,一段时间t 内发生的位移为s ,那么 2t v )2(0t v v +<2s v )2(220t v v +④初速度为零的匀加速直线运动物体的速度与时间成正比,即v 1:v2=t1:t2(匀减速直线运动的物体反之)⑤初速度为零的匀加速直线运动物体的位移与时间的平方成正比,即s 1:s 2=t12:t22(匀减速直线运动的物体反之)⑥初速度为零的匀加速直线运动物体经历连续相同位移所需时间之比1:)12(-: )23(-…)1(--n n (匀减速直线运动的物体反之)⑦初速度为零的匀加速直线运动的连续相等时间内末速度之比为=n v v v v ...::3211:2:3…(匀减速直线运动的物体反之) ⑧初速度为零的匀变速直线运动:212n N S S n N -=(N S 表示第N 秒位移,n S 表示前n 秒位移)⑵在时间t 内的平均速度20)(21t t v v v t s v =+== tv k ∆∆=⑶匀变速直线运动的位移公式:s=v0t+1/2at2[注意]:v t2 -v02=2as9. 自由落体运动是初速度为零的匀加速直线运动(只有在没有空气的空间里才能发生).在同一地点,一切物体在自由落体匀动中的加速度都相同.这个加速度叫自由落体加速度,也叫重力加速度(方向竖直向下),用g表示.在地球两极自由落体加速度最大,赤道附近自由落体加速度最小.[注意]:不考虑空气阻力作用.........,不同轻重的物体下落的快慢是相同的.10. 竖直上抛运动:将物体以一定初速度沿竖直方向向上抛出,物体只在重力作用下运动(不.考虑空气阻力作用........).[注意]:①运动到最高点v= 0,a = -g(取竖直向下方向为正方向)②能上升的最大高度h max=v02 /2g,所需时间t =v0/g.③质点在通过同一高度位置时,上升速度与下落速度大小相等;物体在通过一段高度过程中,上升时间与下落时间相等(t =2v0/g).§.3 第三章牛顿运动定律1. 牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.[注意]:①牛顿第一定律又叫惯性定律.力是改变物体运动状态的原因.②力不是产生物体速度的原因,也不是维持物体速度的原因,而是改变物体速度或者方向的原因.③速度的改变包括速度大小的改变和速度方向的改变,只要其中一种发生变化,物体的运动状态就发生了变化.(例:做曲线运动的物体,它的速度方向在变,有加速度就一定受到力的作用)2. 一切物体都保持静止状态或匀速直线运动状态的性质,我们把物体保持运动状态不变的性质叫做惯性.[注意]:①一切物体都具有惯性,惯性是物体的固有性质,不论物体处于什么状态,都具有惯性.②惯性不是力,而是一种性质.因此“惯性力”或“惯性作用”的提法是不妥的.③惯性是造成许多交通事故的原因.④物体越重,物体的惯性越大.(×)[同一物体在地球的不同位置,其重力是不同的,而质量是不变的,且物体惯性大小只与物体的质量有关,与受力、速度大小等因素无关]⑤物体的惯性大小是描述物体原来运动状态的本领强弱,物体的惯性大,保持原来运动状态的本领强,物体的运动状态难改变.反之,亦然.3. 牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比.[注意]:①运动是物体的一种属性.②牛顿这个单位就是根据牛顿第二定律定义的;使质量是1kg 的物体产生1m/s2加速度的力,叫做1 N.(kg·m/s2=N;kg·m/s2·m=J;1 N=105达因,1达因=1g·cm/s2)③力是使物体产生加速度的原因,即只有受到力的作用,物体才具有加速度.④力恒定不变,加速度也恒定不变;力随着时间改变,加速度也随着时间改变.4. 牛顿第二定律公式:F合= ma[注意]:①a与F同向;且a与F有瞬时对应关系,即同时产生,同时变化,同时消失.②当F=0时,a=0 ,物体处于静止或匀速直线运动状态.③若一物体从静止开始沿倾角为θ的斜角滑下,那加速度a=g(sinθ-μcosθ).(斜面光滑,a=g sinθ)④一个水平恒力使质量m1的物体在光滑水平面上产生a1的加速度,也能使质量为m2的物体在光滑水平面上产生a 2的加速度,则此力能使m 1 + m 2的物体放在光滑的水平面上产生加速度a 等于a 1a 2 / a 1+a 2或m 1a 1/(m 1+m 2)、m 2a 2/(m 1+m 2).⑤惯性参考系:以加速度为零的物体为参考物.非惯性参考系:以具有加速度的物体为参考物.5. 物体间相互作用的这一对力,叫做作用力与反作用力.[注意]:①作用力与反作用力相同之处:同时产生,同时消失,同时变化,同大小,同性质;不同之处:方向相反,作用的物体不同.②二力平衡两个力的性质可相同,可不同;而作用力与反作用力两个力的性质一定相同. ③作用力与反作用力的直观区别:看它们是否因相互作用而产生.(例:重力和支持力,由于重力不是由支持力产生,因此这不是一对作用力与反作用力)6. 牛顿第三定律:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上.[注意]:作用力和反作用力一定同性质.7. ⑴物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象. 即物体有向上的加速度称物体处于超重.⑵物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象. 即物体有向下的加速度称物体处于失重.⑶物体对支持物的压力(或对悬挂物的拉力)等于零的这种状态,叫做完全失重状态. 即物体竖直向下的加速度a = g 时称物体完全失重,处于完全失重的物体对支持面的压力(或对悬挂物的拉力)为零.(例:处于完全失重的液体不产生压强,也不产生浮力.对P=ρgh 和F 浮=ρ液V 排g 只有在液体无加速度时才成立.若当液体有向上的加速度时,g 的取值是9.8+a 当液体有向下的加速度时,g 的取值是9.8-a 当液体处于完全失重,g 等于9.8-9.8=0)[注意]:①物体处于超重或失重状态时地球作用于物体的重力始终存在,大小也没有发生变化.②匀减速下降、匀加速上升⇒F N -G =ma F N =m (g +a );匀加速下降、匀减速上升⇒G -F N =ma F N =m (g-a )③一只有孔且装满水的水桶自由下落,下落过程中水由于完全失重而不会从桶中流出. §. 4 第五章 曲线运动1. ⑴曲线运动中速度的方向是时刻改变的,质点在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向.⑵物体做直线运动的条件:物体所受合外力为零或所受合外力方向和物体的运动方向在同一直线上.⑶物体做曲线运动的条件合外力方向与速度方向不在同一直线上.⑷曲线运动的特点:曲线运动一定是变速运动;质点的路程总大于位移大小;质点作曲线运动时,受到合外力和相应的速度一定不为零,并总指向曲线内侧.[注意]:①做曲线运动的物体所受合外力是变化的.(×)[此力不一定变化]②两个分运动是匀速直线运动,则合运动是匀速直线运动或静止.③已知两个分运动都是匀加(互成一定角度,不共线)则合运动是:1合合与v a 共线是匀加直线运动;2合合与v a 不共线是匀变曲线运动.④一个分运动是匀速,另一个是匀加(初速度为零),则合运动:1合合与v a 共线⎪⎩⎪⎨⎧-=+=atv v at v v 00合合反向,同向, 2合合与v a 不共线:匀变速曲线运动.2. 将物体用一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动.[注意]:平抛运动性质:是加速度恒为重力 加速度g 的匀变速曲线运动.轨迹是抛物线.结论一:y x tan tan 2=结论二:B 点坐标)0,21(x . 3. 质点沿圆周运动,如果在相等时间里通过的圆弧的长度相等,这种运动叫做匀速圆周运动.[注意]:①匀速圆周运动(性质:非匀变速曲线运动)是瞬时加速度、速度矢量方向不断改变的变速运动.(“匀速”指速率不变)②匀速圆周运动的快慢,可以用线速度来描述. (v 为线速度大小,s 为弧长)线速度的方向在圆周该点的切线方向(不断变化).③匀速圆周运动的快慢,可以用角速度来描述.(国际制单位:弧度每秒,符号是rad/s )tϕω=(ω为角速度符号,ϕ为半径转过角度)④匀速圆周运动的快慢,可以用周期来描述.(匀速圆周运动是一种周期性的运动)符号:T (N tT =,t 为时间,N 为圈数).周期长说明物体运动的慢,周期短说明物体运动的快.周期的倒数是频率,符号f .频率高说明物体运动的快,频率低说明物体运动的慢.⑤匀速圆周运动的快慢,可以用转速来描述.转速是指每秒转过的圈数,用符号n 表示.单位转每秒,符号..r/s ...(n 换成这个单位才等于f ). ⑥T f 1= n f T πππω222=== r rf Tr v ωππ===22 ⑦固定在同一根转轴上的转动物体,其角速度大小、周期、转速相等.............(共轴转动);用皮带传动、铰链转动、齿轮咬合都满足边缘线速度大小相等.⑧匀速圆周运动是角速度、周期、转速不变的运动,物体满足做匀速圆周运动的条件:有向心力、初速度不为零.向心力只改变线速度方向,不改变大小(向心加速度的作用:描述线速度方向变化快慢).4. 向心力定义:使物体速度发生变化的合外力.[注意]:①向心力的方向总是指向圆心(与线速度方向垂直),方向时刻在变化,是一个变力.②向心力是根据力的作用的效果命名的.它可以是重力、弹力、摩擦力等各种性质的力,也可以是某个力的分力. ③匀速圆周运动的向心力大小F 向心= 5. 向心加速度方向总是指向圆心.r n r Tr f r v r m F a 22222)2()2()2(πππω====== [注意]:①向心力产生向心加速度只是描述线速度方向变化的快慢.②向心加速度的方向总是指向圆心,但时刻在变化,是一个变加速度.v =s t r n m r f m r T m r v m r m 22222)2()2()2(πππω====③作曲线运动的物体的加速度与速度方向不在一条直线上.(速度方向是轨迹的切线方向,加速度方向是合外力方向)6. 匀速圆周运动实例分析:⑴火车转弯情况:外轨略高于内轨,使得所受重力和支持力的合力提供向心力,以减少火车轮缘对外轨的压力.①当火车行使速率v 等于v 规定时,F 合=F 向心,内、外轨道对轮缘都没有侧压力.②当火车行使速率v 大于v 规定时,F 合<F 向心,外轨道对轮缘都有侧压力.③当火车行使速率v 小于v 规定时,F 合>F 向心,内轨道对轮缘都有侧压力.⑵没有支承物的物体(如水流星)在竖直平面内做圆周运动过最高点情况: ①当2R v m mg =,即Rg v =,水恰能过最高点不洒出,这就是水能过最高点的临界条件; ②当2R v m mg ,即Rg v ,水不能过最高点而洒出; ③当2R v m mg ,即Rg v ,水能过最高点不洒出,这时水的重力和杯对水的压力提供向心力. ⑶有支承物的物体(如汽车过拱桥)在竖直平面内做圆周运动过最高点情况:①当v =0时,02=R vm ,支承物对物体的支持力等于mg ,这就是物体能过最高点的临界条件; ②当Rg v 时,2R vm mg ,支承物对物体产生支持力,且支持力随v 的减小而增大,范围(0~mg ) ③当Rg v =时,2Rv m mg =,支承物对物体既没有拉力,也没有支持力. ④当Rg v 时,2Rv m mg ,支承物对物体产生拉力,且拉力随v 的增大而增大.(如果支承物对物体无拉力,物体将脱离支承物)7. 作匀速圆周运动的物体.在合外力突然消失或者不足以匀速圆周运动所需的向心力的情况下,就做离心运动.反之,为向心运动.§.5 第六章 万有引力定律1. 万有引力定律:自然界中任何两个物体都要互相吸引,引力大小与这两个物体的质量的乘积成正比,与它们的距离的平方成反比.[注意]:①万有引力定律公式:221rm m G F =(G 为引力常数,其值为6.67×10-11N ·m 2/kg 2) ②英国物理学家卡文迪许用扭秤装置,比较准确的测出了引力常量.③天体间的作用力主要是万有引力.④质量分布均匀的球壳对壳一质点的万有引力合力为零.⑤天体球体积:V =334R π;天体密度:3233r GT R πρ=(由R m R GMm 22ω= T πω2= ρπ234r M =,r 指球体半径,R 指轨道半径,当R =r 时,23GT πρ=) ⑥从牛顿做的“月—地”实验得出:地面上的重力与地球的吸引月球、太阳吸引行星的力是同一性质的力.2. 重力和万有引力:物体重力是地球引力的一个分力.如图,万有引力F 的另一个分力F 1是使物体随地球做匀速圆周运动所需的向心力.越靠近赤道(纬度越低),物体绕地轴运动的向心力F 1就越大,重力就越小;反之,纬度越高(靠近地球两极)力F 1就 越小,重力就越大.在两极,重力等于万有引力;在赤道,万有引力等于重力加上向心力.⑴物体的重力随地面高度h 的变化情况: 物体的重力近似地球对物体的吸引力,即近似等于2)(h R Mm G +,可见物体的重力随h 的增大而减小,由G=mg 得g 随h 的增大而减小.⑵在地球表面(忽略地球自转影响):22gr GM rMm G mg =⇒= (g 为地球表面重力加速度,r 为地球半径)⑶当物体位于地面以下时,所受重力也比地面要小,物体越接近地心,重力越小,物体在地心时,其重力为零.3. 人造地球卫星在地面附近绕地球作匀速圆周运动所必须具有的速度叫做宇宙第一速度.(7.9km/s )⑴当物体速度大于或等于11.2km/s 时,卫星或脱离地球引力,不绕地球运行,称这个速度为宇宙第二速度.宇宙第三速度:大于或等于16.7km/s.⑵卫星速度、角速度、周期与半径关系:r GM v r v m r Mm G ==,22;322,r GM r m r Mm G ==ωω;GM r T r T m rMm G 32224,)2(ππ==;开普勒第三定律:32/r T =k=⇒24π中心天体GM k 由中心天体的质量决定. ⑶地球的同步卫星轨道只有一条,它到地球的高度是一定的(运行方向与地球自转方向相同);人造地球卫星绕地球运转速度r gR v /20=(R 0为地球半径,r 为卫星到地球中心的距离, m in 85,km /s 9.7min max ==T v ⇒即轨地r R =时);人造卫星周期GMr T 32π=(M 为中心天体,r 为轨道半径),可见人造卫星的周期和自身质量无关,只和中心天体的质量和圆周轨道半径有关.人造卫星的万有引力等于向心力等于重力,重力加速度等于向心加速度,在卫星里的物体处于完全失重.密度计、电子称、摆钟等. ⑷“双星”问题:角速度相等.2221ωR Gm r =、22121ωR Gm r =;212211R m Gm r m =ω…①;212222R m Gm r m =ω…②;R r r =+21…③;由①②③解得.§.6 第七章 机械能1. ⑴功的两个必要因素:(功的单位焦耳,简称焦,符号J )作用在物体上的力;物体在力的方向上发生的位移.⑵功(符号w )是一个标量,W=Fs cos α(α是力和位移的夹角,F 应是恒力)①如果力是直接作用在物体上,则s 为物体的位移.②如果力是间接作用在物体上,则s 为作用点的位移.[注意]:①1J 等于1N 的力使物体在力的方向上发生1m 的位移时所做的功.m 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理知识点大全一、力物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。

2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。

(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μF N进行计算,其中F N是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上. (2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2|≤F≤F 1 +F 2 . (4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态. (3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑F x =0,∑F y =0.(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。

3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量.路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程.4.速度和速率(1)速度:描述物体运动快慢的物理量.是矢量.①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述.②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.(2)速率:①速率只有大小,没有方向,是标量.②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等.5.加速度(1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率.(2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a 表示.(3)方向:与速度变化Δv 的方向一致.但不一定与v 的方向一致.[注意]加速度与速度无关.只要速度在变化,无论速度大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物体加速度就大.6.匀速直线运动 (1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动.(2)特点:a=0,v=恒量. (3)位移公式:S=vt.7.匀变速直线运动 (1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动.(2)特点:a=恒量 (3)★公式: 速度公式:V=V 0+at 位移公式:s=v 0t+21at 2 速度位移公式:v t 2-v 02=2as 平均速度V=20t v v + 以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值.8.重要结论(1)匀变速直线运动的质点,在任意两个连续相等的时间T 内的位移差值是恒量,即ΔS=S n+l –S n =aT 2 =恒量(2)匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度,即:9.自由落体运动(1)条件:初速度为零,只受重力作用. (2)性质:是一种初速为零的匀加速直线运动,a=g.(3)公式:10.运动图像(1)位移图像(s-t 图像):①图像上一点切线的斜率表示该时刻所对应速度;②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动; ③图像与横轴交叉,表示物体从参考点的一边运动到另一边.(2)速度图像(v-t 图像):①在速度图像中,可以读出物体在任何时刻的速度; 202t t v v v v +==②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值.③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率.④图线与横轴交叉,表示物体运动的速度反向.⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.三、牛顿运动定律★1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止.(1)运动是物体的一种属性,物体的运动不需要力来维持.(2)定律说明了任何物体都有惯性.(3)不受力的物体是不存在的.牛顿第一定律不能用实验直接验证.但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的.它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律.(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系.2.惯性:物体保持匀速直线运动状态或静止状态的性质.(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关.因此说,人们只能“利用”惯性而不能“克服”惯性.(2)质量是物体惯性大小的量度. ★★★★3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础.(2)对牛顿第二定律的数学表达式F 合 =ma,F 合是力,ma是力的作用效果,特别要注意不能把ma看作是力.(3)牛顿第二定律揭示的是力的瞬间效果.即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度. (4)牛顿第二定律F合 =ma,F合是矢量,ma也是矢量,且ma与F 合的方向总是一致的.F 合可以进行合成与分解,ma也可以进行合成与分解.4.★牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失.(2)作用力和反作用力总是同种性质的力.(3)作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可叠加.5.牛顿运动定律的适用范围:宏观低速的物体和在惯性系中.6.超重和失重(1)超重:物体有向上的加速度称物体处于超重.处于超重的物体对支持面的压力F N (或对悬挂物的拉力)大于物体的重力mg,即F N =mg+ma.(2)失重:物体有向下的加速度称物体处于失重.处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg.即FN=mg-ma.当a=g时F N =0,物体处于完全失重.(3)对超重和失重的理解应当注意的问题①不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物的压力(或对悬挂物的拉力)不等于物体本身的重力.②超重或失重现象与物体的速度无关,只决定于加速度的方向.“加速上升”和“减速下降”都是超重;“加速下降”和“减速上升”都是失重.③在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等.6、处理连接题问题----通常是用整体法求加速度,用隔离法求力。

相关文档
最新文档