圆锥曲线(文科)的高中数学训练题
高二数学综合训练题一圆锥曲线 (更新)
圆锥曲线综合训练题一选择题:每小题5分,共60分1.椭圆221259xy+=上有一点P 到左准线的距离是5,则点P 到右焦点的距离是( ) A .4 B .5 C .6 D .72. 3k >是方裎22131xyk k +=--表示双曲线的( )条件。
A .充分但不必要B .充要C .必要但不充分D .既不充分也不必要3.抛物线24(0)y ax a =<的焦点坐标是( ) A . 1(,0)4aB . 1(0,)16aC . 1(0,)16a-D . 1(,0)16a4.过点(0,2)与抛物线28y x =只有一个公共点的直线有( ) A .1条 B .2条 C .3条 D .无数多条5.设12,F F 为双曲线2214xy -=的两个焦点,点P 在双曲线上,且满足120PF PF ⋅=,则12F P F ∆的面积是( ) A .1 B .C .D .26.椭圆221m x ny +=与直线10x y +-=相交于,A B 两点,过A B 中点M 与坐标原点的直线的斜率为2,则m n的值为( )A .2B .3C .1D .27.过抛物线24y x =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,若12y y +=则A B 的值为( ) A .6 B .8 C .10 D .128. 直线143x y+=与椭圆221169xy+=相交于A 、B 两点,该椭圆上点P 使P A B ∆的面积等于6,这样的点P 共有( ) A .1个 B .2个 C .3个 D .4个9.直线l 是双曲线22221(0,0)xya b a b-=>>的右准线,以原点为圆心且过双曲线的焦点的圆,被直线l 分成弧长为2:1的两段圆弧,则该双曲线的离心率是 ( )A .B .C .D . 10.E 、F 是椭圆22142xy+=的左、右焦点, l 是椭圆的一条准线,点P 在l 上, 则E P F ∠的最大值是( ) A . 15B . 30C . 45D . 6011. 1F 、2F 为椭圆的两个焦点,Q 为椭圆上任一点,从任一焦点向12F Q F ∆的顶点Q 的外 角平分线引垂线,垂足为P , 则P 点轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 12.A 、B 分别是椭圆22221x y ab+=的左、右顶点, F 是右焦点,P 是异于A 、B 的一点,直线AP 与BP 分别交右准线于M 、N, 则 M F N ∠= ( ) A . 60 B . 75 C . 90 D . 120二填空题:本大题共4小题;每小题4分,共16分,把答案填在题中的横线上. 13.设(,)P x y 是椭圆22194xy+=上的一点,则2x y -的最大值是14.抛物线24y x =的经过焦点弦的中点轨迹方程是15.x m =+无解,则实数m 的取值范围是16.抛物线C :28y x =,一直线:(2)l y k x =-与抛物线C 相交于A 、B 两点,设,m AB = 则m 的取值范围是三解答题:本大题共6小题,共74分。
高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)
高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。
高三第一轮复习22----圆锥曲线大题训练题
圆锥曲线大题训练题1.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.2.(本小题满分12分)在直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.(Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB ,求k 的值;(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |.4. 若动点(,)P x y 在曲线2221(0)4x y b b+=>上变化,则22x y +的最大值为多少?5. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15, 求抛物线的方程。
5.(2007全国Ⅱ文、理)在直角坐标系xOy 中,以O 为圆心的圆与直线:相切(1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|PA|、|PO|、|PB|成等比数列,求PA PB ∙的取值范围。
6.(2007北京文、理)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的 外接圆外切,求动圆P 的圆心的轨迹方程.7.设椭圆22a x +22by =1(a >b >0)的左焦点为F 1(-2,0),左准线l 1与x 轴交于点N (-3,0),过点N 且倾斜角为30°的直线l 交椭圆于A 、B 两点.(1)求直线l 和椭圆的方程;(2)求证:点F 1(-2,0)在以线段AB 为直径的圆上;(3)在直线l 上有两个不重合的动点C 、D ,以CD 为直径且过点F 1的所有圆中,求面积最小的圆的半径长.4y 3x =-8.设椭圆2222:1(0)x y C a b a b+=>>过点M,且着焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB =,证明:点Q 总在某定直线上9.已知椭圆的中心在原点,一个焦点是)0,2(F ,且两条准线间的距离为)4(>λλ。
圆锥曲线高考题
圆锥曲线高考题引言圆锥曲线是高中数学中的重要知识点,也是高考经常出现的考题难点之一。
掌握圆锥曲线的性质和解题方法,对高考数学题的解答尤为重要。
本文将通过介绍一道典型的圆锥曲线高考题,帮助你理解和掌握相关知识点。
题目描述已知圆锥曲线 C 的方程为: \[x^2 + 4y^2 - 4x - 24y + 36 = 0\] 试回答以下问题: 1. 确定圆锥曲线 C 的类型并证明你的结论。
2. 求解圆锥曲线 C 的焦点坐标。
3. 求解圆锥曲线 C 的顶点坐标。
解答过程问题一:确定圆锥曲线 C 的类型并证明你的结论。
要确定圆锥曲线 C 的类型,我们需要先化简方程。
首先将方程重新组织,得到: \[x^2 - 4x + 4y^2 - 24y + 36 = 0\] 再将x 和 y 的平方项配方,得到: \[(x - 2)^2 + 4(y - 3)^2 = 0\]由于方程左侧是平方项的和,而平方项的值不可能小于0,因此我们可以得出结论:圆锥曲线 C 是一个点。
问题二:求解圆锥曲线 C 的焦点坐标。
对于一个点类型的圆锥曲线,它不存在焦点。
因此,圆锥曲线 C 没有焦点坐标。
问题三:求解圆锥曲线 C 的顶点坐标。
要求解圆锥曲线 C 的顶点坐标,我们只需要分析方程 \((x - 2)^2 + 4(y - 3)^2 = 0\) 的形式即可。
由方程可以看出,当 \(x = 2\) 且 \(y = 3\) 时,方程等号左侧的值为 0。
因此,点 (2, 3) 是圆锥曲线 C 的顶点坐标。
结论根据以上分析,我们可以得出以下结论: 1. 圆锥曲线 C 是一个点类型的曲线,即 C 的类型为点。
2. 圆锥曲线 C 没有焦点坐标。
3. 圆锥曲线 C 的顶点坐标为 (2, 3)。
总结通过这道圆锥曲线高考题的解答过程,我们回顾了圆锥曲线的性质和解题方法。
在解题过程中,我们掌握了确定圆锥曲线类型、计算焦点坐标和顶点坐标的方法。
这些知识和技巧对于高考数学题的解答至关重要。
高中数学-圆锥曲线练习题含答案,推荐文档
2.C 2a 2b 18, a b 9, 2c 6, c 3, c2 a2 b2 9, a b 1
得 a 5,b 4 , x2 y2 1或 x 2 y 2 1
25 16
16 25
3.C
2a2
2
2 2 c2
c, c 2a , e 2,e 2
c
a2
4.B 2 p 10, p 5 ,而焦点到准线的距离是 p
A. 0, B. 0,2 C. 1, D. 0,1
二. 填空题
7. 双曲线的渐近线方程为 x 2 y 0 ,焦距为10 ,这双曲线的方程为
。
8.
设
AB
是椭圆
x2 a2
y2 b2
1的不垂直于对称轴的弦,
M 为 AB 的中点, O 为坐标原点,
则 kAB kOM
。
三.解答题
9. 已知顶点在原点,焦点在 x 轴上的抛物线被直线 y 2x 1截得的弦长为 15 ,求抛物线的方程。
C.
x 2 y
2
x2 y2 1或
1
D. 以上都不对
9 16
25 16
25 16
16 25
3. 设双曲线的半焦距为c ,两条准线间的距离为 d ,且 c d ,那么双曲线的离心率e 等于(
A. 2
B. 3
C. 2
D. 3
4. 抛物线 y 2 10x 的焦点到准线的距离是
A. 5
B. 5
C. 15
2
2
5. 若抛物线 y2 8x 上一点 P 到其焦点的距离为9 ,则点 P 的坐标为
(
D.10
(
A. (7, 14)
B. (14, 14)
C. (7,2 14)
高中数学圆锥曲线专项训练材料(名校经典题型附问题详解)
如皋市名师教育培训学校高中数学圆锥曲线专项训练材料(名校经典题型附答案)1、(省启东中学高三综合测试二)已知动圆过定点P(1,0),且与定直线L:x=-1相切,点C在l上.(1)求动圆圆心的轨迹M的方程;错误!未找到引用源。
(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值围.解:(1)依题意,曲线M是以点P为焦点,直线l为准线的抛物线,所以曲线M的方程为y2=4x.错误!未找到引用源。
错误!未找到引用源。
假设存在点C(-1,y),使△ABC为正三角形,则|BC|=|AB|且|AC|=|AB|,即错误!未找到引用源。
因此,直线l上不存在点C,使得△ABC是正三角形.(ii)解法一:设C(-1,y)使△ABC成钝角三角形,错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
∠CAB为钝角.错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
.该不等式无解,所以∠ACB不可能为钝角.因此,当△ABC为钝角三角形时,点C的纵坐标y的取值围是:错误!未找到引用源。
.解法二:以AB为直径的圆的方程为:错误!未找到引用源。
.错误!未找到引用源。
当直线l上的C点与G重合时,∠ACB为直角,当C与G 点不重合,且A,B,C三点不共线时,∠ACB为锐角,即△ABC中∠ACB不可能是钝角.因此,要使△ABC为钝角三角形,只可能是∠CAB或∠CBA为钝角.错误!未找到引用源。
.错误!未找到引用源。
.错误!未找到引用源。
A,B,C三点共线,不构成三角形.因此,当△ABC为钝角三角形时,点C的纵坐标y的取值围是:错误!未找到引用源。
2、(省启东中学高三综合测试三)(1)在双曲线xy=1上任取不同三点A、B、C,证明:⊿ABC的垂心H 也在该双曲线上;(2)若正三角形ABC的一个顶点为C(―1,―1),另两个顶点A、B在双曲线xy=1另一支上,求顶点A、B的坐标。
高中数学圆锥曲线常考题型(含解析)
(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。
全国名校高中数学题库--圆锥曲线
uuu v uuu v
⎩ y = 4x △ = 16k 2 − 16 > 0 , k < −1或k > 1 设 P ( x1 , y1 ) , Q ( x 2 , y 2 ) ,则 y1 + y 2 = 4k , y1 y2 = 4k ��� � ���� ��� � ���� 由 OP ⋅ OQ = 0 ,即 OP = ( x1 , y1 ) , OQ = ( x2 , y2 ) ,于是 x1 x2 + y1 y2 = 0 ,
即⎜ x −
⎛ ⎝
4 ⎞ 2 16 4⎞ 16 ⎛ ⎟ +y = (y≠0). ∴点 R 的轨迹方程为 ⎜ x − ⎟ +y2= (y≠0). 3⎠ 9 3⎠ 9 ⎝
2
2
6、已知动圆过定点 (1, 0 ) ,且与直线 x = −1 相切.(1) 求动圆的圆心轨迹 C 的方程;(2) 是否存在直线 l ,使 l 过点(0,1) ,并与轨迹 C 交于 P, Q 两点,且满足 OP ⋅ OQ = 0 ?若存在,求出直线 l 的方 程;若不存在,说明理由. 解: (1)如图,设 M 为动圆圆心, F (1, 0 ) ,过点 M 作直线 x = −1 的垂线,垂足为 N ,由题意知: MF = MN , 即动点 M 到定点 F 与定直线 x = −1 的距离相等,由抛物线的定义知,点 M 的轨 迹为抛物线,其中 F (1, 0 ) 为焦点, x = −1 为准线, ∴ 动点 R 的轨迹方程为 y 2 = 4 x (2)由题可设直线 l 的方程为 x = k ( y − 1)( k ≠ 0) ,
即k
2
由⎨
⎧ x = k ( y − 1)
2
得 y 2 − 4ky + 4k = 0
高考数学圆锥曲线专题训练(附答案解析)
高中数学圆锥曲线专题*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡阅卷人一、单选题(共10题;共20分)得分1. ( 2分) 波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为()A. B. C. D.2. ( 2分) 古希腊数学家阿波罗尼奥斯的著作圆锥曲线论中给出了圆的另一种定义:平面内,到两个定点A、B距离之比是常数的点M的轨迹是圆若两定点A、B的距离为3,动点M满足,则M点的轨迹围成区域的面积为A. B. C. D.3. ( 2分) 已知、为双曲线的左、右焦点,过右焦点的直线,交的左、右两支于、两点,若为线段的中点且,则双曲线的离心率为()A. B. C. D.4. ( 2分) 已知双曲线的右焦点为,点,为双曲线左支上的动点,且周长的最小值为16,则双曲线的离心率为()A. 2B.C.D.5. ( 2分) 关于曲线:性质的叙述,正确的是()A. 一定是椭圆B. 可能为抛物线C. 离心率为定值D. 焦点为定点6. ( 2分) 古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9C. (x+5)2+y2=16D. x2+(y+5)2=97. ( 2分) 已知是双曲线上一点,且在轴上方,,分别是双曲线的左、右焦点,,直线的斜率为,的面积为,则双曲线的离心率为()A. 3B. 2C.D.8. ( 2分) 在正四面体中,点为所在平面上的动点,若与所成角为定值,则动点的轨迹是()A. 圆B. 椭圆C. 双曲线D. 抛物线9. ( 2分) 已知,及抛物线方程为,点在抛物线上,则使得为直角三角形的点个数为()A. 1个B. 2个C. 3个D. 4个10. ( 2分) 已知双曲线的左、右焦点分别为,,若双曲线上存在点P使,则离心率的取值范围是()A. B. C. D.阅卷人二、填空题(共10题;共10分)得分11. ( 1分) 已知正实数是的等比中项,则圆锥曲线=1的离心率为________12. ( 1分) 设抛物线的焦点为F,过点F的直线l与抛物线交于A,B两点,且,则弦长________.13. ( 1分) 已知双曲线:(,)的左,右焦点分别为,,过右支上一点作双曲线的一条渐近线的垂线,垂足为.若的最小值为,则双曲线的离心率为________.14. ( 1分) 若椭圆的离心率为,则的短轴长为________.15. ( 1分) 从抛物线图象上一点作抛物线准线的垂线,垂足为,且,设为抛物线的焦点,则的面积为________.16. ( 1分) 设抛物线的焦点为,过点的直线与抛物线交于,两点,且,点是坐标原点,则的面积为________17. ( 1分) 已知双曲线的下焦点为,虚轴的右端点为,点在的上支,为坐标原点,直线和直线的倾斜角分别为,,若,则的最小值为________.18. ( 1分) 已知为椭圆的左焦点,过点的直线交椭圆于两点,若,则直线的斜率为________.19. ( 1分) 椭圆的左、右焦点分别为、,点P在椭圆C上,已知,则________.20. ( 1分) 已知椭圆的右顶点为A,左,右焦点为F1,F2,过点F2与x轴垂直的直线与椭圆的一个交点为B.若|F1F2|=2,|F2B| ,则点F1到直线AB的距离为________.阅卷人三、解答题(共30题;共280分)得分21. ( 10分) 已知椭圆E:=1(a>b>0)的上、下焦点分别为F1,F2,点D在椭圆上,DF2⊥F1F2,△F1F2D的面积为2 ,离心率e= ,抛物线C:x2=2py(p>0)的准线l经过D点.(1)求椭圆E与抛物线C的方程;(2)过直线l上的动点P作抛物线的两条切线,切点为A,B,直线AB交椭圆于M,N两点,当坐标原点O落在以MN为直径的圆外时,求点P的横坐标t的取值范围.22. ( 10分) 椭圆C1:+y2=1,椭圆C2:(a>b>0)的一个焦点坐标为(,0),斜率为1的直线l与椭圆C2相交于A、B两点,线段AB的中点H的坐标为(2,﹣1).(1)求椭圆C2的方程;(2)设P为椭圆C2上一点,点M、N在椭圆C1上,且,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.23. ( 10分) 已知A(1,)是离心率为的椭圆E:+ =1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.(1)求椭圆E的方程;(2)试证明直线BC的斜率为定值,并求出这个定值;(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.24. ( 10分) 设抛物线C1:y2=8x的准线与x轴交于点F1,焦点为F2.以F1,F2为焦点,离心率为的椭圆记为C2.(Ⅰ)求椭圆C2的方程;(Ⅱ)设N(0,﹣2),过点P(1,2)作直线l,交椭圆C2于异于N的A、B两点.(ⅰ)若直线NA、NB的斜率分别为k1、k2,证明:k1+k2为定值.(ⅱ)以B为圆心,以BF2为半径作⊙B,是否存在定⊙M,使得⊙B与⊙M恒相切?若存在,求出⊙M的方程,若不存在,请说明理由.25. ( 10分) 在平面直角坐标系xOy中,椭圆:的离心率为,y轴于椭圆相交于A、B两点,,C、D是椭圆上异于A、B的任意两点,且直线AC、BD相交于点M,直线AD、BC相交于点N.(1)求椭圆的方程;(2)求直线MN的斜率.26. ( 10分) 已知椭圆C:(a>b>0)的离心率为,左、右焦点分别为F1,F2,点G在椭圆C上,且• =0,△GF1F2的面积为2.(1)求椭圆C的方程;(2)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1,k2,当最大时,求直线l的方程.27. ( 10分) 已知椭圆的中心在原点,焦点在轴上,左右焦点分别为,,且,点在椭圆上.(1)求椭圆的方程;(2)过的直线与椭圆相交于两点,且的面积为,求以为圆心且与直线相切的圆的方程.28. ( 10分) 设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.29. ( 10分) 如图,在平面直角坐标系中,已知椭圆的左、右顶点分别为,,过右焦点的直线与椭圆交于,两点(点在轴上方).(1)若,求直线的方程;(2)设直线,的斜率分别为,.是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.30. ( 10分) 已知抛物线y2=2px(p>0)的焦点为F与椭圆C的一个焦点重合,且抛物线的准线与椭圆C 相交于点.(1)求抛物线的方程;(2)过点F是否存在直线l与椭圆C交于M,N两点,且以MN为对角线的正方形的第三个顶点恰在y轴上?若存在,求出直线l的方程;若不存在,请说明理由.31. ( 10分) 已知椭圆的长轴长为4,离心率为.(I)求C的方程;(II)设直线交C于A,B两点,点A在第一象限, 轴,垂足为M, 连结BM并延长交C于点N.求证:点A在以BN为直径的圆上.32. ( 10分) 已如椭圆E:()的离心率为,点在E上.(1)求E的方程:(2)斜率不为0的直线l经过点,且与E交于P,Q两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由33. ( 5分) 已知点P(x,y)满足条件.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)直线l与圆O:x2+y2=1相切,与曲线C相较于A,B两点,若,求直线l的斜率.34. ( 5分) 设直线l:y=k(x+1)(k≠0)与椭圆3x2+y2=a2(a>0)相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.(Ⅰ)证明:a2>;(Ⅱ)若,求△OAB的面积取得最大值时的椭圆方程.35. ( 15分) 已知点在抛物线上,是直线上的两个不同的点,且线段的中点都在抛物线上.(Ⅰ)求的取值范围;(Ⅱ)若的面积等于,求的值.36. ( 5分) 如图,曲线Γ由曲线C1:(a>b>0,y≤0)和曲线C2:(a>0,b>0,y>0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.37. ( 5分) 已知椭圆的离心率为,,分别是椭圆的左右焦点,过点的直线交椭圆于,两点,且的周长为12.(Ⅰ)求椭圆的方程(Ⅱ)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.38. ( 10分) 如图,已知点F为抛物线C:()的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l的倾斜角为45°时,.(1)求抛物线C的方程.(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.39. ( 10分) 已知椭圆过点,且离心率为.(1)求椭圆的标准方程;(2)若点与点均在椭圆上,且关于原点对称,问:椭圆上是否存在点(点在一象限),使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.40. ( 5分) 已知椭圆E: 过点(0,1)且离心率.(Ⅰ)求椭圆E的方程;(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.41. ( 10分) 已知抛物线,抛物线与圆的相交弦长为4. (1)求抛物线的标准方程;(2)点为抛物线的焦点,为抛物线上两点,,若的面积为,且直线的斜率存在,求直线的方程.42. ( 10分) 设椭圆的左、右焦点分别为,、,,点在椭圆上,为原点.(1)若,,求椭圆的离心率;(2)若椭圆的右顶点为,短轴长为2,且满足为椭圆的离心率).①求椭圆的方程;②设直线:与椭圆相交于、两点,若的面积为1,求实数的值.43. ( 10分) 已知椭圆C:(a>b>0)的右焦点为F(1,0),且点P在椭圆C上,O为坐标原点.(1)求椭圆C的标准方程;(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.44. ( 10分) 在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,点在线段上,且,点的轨迹为曲线.(1)求曲线的方程;(2)过抛物线:的焦点作直线交抛物线于,两点,过且与直线垂直的直线交曲线于另一点,求面积的最小值,以及取得最小值时直线的方程.45. ( 10分) 已知点,分别是椭圆的长轴端点、短轴端点,为坐标原点,若,.(1)求椭圆的标准方程;(2)如果斜率为的直线交椭圆于不同的两点(都不同于点),线段的中点为,设线段的垂线的斜率为,试探求与之间的数量关系.46. ( 10分) 已知椭圆E:+ =1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.47. ( 10分) 已知椭圆C:=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C 上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.48. ( 10分) 已知椭圆C:+ =1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的方程;(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.①若线段AB中点的横坐标为﹣,求斜率k的值;②若点M(﹣,0),求证:• 为定值.49. ( 10分) 已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.(1)求椭圆的方程;(2)证明:直线恒过定点.50. ( 10分) 如图,中心为坐标原点O的两圆半径分别为,,射线OT与两圆分别交于A、B两点,分别过A、B作垂直于x轴、y轴的直线、,交于点P.(1)当射线OT绕点O旋转时,求P点的轨迹E的方程;(2)直线l:与曲线E交于M、N两点,两圆上共有6个点到直线l的距离为时,求的取值范围.答案解析部分一、单选题1.【答案】D【考点】椭圆的简单性质【解析】【解答】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则 =2,化简得.∵△MAB面积的最大值为8,△MCD面积的最小值为1,∴,解得,∴椭圆的离心率为.故答案为:D.【分析】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则利用两点距离公式得出,∵△MAB面积的最大值为8,△MCD面积的最小值为1,利用三角形面积公式求出a,b的值,再利用椭圆中a,b,c三者的关系式结合离心率公式变形求出椭圆的离心率。
高中数学_圆锥曲线400题
高中数学_圆锥曲线400题一、单选题( ) 1. 一双曲线的两渐近线为1:20L x y -=与2:20L x y +=且通过点()﹐其方程式为(1)22182x y -= (2)22182x y -=- (3)22128x y -= (4)22128x y -=-﹒( ) 2. 拋物线2118y x =+的焦点在 (1)()0,3 (2)()0,10 (3)330,32⎛⎫ ⎪⎝⎭ (4)2570,32⎛⎫⎪⎝⎭﹒( ) 3. 在坐标平面上﹐过点()2,5P 而与双曲线221254x y -=相切的直线有几条﹕ (1)0 (2)1 (3)2(4)3 (5)4﹒( ) 4. 坐标平面上有一双曲线﹐已知其两焦点为()10,2--与()10,2-﹐一渐近线的斜率为34-﹐问此双曲线的贯轴长度为何﹕ (1)3 (2)4 (3)6 (4)8 (5)16﹒( ) 5. = (1)其长轴长为(2)其短轴长为(3)正焦弦长为(4)长轴的两端点为()6,2-﹑()6,2-- (5)长轴的方程式为0x y +=﹒( ) 6. 设拋物线的对称轴平行于y 轴且通过()1,0﹑()0,5-﹑()2,11三点﹐则方程式为 (1)245y x x =+- (2)265y x x =-- (3)245y x x =+- (4)2325y x x =+-﹒( ) 7. 通过点()1,1且与椭圆2223x y +=相切的直线方程式为 (1)23x y += (2)210x y -+= (3)23x y += (4)21x y -=﹒( ) 8. 拋物线的方程式为()()()2223465425x y x y +-=-+-﹐那么它的对称轴方程式为 (1)3470x y +-= (2)90x y +-= (3)4380x y --= (4)68310x y +-=﹒( ) 9.如右圖﹐A ﹐B ﹐C ﹐D 四個點中有一點是橢圓的焦點﹐選出該焦點: (1)A (2)B (3)C (4)D ﹒( )10. 下列何者正确﹕ (1)与拋物线恰交于一点的直线是切线 (2)与椭圆恰交于一点的直线是切线 (3)与双曲线恰交于一点的直线是切线 (4)通过()1,3作椭圆2299x y +=的切线恰有一条﹒( )11. 设k 为一常数﹐若方程式222117x y k k +=+-表一椭圆且与双曲线221759x y -=有相同的焦点﹐则k 的值为 (1)9- (2)9-或8 (3)10- (4)10-或9﹒( )12. 已知方程式()()2225423x y x y ⎡⎤-+=+-⎣⎦的图形为拋物线Γ﹐则Γ的正焦弦长为何﹕ (1)(2)(3)(4)5 (5)10﹒( )13. 下列各叙述何者为真﹕ (1)若双曲线的两渐近线互相垂直﹐则此双曲线必为等轴双曲线(2)设a ﹑b ﹑c 为实数﹐方程式22ax by c +=的图形是双曲线⇔0ab < (3)若直线L 与圆锥曲线Γ恰交于一点P ﹐则L 必为Γ的切线 (4)过双曲线的中心可作双曲线的二条切线﹒( )14. 设P 为双曲线22:1916x y Γ-=在第一象限的一点﹐若1F ﹑2F 为Γ的两焦点且12:1:3PF PF =﹐则下列哪些值可能为△12PF F 的周长﹕ (1)18 (2)20 (3)22 (4)24 (5)26﹒( )15. 拋物线的顶点为()1,0﹐焦点为()0,1﹐则下列何者正确﹕ (1)其方程式为()241y x =- (2)其对称轴为10x y --= (3)其方程式为22261070x xy y x y +++-+= (4)其正焦弦长为4 (5)其准线为30x y --=﹒( )16. 求椭圆229436x y +=上的点P 到直线:210L x y +=的最长距离为 (1)15 (2) (3)5( )17. 求拋物线28y x =被直线22x y -=所截的弦长为 (1)40 (2)(3)(4)50﹒ ( )18. 阿光在做习题时﹐遇到一题题目如下﹔「求过点()3,5且与双曲线22:48210x y x y Γ--+-=相切的直线方程式﹒」阿光的作法如下﹔35435821022x y x y ++⨯--⨯+⨯-= ⇒125412510x y x y ---++-= ⇒8480x y --=⇒220x y --=﹒答﹔切线方程式为220x y --=﹒就阿光的作法与答案﹐试判别下列何者为真﹕ (1)作法与答案皆正确(2)作法正确﹐但计算过程中有发生错误﹐使得答案不正确(3)作法正确﹐但答案错误﹐因为切线要有两条﹐所以阿光少写一条铅直切线3x = (4)作法不正确﹐因为()3,5不在双曲线上﹒( )19.同例題1﹐如果調整檯燈罩﹐將其往下壓﹐如圖﹒那麼桌面上S 區域的邊界是下列哪種圓錐曲線的一部分? (1)圓 (2)橢圓 (3)拋物線 (4)雙曲線﹒( )20. (1)10(2)10+(3)14 (4)15﹒二、多选题( ) 1. 已知一拋物线的焦点为()4,3﹐准线为y 轴﹐则下列哪些点也在此拋物线上? (1)()2,3(2)()4,7 (3)()4,1- (4)()4,3- (5)()0,3﹒( ) 2. 已知椭圆的长轴平行于x 轴﹐中心为()1,2且通过点()4,6﹐试问下列哪些点一定会在这椭圆上﹕ (1)()3,4 (2)()4,2- (3)()5,6 (4)()2,2-- (5)()2,6-﹒( ) 3. 已知拋物线方程式为284200y x y -++=﹐则 (1)对称轴为2x = (2)顶点()2,2- (3)焦点()2,0 (4)正焦弦长为8 (5)开口向上﹒( ) 4. 直线y x k =+与双曲线22412y x -=的相交关系为 (1)0k =时﹐没有交点 (2)3k =时﹐有一个交点 (3)3k <-时﹐有二个交点 (4)3k >时﹐没有交点 (5)k =时﹐没有交点﹒( ) 5. 下列有关双曲线224x y -=的叙述哪些是正确的? (1)顶点为()0,2与()0,2- (2)贯轴长为2 (3)贯轴与共轭轴等长 (4)渐近线互相垂直 (5)通过中心可作出两条切线﹒( ) 6. 下列方程式何者表示一个完整的拋物线﹕ (1)()()222253412x y x y +=+- (2)(3)2y -=(4)25410y x y +--= (5)25x y +-﹒( ) 7. 设a ﹑b ﹑c 为实数﹐若二次函数2x ay by c =++的图形通过()1,0且与y 轴相切﹐下列何者为真﹕ (1)0a < (2)0b > (3)1c = (4)240b ac +> (5)0a b c ++≥﹒( ) 8. 已知坐标平面上三点()3,0A ﹐()3,0B -﹐(),P x y ﹐下列叙述哪些是正确的?(1)若8PA PB +=﹐则P 点的轨迹是一个椭圆 (2)若6PA PB +=﹐则P 点的轨迹是一个圆 (3)若4PA PB +=﹐则P 点的轨迹是一个椭圆 (4)若PA PB =﹐则P 点的轨迹是一条直线(5)若3PA PB -=﹐则P 点的轨迹是双曲线的一支﹒( ) 9. 设220ax cy dx ey f ++++=﹐22220a c d e +++≠在坐标平面﹐下列叙述何者正确﹕ (1)若0ac <﹐图形不可能为无图形 (2)0ac =﹐则图形为一直线 (3)0f =时必过原点 (4)若图形为椭圆﹐则0ac > (5)0ac >时图形可能为点﹒( )10. 一双曲线贯轴平行y 轴﹐中心为()1,2-且过()2,4-﹐则下列哪些点也会在双曲线上﹕ (1)()0,3 (2)()1,3- (3)()1,1- (4)()2,0- (5)()0,0﹒( )11. 关于10Γ=﹐则下列何者为真﹕ (1)Γ表一椭圆 (2)Γ表一双曲线 (3)Γ的中心为()2,2- (4)Γ对称于直线20x -= (5)Γ的一顶点为()2,3﹒( )12. 在坐标平面上﹐请问下列哪些直线与双曲线221364x y -=不相交﹕ (1)3y x = (2)32y x =(3)31y x =+ (4)3y x =- (5)100y =﹒( )13. 下列叙述何者正确﹕ (1)已知拋物线上三点﹐可以求出拋物线之方程式 (2)已知顶点及正焦弦长﹐可以求出拋物线之方程式 (3)已知椭圆的两焦点及椭圆上一点﹐可以求出椭圆的方程式 (4)已知椭圆的中心及长轴﹑短轴的长度﹐可以求出椭圆的方程式 (5)已知椭圆的四个顶点坐标﹐可以求出椭圆的方程式﹒( )14. 下列哪些叙述是正确的﹕ (1)Γ为拋物线﹐L 为一直线﹐若L 与Γ仅有一个交点﹐则L必为Γ的切线 (2)Γ为椭圆﹐L 为一直线﹐若L 与Γ仅有一个交点﹐则L 必为Γ的切线 (3)Γ为双曲线﹐L 为一直线﹐若L 与Γ仅有一个交点﹐则L 必为Γ的切线 (4)Γ为一圆锥曲线(拋物线、椭圆或双曲线)﹐V 为它的一个顶点﹐L 为过V 的对称轴﹐则过V 的切线必与L 垂直 (5)Γ为一圆锥曲线(拋物线、椭圆或双曲线)﹐P 在Γ上﹐则通过P 恰可作一条Γ的切线﹒( )15. 下列各方程式中﹐哪些图形的焦点相同﹕ (1)22192x y -= (2)22129x y -= (3)223824x y -= (4)22143x y += (5)221143x y +=﹒( )16.在()0,0O 有三個同心圓﹐半徑為1﹐2﹐3﹐在()4,0P 有四個同心圓﹐半徑為1﹐2﹐3﹐4﹐如右圖所示﹒A ﹐B ﹐C ﹐D ﹐E ﹐F 在某一個橢圓上﹐則下列有關此橢圓的選項哪些是正確的? (1)中心為()2,0(2)長軸長為4 (3)短軸長為3 (4)一頂點為9,02⎛⎫⎪⎝⎭(5)一焦點為()4,0﹒( )17. 下列哪些叙述是正确的﹕ (1)()()22321250x y x y -+++-=的图形为两直线 (2)2的图形为双曲线的一支 (3)24y x =与24y x =图形的形状与大小均相同(不论位置) (4)22260x y -+=与22260x y --=图形的形状与大小均相同(不论位置) (5)2262x y =+与2262y x =+图形的形状与大小均相同(不论位置)﹒( )18. 坐标平面上﹐下列哪些直线与双曲线22:149x y Γ+=-不相交﹕(1)230x y -= (2)3210x y -+= (3)210x y -+= (4)320x y += (5)3y =﹒( )19. 一拋物线Γ的方程式为28x y =﹐()P 为Γ上一点﹐今有一平行y 轴的光線自上方射向P ﹐經反射後射到Γ上另一點Q 再反射﹒令1L 為過P 的切線﹐2L 為過Q 的切線﹐1L 和2L 交於R ﹒則下列哪些正確﹖(1)Q 的坐標為23⎛⎫ ⎪ ⎪⎝⎭(2)經過Q 的反射線與y 軸交於()0,1103(3)2L 320y ++= (4)1L 與2L垂直 (5)R 的y坐標為2-﹒( )20. 已知坐标平面上一双曲线Ω的对称轴平行坐标轴﹐贯轴长2﹐图形过()2,10A -﹐()4,10B ﹐()1,4C 三点﹐且这三点不在双曲线的同一支上﹒关于此双曲线﹐下列哪些叙述是正确的﹕ (1)Ω的贯轴平行x 轴 (2)Ω与x 轴必相交 (3)Ω与直线5y =没有交点 (4)Ω与直线1x =交于两点 (5)一直线过点()1,4C 且平行于Ω的其中一条渐近线﹐则此直线与Ω交于两点﹒( )21. 设1F 与2F 为坐标平面上双曲线22:1916x y Γ-=的两个焦点﹐P 为Γ上一点﹐使得此三点构成一直角三角形;试问符合条件的P 点有n 个﹐则n =﹕ (1)4n ≥ (2)4n ≤ (3)6n ≥ (4)6n ≤ (5)8n ≥﹒( )22. 关于双曲线22:1254y x Γ-=﹐下列哪些叙述是正确的﹕ (1)过点()0,0的直线不可能与Γ相切 (2)过点()5,0-有两条切线 (3)斜率为52的切线有两条 (4)斜率为3的切线有两条 (5)斜率为2的直线有可能将双曲线的两支分在此直线的两侧﹒( )23. 2=的点(),x y 所成的图形﹐下列叙述何者正确﹕ (1)此图形为一椭圆 (2)此图形为一双曲线 (3)此图形的中心在()1,1-(4)此图形对称于20x y -+= (5)已知此图形上有一点22⎛ ⎝⎭﹐则22⎛ ⎝⎭必也在此图形上﹒( )24. 关于双曲线22:1254y x Γ-=﹐下列哪些叙述是正确的﹕ (1)过点()0,0的直线不可能与Γ相切 (2)Γ的共轭双曲线的焦点为(0, (3)斜率为52的切线有两条 (4)斜率为3的切线有两条 (5)斜率为2的直线有可能将双曲线的两支分在此直线的两侧﹒( )25. 设a 与b 为实数﹐关于二元二次方程式22240x ay bx y ++-=的图形Γ﹐下列哪些叙述是正确的﹕ (1)若Γ是一椭圆﹐则0a < (2)若Γ是一双曲线﹐则0a > (3)若Γ是一圆﹐则1a = (4)若Γ是一拋物线﹐则0a =且0b = (5)若0a =且0b =﹐则Γ是一拋物线﹒( )26. 已知()1,2A ﹐()3,1B --﹐()5,5C ﹐:0L x y -=﹐满足下列条件的P 的图形叙述何者正确﹕ (1)0PA PB -=时图形为双曲线的一支 (2)10PB PC +=时图形为椭圆 (3)P 到C 的距离与P 到直线L 的距离相等时为拋物线 (4)15PB PC +=时图形为椭圆 (5)4PA PB -=时图形为双曲线﹒( )27. 下列何者为真﹕ (1)椭圆内接最大面积的矩形﹐此矩形必为正方形 (2)过点()3,4可做2条切线与双曲线221916x y -=相切 (3)过点()0,0可做1条切线与双曲线221916x y -=相切 (4)等轴双曲线的正焦弦长等于贯轴长 (5)若1Γ﹑2Γ互为共轭双曲线﹐又双曲线1Γ的两焦点间的距离为4﹐则2Γ的两焦点间的距离亦为4﹒( )28. 已知等轴双曲线Γ的一条渐近线为0x y +=﹐中心的坐标()1,1-且Γ过点()4,0﹐试问下列叙述哪些是正确的﹕ (1)Γ的两渐近线互相垂直 (2)0x y -=为Γ的另外一条渐近线(3)Γ的贯轴在直线1x =上 (4)点()3,1--为Γ的一个焦点 (5)点(1,1-+为Γ共轭双曲线Γ'的一个顶点﹒( )29. 设xy 平面上Γ6=﹐试问下列叙述哪些是正确的﹕ (1)Γ的图形可以当成两个拋物线 (2)Γ的贯轴所在直线是两渐近线的角平分线 (3)3410x y -+=是Γ的对称轴 (4)1711,55⎛⎫- ⎪⎝⎭是Γ的顶点 (5)147,55⎛⎫- ⎪⎝⎭是Γ的顶点﹒( )30. 已知双曲线的两条渐近线方程式为20x y +=与20x y -=﹐两顶点的距离为1﹐下列何者可能是此双曲线的方程式﹕ (1)224161x y -= (2)221641x y -= (3)2241x y -= (4)2241x y -+= (5)2241x y -+=﹒三、填充题1. 求拋物线2112y x x =-+-的焦点坐标为____________﹒2. 设双曲线22:1416x y Γ-=﹐P 为其上动点﹐1F ﹑2F 为其两焦点﹐求(1)若15PF =﹐则2PF =____________﹒(2)若19PF =﹐则双曲线上满足此条件的P 点共有____________个﹒ 3. 设k 为实数且2y x kx k =++的图形与直线21y x =+没有交点﹐则k 的范围为____________﹒ 4. 设直线:32L x y k =+与拋物线2:y x Γ=相切﹐则k 值为____________﹒ 5. 已知拋物线顶点()1,2﹐焦点()1,2-﹐则准线方程式为____________﹒6. 求拋物线2134y x x =-++的焦点坐标为____________﹒7. 设椭圆22:14x y Γ+=与直线1:3L y x k =+交于相异两点﹐则k 的范围为____________﹒8. 双曲线的方程式为229490x y -+=﹐则共轭双曲线的共轭轴长为____________﹒ 9. 椭圆22114x y +=与直线2y x k =+交于相异两点﹐则k 的范围为____________﹒10. 设L 为过点()1,0-且斜率为m 的直线﹐若L 与拋物线24y x =相交于相异两点﹐则m 的范围为____________﹒11. 双曲线的共轭轴为y 轴﹐贯轴平行x 轴﹐一焦点为()2,2且通过点222,3⎛⎫⎪⎝⎭﹐则其贯轴长为____________﹒12. 拋物线的准线:3L x =﹐焦点()3,0F -﹐则此拋物线方程式为____________﹒ 13. 求椭圆22346850x y x y +-+-=的长轴长为____________﹒14. ()()2241x y x y +-+=的图形为一双曲线﹐其标准式为____________﹒ 15. 双曲线中心为()6,6﹐贯轴平行x 轴﹐贯轴长为10﹐中心至焦点距离为13﹐则(1)其渐近线方程式为____________﹒(2)其共轭双曲线方程式(标准式)为____________﹒ 16. 设一拋物线的顶点为()3,2﹐焦点为()5,2﹐则(1)此拋物线的方程式____________﹒ (2)准线方程式为____________﹒17. 设22:164x y k k Γ+=--(k 为实数)﹐若Γ表一焦点在x 轴上的椭圆﹐则k 的范围为____________﹒18. 曲线222430x xy y x y +++++=与1x y +=-之交点为A ﹑B ﹐则AB =____________﹒ 19. 双曲线()()22211416x y +--=上两点(),m n ﹑(),2m n +﹐则m =____________﹒20.如圖﹐一拋物線鏡滿足方程式22y x =﹐一光線從()5,2平行對稱軸射向鏡面上P 點﹐經反射又射到拋物線鏡面上的Q點﹐則Q 點的坐標為____________﹒21. 椭圆22421610x y x y +--+=﹐则(1)中心坐标为____________﹒(2)焦点坐标为____________﹒(3)长轴长为____________﹒ (4)短轴方程式为____________﹒(5)正焦弦长为____________﹒22. xy 平面上三点A ﹑B ﹑C ﹐已知()0,5A ﹐()0,5B -﹐AC =BC =﹐则以A ﹑B 为两焦点且通过C 点的双曲线方程式为____________﹒23. 已知21:45y x x Γ=+-与22:241y x x Γ=-+-交于A ﹑B 两点﹐则直线AB 的方程式为____________﹒24. 若一椭圆的两焦点为()12,3F ﹐()22,3F -﹐长轴长为10﹐试求(1)椭圆的正焦弦长为____________﹒(2)椭圆的方程式为____________﹒ 25.設一光線沿著2y =的直線行進﹐在拋物線22y x =上的兩點B ﹑C 反射(如圖)﹐則CD方程式為____________﹒26. 等轴双曲线Γ的一条渐近线为20x y -=﹐中心的坐标()2,1且Γ过点()3,2﹐则此双曲线Γ的方程式为____________﹒27. 有一拋物线Γ的对称轴为10y +=且准线为1x =若Γ的正焦弦长是12﹐则Γ的方程式为____________﹒28. 已知平面上两点﹐()5,0A -﹐()3,0B ﹐若动点(),P x y 满足﹐则(1)10PA PB +=﹐P 点轨迹为____________﹒ (2)8PA PB -=﹐P 点轨迹为____________﹒29. 设Γ为以()10,0A ﹐()10,0B -为焦点且过(C 的椭圆﹐则(1)Γ的方程式为____________﹒ (2)内接矩形的最大面积为____________﹒ 30.设)4P-为椭圆()222148y x ++=上一点﹐且1F ﹑2F 为椭圆的两焦点﹐12F PF ∠的角平分线方程式为____________﹒ 31.右圖是一個雙曲線﹐且A ﹑B ﹑C ﹑D ﹑E 五個點中有一為其焦點﹐試判斷其焦點為____________﹒32. 椭圆22:943624360x y x y Γ++++=﹐则Γ的长轴方程式为____________﹒ 33. 过()3,2且与22236x y -=相切的直线方程式为____________﹒34. k 的图形是椭圆﹐则常数k 的范围为____________﹒35. 已知()5,3A -﹐()1,3B --为平面上两点﹐则以A 为顶点﹐B 为焦点的拋物线方程式为____________﹒36. 设双曲线Γ方程式为22491618430x y x y -+++=﹐而1F ﹑2F 是Γ的焦点﹐试回答下列问题﹔(1)两焦点1F 与2F 的坐标为____________﹒(2)若(),P x y 是Γ上的任一点﹐则12PF PF -=____________﹒ (3)两渐近线的方程式为____________﹒37. 设一直线L 与椭圆22312210x y x y ++-+=相切于一点()1,4P -﹐则L 的方程式为____________﹒ 38. 方程式22193x y k k +=--的图形﹐表示椭圆其长轴在x 轴上﹐则k 的范围为____________﹒39.如圖﹐用尺量量看﹐哪一點最有可能是橢圓的焦點﹖答﹕____________﹒ (請填代號)40. 直线20x y t -+=与图形x =t 的范围为____________﹒ 41. 「P 点与()5,0F 之距离」比「P 到直线:80L x +=之距离」多2﹐则P 点的轨迹方程式为____________﹒42. 有一椭圆其一焦点为()2,1-﹐短轴的一端点为()1,4﹐长轴平行y 轴﹐则此椭圆的方程式为____________﹒43. 双曲线方程式为()()2293162144x y ---=﹐则此双曲线的焦点坐标为____________﹒ 44. 以()1,1为顶点且通过()3,3A 与()1,3B -的拋物线方程式为____________﹒ 45. P 为椭圆()()221424x y ++-=上一点﹐直线:3412L x y +=﹐则(1)P 到直线L 的最长距离为____________﹒ (2)椭圆对直线L 的正射影长为____________﹒46. 若直线416ax y +=与椭圆221167x y +=相切﹐则a =____________﹒(二解)47. 双曲线的两焦点()12,6F -﹐()22,4F --且通过点()2,4P -﹐则此双曲线方程式为____________﹒ 48. 平面上有一椭圆﹐已知其焦点为()0,0和()4,4-且2x y +=为此椭圆的切线﹐则此椭圆的正焦弦长为____________﹒49. 设椭圆22432412240x y x y +-++=﹐则(1)中心坐标为____________﹒(2)正焦弦长为____________﹒50. 直线2y x k =+与2513y x x =-+交于两点P ﹑Q ﹐若3PQ =﹐则k =____________﹒51. 设方程式()()2223151x y k k +-+=-+的图形为贯轴平行y 轴的双曲线﹐则k 的范围为____________﹒52. 若方程式22132x y t t +=--的图形为椭圆﹐则t 的范围为____________﹒53. k =图形为一线段﹐k =____________﹒54. 拋物线253y x x =-++的一切线L 且垂直35x y -=﹐则L 的方程式为____________﹒ 55. 设拋物线的对称轴平行于y 轴且通过()0,3﹑()2,0﹑()4,5-﹐则这拋物线的焦点坐标为____________﹒56. 设22141x y t t +=-+为焦点在y 轴的双曲线﹐则t 的范围为____________﹒57. 双曲线()()2211:1169x y Γ---=﹐试求下列各直线与双曲线Γ的交点个数﹔(1)()3114y x -=-﹔____________个 (2)34y x =﹔____________个 (3)()4113y x -=-﹔____________个 (4)4x =﹔____________个 (5)14y x =﹔____________个﹒ 58. 设一拋物线的对称轴平行于x 轴且过()1,1﹑()3,2﹑()3,1-三点﹐则拋物线方程式为____________﹒59. 双曲线6Γ=﹐则(1)此双曲线的中心点坐标为____________﹒(2)贯轴长为____________﹒60. 设()1,0A ﹐()1,0B -为平面两定点﹐(),P x y 为动点﹐若△PAB 的周长为8且△PAB 的面积为2﹐则22x y +=____________﹒61. 若P 为拋物线2:1y x Γ=-上的动点﹐Q 为圆()22:11C x y +-=上的动点﹐则(1)PQ 的最小值为____________﹒(2)当PQ 有最小值时﹐P 点的y 坐标为____________﹒ 62. 设直线y x k =+与双曲线22412y x -=相切﹐试求(1)切点坐标为____________﹒ (2)定数k 的值为____________﹒63. 平面上双曲线()()2212125144x y -+-=与椭圆()()22212112x y k k-++=+共焦点﹐则k =____________﹒ 64. 已知F 是椭圆的一个焦点﹐1B ﹑2B 是短轴的两个端点且1290B FB ∠=︒﹐1A 是长轴上距离F 较近的一个端点﹐若11A F =﹐则椭圆长轴长为____________﹒ 65. 直线1kx y +=与拋物线28x y =-相切﹐则k =____________﹒66. 等轴双曲线的中心为()7,2且一焦点为()3,2﹐则此双曲线方程式为____________﹒ 67. 方程式轴是铅垂线且过()0,3﹑()2,1﹑()2,9-三点的拋物线为____________﹒ 68. 直线():12L y m x =++与22416x y -=恰有一交点﹐则m =____________﹒ 69. 请将下列各题填入适当的代号﹔(A)椭圆 (B)拋物线 (C)双曲线 (D)线段 (E)二射线 (F)一射线 (G)无图形 (H)双曲线的一部分(1)14x +的图形为____________﹒(2)5=的图形为____________﹒(3)=____________﹒(4)(),P x y ﹐2cos 22sin cos x y θθθ=⎧⎨=⎩﹐0θπ≤≤﹐P 的轨迹图形为____________﹒(5)(),P x y ﹐2sin cos x y θθ=⎧⎨=-⎩﹐θ为实数﹐P 的轨迹图形为____________﹒70. 已知x ﹑y 为实数﹐1z x yi =+﹐2z x yi =-﹐若126z z +=﹐则动点(),P x y 的轨迹图形方程式为____________﹒71. 已知拋物线的焦点()0,0﹐准线20x y ++=﹐若PQ 为正焦弦﹐P 在第二象限﹐则P 的坐标为____________﹒ 72.如圖所示為坐標平面上兩曲線的部分圖形﹐其中之一為橢圓的部分圖形﹐另一個為拋物線的部分圖形﹒已知兩曲線均通過()4,0C 與()4,0D -且皆以y 軸為對稱軸﹐皆以()0,3F -為其焦點﹔又橢圓的中心為原點﹐則此兩曲線的頂點A ﹑B 的距離AB =____________﹒73. 双曲线22:8x y Γ-=﹐点()1,1A ﹐由A 向Γ作切线﹐则切线方程式为____________﹒74. 已知椭圆的长轴平行x 轴且长轴上一个顶点()2,3到两个焦点1F ﹑2F 的距离分别为4及10若椭圆的中心x 坐标小于2﹐则椭圆的方程式为____________﹒(请化成标准式) 75. 已知椭圆221369x y +=有一弦以()2,1为中点﹐含此弦的直线方程式为____________﹒76. 若双曲线2212:19x y a Γ-=上一点P 到此双曲线两渐近线的距离乘积为3613﹐今有一椭圆2Γ与双曲线1Γ共焦点且短轴长为4﹐则椭圆2Γ方程式的标准式为____________﹒77. 设一个拋物线方程式为28y x =今有一椭圆与拋物线的准线相切且拋物线的焦点为椭圆中心﹐拋物线的顶点为椭圆之一焦点﹐则此椭圆的短轴长为____________﹒78. 已知直线y x k =--是拋物线2350x x y +--=的切线﹐则(1)k =____________﹒(2)切点为____________﹒79. 直线L 与22416x y +=相切且斜率为1﹐若切点为(),a b ﹐则1a b -+之值____________﹒ 80. 设E ﹑F 为椭圆2248x y +=的两焦点﹐设椭圆上一点()1,2A ﹐求EAF ∠的角平分线方程式为____________﹒81. 设3AB =﹐P 点在AB 上且1AP =﹐若A 在x 轴上移动﹐B 在y 轴上移动﹐则P 点的轨迹方程式为____________﹒82. 设拋物线通过()3,0﹑()5,6且其对称轴为1x =﹐则其方程式为____________﹒ 83. (),P x y 在2222142x y -=上﹐则22x y +的最小值为____________﹒84. 设()2,4P 为椭圆22242240x y x y +-+-=上一点﹐且F ﹑F '为椭圆的两焦点﹐则FPF '∠的角平分线为____________﹒85. 设4Γ=﹐则(1)共轭轴的长为____________﹒(2)顶点坐标为____________﹒ 86.某行星繞太陽的軌道為如圖之橢圓﹐太陽位於橢圓軌道之一焦點處﹒據觀測﹐此行星與太陽的最近距離為a 萬公里﹐最遠距離為b 萬公里﹐則 (1)行星位於____________時﹐距太陽的距離恰為a ﹑b 平均值(即距離為2a b+萬公里)﹒ (2)又已知此軌道的正焦弦長為短軸長的35﹐則太陽位置為____________﹒(以上各問題均依圖上所標示參考位置作答)87. 已知拋物线()()2:141x y Γ-=+﹐L 为过点()0,3-与Γ相切的直线﹐其斜率小于0﹐则(1)直线L的方程式为____________﹒(2)切点坐标为____________﹒88. 有一道光线经过()2,6A -沿水平方向前进碰到拋物线2:4y x Γ=上一点P ﹐经反射后通过一点B ﹐已知20PB =﹐求B 点的坐标为____________﹒89. 设圆锥曲线有顶点()2,1﹐焦点()0,0﹐则(1)若为长轴平行于x 轴的椭圆﹐则椭圆方程式为____________﹒ (2)若为拋物线﹐则准线方程式为____________﹒90. 点A 在y 轴上移动﹐点B 在x 轴上移动﹐AB 长度为10﹐P 在AB 上且:2:3AP PB =﹐则P 点的轨迹方程式为____________﹒91. 以(12,1F +﹐(22,1F -为两焦点的椭圆Γ通过点(2Q +﹐则Γ的方程式为____________﹒92. 若双曲线的顶点与焦点分别是椭圆()2294136x y ++=的焦点和顶点﹐则此双曲线的方程式为____________﹒(请化成标准式)93. 拋物线的准线垂直x 轴且过三点()1,0﹑()1,1-﹑()5,1-﹐则此拋物线的焦点坐标为____________﹒94. 设F 与F '为双曲线()()2215:123x y Γ-+-+=上两焦点﹐且有一点P 的坐标为()3,2-﹐试求FPF '∠的角平分线方程式为____________﹒95. 若(),P x y 在椭圆22:440x y Γ+-=上﹐O 为Γ的中心﹐()1,0A 且60POA ∠=︒﹐则PO 长为____________﹒96. 椭圆的对称轴平行于坐标轴﹐一短轴端点为()3,3-﹐一焦点为()6,7-﹐其正焦弦长为____________﹒97. 拋物线的轴垂直于x 轴﹐并通过()1,0-﹑()9,0-﹑()0,18三点﹐则过()1,0-的切线方程式为____________﹒98. 圆锥曲线22:23440x y x Γ---=焦点为1F ﹑2F ﹐若()4,2P 在圆锥曲线上﹐求12F PF ∠的角平分线方程式为____________﹒ 99. 椭圆()()2221100210021100x y --+=在第一﹑二﹑三﹑四象限内的面积依次为1R ﹑2R ﹑3R ﹑4R ﹐则1234R R R R -+-=____________﹒100. 过()3,2A 且与()()21122x y +=-共焦点﹐共对称轴的拋物线方程式为____________﹒101. 两渐近线为20x y +=﹐20x y -=﹐且一焦点为()的双曲线其共轭双曲线方程式为____________﹒102. 坐标平面上有一椭圆﹐已知其焦点为()0,0﹑()4,4且y x =为此椭圆的切线﹐则此椭圆的长轴长为____________﹒103. 与椭圆()()2212194x y -++=共焦点且共轭轴长为4的双曲线方程式为____________﹒104. 双曲线2224810x x y y ---+=上一点112⎛⎫+ ⎪⎝⎭到两渐近线的距离乘积为____________﹒105. 坐标平面上的一直线:40L x y -+=与线外一定点()3,3A ﹒今L 上任一点P 与A 的联机段的中垂线与过点P 并垂直L 的直线相交于Q 点﹐则动点Q 所形成曲线的顶点坐标为____________﹒ 106. 已知正焦弦PQ 的两端点分别为()5,1P -﹐()3,1Q --﹐则拋物线方程式为____________﹒107. 设k 为实数﹐若方程式()2211105y x k k++=--为双曲线﹐则此双曲线的焦点坐标为____________﹒(有两解)108. 设2212518x y +=上一点P 与两焦点F ﹑'F ﹐夹角为60度﹐求△'PFF 的面积为____________﹒109.如圖﹐有一太陽灶﹐它是由拋物線繞軸旋轉而做成的拋物面﹐開口直徑20公寸﹐開口距底部之深為6公寸﹒試問烤肉盤應置於距離底部____________公寸﹐才能將肉烤熟﹒110. 有一个过原点的等轴双曲线中心为()1,2-﹐其中一条渐近线为238x y -=﹐则双曲线方程式为____________﹒(不用化简乘开)111. 椭圆22191x y +=上两点()0,1A -﹐()3,0B ﹐若()00,C x y 为椭圆上另一点﹐则(1)△ABC 面积的最大值为____________﹒(2)()00,C x y =____________﹒112. 设()1,0A -﹐()0,2B ﹐P 是拋物线24y x =上的动点﹐则△ABP 面积的最小值为____________﹒ 113. 已知两圆221:16C x y +=﹐()222:104C x y -+=﹐若动圆C 与1C ﹑2C 均相切﹐则此动圆C 的圆心轨迹方程式为____________﹒ 114.已知橢圓22194x y +=上兩點P ﹑Q 如圖所示(P ﹑Q 是和x 軸夾角為60︒的直線與橢圓之交點)﹔現在想找出P ﹑Q 的坐標﹐則(1)若使用參數式()3cos ,2sin θθ﹐則對P 而言﹐θ與60︒的大小關係為____________(請填60θ<︒﹐60θ=︒﹐60θ>︒)﹒(2)同樣的﹐對Q 而言﹐θ與120︒的大小關係為____________﹒(請填120θ<︒﹐120θ=︒﹐120θ>︒)﹒115. 拋物线的准线方程式为10x y --=﹐焦点坐标为()1,1-﹐则此拋物线的方程式为____________﹒(以220Ax Bxy Cy Dx Ey F +++++=形式表示)116. 设()15,0F -﹐()25,0F 为22:1169x y Γ-=的两焦点﹐若AB 为过2F 的任一焦弦﹐则△1ABF 面积的最小值为____________﹒117. 若一动圆与定圆()()22:314C x y +++=外切﹐且与直线:1L x =相切﹐则此动圆圆心的轨迹方程式为____________﹒118. 某行星绕一恒星之轨道为椭圆形且恒星在其一焦点处﹐据观测﹔此行星与恒星的最近距离为100万公里﹐最远距离为140万公里﹐则此椭圆的正焦弦长为____________万公里﹒ 119. 设圆()22:116C x y -+=﹐()1,0A -﹐()7,0B ﹐则(1)通过A 且与圆C 相切的所有圆的圆心轨迹方程式为____________﹒ (2)通过B 且与圆C 相切的所有圆的圆心轨迹方程式为____________﹒120. 有一双曲线A 的贯轴方程式是40y +=﹐且点()4,4-是一个焦点;若直线280x y -+=是A 的一条渐近线﹐则A 的方程式为____________﹒ 121. 设椭圆224972x y +=﹐则此椭圆切线斜率为23的切线方程式为____________﹒ 122. 设()5,4A 为平面上一点﹐P 为拋物线212y x =上一点﹐F 为拋物线的焦点﹐则当PF PA +有最小值时﹐P 点坐标为____________﹒123. 设1F ﹑2F 为双曲线221930x y -=的两个焦点﹐且P 为双曲线上一点﹐若12120F PF ∠=︒﹐则△12PF F 的最短边长度为____________﹒ 124. 已知椭圆与双曲线()22114x y +-=共焦点﹐且椭圆的正焦弦长度等于1﹐则椭圆的方程式为____________﹒125. 在坐标平面上﹐O 为原点﹐1B ﹑2B ﹑3B ﹐……在x 轴上﹐1B 在O 的右边﹐2B 在1B 的右边﹐3B 在2B 的右边﹐……﹐110OB =﹐1230B B =﹐23B B =50﹐1OB ﹑12B B ﹑23B B ﹐……的长度成等差数列﹐分别作正△11OB A ﹑正△122B B A ﹑正△233B B A ﹐……﹐其中1A ﹑2A ﹑3A ﹐……均在第一象限上﹐已知1A ﹑2A ﹑3A ﹐……在一个拋物线上﹐则此拋物线的方程式为____________﹒ 126. 已知一椭圆Γ的两焦点为()3,7F ﹐()'9,1F ﹐若直线2x y +=-为Γ的一切线﹐则Γ的长轴长为____________﹒ 127. 设一曲线方程式为()()()22223341213x y x y +-=-+-﹐则(1)对称轴方程式为____________﹒(2)顶点坐标为____________﹒ 128. 已知圆()()22:219C x y -++=及两点()2,3A ﹐()0,1B -﹐则(1)过点A 且与圆C 相切的圆之圆心形成的图形方程式为____________﹒ (2)过点B 且与圆C 相切的圆之圆心形成的图形方程式为____________﹒129. 拋物线2:8y x Γ=的焦点为F ﹐P 为Γ上的动点﹐点()4,2A -﹐当PA PF +有最小值时﹐此时P点坐标为____________﹒130. 在图中﹐圆O 的圆心为原点﹑半径为4﹐F 的坐标为()6,0﹐Q 在圓O 上﹐P 點為FQ 的中垂線與直線OQ的交點﹐當Q 在圓O 上移動時﹐求動點P 的軌跡方程式為____________﹒ (化成標準式)131. 椭圆22:4936x y Γ+=﹐则(1)若P 为椭圆Γ上的动点且()3,0A -﹐()0,2B -﹐则△PAB 面积最大值为____________﹒ (2)椭圆Γ的内接正方形面积为____________﹒ 132.台南一中大榕樹旁的長方形草皮裝設有灑水系統﹒其中高為1公尺的噴水管OA 直立於地面(如圖)﹐水自噴嘴A 噴出後呈拋物線狀﹐先向上至最高點後落下﹒若最高點離地面2公尺﹐但A 距拋物線對稱軸2公尺﹐則此噴嘴A 經360度旋轉後﹐可噴灑的草地區域為圓形﹐其直徑約為____________公尺﹒(取整數﹐小數點以下四捨五入)133.图形:x y Γ=100x y ++=的正射影(垂直投影)总长度为____________﹒(注意x ﹑y 范围限制)134. 与y 轴相切且与圆22124360x y x y +--+=相外切的圆其圆心的轨迹方程式为____________﹒135. 若P 点为椭圆2213611x y +=上的一点且P 在第一象限﹒今已知P 到焦点()5,0的距离是72﹐则P 点的坐标为____________﹒136. 双曲线Γ的一渐近线为23x y +=﹐Γ过()6,3﹑()4,0﹐又其贯轴(顶点联机)平行x 轴﹐则Γ的方程式为____________﹒137. 平面上与圆()2221x y -+=外切且与圆2249x y +=内切之所有圆的圆心﹐所成图形的方程式为____________﹒ 138. 设椭圆6Γ﹐则(1)在第一象限之顶点的坐标为____________﹒(2)又Γ内接矩形中﹐周长最大者﹐其周长为____________﹒139. 在坐标平面上﹐过()1,0F 的直线交拋物线24y x =于P ﹑Q 两点﹐P 在上半平面且2PF QF =﹐则P 的x 坐标为____________﹒140. 平面上有两点()2,5A ﹐()4,1B --﹐P 为椭圆()()2211194x y +-+=上任一点﹐则△PAB 的最大面积为____________﹒141. 若(),P a b 为椭圆22141x y +=上的任一点﹐则(1)23a b -的最小值为____________﹒(2)此时(),a b =____________﹒142. =____________﹒143. 设P 为椭圆2212516x y +=上一点﹐1F ﹑2F 为两焦点﹐若1260F PF ∠=︒﹐则△12PF F 的面积为____________﹒144. 与直线:120L x +=相切且与圆22:16C x y +=相切的圆其圆心轨迹方程式为____________﹒ 145. 过()3,0F 的直线交拋物线212y x =于P ﹑Q 两点﹐过P ﹑Q 两点作y 轴垂线﹐分别交y 轴于R ﹑S ﹐若:3:1PF FQ =﹐则梯形PQSR 的面积为____________﹒146. 圆()221:11C x y -+=﹐圆()222:125C x y ++=﹐则(1)若动圆C 和圆1C 外切且与圆2C 内切﹐动圆C 的圆心所形成的圆锥曲线方程式为____________﹒(2)若动圆C 同时与圆1C ﹑圆2C 均内切﹐动圆C 的圆心所形成的圆锥曲线方程式为____________﹒147. 设k 为一常数﹐已知拋物线Γ=﹐且过点()8,0﹐则Γ的顶点坐标为____________﹒148. 设一拋物线216x y =-﹐焦点F ﹐点()6,5A -﹐若在拋物线上有一点P ﹐使得PA PF +有最小值﹐则(1)P 点的坐标为____________﹒(2)最小值为____________﹒149. 设圆()()22:1236C x y ++-=及圆C 内一定点()3,2A ﹐通过A 点且与圆C 相(内)切的所有圆之圆心的轨迹(即圆心所成的图形)的方程式为____________﹒ 150.已知圓的方程式為()2211x y -+=﹐四邊形OAPQ 為圓內接梯形﹐底邊AO 為圓的直徑且A ﹑O 在x 軸上﹐現有一橢圓以A ﹑O 為焦點﹐且通過P ﹑Q 兩點﹐若1PQ =﹐則此橢圓的短軸長為_____________﹒四、计算题1. 已知一双曲线Γ的两焦点为()2,9F -与()2,3F '--﹐则(1)双曲线Γ方程式为何﹕ (2)Γ的共轭双曲线方程式为何﹕2. 设()()2:122y x Γ-=-﹐一光线沿3y =的直线行进﹐射在Γ上的P 点﹐经反射后又射在Γ上的Q 点﹐试求(1)PQ的方程式﹕ (2)PQ 长度为何﹕3. 自点()2,0作拋物线224y x x =-+的切线﹐试求(1)切线方程式﹒(2)切点﹒4. 下列叙述何者正确﹕(1)方程式222240x y x y k +-++=的图形是一个椭圆的充要条件是3k <﹒ (2)5的图形是一个椭圆﹒(3)椭圆()()22131916x y +-+=的正焦弦长为92﹒5. 已知一双曲线的顶点与焦点分别与椭圆221167x y +=的焦点与顶点相同﹐求此双曲线的方程式﹒6. 下列1~5各小题的方程式图形为何﹕请在(A)~(J)各项中选出对应的图形:(A)没有图形 (B)一线段 (C)一直线 (D)一射线 (E)两射线 (F)两相交直线 (G)双曲线 (H)拋物线 (I)椭圆 (J)双曲线的一支 (1)2248230x y x y ---+=﹒(2)()()()2222112x y x y ⎡⎤-+-=+-⎣⎦﹒10=﹒7=﹒2x =+﹒7. 设拋物线()()()22253122x y x y ⎡⎤-+-=-+⎣⎦﹐则(1)对称轴方程式﹒(2)顶点坐标﹒8. 若椭圆两焦点为)1F ﹐()2F ﹐切线L 为5x y +=﹐求此椭圆方程式﹒9. 已知()222210:x y x y aΓ++=+的图形为拋物线﹐则(1)a =﹕(2)Γ的顶点坐标﹒10. 已知直线2y x k =+与拋物线24y x =相切﹐求(1)k 的值﹒ (2)切点坐标﹒11. 试求过拋物线2432y x x =-+上一点()1,3P 所作的切线方程式﹒12. 设P 为椭圆22916144x y +=上一点﹐且P 到直线:10L x y +=的距离最短﹐求P 点坐标﹒13. 拋物线Γ﹐则(1)准线方程式﹒(2)对称轴方程式﹒(3)焦点坐标﹒(4)顶点坐标﹒(5)正焦弦长﹒14. 双曲线的两焦点()118,1F ﹐()212,1F -﹐有一渐近线的斜率为34﹐求此双曲线的方程式﹒ 15.某彗星的軌道為一拋物線﹐而以太陽為焦點﹐當彗星與太陽的距離為4百萬公里時﹐兩者連線與拋物線的軸成60︒﹐如右圖所示﹒問當彗星與太陽的連線垂直拋物線的軸時﹐兩者的距離為何?16. 在水槽边两点3,02A ⎛⎫- ⎪⎝⎭﹐3,02B ⎛⎫⎪⎝⎭同时作相同的圆形水波﹐图中的实线同心圆代表波峰(连续的波峰相距2单位)﹐虚线同心圆代表波谷(连续的波谷相距2单位)﹒若水槽中遇到来自A ﹑B 两点的波峰同时到达﹐则出现如图中P 点所形成的亮线;但若遇到波峰与波谷同时到达﹐则形成图中暗线的轨迹﹒很明显地﹐AB 的中垂线是中央亮线﹐则(1)离中央亮线最近的第一条亮线(即P 点所在的曲线)所满足的方程式为何﹕(2)在平行AB 且相距10单位处设一屏障(如图)﹐若中央亮线与此屏障的交点是H ﹐最近的第一条亮线与此屏障的交点是Q ﹐则HQ 的距离为何﹕17. 试求下列锥在线点T 的切线T L 与法线N L 方程式各为何﹕(1)28y x =﹐9,62T ⎛⎫⎪⎝⎭﹒ (2)229425x y +=﹐()1,2T -﹒ (3)22235x y -=﹐()2,1T -﹒。
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。
2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。
3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。
4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。
5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。
6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。
7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。
重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。
2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。
3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。
4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。
高中数学 圆锥曲线试题汇编
高考数学《圆锥曲线》试题汇编1.(湖北文)(19)(本小题共14分)已知椭圆2222:1(0)x y G a b a b+=>>的离心率为63,右焦点为(22,0)。
斜率为1的直线l 与椭圆G交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -。
(Ⅰ)求椭圆G 的方程;(Ⅱ)求PAB 的面积。
2.福建文11.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线I 的离心率等于A.1322或 B.223或 C.122或 D.2332或 3.福建文18.(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x2=4y 相切于点A 。
(1) 求实数b 的值;(11)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.4.上海文22.(本题满分16分,第1小题4分,第2小题6分,第3小题6分)已知椭圆222:1x C y m+=(常数1m >),P 是曲线C 上的动点,M 是曲线C 上的右顶点,定点A 的坐标为(2,0)(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若3m =,求PA 的最大值与最小值;(3)若PA 的最小值为MA ,求实数m 的取值范围. 5.天津文(18) 设椭圆)0(12222>>=+b a by ax 的左右焦点分别为21,F F ,点),(b a P 满足212F F PF =。
(1)求椭圆的离心率e ;(2)设直线2PF 与椭圆相交于B A ,两点。
若直线2PF 与圆16)3()1(22=-++y x 相交于N M ,两点,且AB MN 85=,求椭圆的方程。
6.全国新课标文(20)(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上(Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交与A ,B 两点,且OA OB ⊥,求a 的值。
(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测(有答案解析)(4)
一、选择题1.已知离心率为3的椭圆()2211x y m m +=>的左、右顶点分别为A ,B ,点P 为该椭圆上一点,且P 在第一象限,直线AP 与直线4x =交于点C ,直线BP 与直线4x =交于点D ,若83CD =,则直线AP 的斜率为( ) A .16或120 B .121C .16或121D .13或1202.设F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,过坐标原点的直线依次与双曲线C 的左.右支交于点P Q 、,若2,60PQ QF PQF =∠=︒,则该双曲线的离心率为( )A .1BC .2D .4+3.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .234.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆内,则双曲线离心率的取值范围是( )A .(B .(1,1C .)+∞D .()1++∞5.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .256.设1F 、2F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,若双曲线的右支上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||3||PF PF =,则双曲线C 的离心率为( ).ABC .31+D .62+7.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( ) A .910+B .926+C .712612+ D .832612+ 8.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .9169.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .610.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C .(625)π-D .54π 11.设P 是椭圆221259x y +=上一点,M 、N 分别是两圆:()2241x y ++=和()2241x y -+=上的点,则PM PN +的最小值和最大值分别为( )A .9,12B .8,11C .8,12D .10,1212.已知1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,抛物线28y x=的焦点与双曲线的一个焦点重合,点P 是两曲线的一个交点,12PF PF ⊥且121PF F S =△,则双曲线的离心率为( )A .3B .23C .433D .2二、填空题13.已知双曲线()222210,0x y a b a b-=>>与圆222x y b +=在第二、四象限分别相交于两点A 、C ,点F 是该双曲线的右焦点,且2AF CF =,则该双曲线的离心率为______. 14.已知抛物线2:4E x y =,过点(2,1)P -作E 的两条切线,切点分别为,A B ,则AB =________.15.已知椭圆22221(0)x y a b a b+=>>与直线11:2l y x =,21:2l y x =-,过椭圆上一点P作12,l l 的平行线,分别交12,l l 于,M N 两点,若||MN 为定值,则ab=__________. 16.点(,)P x y 是曲线22:143x y C +=上一个动点,则23x y +的取值范围为______.17.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.18.数学中有许多寓意美好的曲线,曲线22322:()4C x y x y +=被称为“四叶玫瑰线”(如图所示).给出下列三个结论:①曲线C 关于直线y x =对称;②曲线C 上任意一点到原点的距离都不超过1;③2C 在此正方形区域内(含边界).其中,正确结论的序号是________.19.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:x0 4 26则2C 的虚轴长为______.20.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,第一象限的点P 在渐近线上,满足12F PF 2π∠=,直线1PF 交双曲线左支于点Q ,若点Q 是线段1PF 的中点,则该双曲线的离心率为_____.三、解答题21.点M 是椭圆223:11616x y C +=上一点,点A 是椭圆C 的左顶点,MO 的延长线交椭圆C于点B ,AMB 是以M 为直角顶点的三角形.若存在不同于点A ,B 的点C ,D ,使得0MC MD OA MC MD ⎛⎫⎪⋅+= ⎪⎝⎭,试探究直线AB 与CD 的位置关系,并说明理由. 22.在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的长轴长为准线的距离为8.(1)求椭圆的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 于不同于N 的A ,B 两点,直线NA,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.23.已知椭圆()2222:10x y M a b a b +=>>的一个顶点坐标为()2,0-线y x m =-+交椭圆于不同的两点A 、B . (1)求椭圆M 的方程;(2)设点()2,2C -,是否存在实数m ,使得ABC 的面积为1?若存在,求出实数m 的值;若不存在,说明理由.24.点A 是抛物线21:2(0)C y px p =>与双曲线2222:1(0)y C xb b-=>的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p . (1)求双曲线2C 的方程;(2)若直线:1l y kx =-与双曲线的右支交于两点,求k 的取值范围. 25.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,其中一个顶点是抛物线2x =-的焦点. (1)求椭圆C 的标准方程;(2)若过点(2,1)P 的直线l 与椭圆C 在第一象限相切于点M ,求直线l 的方程和点M 的坐标.26.已知P 是椭圆22:18x C y +=上的动点.(1)若A 是C 上一点,且线段PA 的中点为11,2⎛⎫ ⎪⎝⎭,求直线PA 的斜率; (2)若Q 是圆221:(1)49D x y ++=上的动点,求PQ 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由离心率求出9m =,设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---,设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k ,直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭,从而可表示出CD ,然后列方程可求出k 的值 【详解】由3e ==,得9m =. 设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---. 设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k .直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭.所以18793CD k k =+=,解得13k =(舍去)或121.故选:B. 【点睛】此题考查直线与椭圆的位置关系,考查直线方程的求法,考查计算能力,属于中档题2.A解析:A 【解析】∵|PQ |=2|QF |,∠PQF =60°,∴∠PFQ =90°, 设双曲线的左焦点为F 1,连接F 1P ,F 1Q ,由对称性可知,F 1PFQ 为矩形,且|F 1F |=2|QF|,1QF =, 不妨设()1220F F m m =>,则1,QF QF m ==,故121212F F c e a QF QF ====-. 本题选择A 选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则4MF ==,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.4.D解析:D 【分析】由题将x c =代入双曲线,可求出圆半径,再根据题意可得22bc a<,即可由此求出离心率.【详解】由题可得AB x ⊥轴,将x c =代入双曲线可得2by a=±,∴以AB 为直径的圆的半径为2b AF a=,双曲线的左焦点在以AB 为直径的圆内,22b c a∴<,即22b ac >,即222c a ac ->,两边除以2a 可得2210e e -->,解得1e <1e >故双曲线离心率的取值范围是()1+∞. 故选:D. 【点睛】本题考查双曲线离心率的取值范围的求解,解题的关键是求出圆半径,根据题意得出22b c a <.5.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y , 则2127·1616k PF PF x ==-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.6.C解析:C 【分析】由数量积为0推导出2OP OF =,在12Rt PF F 中求得1230PF F ∠=,由双曲线定义把2PF 用a 表示,在12Rt PF F 用正弦的定义可得离心率.【详解】 ∵22()0OP OF F P +⋅=,∴22()()0OP OF OP OF +⋅-=,即2220OP OF -=,21OP OF c OF ===,∴12PF PF ⊥,在12Rt PF F 中12||3||PF PF =,∴1230PF F ∠=, 又212PF PF a -=,∴2PF =2121sin 302PF F F ====∴21)a c =,1==ce a, 故选:C . 【点睛】关键点点睛:本题考查求双曲线的离心率,关键是找到关于,,a b c 的齐次式,本题中利用向量的数量积得出12PF PF ⊥,然后由两直角边比值求得一个锐角,利用双曲线的定义用a 表示出直角边,然后用直角三角形中三角函数的定义或勾股定理可得,a c 的齐次式,从而求得离心率.7.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A M y y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭,又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M AAM x x =-=-=,BM ==所以ABM 的周长为:2511944AB AM BM ++=++=+ 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 8.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.9.A解析:A 【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标. 【详解】由抛物线方程可知(1,0)F ,假设,A B 横坐标分别为12,x x ,由抛物线的准线的性质可知1212||264AB x x x x =++=⇒+=,AB 中点的横坐标为121()22x x +=.故选;A 【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为1125225O l d -=⨯=,圆C 面积的最小值为225455ππ⎛⎫= ⎪ ⎪⎝⎭.故本题的正确选项为A. 考点:抛物线定义. 11.C解析:C 【分析】先依题意判断椭圆焦点与圆心重合,再利用椭圆定义以及圆的性质得到最大值和最小值即可. 【详解】如图,由椭圆及圆的方程可知两圆圆心分别为()()4,0,4,0A B -,恰好是椭圆的两个焦点,由椭圆定义知210PA PB a +==,连接PA ,PB 分别与圆相交于M ,N 两点,此时PM PN +最小,最小值为28PA PB R +-=;连接PA ,PB 并延长,分别与圆相交于M ,N 两点,此时PM PN +最大,最大值为212PA PB R ++=.故选:C . 【点睛】本题考查了椭圆的定义,考查了圆外的点到圆上的点的距离最值问题,属于中档题.12.B解析:B 【分析】求出双曲线的半焦距,结合三角形的面积以及勾股定理,通过双曲线的定义求出a ,然后求解双曲线的离心率即可 【详解】由双曲线与抛物线有共同的焦点知2c =,因为12PF PF ⊥,且121PF F S =△,则122PF PF ⋅=,222212124PF PF F F c +==,点P 在双曲线上,则122PF PF a -=,故222121224PF PF PF PF a +-⋅=, 则22444c a -=,所以3a =23故选:B. 【点睛】本题考查双曲线以及抛物线的简单性质的应用,双曲线的定义的应用,考查计算能力,属于中档题..二、填空题13.【分析】画出图形结合双曲线的性质判断四边形的形状结合双曲线的定义求出三角形的边长通过勾股定理转化求解双曲线的离心率即可【详解】解:双曲线的右焦点为左焦点为根据对称性可知是平行四边形所以又点在双曲线上 解析:22 【分析】画出图形,结合双曲线的性质判断四边形的形状,结合双曲线的定义求出三角形的边长,通过勾股定理转化求解双曲线的离心率即可. 【详解】解:双曲线的右焦点为F ,左焦点为E ,根据对称性可知AFCE 是平行四边形,所以 ||2||2||AF CF AE ==,又点A 在双曲线上,所以||||2AF AE a -=,因为||2||AF CF =,所以||||2||||2AF AE CF CF a -=-=,所以||2CF a =,在三角形OFC 中,||2FC a =,||OC b =,||OF c =,||4AF a =, 可得222162cos a b c bc AOF =+-∠, 22242cos a b c bc COF =+-∠,可得22222202242a b c c a =+=-, 即:22112a c =,所以双曲线的离心率为:22e =. 故答案为:222.【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,属于中档题.14.8【分析】设切线方程为即代入利用判别式为0求出两条切线的斜率进一步求出两个切点坐标利用两点间的距离公式可求得结果【详解】切线的斜率显然存在设切线方程为即联立消去得所以即则或设切线的斜率分别为则将代入解析:8 【分析】设切线方程为1(2)y k x +=-,即21y kx k =--,代入24x y =,利用判别式为0,求出两条切线的斜率,进一步求出两个切点坐标,利用两点间的距离公式可求得结果. 【详解】切线的斜率显然存在,设切线方程为1(2)y k x +=-,即21y kx k =--,联立2214y kx k x y=--⎧⎨=⎩消去y 得24840x kx k -++=,所以2(4)4(84)0k k ∆=--+=,即2210--=k k,则1k =1k = 设切线,PA PB 的斜率分别为12,k k ,1122(,),(,)A x y B x y ,则11k =21k =,将11k =24840x kx k -++=得24(18(140x x -++=,即2(20x -+=,得2x =-12x =-2211(244x y -===3-(2A --,同理可得(2B ++,所以||AB =8=.故答案为:8. 【点睛】本题考查了直线与抛物线相切的位置关系,考查了运算求解能力,属于中档题.15.4【解析】当点时过椭圆上点作的平行线分别为联立可得同理可得所以当点时过椭圆上点作的平行线分别为联立可得同理可得所以所以为定值则所以点睛:本题考查了直线与椭圆的位置关系此类问题的解答中主要特例法的应用解析:4 【解析】当点(0,)P b 时,过椭圆上点P 作12,l l 的平行线分别为11,22y x b y x b =+=-+, 联立1212y x b y x⎧=-+⎪⎪⎨⎪=⎪⎩,可得(,)2b M b ,同理可得(,)2b N b -,所以2MN b =,当点(,0)P a 时,过椭圆上点P 作12,l l 的平行线分别为11,2222a a y x y x =-=-+, 联立12212a y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,可得(,)24a a M ,同理可得(,)24a a N -,所以2a MN =,所以MN 为定值,则22ab =,所以4a b=. 点睛:本题考查了直线与椭圆的位置关系,此类问题的解答中主要特例法的应用,是解答选择题的一种方法,本题的解答中取点P 分别为长轴和短轴的端点,联立方程组,求得MN ,得出,a b 的关系式是解答关键,平时应注意特殊值等方法在选择题解答中的应用. 16.【分析】可设则其中可得的取值范围【详解】由点是曲线上一个动点可设则其中又则故答案为:【点睛】本题考查了椭圆参数方程的应用辅助角公式三角函数的值域属于中档题 解析:[5,5]-【分析】可设2cos ,x y θθ==,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=,可得2x 的取值范围. 【详解】由点(,)P x y 是曲线22:143x yC +=上一个动点,可设2cos ,x y θθ==,[0,2)θπ∈,则2x 4cos 3sin 5sin()θθθα=+=+,其中4tan 3α=, 又5sin()θα+[5,5]∈-,则2x [5,5]∈-. 故答案为:[5,5]-. 【点睛】本题考查了椭圆参数方程的应用,辅助角公式,三角函数的值域,属于中档题.17.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-, 所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=, 故答案为:2212516x y += 【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.18.①②【分析】将代入也成立得①正确;利用不等式可得故②正确;联立得四个交点满足条件的最小正方形是以为中点边长为2的正方形故③不正确【详解】对于①将代入得成立故曲线关于直线对称故①正确;对于②因为所以所解析:①② 【分析】将(,)y x 代入22322:()4C x y x y +=也成立得①1≤,故②正确;联立22322()4y xx y x y=±⎧⎨+=⎩得四个交点,满足条件的最小正方形是以,,,A B C D 为中点,边长为2的正方形,故③不正确. 【详解】对于①,将(,)y x 代入22322:()4C x y x y +=得22322()4y x y x +=成立,故曲线C 关于直线y x =对称,故①正确;对于②,因为22322222()()44x y x y x y ++=≤,所以221x y +≤1≤, 所以曲线C 上任意一点到原点的距离都不超过1,故②正确;对于③,联立22322()4y x x y x y=±⎧⎨+=⎩得2212x y ==,从而可得四个交点A ,(B ,(C ,D ,依题意满足条件的最小正方形是各边以,,,A B C D 为中点,边长为2的正方形,故不存在C 在此正方形区域内(含边界),故③不正确. 故答案为:①② 【点睛】本题考查了由曲线方程研究曲线的对称性,考查了不等式知识,考查了求曲线交点坐标,属于中档题.19.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b -=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上, 则点()4,2-和点(-在双曲线上,设双曲线为22221x y a b-=,则222216412481a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =, 故答案为:4 【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.20.【分析】由题意结合渐近线的性质可得则把点坐标代入双曲线方程可得化简即可得解【详解】点在第一象限且在双曲线渐近线上又直线的斜率为又点是线段的中点又在双曲线上化简得因为故解得故答案为:【点睛】本题考查了1【分析】由题意结合渐近线的性质可得(,)P a b ,则,22a c b Q -⎛⎫⎪⎝⎭,把Q 点坐标代入双曲线方程可得222222()44a cb b a a b -⋅-⋅=,化简即可得解. 【详解】12F PF 2π∠=,点P 在第一象限且在双曲线渐近线上,∴121||2OP F F c ==, 又直线OP 的斜率为ba,∴(,)P a b , 又 1(,0)F c -,点Q 是线段1PF 的中点,∴,22a c b Q -⎛⎫⎪⎝⎭, 又 ,22a c b Q -⎛⎫⎪⎝⎭在双曲线22221(0,0)x y a b a b -=>>上, ∴222222()44a cb b a a b -⋅-⋅=,化简得222222()5420b ac a b a ac c ⋅-=⇒--+=, ∴2240e e --=,因为1e >,故解得1e =1. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了计算能力,属于中档题.三、解答题21.//AB CD ,理由见解析. 【分析】利用AM MO ⊥得M 是以OA 为直径的圆与椭圆的交点,解方程组求得M 点坐标.可求得AB k ,由数量积为0得CMD ∠的角平分线垂直于OA ,从而0MC MD k k +=,设直线:CD y kx m =+,()11,C x y ,()22,D x y ,直线方程代入椭圆方程后应用韦达定理得1212,x x x x +,代入0MC MD k k +=可求得参数关系以13k =-或22m k =+(过点M ,舍),由此可得两直线的位置关系. 【详解】解:由题意(4,0)A -,因为AMB 是以M 为直角顶点的三角形,所以以AO 为直径的圆()2224x y ++=与椭圆223:11616x y C +=交于点M ,联立2222(2)4311616x y x y ⎧++=⎪⎨+=⎪⎩,解得:22x y =-⎧⎨=⎩或22x y =-⎧⎨=-⎩或40x y =-⎧⎨=⎩(舍),不妨设()2,2M -,则(2,2)B -,2012(4)3AB k --==---.由0MC MD OA MC MD ⎛⎫⎪⋅+= ⎪⎝⎭可得:CMD ∠的角平分线垂直于OA , 所以0MC MD k k +=,易知直线CD 斜率存在, 设直线:CD y kx m =+,()11,C x y ,()22,D x y ,联立22311616y kx m x y =+⎧⎪⎨+=⎪⎩,得:()2221363160k x kmx m +++-=,即122613km x x k -+=+,212231613m x x k-=+, 所以121222022MC MD y y k k x x --+=+=++, 即()12122(22)480kx x k m x x m ++-++-=, 代入韦达定理可得:()()()4318311k m k k +=++, 所以13k =-或22m k =+(过点M ,舍) 因为13AB k =-,所以//AB CD . 【点睛】关键点点睛:本题考查直线与椭圆相交问题,解题方法是“设而不求”的思想方法,即设交点坐标为1122(,),(,)x y x y ,设直线方程,代入椭圆方程后应用韦达定理得1212,x x x x +(需要根据方便性,可能得1212,y y y y +),由题意中条件得出0MC MD k k +=,代入1212,x x x x +后可求得参数关系或参数值.从而判断出结论.22.(1)22184x y +=;(2)证明见解析.【分析】(1)根据长轴长、两准线的距离以及222a b c =+可得到椭圆的方程;(2)首先要对直线进行分类讨论,当斜率存在时,将直线与椭圆联立,设出,A B 两点的坐标,12k k +用12,x x 表示,再结合韦达定理就能得到证明. 【详解】(1)设椭圆的半焦距为c .因为椭圆的长轴长为8,所以2228a a c==,所以2a c ==,2b .所以椭圆的方程为22184x y +=.(2)证明①当直线l 的斜率不存在时,可得A 1,2⎛- ⎝⎭,B 1,2⎛-- ⎝⎭, 得k 1+k 2=4.②当直线l 的斜率存在时,设斜率为k ,显然k ≠0,则其方程为y +2=k (x +1),由221,842(1),x y y k x ⎧+=⎪⎨⎪+=+⎩得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0. ∆=56k 2+32k >0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-24(2)12k k k -+,x 1x 2=222812k kk -+. 从而k 1+k 2=112y x -+222y x -=1212122(4)()kx x k x x x x +-+=2k -(k -4)·24(2)28k k k k--=4.综上,k 1+k 2为定值. 【点睛】方法点睛:求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.23.(1)2214x y +=;(2)存在,且=m 【分析】(1)由已知条件求出a 的值,结合离心率可求得c 的值,再由a 、b 、c 的关系可求得b的值,由此可求得椭圆M 的方程;(2)设点()11,A x y 、()22,B x y ,将直线AB 的方程与椭圆M 的方程联立,列出韦达定理,利用弦长公式求出AB ,求出点C 到直线AB 的距离d ,利用三角形的面积公式可得出关于实数m 的等式,解出m 的值,并验证是否满足0∆>,由此可得出结论. 【详解】(1)由于椭圆()2222:10x y M a b a b+=>>的一个顶点坐标为()2,0-,则2a =,又因为该椭圆的离心率为c a =c =1b ∴=, 因此,椭圆M 的方程为2214x y +=;(2)设点()11,A x y 、()22,B x y ,联立2214y x m x y =-+⎧⎪⎨+=⎪⎩,消去y 并整理得2258440x mx m -+-=, ()()2226445441650m m m ∆=-⨯⨯-=->,解得m << 由韦达定理可得1285m x x +=,212445m x x -=, 由弦长公式可得12AB x x =-===, 点C 到直线AB的距离为d =, 所以,ABC的面积为11122ABC S AB d =⋅===△,整理可得42420250m m -+=,即()22250m -=,可得252m =,满足0∆>. 因此,存在2=±m ,使得ABC 的面积为1. 【点睛】 方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式;(5)代入韦达定理求解.24.(1)2214y x -=;(2)( 【分析】(1)取双曲线的一条渐近线:y bx =,与抛物线方程联立即可得到交点A 的坐标,再利用点A 到抛物线的准线的距离为p ,即可得到p ,b 满足的关系式,进而可得答案. (2)根据直线:1l y kx =-与双曲线的右支交于两点,利用韦达定理、判别式列不等式组求解即可.【详解】(1)取双曲线的一条渐近线y bx =,联立22y px y bx ⎧=⎨=⎩解得222p x b py b ⎧=⎪⎪⎨⎪=⎪⎩,故222(,)p p A b b . 点A 到抛物线的准线的距离为p , ∴222p p p b+=,可得24b = 双曲线222:14y C x -=; (2)联立22114y kx y x =-⎧⎪⎨-=⎪⎩可得()224250k x kx -+-= 因为直线:1l y kx =-与双曲线的右支交于两点, 所以()22222045{0442040k kk k k ->-->-∆=+->,解得2k <<所以,k的取值范围(.【点睛】求双曲线标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出双曲线的标准方程.解决直线与双曲线的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程或不等式,解决相关问题.25.(1)22143x y +=;(2)122y x =-+,3(1,)2M . 【分析】(1)由抛物线2x =-的焦点为(0,得b =12c a =,从而可求出a ,得椭圆方程;(2)分类讨论,斜率不存在的直线及斜率存在的切线,斜率存在的切线用0∆=可求解.【详解】(1)由抛物线2x =-的焦点为(0,,它是椭圆的一个顶点,则b = 又12c e a ==,所以22214a b a -=,解得2a =.∴椭圆方程为22143x y +=; (2)过(2,1)P 斜率不存在的直线为2x =,是椭圆的切线,此时切点为(2,0)M .此时不满足M 在第一象限.过(2,1)P 斜率存在的切线方程设为1(2)y k x -=-,由221431(2)x y y k x ⎧+=⎪⎨⎪-=-⎩得222(34)8(12)161680k x k k k k ++-+--=,∴222264(12)4(34)(16168)96(21)0k k k k k k ∆=--+--=-+=,12k =-, 此时121x x ==,1232y y ==,即3(1,)2M . 直线方程为11(2)2y x -=--,即122y x =-+. 切线方程为122y x =-+,切点3(1,)2M . 【点睛】关键点睛:本题考查求椭圆的切线,解答本题的关键是分切线的斜率存在和不存在进行讨论,过(2,1)P 斜率存在的切线方程设为1(2)y k x -=-,由方程联立,其0∆=求解,属于中档题.26.(1)14-;(2)17. 【分析】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,代入椭圆方程,利用点差法即可求得直线PA 的斜率;(2)设(,)(P x y x -≤≤,圆心(1,0)D -,可得PD 的表达式,利用二次函数性质,即可求得PD 的最小值,进而可得答案.【详解】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y , 因为A ,P 两点都在C 上,所以221122221818x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得()()()()2121212180x x x x y y y y -++-+=,因为21122x x +=⨯=,211212y y +=⨯=,所以212114PA y y k x x -==--. (2)设(,)(P x y x -≤≤,则2218x y +=,圆心(1,0)D -, 则222222786||(1)(1)18877x PD x y x x ⎛⎫=++=++-=++ ⎪⎝⎭, 当87x 时,PD7=. 因为圆D17=. 所以PD的最小值为11777-=. 【点睛】 解题的关键是熟练掌握点差法的步骤,点差法常见的结论有,设以00(,)P x y 为中点的弦所在斜率为k ,则(1)椭圆22221x y a b +=中,2020y b k x a ⋅=-;(2)双曲线22221x y a b -=中,2020y b k x a⋅=;(3)抛物线22y px =中0p k y =,熟记结论可简化计算,提高正确率,属中档题.。
高中数学备课资料 圆锥曲线基础练习题(1)
圆锥曲线基础题训练一、选择题:1. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( )A .双曲线B .双曲线的一支C .两条射线D .一条射线4.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( ) A .椭圆 B .线段 C .双曲线 D .两条射线5.方程11122=-++k yk x 表示双曲线,则k 的取值范围是 ( )A .11<<-kB .0>kC .0≥k D .1>k 或1-<k6. 双曲线14122222=--+m ym x 的焦距是( )A .4B .22C .8D .与m 有关7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( )A .28B .22C .14D .128.双曲线的渐近线方程是y=±2x ,那么双曲线方程是 ( )A .x 2-4y 2=1 B .x 2-4y 2=1 C .4x 2-y 2=-1 D .4x 2-y 2=19.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( ) A .1或5 B . 6 C . 7 D . 910.抛物线x y 102=的焦点到准线的距离是 ( )A .25B .5C .215D .1011.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-±12.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1617 B .1615 C .87 D .013.抛物线28x y =-的准线方程是 ( )A . 321=x B . 2=y C . 321=y D . 2-=y二、填空题14.若椭圆221x my +=长为_______________.15.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。
(必考题)高中数学选修1-1第二章《圆锥曲线与方程》测试题(包含答案解析)
一、选择题1.过双曲线22115y x -=的右支上一点P 分别向圆221:(4)4C x y ++=和222:(4)1C x y -+=作切线,切点分别为M N 、,则22||||PM PN -的最小值为( )A .10B .13C .16D .192.已知斜率为(0)k k >的直线l 与抛物线2:4C y x =交于,A B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,OFM ∆的面积等于3,则k =( )A .14B .13C .12D .33.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .54.过抛物线()2:20C y px p =>的焦点F 且倾斜角为锐角的直线l 与C 交于,A B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若AB =,则直线l 的倾斜角为( ) A .15︒B .30C .45︒D .60︒5.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左,右焦点,过1F 的直线交双曲线的左支于,A B 两点,若113AF FB =,23cos 5AF B ∠=,则双曲线的离心率e =( )A B .52C D .536.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为1F ,2F ,实轴长为4,点P 为其右支上一点,点Q 在以()0,4为圆心、半径为1的圆上,若1PF PQ +的最小值为8,则双曲线的渐近线方程为( )A .12y x =±B .y x =±C .2y x =±D .2y x =±7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12F F ,,点M 在双曲线C 的渐近线上,若212211221cos 12cos ,3MF F MF F FMF MF F ∠+=∠∠=∠,则双曲线C 的离心率为( )A .BC .D .28.已知点P 是抛物线22y x =上的一个动点,则点P 到点32,32D ⎛⎫⎪⎝⎭的距离与点P 到y 轴的距离之和的最小值为( ) A .2B .52C .3D .729.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25410.如果直线1y kx =-与双曲线224x y -=只有一个交点,则符合条件的直线有( ) A .1条B .2条C .3条D .4条11.设1F 、2F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,P 为直线2a x c=上一点,若21F PF 是底角为30的等腰三角形,则椭圆E 的离心率为( ) A .12B .22C .34D .4512.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在y 轴上,抛物线顶点在坐标原点,已知抛物线方程是24x y =,圆的半径为r ,若圆的大小变化时,圆上的点无法触及抛物线的顶点O ,则圆的半径r 的取值范围是( )A .()2,+∞B .()1,+∞C .[)2,+∞D .[)1,+∞二、填空题13.F 是抛物线22y px =(0p >)的焦点,过点F 的直线与抛物线的一个交点为A ,交抛物线的准线于B ,若2BA AF =,且4BA =,则P =______.14.已知抛物线22y px =上三点(2,2),,A B C ,直线,AB AC 是圆22(2)1x y -+=的两条切线,则直线BC 的方程为___________.15.过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,且点A 为线段PB 的中点,则直线l 的斜率为___________.16.已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线与圆()22234x y +-=相交于A ,B 两点,且2AB =,则双曲线C 的离心率为___________.17.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.18.设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,点P 在C 的右支上,O 为坐标原点,若存在点P ,使PF OF =,且1cos 4OFP ∠=,则双曲线的离心率为___________.19.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.20.已知抛物线y 2=4x 的焦点为F ,过点F 的直线AB 交抛物线于A ,B 两点,交准线于点C ,若|BC |=2|BF |,则|AB |=_____.三、解答题21.如图,已知椭圆22221(0)x y a b a b+=>>的离心率为12,过椭圆右焦点2F 作两条互相垂直的弦AB 与CD ,当直线AB 的斜率为0时,||||7AB CD +=.(Ⅰ)求椭圆的方程;(Ⅱ)求||||AB CD +的取值范围.22.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,长轴长为222 (1)求椭圆C 的方程.(2)若过点1F 的两条弦,弦AB 、弦CD ,互相垂直,求四边形ACBD 的面积的最小值.23.已知抛物线()2:20C y px p =>,直线()0y kx k =>与C 交于点A (与坐标原点O不重合),过OA 的中点P 作与x 轴平行的直线l ,直线l 与C 交于点,Q 与y 轴交于点.R (1)求PR QR;(2)证明:直线AR 与抛物线C 只有一个公共点.24.在平面直角坐标系中,已知抛物线22y px =的准线方程为12x =-.(1)求p 的值;(2)直线:(0)l y x t t =+≠交抛物线于A ,B 两点,O 为坐标原点,且OA OB ⊥,求线段AB 的长度.25.已知椭圆()2222:10x y C a b a b +=>>3,22⎛ ⎝⎭.(1)求椭圆C 的方程;(2)经过点()0,2M 的直线l 与椭圆C 交于不同的两点A ,B ,O 为坐标原点,若OAB l 的方程.26.已知椭圆2222:1(0)x y C a b a b +=>>(2,1),,A P Q --在椭圆C 上,且,P Q 异于点A .(1)求椭圆C 的方程;(2)若||||,||||OP OQ AP AQ ==,求直线PQ 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】求得两圆的圆心和半径,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,运用勾股定理和双曲线的定义,结合三点共线时,距离之和取得最小值,计算即可得到所求值. 【详解】解:圆221:(4)4C x y ++=的圆心为(4,0)-,半径为12r =; 圆222:(4)1C x y -+=的圆心为(4,0),半径为21r =,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,连接1PF ,2PF ,1F M ,2F N ,可得2222221122||||(||)(||)PM PN PF r PF r -=--- 22212(||2)(||1)PF PF =---22121212||||3(||||)(||||)3PF PF PF PF PF PF =--=-+-12122(||||)32(||||)322328313a PF PF PF PF c =+-=+-⨯-=⨯-=.当且仅当P 为右顶点时,取得等号, 即最小值13. 故选:B .【点睛】本题考查最值的求法,注意运用双曲线的定义和圆的方程,考查三点共线的性质,以及运算能力.2.B解析:B 【分析】先求出F ,设出A 、B 、M ,用“点差法”找出121202y y k x x y -==-,利用OFM ∆的面积等于3计算出0y ,求出斜率k . 【详解】由抛物线2:4C y x =知:焦点()1,0F 设()()()112200,,,,,,A x y B x y M x y因为M 是线段AB 的中点,所以0121222x x x y y y =+⎧⎨=+⎩将2114y x =和2224y x =两式相减可得:()2212124y y x x -=-,即121202y y k x x y -==- ∵000k y >∴> ∴00113,62OFM S y y ∆=⨯⨯=∴=, 022163k y ∴===. 故选:B 【点睛】“中点弦”问题通常用“点差法”处理.3.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=. 设()()1122,,,A x y B x y ,由韦达定理得124y y =-. 由AF mFB =,得12y my =-.解得21y y ==-21y y ==,121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.4.D解析:D 【分析】设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,代入抛物线方程应用韦达定理得12x x +,12AB x x p =++, 求出AB 中点N 的坐标,写出MN的方程,由MN =MN ,然后由己知条件可求得斜率k ,得倾斜角.【详解】由题意(,0)2p F ,设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,由22()2y pxp y k x ⎧=⎪⎨=-⎪⎩得22222(2)04k p k x p k x -++=, 2122(2)p k x x k++=,2124p x x =, 221222(2)2(1)++=++=+=p k p k AB x x p p k k, 2122(2)22N x x p k x k ++==,22()22N N p p y k x k =-=,即222(2)2,22p k p N kk ⎛⎫+ ⎪⎝⎭, 直线MN 的方程为1()N N y y x x k-=--,MN =23(12p k k +=,∵AB =,∴22232(1)(12p k p k k k++=, 整理得23k =,∵0k >,∴k =∴倾斜角为60︒. 故选:D . 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,设交点坐标,设直线方程代入抛物线方程应用韦达定理,求得中点坐标及焦点弦长,写出直线l 垂线方程,求得MN ,然后由已知条件求得结论.5.C解析:C 【分析】设1133AF F B m ==,利用双曲线定义求出232AF m a =+,22F B m a =+,利用余弦定理写出,a m 关系,推知焦点三角形12F BF 是直角三角形,利用勾股定理求出,a c 关系式,从而求出离心率. 【详解】设1133AF F B m ==,则4AB m =,则由双曲线定义有232AF m a =+,22F B m a =+,在2AF B 中,由余弦定理有()()()()()22242232223m a m a m a m a m =+++-⋅++ 整理得22320m am a --=,解得m a = 故4AB a =,25AF a =,23F B a = 故2AF B 为直角三角形,290ABF ∠=在12Rt F BF △中,2221122F B F B F F +=,则()()22232a a c +=,故22252c e a ==故e =故选:C 【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).6.D解析:D 【分析】设设()0,4E ,由12224PF PF a PF =+=+,可得124P PF PQ PQ F +++=,当且仅当,P Q ,()0,4E 和2F 四点共线时取得最小值,进而可得25EF =,设()2,0F c 即可求出c 的值,进而可求出b 的值,由by x a=±可得渐近线方程. 【详解】设()0,4E ,由双曲线的定义可知:12224PF PF a PF =+=+, 所以124P PF PQ PQ F +++=,当,P Q 在圆心()0,4E 和2F 连线上时,1PF PQ +最小,()2mi 2n 1PFPQ EF =-+,所以2418EF +-=,解得25EF =,设()2,0F c ()0c >5=,解得3c =,因为2a =,所以b =,所以双曲线的渐进线为:2b y x x a =±=±, 故选:D 【点睛】关键点点睛:本题解题的关键点是由双曲线的定义可得124P PF PQ PQ F +++=,利用2,,,P Q E F 共线时()2mi 2n1PF PQEF =-+求出25EF =.7.D解析:D 【分析】根据角的关系计算出12216030MF F MF F ∠=︒∠=︒,,从而求出渐近线方程为y =,得到ba=. 【详解】因为21221cos 12cos MF F MF F ∠+=∠,故1221cos cos2MF F MF F ∠=∠,即12212MF F MF F ∠=∠,而12213FMF MF F ∠=∠,故12216030MF F MF F ∠=︒∠=︒,,则三角形1MFO 为等边三角形,故双曲线C 的渐近线方程为y =,则2e ==,故选D .【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.8.B解析:B 【分析】利用抛物线的定义,把P 到y 轴的距离转化为1||2PF -,利用几何法求最值 【详解】抛物线22y x =的焦点1,02F ⎛⎫ ⎪⎝⎭,准线1:2l x =-,如图示:过P 作PP 1⊥y 轴于P 1,作PP 2⊥l于P 2,则211||||2PP PP -= 所以点P 到点332D ⎛ ⎝的距离与点P 到y 轴的距离之和为 1211||||||||||||22PD PP PD PP PD PF +=+-=+- 由图示,易知,当P 落在Q 时,DPF 三点共线,||||||PD PF DF +=, 其他位置,都有||||||PD PF DF +> 所以点P 到点332D ⎛⎝的距离与点P 到y 轴的距离之和的最小值为: 221111335||||||||||2022222PD PP PD PF DF ⎛⎫⎛⎫+=+-≥-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭当D 、P 、F 三点共线时取最小值. 故选:B 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.9.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍) 当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.10.D解析:D 【分析】直线方程与双曲线方程联立方程组,由方程组只有一解确定. 【详解】由2214y kx x y =-⎧⎨-=⎩,得22(1)250k x kx -+-=, 若210k -=,即1k =±,1k =时,52x =,方程组只有一解;1k =-时,52x =-,方程组只有一解; 210k -≠时,22420(1)0k k ∆=+-=,2k =±,此时方程组也只有一解. 方程组只有一解,即直线与双曲线只有一个交点.因此这样的直线有4条. 故选:D . 【点睛】关键点点睛:直线与曲线的交点问题,可能通过解方程组确定,直线与曲线方程组成的方程组的解的个数就是它们交点的个数.这是代数方法.也可从几何角度考虑,如本题直线与双曲线相切的有两条,与渐近线平行的有两条共4条直线与双曲线只有一个交点.11.B解析:B 【分析】设直线2a x c=交x 轴于点M ,推导出222PF F M =,可得出关于a 、c 的等式,由此可解得该椭圆的离心率. 【详解】设直线2a x c=交x 轴于点M ,21F PF △是底角为30的等腰三角形,260PF M ∠=,2122PF F F c ==,在2Rt PF M 中,290PMF ∠=,230MPF ∠=,222PF F M ∴=,P 为直线2a x c =上一点,222a c c c ⎛⎫∴-= ⎪⎝⎭,即222a c =,22c e a ∴==. 故选:B . 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.12.A解析:A 【分析】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,求出2PQ ,当2PQ 的最小值在原点处取得时,圆P 过原点,可得此时圆半径的范围,半径不在这个范围内的圆不过原点. 【详解】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,22222()4()(2)44PQ x y a y y a y a a =+-=+-=-++-,若2PQ 的最小值不在(0,0)O 处取得,则圆P 不过原点,所以20a ->,即2a >,此时圆半径为44212r a a =-=->. 因此当2r >时,圆无法触及抛物线的顶点O . 故选:A . 【点睛】关键点点睛:本题考查圆与抛物线的位置关系,题中圆不过原点,说明抛物线上的点到圆心距离的最小值不是在原点处取得,由此得到解法,即设圆心为(0,)P a ,抛物线上点的坐标为(,)Q x y ,求出PQ ,然后确定其最小值,由最小值点不是原点可得结论.二、填空题13.3【分析】设过的直线为与抛物线交于点过两点作垂直准线于点根据抛物线的定义可得即可求出再联立直线与抛物线方程消元列出韦达定理即可得到再由焦半径公式计算可得;【详解】解:因为是抛物线的焦点所以准线为设过解析:3 【分析】设过F 的直线为2p y k x ⎛⎫=-⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN 垂直准线于M ,N 点,根据抛物线的定义可得CN CF =,AM AF =,即可求出30ABM ∠=︒,6CN CF ==,再联立直线与抛物线方程,消元、列出韦达定理即可得到2124p x x =,再由焦半径公式计算可得;【详解】解:因为F 是抛物线22y px =的焦点,所以,02p F ⎛⎫⎪⎝⎭,准线为2p x =-,设过F 的直线为2p y k x ⎛⎫=- ⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN垂直准线于M ,N 点,所以CN CF =,AM AF =,因为2BA AF =,所以2BA AF =,所以2BA AM =,所以30ABM ∠=︒,又因为4BA =,所以2AM AF ==,且2CN CB BA AF FC BA AM CN ==--=--,所以26CN CN =+,所以6CN CF ==,联立直线与抛物线222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去y 得22224p k x px px ⎛⎫ ⎪⎭=⎝-+,所以()22222204k p k x k p p x -++=,所以21222k p p x x k ++=-,2124p x x =,又因为1>0x ,20x >,且122p x AM +==,262p x CN +==,所以2212261242244p p p p x x p ⎛⎫⎛⎫=--=-+= ⎪⎪⎝⎭⎝⎭,所以3p =故答案为:3【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.【分析】先利用点求抛物线方程利用相切关系求切线再分别联立直线和抛物线求出点即求出直线方程【详解】在抛物线上故即抛物线方程为设过点与圆相切的直线的方程为:即则圆心到切线的距离解得如图直线直线联立得故由 解析:3640x y ++=【分析】先利用点(2,2)A 求抛物线方程,利用相切关系求切线,AB AC ,再分别联立直线和抛物线求出点,B C ,即求出直线BC 方程. 【详解】(2,2)A 在抛物线22y px =上,故2222p =⨯,即1p =,抛物线方程为22y x =,设过点(2,2)A 与圆22(2)1x y -+=相切的直线的方程为:()22y k x -=-,即220kx y k -+-=,则圆心()2,0到切线的距离2202211k kd k -+-==+,解得3k =±,如图,直线):232AB y x -=-,直线):232AC y x -=--.联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x ++-=,故1683A B x x -=,由2A x =得843B x -=,故236B y -=, 联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x -++=,故1683A C x x +=,由2A x =得843C x +=,故236C y --=, 故236236433B C y y -+=+=-,又由,B C 在抛物线上可知, 直线BC 的斜率为22221114222B C B C BC B C B C B C y y y y k x x y y y y --=====--+--,故直线BC 的方程为2361843323y x ⎛--=-- ⎝⎭,即3640x y ++=. 故答案为:3640x y ++=15.【分析】由题意可知直线的斜率存在且为正数可设直线的方程为设点将直线的方程与抛物线的方程联立列出韦达定理可得出代入韦达定理求出的值即可得出直线的斜率为【详解】由于过点的直线与抛物线相交于两点若在第一象 解析:223【分析】由题意可知,直线l 的斜率存在且为正数,可设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,可得出212y y =,代入韦达定理求出m 的值,即可得出直线l 的斜率为1m. 【详解】由于过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,所以,直线l 的斜率存在且为正数,设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y , 联立228x my y x=-⎧⎨=⎩,可得28160y my -+=,264640m ∆=->,0m >,解得1m . 由韦达定理可得128y y m +=,1216y y =,由于点A 为线段PB 的中点,则212y y =,12183m y y y ∴=+=,183m y ∴=, 22121816223m y y y ⎛⎫===⨯ ⎪⎝⎭,可得298m =,0m >,解得4m =,因此,直线l 的斜率为13k m ===.. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.16.2【分析】由双曲线圆的方程确定渐近线方程为圆心为半径为根据圆的相交弦与半径弦心距之间的几何关系有结合双曲线参数间的关系即可求其离心率【详解】由题意知:双曲线的渐近线为而圆心为半径为∴圆心到渐近线的距解析:2 【分析】由双曲线、圆的方程确定渐近线方程为by x a=±,圆心为,半径为2r ,根据圆的相交弦与半径、弦心距之间的几何关系有222||4AB r d -=,结合双曲线参数间的关系即可求其离心率. 【详解】由题意知:双曲线的渐近线为by x a=±,而圆心为,半径为2r ,∴圆心到渐近线的距离d ==,而2AB =,∴221r d -=,故222123a ab =+,又222,1c a b c e a +==>, ∴2e =. 故答案为:2. 【点睛】关键点点睛:根据双曲线、圆的标准方程确定渐近线方程、圆心、半径长,结合圆中相交弦的几何性质及双曲线参数关系,列出关于,a c 的齐次方程求离心率.17.【分析】根据题意找到abc 的关系求出离心率的范围【详解】设椭圆的中心为因为所以所以所以椭圆上的点到原点距离最远的是长轴端点所以即所以离心率所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据解析:⎫⎪⎪⎣⎭【分析】根据题意,找到a 、b 、c 的关系,求出离心率的范围 【详解】设椭圆的中心为O ,因为60MPN ∠=︒,所以60POM ∠=︒,所以||2||OP OM =,所以2OP b =,椭圆上的点到原点距离最远的是长轴端点,所以2a b ≥,即12b a ≤,2222211,,44b ac a a -∴≤∴≤所以离心率2c e a ==≥=,所以⎫∈⎪⎪⎣⎭e .故答案为:,12⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.18.2【分析】在焦点三角形中由余弦定理求得关系再求离心率【详解】设双曲线的左焦点为在中由余弦定理得故答案为:2【点晴】求离心率的关键是得的关系本题是由余弦定理得出解析:2 【分析】在焦点三角形中由余弦定理求得,a c 关系,再求离心率. 【详解】设双曲线的左焦点为E ,在EFP △中,2EF c =,2PF c PE a c ==+,,1cos 4EFP ∠=.由余弦定理()222421cos 224c c c a EFP c c +-+∠==⋅⋅ ,得2c e a ==. 故答案为:2 【点晴】求离心率的关键是得,,a b c 的关系,本题是由余弦定理得出.19.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化解析: 【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan b b BAO CFO a c ∠=∠=,根据离心率可求出b a =,b c=即可求出结果. 【详解】由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b bBAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么b =,极有b a =,b c =5=-.故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO∠=∠+∠;(2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c的比值问题.(3)根据离心率求出,,a b c的比值,代入可求.20.【分析】分别过作准线的垂线利用抛物线的定义将到焦点的距离转化到准线的距离利用已知和相似三角形的相似比建立关系式求解可算得弦长【详解】设可知如图作垂直于准线分别于则又解得故答案为:【点睛】1本题体现了解析:16 3【分析】分别过,A B作准线的垂线,利用抛物线的定义将,A B到焦点的距离转化到准线的距离,利用已知和相似三角形的相似比,建立关系式,求解,AF BF可算得弦长.【详解】设242y x px ==,可知2p =如图,作AM ,BN 垂直于准线分别于,M N ,则BN BF =, 又2BC BN =,23CB CF=,23BN p ∴= 43BN =,83BC =,4CF ∴= 2CF AM CA=,244CF AM CA AM ∴==+,解得4AM = 4AF ∴=416433AB AF BF ∴=+=+= 故答案为:163【点睛】1.本题体现了数形结合,解析几何问题,一定要注意对几何图形的研究,以便简化计算2. 抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.三、解答题21.(Ⅰ)22143x y +=;(Ⅱ)48,77⎡⎤⎢⎥⎣⎦;【分析】(Ⅰ)通过当直线AB 的斜率为0时可知||2AB a =,22||b CD a =,结合12c e a ==,计算即得结论;(Ⅱ)分别对两条弦的斜率进行讨论,当两条弦中一条斜率为0时、另一条弦的斜率不存在时易得结论;当两条弦斜率均存在且不为0时,通过设直线AB 、CD 的方程并分别与椭圆方程联立,利用韦达定理及两点间距离公式,可得||||AB CD +的表达式,利用换元法及二次函数的性质计算即得结论. 【详解】解:(Ⅰ)当直线AB 的斜率为0时,直线CD 垂直于x 轴,||2AB a ∴=,22||b CD a =,即22||||27b AB CD a a+=+=,12c e a ==,且222a b c =+,解得:2,a b =, 所以椭圆方程为22143x y +=;(Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在, 由题意可知,||||7AB CD +=;②当两条弦斜率均存在且不为0时,设1(A x ,1)y ,2(B x ,2)y , 设直线AB 的方程为(1)y k x =-,则直线CD 的方程为1(1)y x k=--,将直线AB 的方程代入椭圆方程中,并整理得:2222(34)84120k x k x k +-+-=,∴221212228412,3434k k x x x x k k -+==++,∴212212(1)|||34k AB x x k +=-=+,同理,2222112(1)12(1)||4343k k CD k k++==++, ∴2222222212(1)12(1)84(1)||||3434(34)(34)k k k AB CD k k k k ++++=+=++++,令21t k =+,则1t >,∴2222848484||||1149(41)(31)121()24t t AB CD t t t t t +===-++---+,1t >,∴101t<<,∴211494912()244t <--+,∴241111494912()24t <--+, ∴24884711497()24t <--+,∴48||||77AB CD +<, 综合①②可知,||||AB CD +的取值范围为:48,77⎡⎤⎢⎥⎣⎦. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.22.(1)2212x y +=;(2)169.【分析】(1)利用椭圆的长轴长以及离心率求解,a c ,得到b ,即可得到椭圆方程; (2)①当1l x ⊥,2//l x 时,求解四边形的面积;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11xy m=-,分别联立椭圆方程,利用韦达定理以及弦长公式,转化求解四边形的面积,利用基本不等式求解最小值即可.【详解】(1)得11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为2212x y +=;(2)①当1l x ⊥,2//l x 时,22122222b S a b a=⋅⋅⋅==;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-, 联立22112x my x y =-⎧⎪⎨+=⎪⎩得()222210m y my +--=, ∴12222m y y m +=+,12212y y m-=+, ∴AB==)2212m m +=+,同理)22221111122m m CD m m ⎫+⎪+⎝⎭==++, ∴()()()()()()()222222222222281414111162292212212212m m m S AB CD m m m m m m +++=⋅=⋅=≥=++++⎛⎫+++ ⎪⎝⎭.当且仅当22221m m +=+即21m =即1m =±时等号成立, 故四边形ACBD 的面积的最小值169. 【点睛】方法点睛:该题考查的是有关椭圆方程的求法,直线与椭圆的综合题,解题方法如下: (1)根据题中所给的条件,建立等量关系,求得,a b 的值,得到椭圆方程;(2)对直线的斜率存在与否进行讨论,根据题意利用适当的形式写出直线的方程,分别与椭圆方程联立,求得弦长,根据四边形面积公式求得四边形的面积,利用基本不等式求得最值,与特殊情况比较,得到结果. 23.(1)2 ;(2)证明见解析. 【分析】(1)联立直线()0y kx k =>与抛物线方程可得点A 坐标,由中点坐标公式可得点P 坐标,进而可得直线l 的方程与抛物线联立可得Q 点坐标,计算PQPR x QRx =即可求解; (2)利用A 和R 两点坐标求出直线AR 的方程,与抛物线方程联立消去x 得到关于y 的一元二次方程,由0∆=即可求证. 【详解】(1)联立方程22,y kx y px =⎧⎨=⎩,可得:2220k x px -=,解得222p x k p y k ⎧=⎪⎪⎨⎪=⎪⎩所以222,p p A k k ⎛⎫⎪⎝⎭, 因为P 是OA 的中点,所以2,.p p P k k ⎛⎫⎪⎝⎭ 直线:p l y k =,点0,R p k ⎛⎫⎪⎝⎭将p y k =代入22y px =,得2,.2p p Q k k ⎛⎫ ⎪⎝⎭所以2222PQp PR x k p QR x k ===. ()2因为222,p p A kk ⎛⎫ ⎪⎝⎭,0,R p k ⎛⎫⎪⎝⎭所以直线AR 的方程为2k py x k=+, 与22y px =联立消去x 得222440k y pky p -+=, 因为222216440p k p k ∆=-⨯⨯=, 所以直线AR 与抛物线C 只有一个公共点. 【点睛】方法点睛:判断直线与曲线的位置关系可联立直线与曲线的方程消去y 得关于x 的一元二次方程,由判别式0∆>可得直线与曲线相交,由判别式0∆=可得直线与曲线相切,判别式∆<0可得直线与曲线相离. 24.(1)1p =;(2). 【分析】(1)由已知准线方程可得答案;(2)联立直线与抛物线方程,利用韦达定理表示OA OB ⊥可得t ,然后利用弦长公式可得答案. 【详解】 (1)由已知得122p -=-,所以1p =; (2)设()11,A x y ,()22,B x y ,联立22y x =与y x t =+得2220y y t -+=,480t ∆=->,即12t <时有122y y +=,122y y t =, 因为OA OB ⊥,所以()21212121204y y OA OB x x y y y y ⋅=+=+=,可得124y y =-,因为122y y t =,所以2t =-, 则122y y +=,124y y =-, 所以||AB =====【点睛】本题考查了抛物线方程、直线与抛物线的位置关系,关键点是利用韦达定理计算弦长,意在考查学生对这些知识的理解能力掌握水平及其应用能力.25.(1)22132x y +=;(2)22y x =±+或2y =+.【分析】(1)由离心率公式、将点3,22⎛ ⎝⎭代入椭圆方程得出椭圆C 的方程;(2)联立椭圆和直线l 的方程,由判别式得出k 的范围,再由韦达定理结合三角形面积公式得出22317S k ==+,求出k 的值得出直线l 的方程.【详解】解:(1,所以2222133b a ⎛⎫=-= ⎪ ⎪⎝⎭.①又因为椭圆经过点3,22⎛ ⎝⎭,所以有2291142a b +=.②联立①②可得,23a =,22b =,所以椭圆C 的方程为22132x y+=.(2)由题意可知,直线l 的斜率k 存在,设直线l 的方程为2y kx =+.由222,132y kx x y =+⎧⎪⎨+=⎪⎩消去y 整理得,()22231260+++=k x kx .因为直线l 与椭圆C 交于不同的两点A ,B 所以()()()22212242324320k kk∆=-+=->,即2320k ->,所以223k >. 设()11,A x y ,()22,B x y ,则1221223k x x k -+=+,122623x x k =+. 由题意得,OAB 的面积1212S OM x x =⨯⨯-12x x =-=,即S == 因为OAB 的面积为17=()2232k =+.化简得,42491660k k -+=,即()()2243220k k --=,解得234k =或222k =,均满足0∆>,所以k =或k = 所以直线l的方程为2y x =+或2y =+. 【点睛】关键点睛:在第二问中,关键是由韦达定理建立12,x x 的关系,结合三角形面积公式求出斜率,得出直线l 的方程.26.(1)22182x y +=;(2)20x y +=.【分析】(1)由离心率,点的坐标代入椭圆方程及222a b c =+列方程组解得,,a b c 得椭圆方程; (2)已知条件说明直线AO 为线段PQ 的垂直平分线,直线OA 方程为12y x =,这样可设直线PQ 方程为2y x m =-+,代入椭圆方程,应用韦达定理得12x x +,12,x x 即为,P Q 的横坐标,求出中点横坐标1202x x x +=,由直线PA 得中点纵坐标0y ,中点坐标代入直线AO 方程可得参数m ,即直线PQ 方程. 【详解】(1)依题意,22222411a b a b c c a⎧+=⎪⎪⎪=+⎨⎪⎪=⎪⎩,,解得2282a b ⎧=⎨=⎩,,.故椭圆C 的方程为22182x y +=;(2)∵||||,||||OP OQ AP AQ ==,∴直线AO 为线段PQ 的垂直平分线,则直线OA 的方程为12y x =,设直线PQ 的方程为2y x m =-+, 由221822x y y x m ⎧+=⎪⎨⎪=-+⎩,得:221716480x mx m -+-=, ()22(16)417480m m =-⨯->,解得m <()()1122,,,P x y Q x y ,由韦达定理得121617mx x +=,设PQ 的中点为()00,H x y , 所以120008,221717x x m m x y x m +===-+=;所以8,1717m m H ⎛⎫⎪⎝⎭.又8,1717m m H ⎛⎫⎪⎝⎭在直线OA 上,代入得1817217m m =⋅,解得0m =, 综上所述,直线PQ 的方程为20x y +=. 【点睛】关键点点睛:本题考查由离心率和一点坐标求椭圆方程,考查直线与椭圆相交问题.在直线与椭圆相交问题时,解题关键是由平面几何知识由条件||||,||||OP OQ AP AQ ==得直线AO 为线段PQ 的垂直平分线,这样用设而不求思想可求得直线PQ 方程.即求出AO 方程,由垂直设出直线PQ 方程,代入椭圆方程应用韦达定理求得PQ 中点坐标,再代入直线AO 方程可得参数值.。
(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测卷(答案解析)(3)
一、选择题1.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 在双曲线C 的右支上,点N 在线段12F F 上(不与12,F F 重合),且1230F MN F MN ︒∠=∠=,若2132MN MF MF -=,则双曲线C 的渐近线方程为( )A .y x =±B .y =C .y =D .2y x =±2.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12,F F 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34yx C .35y x =±D .53y x =±3.设AB 是过抛物线24y x =的焦点F 的一条弦(与x 轴不垂直),其垂直平分线交x 轴于点G ,设||||AB m FG =,则m =( ) A .23B .2C .34D .34.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( )A .)+∞B .C .)+∞D .5.已知点F 是椭圆()2222:10x y C a b a b+=>>的一个焦点,点P 是椭圆C 上的任意一点且点P 不在x 轴上,点M 是线段PF 的中点,点O 为坐标原点.连接OM 并延长交圆222x y a +=于点N ,则PFN 的形状是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由点P 位置决定6.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B .15C .14D .47.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.探照灯、手电筒也是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为2y =,若入射光线FP 的斜率为43,则抛物线方程为 ( )A .28y x =B .26y x =C .24y x =D .22y x =8.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()1,0F c -,()2,0F c ,P 是双曲线C 右支上一点,且212PF F F =.若直线1PF与圆222x y a +=相切,则双曲线的离心率为( ) A .43B .53C .2D .39.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C.(6π-D .54π 10.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-11.双曲线2214x y -=的离心率为( )ABCD12.已知双曲线C 的两个焦点12,F F 都在xM 在C 上,且12MF MF ⊥,MC 的方程为( )A .22148x y -=B .22148y x -=C .2212y x -=D .2212x y -=二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为_______.15.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,直线:36l y x =+过点1F ,且与双曲线C 在第二象限交于点P ,若点P 在以12F F 为直径的圆上,则双曲线C 的离心率为_____________.16.已知椭圆()222:1024x y C b b+=<<的左、右焦点分别为1F 、2F ,P 为椭圆上一点,13PF =,123F PF π∠=,则b =______. 17.已知抛物线C :24y x =,点N 在C 上,点()(),00M a a ->,若点M ,N 关于直线()31y x =-对称,则a =_____.18.设1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=,则12F PF △的面积等于________.19.如图所示,在正六边形ABCDEF 中,已知两个顶点A 、D 为双曲线W 的两个焦点,其余四个顶点都在双曲线上,则双曲线W 的离心率为________________;20.已知为()0,1A -,当B 在曲线221y x =+上运动时,线段AB 的中点M 的轨迹方程是___________________.三、解答题21.已知A ,B 分别为椭圆()222:11x C y a a +=>的左、右顶点,P 为C 的上顶点,8AP PB ⋅=.(1)求椭圆C 的方程;(2)过点()6,0作关于x 轴对称的两条不同直线1l ,2l 分别交椭圆于()11,M x y 与()22,N x y ,且12x x ≠,证明:直线MN 过定点,并求出该定点坐标.22.如图,直线:l x ty n =+与抛物线2:C y x =交于A ,B 两点,且l 与圆22:1O x y +=相切于点()00,P x y .(Ⅰ)证明:00ny t +=; (Ⅱ)求||||PA PB ⋅(用n 表示)23.设椭圆()222210x y a b a b+=>>的左焦点为F 32a b =,其中A 为左顶点,O 为坐标原点.(1)求椭圆离心率e 的值;(2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线相切,圆心C 在直线1x =上,且//OC AP ,求椭圆方程.24.已知椭圆2222:1(0)x y C a b a b +=>>的右顶点为A ,上顶点B 3AB 与圆224:5O x y +=相切. (1)求椭圆C 的方程;(2)设p 椭圆C 上位于第三象限内的动点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,试问四边形ABNM 的面积是否为定值?若是,求出该定值;若不是,请说明理由.25.已知P 是椭圆22:18x C y +=上的动点.(1)若A 是C 上一点,且线段PA 的中点为11,2⎛⎫ ⎪⎝⎭,求直线PA 的斜率; (2)若Q 是圆221:(1)49D x y ++=上的动点,求PQ 的最小值. 26.已知抛物线:()()()222:2,2,0,2,00C y x M a N a a =->,过点M 垂直于x 轴的垂线与抛物线C 交于,B C ,点,D E 满足(),01CE CN ND NB λλλ==<<(1)求证:直线DE 与抛物线有且仅有一个公共点;(2)设直线DE 与此抛物线的公共点Q ,记BCQ △与DEN 的面积分别为12,S S ,求12S S 的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据2132MN MF MF -=可得122F N F N =,所以112MF NMF NS S=,然后用面积公式将两个三角形面积表示出来,可得122MF MF =,再结合122MF MF a -=,余弦定理,可得a 、c 的关系,再利用222c a b =+ ,即可求出ba的值,进而可得渐近线方程. 【详解】∵2132MN MF MF -=,∴2122MN MF MF MN -=-,∴212F N NF =, ∴122F N F N =,∴122MF NMF NS S=.∵111||sin 302MF NSMF MN ︒=⋅⋅⋅,221||sin 302MF NS MF MN ︒=⋅⋅⋅, ∴122MF MF =,又122MF MF a -=,∴ 则124,2MF a MF a ==.在12MF F △中,由余弦定理得,222224164812c a a a a =+-=,故223c a =,∴222b a =,∴ba=,故所求渐近线方程为y =, 故选:B 【点睛】本题主要考查了双曲线离心率的求解,涉及了三角形面积公式、向量的线性运算、余弦定理,属于中档题.2.A解析:A 【分析】结合直线和圆的位置关系以及双曲线的定义求得,a b 的关系式,由此求得双曲线的渐近线方程. 【详解】设直线2PF 与圆222x y a +=相切于点M ,则2,OM a OM PF =⊥, 取线段2PF 的中点N ,连接1NF , 由于1122PF F F c ==, 则122,NF PF NP NF ⊥=,由于O 是12F F 的中点,所以122NF OM a ==,则2NP b ==,即有24PF b =,由双曲线的定义可得212PF PF a -=, 即422b c a -=, 即2,2b c a c b a =+=-,所以()2222b a a b -=+,化简得2434,34,3b b ab b a a ===, 所以双曲线的渐近线方程为43y x =±. 故选:A【点睛】本小题主要考查双曲线渐近线方程的求法,属于中档题.3.B解析:B 【分析】联立直线AB 与抛物线方程,求出E 点坐标以及直线EG 的方程,可得||FG ,利用定义求出弦长||AB ,可得m 的值. 【详解】设:1AB x ty =+,()11,A x y ,()22,B x y ,AB 的中点为()00,E x y ,联立方程组214x ty y x=+⎧⎨=⎩,消去x 得2440y ty --=,所以124y y t +=,12022y y y t +==,2021x t =+,即()221,2E t t +,所以EG 的方程为()2221y t t x t -=---.令0y =,得223x t =+,因此()2||21FG t =+.又12||2AB x x =++=()()2122241t y y t +++=+,所以1||||2FG AB =,从而2m =. 故选:B 【点睛】本题考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.4.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=, 点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.5.B解析:B 【分析】根据定义可得12PF PF a +=,进而得出OM PM a +=,根据MN ON OM =-求出MN PM MF ==,得出90PNF ∠=,即可判断. 【详解】设F 是右焦点,左焦点为1F ,12PF PF a ∴+=,在1PFF 中,,O M 分别是1,FF PF 中点,12,2PF OM PF PM ∴==,1222PF PF OM PM a ∴+=+=,即OM PM a +=,()MN ON OM a a PM PM ∴=-=--=,MN PM MF ∴==,∴N 在以线段PF 为直径的圆上,90PNF ∴∠=,故PFN 的形状是直角三角形. 故选:B.【点睛】本题考查椭圆定义的应用,解题的关键是应用椭圆的定义得出MN PM MF ==,从而判断90PNF ∠=.6.B解析:B 【分析】由曲线的对称性,以及数形结合分析得115b a =,从而求得其离心率. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan 15ak AOM b =∠==,所以115b a =,所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.7.D解析:D 【分析】由抛物线方程可得焦点坐标,设出P 点坐标,由性质求出P 点坐标,表示出FP 的斜率,解出p ,即可得抛物线方程. 【详解】,02p F ⎛⎫⎪⎝⎭,设()00,P x y 由题意有02y =将02y =代入()220y px p =>得02x p=2,2P p ⎛⎫∴ ⎪⎝⎭,又,02p F ⎛⎫⎪⎝⎭,且FP 的斜率为43,有204232p p -=-解得:1p =故抛物线方程为:22y x = 故选:D 【点睛】抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.8.B解析:B 【分析】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,根据三角形中位线性质可求得2AF ;结合双曲线定义可求得1AF ,在12Rt AF F △中利用勾股定理可构造关于,a c 的齐次方程,进而得到关于离心率的方程,解方程求得结果. 【详解】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,连接2,OB AF ,212PF FF =,A 为1PF中点,21AF PF ∴⊥, 圆222x y a +=与1PF 相切于点B ,1OB PF ∴⊥且OB a =,2//OB AF ∴,又O 为12F F 中点,222AF OB a ∴==;由双曲线定义知:122PF PF a -=,即112122PFF F PF c a -=-=, 1112AF PF a c ∴==+,又122F F c =,21AF PF ⊥, 2222112AF AF F F ∴+=,即()22244a a c c ++=,整理可得:223250c ac a --=,即23250e e --=,解得:53e =或1e =-(舍去), ∴双曲线的离心率为53.故选:B. 【点睛】关键点点睛:本题考查双曲线离心率的求解问题,解题关键是能够在直角三角形中,利用勾股定理构造出关于,a c 的齐次方程,进而配凑出关于离心率的方程.9.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为1125225O l d -==,圆C 面积的最小值为22545ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.10.A解析:A 【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.11.C解析:C 【解析】双曲线2214x y -=中,222224,1,5,a b c a b e ==∴=+=∴== 本题选择C 选项.12.C解析:C 【解析】12,MF MF ⊥∴由直角三角形的性质可得1MO FO c ==,又3,c a =21,312a b ∴==-=,C ∴的方程为2212y x -=,故选C. 二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB方程为3)34y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.【分析】由题意得解方程即可求解【详解】由题意得由题得∴整理得即∴即故答案为:【点睛】本题主要考查了双曲线离心率的求法考查了直线与双曲线的简单几何性质属于中档题【分析】由题意得FA b =,3FB b =,OA a =,tan tan b BOF AOF a∠=∠=,4tan tan 2bBOA BOF a∠=∠=,解方程即可求解. 【详解】由题意得FA b =,3FB b =,OA a =, 由题得tan tan b BOF AOF a∠=∠=, ∴24tan tan 21()b b b a a BOA BOF b a a+∠==∠=-, 整理得222a b =,即2222()a c a =-, ∴2232a c =,232e =,即e =.故答案为:2【点睛】本题主要考查了双曲线离心率的求法,考查了直线与双曲线的简单几何性质,属于中档题.15.【分析】利用直线l 的斜率和点P 在以为直径的圆周上在直角三角形中求出和用定义求出代入离心率公式求解即可【详解】由题意可得则因为直线l 的斜率是3则因为点P 在以为直径的圆周上所以所以则故双曲线C 的离心率为【分析】利用直线l 的斜率和点P 在以12F F 为直径的圆周上,在直角三角形12PF F 中,求出1PF和2PF ,用定义求出a ,代入离心率公式求解即可.【详解】由题意可得2c =,则2124F F c ==.因为直线l 的斜率是3,则12sin 10PF F ∠=,12cos 10PF F ∠=. 因为点P 在以12F F 为直径的圆周上,所以1290F PF ∠=︒,所以11212cos 5PF F F PF F =∠=,21212sin 5PF F F PF F =∠=,则2125PF PF a -==,故双曲线C 的离心率为c a =【点睛】本题考查双曲线的性质,考查双曲线定义的应用,考查学生的计算能力,属于中档题.16.【分析】作出图形利用椭圆的定义可求得利用余弦定理可求得的值进而可求得的值【详解】根据椭圆的定义:在焦点中由余弦定理可得:则所以故答案为:【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数考查解析:32【分析】作出图形,利用椭圆的定义可求得2PF ,利用余弦定理可求得c 的值,进而可求得b 的值. 【详解】根据椭圆的定义:2231PF a =-=,在焦点12PF F △中,由余弦定理可得:222212121242cos 73c F F PF PF PF PF π==+-⋅=,274c ∴=,则22279444b a c =-=-=,所以,32b =. 故答案为:32.【点睛】本题考查利用椭圆的定义和余弦定理求椭圆方程中的参数,考查计算能力,属于中等题.17.3【分析】设MN 关于直线对称等价于MN 中点在直线上且MN 与直线斜率相乘为联立方程可用表示再利用在抛物线上将点代入抛物线方程即可求出【详解】设因为点MN 关于直线对称所以中点在直线上且与直线垂直则中点为解析:3 【分析】设()00,N x y ,M ,N 关于直线)31y x =-对称等价于MN 中点在直线上,且MN 与直线斜率相乘为1-,联立方程,可用a 表示00,x y ,再利用()00,N x y 在抛物线上,将点代入抛物线方程,即可求出a . 【详解】设()00,N x y ,因为点M ,N 关于直线)31y x =-对称, 所以MN 中点在直线上,且MN 与直线垂直,则MN 中点为00,22x a y , 003122y x a, 且MN 与直线垂直,0031y x a, 联立方程可得00333,22a a x y ,点N 在抛物线上,2333422a a ,解得3a =或73a =-(舍去), 3a ∴=.故答案为:3 【点睛】本题考查点与点关于直线的对称问题,知道中点在直线上且两点间连线与直线垂直是解决问题的关键.18.1【分析】利用椭圆的定义与勾股定理可得再由三角形面积公式可得结果【详解】因为是椭圆的两个焦点点在椭圆上且满足所以所以则的面积等于故答案为:1【点睛】本题主要考查椭圆的定义与几何性质意在考查学生灵活应解析:1 【分析】利用椭圆的定义与勾股定理可得122PF PF ⋅=,再由三角形面积公式可得结果. 【详解】因为1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=, 所以122221224412PF PF a PF PF c +==⎧⎨+==⎩ ()()222121212216124PF PF PF PF PF PF ⇒⋅=+-+=-=,所以122PF PF ⋅=, 则12F PF △的面积等于12112PF PF ⋅=, 故答案为:1. 【点睛】本题主要考查椭圆的定义与几何性质,意在考查学生灵活应用所学知识解答问题的能力,属于基础题.19.【分析】利用余弦定理求得由双曲线的定义可得的值由此求出的值【详解】解:设正六边形的边长为1中心为以所在直线为轴以为原点建立直角坐标系则在中由余弦定理得故答案为:【点睛】本题考查双曲线的定义和双曲线的 1【分析】利用余弦定理求得AE ,由双曲线的定义可得2a AE DE =- 的值,由此求出e 的值. 【详解】解:设正六边形ABCDEF 的边长为1,中心为O ,以AD 所在直线为x 轴,以O 为原点,建立直角坐标系,则1c =,在AEF ∆中,由余弦定理得22212cos120112()32AE AF EF AF EF =+-︒=+--=,3AE ∴=,231a AE DE =-=-,312a -∴=, 131312c e a∴===+-, 故答案为:31+.【点睛】本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,计算2a AE DE =- 的值是解题的关键.20.【分析】设出的坐标求出的坐标动点在抛物线上运动点满足抛物线方程代入求解即可得到的轨迹方程【详解】解:设的坐标由题意点与点所连线段的中点可知动点在抛物线上运动所以所以所以点与点所连线段的中的轨迹方程是 解析:24y x =【分析】设出M 的坐标,求出P 的坐标,动点P 在抛物线221y x =+上运动,点P 满足抛物线方程,代入求解,即可得到M 的轨迹方程. 【详解】解:设M 的坐标(,)x y ,由题意点B 与点(0,1)A -所连线段的中点M ,可知(2,21)B x y +,动点B 在抛物线221y x =+上运动,所以2212(2)1y x +=+,所以24y x =. 所以点B 与点(0,1)A -所连线段的中M 的轨迹方程是:24y x =. 故答案为:24y x =. 【点睛】本题考查点的轨迹方程的求法,相关点法,是常见的求轨迹方程的方法,注意中点坐标的应用,属于中档题.三、解答题21.(1)2219x y +=;(2)证明见解析,定点3,02⎛⎫ ⎪⎝⎭.【分析】(1)根据向量数量积坐标运算公式求解即可得结果;(2)设直线MN 方程并联立椭圆方程,结合韦达定理求得12,y y +12y y ,又因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,所以1212066y yx x +=--,通过计算化简即可求得定点. 【详解】解:(1)由题意得(),0A a -,(),0B a ,()0,1P ,则(),1AP a =,(),1PB a =-.由8AP PB ⋅=,得218a -=,即3a = 所以椭圆C 的方程为2219x y +=(2)由题易知:直线MN 的斜率存在,且斜率不为零,设直线MN 方程为x my n =+,()0m ≠,联立22990x my nx y =+⎧⎨+-=⎩, 得()2229290m y mny n +++-=,由0>得2290m n -+>,∴12229mn y y m -+=+,212299n y y m -=+,因为关于x 轴对称的两条不同直线1l ,2l 的斜率之和为0,∴1212066y y x x +=--,整理得()()1212260my y n y y +-+=, 即()()2222926099m n mn n m m ---=++,解得:32n =直线MN 方程为:32x my =+,所以直线MN 过定点3,02⎛⎫ ⎪⎝⎭. 【点睛】求定点问题常见的方法有两种:(1)从特殊入手,求出定点,再证明这个点与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定点.22.(Ⅰ)证明见解析;(Ⅱ)||||PA PB ⋅21n n =--,1n ≤-或1n ≥.【分析】(Ⅰ)利用圆心到直线的距离为半径可得221n t =+,结合00x ty n =+以及点P 在圆上可得01nx =,在00x nt y -=消去n 后可得所求证的关系式. (Ⅱ)设()11,A x y ,()22,B x y ,则||||PA PB ⋅可用前者的纵坐标表示,联立直线方程和抛物线方程,消去x 后利用韦达定理化简||||PA PB ⋅,则可得其表达式. 【详解】解:(Ⅰ)若00y =,则直线l 垂直于x 轴,此时0t =,故00ny t +=成立, 若00y ≠,因为直线:l x ty n =+1=,整理得到:221n t =+,又00x ty n =+,故()222022121x n nx n n y y --+=+=, 整理得到2200120nx n x -+=即01nx =,而20000000000011x x x n x x y t ny y y y x ---====-=-即00ny t +=. (Ⅱ)设()11,A x y ,()22,B x y . 联立2x ty ny x=+⎧⎨=⎩,得20y ty n --=,∴12y y t +=,12y y n =-. 由(Ⅰ)可得221n t =+,故1n ≤-或1n ≥,而240t n ∆=+>,故2410n n +->即2n <-2n >- 故1n ≤-或1n ≥.而1020||||PA PB y y ⋅=--()()221201201t y y y y y y =+-++()22222220021t t t t t n ty y n n t n n n n n n--⎛⎫=+--+=--⨯+=-++ ⎪⎝⎭222211n n n n n n--=-++21n n =--,其中1n ≤-或1n ≥. 【点睛】思路点睛:对于直线与抛物线、圆的位置关系的问题,前者可设而不求(即韦达定理)来处理,后者利用几何方法来处理,计算过程中注意判别式的隐含要求以及代数式非负对应范围的影响.23.(1)12;(2)22413y x +=.【分析】(1)由已知等式结合222a b c =+可得离心率ca; (2)由(1)可得椭圆方程为2222143x y c c+=,写出直线l 方程,与椭圆方程联立可求得交点P 坐标,由//OC AP ,求得C 点坐标,这样由圆与x 轴相切得半径,再由圆与直线l 相切,可求得c ,从而得椭圆方程. 【详解】(1)设椭圆的半焦距为c由2222b a b c ⎧=⎪⎨=+⎪⎩得12c e a == (2)由(1)知2,a c b ==故椭圆方程为2222143x y c c+=,由题意(),0F c -,则直线l 的方程为()34y x c =+ 点P 的坐标满足()222214334x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简得到2276130x cx c +-=解得1=x c 或2137cx =-(舍) 代入到l 的方程解得132y c =,所以3,2P c c ⎛⎫ ⎪⎝⎭由圆心C 在直线1x =上,可设()1,C t因为(),2,0OC AP A c -∥,故3212ct c c=+,可得12t=因为圆C 与x 轴相切,所以圆的半径长为12R = 又由圆C 与l相切,圆心到直线的距离12d =,可得12c =所以,1,a b ==椭圆的方程为22413y x +=.【点睛】关键点点睛:本题考查求椭圆的离心率,求椭圆方程,只要知道关于,,a b c 的齐次等式即可求得离心率,用参数c 写出椭圆方程和直线方程,求出交点P 的坐标,从而可得圆心坐标,利用直线与圆相切是解题关键.24.(1)2214x y +=;(2)是定值,定值为2.【分析】(1)由题意可得==,a b 的值,进而可得椭圆的方程;(2)设()()0000,0,0,P x y x y <<从而可表示出直线PA 的方程,然后求出点M 的坐标,得到BM 的值,同理可得到AN 的值,进而可求得四边形ABNM 的面积,得到结论 【详解】(1)解:由题意知直线:AB bx ay ab +=,所以⎧=⎪⎪=2a =,1b =,所以椭圆C 的方程为2214x y +=,(2)证明:设()()22000000,0,0,44P x y x y x y <<+=.因为()()2,0,0,1A B ,所以直线PA 的方程为()0022y y x x =--,令0x =,得0022M y y x =--, 从而002112M y BM y x =-=+-. 直线PB 的方程为0011y y x x -=+令0y =,得001N xx y =--,从而00221N x AN x y =-=+-.所以四边形ABNM 的面积0000211212212x y s AN BM y x ⎛⎫⎛⎫==+⋅+ ⎪ ⎪--⎝⎭⎝⎭‖ ()22000000000000000000444842244222222x y x y x y x y x y x y x y x y x y ++--+--+===--+--+.所以四边形ABNM 的面积为定值2. 【点睛】关键点点睛:解题的关键是由题意将BM ,AN 表示出来,从而可得四边形ABNM 的面积. 25.(1)14-;(2)17. 【分析】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,代入椭圆方程,利用点差法即可求得直线PA 的斜率;(2)设(,)(P x y x -≤≤,圆心(1,0)D -,可得PD 的表达式,利用二次函数性质,即可求得PD 的最小值,进而可得答案. 【详解】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,因为A ,P 两点都在C 上,所以221122221818x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得()()()()2121212180x x x x y y y y -++-+=, 因为21122x x +=⨯=,211212y y +=⨯=, 所以212114PA y y k x x -==--. (2)设(,)(P x y x -≤≤,则2218x y +=,圆心(1,0)D -,则222222786||(1)(1)18877x PD x y x x ⎛⎫=++=++-=++ ⎪⎝⎭,当87x时,PD7=. 因为圆D17=.所以PD的最小值为11777-=. 【点睛】解题的关键是熟练掌握点差法的步骤,点差法常见的结论有,设以00(,)P x y 为中点的弦所在斜率为k ,则(1)椭圆22221x y a b +=中,2020y b k x a ⋅=-;(2)双曲线22221x y a b -=中,2020y b k x a⋅=;(3)抛物线22y px =中0p k y =,熟记结论可简化计算,提高正确率,属中档题.26.(1)证明见解析;(2)2. 【分析】(1)由已知先求出,B C ,设(),D x y ,结合题干得ND NB λ=,NE NC λ=,结合向量关系求得,D E 点坐标,利用点斜式得DE l 方程,联立DE l 与抛物线即可求证; (2)结合三角形面积公式得112BCQ S S BC h ==⋅△,212DEN D E S S NG y y ==⋅-△,由(1)的结论可得h ,由直线DE l 方程可求得直线DE 与x 轴交点坐标G ,从而得到NG ,12,S S 作比即可求解. 【详解】()1易知()()222,2,2,2B a a C a a -,设(),D x y ,由ND NB λ=,可得()()222,4,2x a y a a λ+=,故有()()242,2D a a λλ-,同理()()224,(1)2E a a λλ--,于是直线DE 的方程是()()()2124242y a x a aλλλ-=---, 即()224288)2(x ay a λλλ=-+--①与抛物线方程联立, 得到()()22210y a λ--=,此方程有两个相等的根:221()y a λ=-代入①,得()22221x a λ=-,故直线DE 与抛物线有且仅有一个公共点()()()22221,221Q aa λλ--()()()2321112421622BCQ Q S S BC h a a x a λλ==⋅=⋅-=-△ 设直线DE 与x 轴交于()()22282,0G a a λλ--,于是()()223221182822DEN D E S S NG y y a a a λλλλ==⋅-=⋅-=-⋅△故有122S S = 【点睛】方法点睛:本题考查由直线与抛物线的位置关系求证公共点问题,抛物线中三角形的面积问题,考查了数学运算的核心素养,常用以下方法:(1)涉及交点问题常采用直线与曲线联立方程求解法,有且仅有一个公共点可直接求解,若是关于()x y 的一元二次方程,即证0∆=;(2)对于三角形面积问题,较为规则的可直接用公式法求解,对于三角形不规则的,常采用切割法,如本题中的DEN S △.。
高中数学圆锥曲线难题汇总(75道题)
高中数学圆锥曲线难题汇总1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.}2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.)3. 已知椭圆的离心率为,点在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.;4. 已知的顶点,在椭圆上,点在直线:上,且.\(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.—5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.¥}6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.:7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;—(2)当的面积等于时,求的值.【8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.【·9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.}10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.【11. 已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值若是,求出该值;若不是,说明理由.&:12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.,13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为,求的离心率;(2)若直线在轴上的截距为,且,求,.:14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.)15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.¥16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.,17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.#]18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.{;20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点若过定点,求出定点的坐标;若不过定点,请说明理由.:21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;·(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.·22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且.(1)求直线的斜率;(2)若的面积为,求抛物线的方程.|—24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3)求证:是一个定值./25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.~(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.~26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.【27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.}\28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.;29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为,两准线之间的距离为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.…(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.!30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.~31. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.'32. 已知点 为椭圆 : 的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆 有且仅有一个交点.(1)求椭圆 的方程; (2)设直线与 轴交于 ,过点 的直线 与椭圆 交于不同的两点 ,,若的取值范围.^33. 已知点100(,)P x y 为双曲线22221(8x y b b b -=为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于点2P . (1)求线段12P P 的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B ,D 两点,在E 上任取一点Q 111()(0)x y y ≠,,直线QB ,QD 分别交于y 轴于M ,N 两点.求证:以MN【@34. 如图,已知圆G :222(2)x y r -+=是椭圆2216x y +=1的内接ABC △的内切圆,其中A 为椭圆的左顶点. (1)求圆G 的半径r ;(2)过点M (0,1)作圆G 的两条切线交椭圆于E ,F 两点,证明:直线EF 与圆G 相切.—35. 设点00(,)P x y 在直线(01)x m y m m =≠±<<,上,过点P 作双曲线221x y -=的两条切线,PA PB ,切点为,A B ,定点10M m ⎛⎫⎪⎝⎭,. (1)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN △的垂心G 所在的曲线方x程;(2)求证:A M B 、、三点共线."36. 作斜率为13的直线l 与椭圆22:1364x y C +=交于,A B 两点(如图所示),且(32,2)P 在直线l 的左上方. (1)证明:PAB ∆的内切圆的圆心在一条定直线上; (2)若60oAPB ∠=,求PAB ∆的面积.《37. 如图,椭圆22122:1(0)x y C a b a b+=>>3x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.(1)求1C ,2C 的方程;(2)设2C 与y 轴的焦点为M ,过yAB#PNx=m O AxyOPB坐标原点O 的直线l 与2C 相交于点A,B ,直线MA,MB 分别与1C 相交与,D E . ①证明:MD ME ⊥; ¥②记MAB ∆,MDE ∆的面积分别是1S ,2S .问:是否存在直线l ,使得121732S S =请说明理由.】38. 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上; (2)设89FA FB =,求BDK ∆的内切圆M 的方程 .!39. (,)()o o o P x y x a ≠±是双曲线2222:1(0,0)x y E a b a b-=>>上一点,,M N 分别是双曲线E 的左、右顶点,直线,PM PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于,A B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.…40.已知以原点O为中心,F 为右焦点的双曲线C的离心率2e =. (1)求双曲线C 的标准方程及其渐近线方程;(2)如图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求△OGH 的面积.41.如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛ ⎝⎭都在椭圆上,其中e 为椭圆的离心率. ~(1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i )若1262AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.;42.如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程. (43.设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P,Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H. 是否存在m,使得对任意的⊥若存在,求m的值;若不存在,请说明理由.k>,都有PQ PH…44../45. 已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆6其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得6ODE ODG OEG S S S ∆∆∆===判断△DEG 的形状;若不存在,请说明理由.%46.如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D. (I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由《47. 平面内与两定点12(,0),(,0)(0)->A a A a a 连线的斜率之积等于非零常数m 的点的轨迹,加 上A 1、A 2两点所在所面的曲线C 可以是圆、椭圆或双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 的位置关系;(Ⅱ)当m=-1时,对应的曲线为C 1:对给定的(1,0)(0,)m ∈-+∞,对应的曲线为C2, ;设F 1、F 2是C 2的两个焦点,试问:在C 1上,是否存在点N ,使得△F 1NF 2的面 积2S m a =,若存在,求12tan F NF 的值;若不存在,请说明理由.:48.已知一条曲线C 在y 轴右边,每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,都有0FA FB •<若存在,求出m 的取值范围;若不存在,请说明理由。
高中数学圆锥曲线测试题
圆锥曲线测试题姓名_______________一、选择题(4⨯10分)( )1.双曲线2214x y -=的实轴长为 A .3 B .4 C .5 D .12 ( )2.抛物线22y x =的准线方程为A .14y =-B .18y =-C .12x =D .14x =-( )3y 轴上.若焦距为4,则m 等于 A .4 B .5 C .7 D .8( )4A .2B .4C D( )5有相同的焦点,则a 的值为C.4D.10( )6.若双曲线()2222103x y a a -=>的离心率为2,则实数a 等于A.2 C.32D.1( )7 A.长轴长相等 B.短轴长相等C.焦距相等D.离心率相等( )8.已知抛物线2:4C y x =的焦点为F ,点,A B 在C 上且关于x 轴对称,点,M N分别为,AF BF 的中点,且AN BM ⊥,则A BC D( )9.且双曲线的一ABCD ( )10.已知点P 是抛物线22y x =上的一个动点,则点P 到点A (0,2)的距离与P 到该抛物线准线的距离之和的最小值为B.3 二、填空题(5⨯4分)11的离心率2=e ,则=m ________. 12.动圆经过点(3,0)A ,且与直线:3l x =-相切,则动圆圆心M 的轨迹方程是____________.13.设抛物线28y x =上一点P 到y 轴的距离为4,则该点P 到抛物线的焦点的距离为_____________14.已知椭圆C 斜率为1的直线l 与椭圆C 交于,A B 两点,则直线l 的方程为___________.三、解答题(10⨯4分)15.求与椭圆2214924x y +=有公共焦点,且离心率54e =的双曲线的方程。
16.如图,在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A(2,2),其焦点F在x轴上,(1)求抛物线C的标准方程(2)求过点F且与直线OA垂直的直线的方程17.已知椭圆C:22221(0)x ya ba b+=>>的一个顶点为(2,0)A,离心率为2.直线(1y k x=-)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为3时,求k的值.18.已知双曲线()2222:10,0x y C a b a b -=>>的一个焦点为)F ,实轴长为2,经过点()2,1M 作直线l 交双曲线C 于,A B 两点,且M 为AB 的中点.(1)求双曲线C 的方程;(2)求直线l 的方程.。
(word完整版)高中数学圆锥曲线基本知识与典型例题
高中数学圆锥曲线基本知识与典型例题第一部分: 椭圆1. 椭圆的概念在平面内与两定点F1.F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆. 这两个定点叫做椭圆的焦点, 两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a}, |F1F2|=2c, 其中a>0, c>0, 且a, c为常数:(1)若a>c, 则集合P为椭圆;(2)若a=c, 则集合P为线段;(3)若a<c, 则集合P为空集.2. 椭圆的标准方程和几何性质标准方程x2a2+y2b2=1 (a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a 对称性对称轴: 坐标轴对称中心: 原点顶点A1(-a,0), A2(a,0)B1(0, -b), B2(0, b)B1(0,-b),B2(0,b)A1(0, -a), A2(0, a)B1(-b,0), B2(b,0)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a, b, c的关系c2=a2-b2典型例题例1.F1, F2是定点, 且|F1F2|=6, 动点M 满足|MF1|+|MF2|=6, 则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2.已知 的周长是16, , B .则动点的轨迹方程是.. )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x例3.若F(c, 0)是椭圆 的右焦点, F 与椭圆上点的距离的最大值为M, 最小值为m, 则椭圆上与F 点的距离等于 的点的坐标是.. )(A)(c, ) (C)(0, ±b) (D)不存在例4.设F1(-c ,0)、F2(c ,0)是椭圆 + =1(a>b>0)的两个焦点,P 是以F1F2为直径的圆与椭圆的一个交点,若∠PF1F2=5∠PF2F1,则椭圆的离心率为..)例5 P 点在椭圆 上, F1.F2是两个焦点, 若 , 则P 点的坐标是 .例6.写出满足下列条件的椭圆的标准方程:(1)长轴与短轴的和为18, 焦距为6; . (2)焦点坐标为 , ,并且经过点(2, 1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31; ____. (4)离心率为 , 经过点(2, 0); .例7 是椭圆 的左、右焦点, 点 在椭圆上运动, 则 的最大值是 .第二部分: 双曲线1. 双曲线的概念平面内动点P 与两个定点F1.F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c), 则点P 的轨迹叫双曲线. 这两个定点叫双曲线的焦点, 两焦点间的距离叫焦距.集合P ={M|||MF1|-|MF2||=2a}, |F1F2|=2c, 其中a 、c 为常数且a>0, c>0: (1)当a<c 时, P 点的轨迹是双曲线; (2)当a =c 时, P 点的轨迹是两条射线; (3)当a>c 时, P 点不存在.2. 双曲线的标准方程和几何性质 标准方程- =1 (a>0, b>0)- =1(a>0, b>0)图形性 质范围x ≥a 或x ≤-a, y ∈Rx ∈R, y ≤-a 或y ≥a对称性对称轴: 坐标轴 对称中心: 原点顶点A1(-a,0), A2(a,0)A1(0, -a), A2(0, a)渐近线y =±b axy =±a bx离心率e = , e ∈(1, +∞), 其中c =实虚轴线段A1A2叫做双曲线的实轴, 它的长|A1A2|=2a ;线段B1B2叫做双曲线的虚轴, 它的长|B1B2|=2b ;a 叫做双曲线的半实轴长, b 叫做双曲线的半虚轴长a 、b 、c 的关系c2=a2+b2 (c>a>0, c>b>0)典型例题例8.命题甲: 动点P 到两定点A.B 的距离之差的绝对值等于2a(a>0);命题乙: 点P 的轨迹是双曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线(文科)的高中数学组卷一.选择题(共34小题)1.(2016•济宁三模)在平面直角坐标系xOy中,抛物线y2=﹣2px(p>0)的焦点F与双曲线x2﹣8y2=8的左焦点重合,点A在抛物线上,且|AF|=6,若P是抛物线准线上一动点,则|PO|+|PA|的最小值为()A.3 B.4C.3D.32.(2016•九江二模)抛物线C:y2=4x的焦点为F,点P为抛物线上位于第一象限的点,过点P作C的准线的垂线,垂足为M,若在方向上的投影为,则△FPM的外接圆的方程为()A.(x﹣1)2+(y﹣1)2=1 B.(x﹣1)2+(y﹣2)2=4 C.x2+(y﹣2)2=5 D.x2+(y﹣1)2=23.(2016•锦州一模)已知⊙M的圆心在抛物线x2=4y上,且⊙M与y轴及抛物线的准线都相切,则⊙M的方程是()A.x2+y2±4x﹣2y+1=0 B.x2+y2±4x﹣2y﹣1=0C.x2+y2±4x﹣2y+4=0 D.x2+y2±4x﹣2y﹣4=04.(2016•呼和浩特二模)已知点A(0,2),抛物线C:y2=mx(m>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则三角形OFN 的面积为()A.2 B.2C.4 D.25.(2015•泉州模拟)P为曲线C:x2=2py(p>0)上任意一点,O为坐标原点,则线段PO 的中点M的轨迹方程是()A.x2=py(x≠0)B.y2=px(y≠0)C.x2=4py(x≠0)D.y2=4px(y≠0)6.(2016•中山市校级模拟)过点P(4,﹣3)作抛物线y=x2的两切线,切点分别为A,B,则直线AB的方程为()A.2x﹣y+3=0 B.2x+y+3=0 C.2x﹣y﹣3=0 D.2x+y﹣3=07.(2016•重庆校级模拟)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若∠AMB=90°,则k=()A.B.C.D.28.(2016•沧州模拟)抛物线y2=mx(m>0)的焦点为F,抛物线的弦AB经过点F,并且以AB为直径的圆与直线x=﹣3相切于点M(﹣3,6),则线段AB的长为()A.12 B.16 C.18 D.249.(2016•河南模拟)若抛物线y2=2px的焦点与椭圆+=1的左焦点重合,则抛物线y2=2px的准线方程为()A.x=4 B.x=﹣2 C.x=﹣4 D.x=210.(2016•哈尔滨校级二模)已知F是抛物线x2=4y的焦点,直线y=kx+1与该抛物线相交于A,B两点,且在第一象限的交点为点A,若|AF|=3|FB|,则k的值是()11.(2016•安徽二模)抛物线y2=4x的准线与x轴相交于点P,过点P作斜率k(k>0)的直线交抛物线于A,B两点,F为抛物线的焦点,若|FA|=3|FB|,则直线AB的斜率k=()A.B.C.D.12.(2016•湖南模拟)若双曲线﹣=1的一条渐近线过点(2,3),则此双曲线的离心率为()A.2 B.C.D.13.(2016•河南模拟)已知双曲线C:﹣=1(a>0,b>0)的右焦点F与虚轴的两个端点构成的三角形为等边三角形,则双曲线C的渐近线方程为()A.x±y=0 B.x±y=0 C.x±y=0 D.x±y=014.(2016•和平区四模)已知双曲线﹣y2=1的渐近线上的一点A到其右焦点F的距离等于2,抛物线y2=2px(p>0)过点A,则该抛物线的方程为()A.y2=2x B.y2=x C.y2=x D.y2=x15.(2014•广西)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=116.(2015•天津)已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=117.(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P 是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()18.(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6 D.419.(2015•陕西)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)20.(2016•淮南一模)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P 是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.21.(2014•四川二模)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C. D.1222.(2015•天津)已知双曲线﹣=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x﹣2)2+y2=3相切,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=123.(2015•重庆)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为()A.± B.±C.±1 D.±24.(2015•湖南)若双曲线﹣=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为()A.B.C.D.25.(2015•青羊区校级模拟)点F1,F2为椭圆+=1(a>b>0)的左右焦点,若椭圆上存在点A使△AF1F2为正三角形,那么椭圆的离心率为()A.B.C.D.﹣126.(2014•邯郸一模)椭圆=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的()A.7倍B.5倍C.4倍D.3倍27.(2015•江西校级一模)已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为()A.+=1 B.+=1 C.+=1 D.+=128.(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=129.(2015•江西二模)椭圆的两顶点为A(a,0),B(0,b),且左焦点为F,△FAB是以角B为直角的直角三角形,则椭圆的离心率e为()A.B.C.D.30.(2016•南阳校级三模)已知椭圆C:=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为()A.B.C.D.31.(2015•福建)若双曲线E:=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于()A.11 B.9 C.5 D.332.(2016•红桥区模拟)焦点在y轴上,焦距等于4,离心率等于的椭圆的标准方程是()A.B.C.D.33.(2015•河北区模拟)若焦点在x轴上的椭圆+=1的离心率是,则m等于()A.B.C.D.34.(2014•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1二.填空题(共2小题)35.(2014•辽宁)已知椭圆C:+=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=______.36.(2015•河北)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为______.三.解答题(共1小题)37.(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.圆锥曲线(文科)的高中数学组卷参考答案与试题解析一.选择题(共34小题)1.(2016•济宁三模)在平面直角坐标系xOy中,抛物线y2=﹣2px(p>0)的焦点F与双曲线x2﹣8y2=8的左焦点重合,点A在抛物线上,且|AF|=6,若P是抛物线准线上一动点,则|PO|+|PA|的最小值为()A.3 B.4C.3D.3【解答】解:双曲线的标准方程为,∴双曲线的左焦点为(﹣3,0),即F(﹣3,0).∴抛物线的方程为y2=﹣12x,抛物线的准线方程为x=3,∵|AF|=6,∴A到准线的距离为6,∴A点横坐标为﹣3,不妨设A在第二象限,则A(﹣3,6).设O关于抛物线的准线的对称点为B(6,0),连结AB,则|PO|=|PB|,∴|PO|+|PA|的最小值为|AB|.由勾股定理得|AB|===3.故选:D.2.(2016•九江二模)抛物线C:y2=4x的焦点为F,点P为抛物线上位于第一象限的点,过点P作C的准线的垂线,垂足为M,若在方向上的投影为,则△FPM的外接圆的方程为()A.(x﹣1)2+(y﹣1)2=1 B.(x﹣1)2+(y﹣2)2=4 C.x2+(y﹣2)2=5 D.x2+(y﹣1)2=2【解答】解:抛物线C:y2=4x的焦点为F(1,0),准线方程为x=﹣1,由抛物线的定义可得|PF|=|PM|,即△PMF为等腰三角形,P在MF上的投影为中点,由在方向上的投影为,可得|MF|=2,设P(,m),可得M(﹣1,m),即有=2,解得m=2,即有P(1,2),M(﹣1,2),三角形PFM为等腰直角三角形,∠MPF为直角,三角形PFM的外接圆的圆心为MF的中点(0,1),半径为,可得圆的半径为x2+(y﹣1)2=2,故选:D.3.(2016•锦州一模)已知⊙M的圆心在抛物线x2=4y上,且⊙M与y轴及抛物线的准线都相切,则⊙M的方程是()A.x2+y2±4x﹣2y+1=0 B.x2+y2±4x﹣2y﹣1=0C.x2+y2±4x﹣2y+4=0 D.x2+y2±4x﹣2y﹣4=0【解答】解:设圆的方程为(x﹣t)2+(y﹣)2=t2,抛物线方程为x2=4y,∴准线方程为y=﹣1,∵圆与抛物线的准线方程相切,故圆心到准线的距离与半径相等,故|1+|=|t|,求得t=±2,∴圆的方程为(x±2)2+(y﹣1)2=4,即x2+y2±4x﹣2y+1=0,故选:A.4.(2016•呼和浩特二模)已知点A(0,2),抛物线C:y2=mx(m>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则三角形OFN 的面积为()A.2 B.2C.4 D.2【解答】解:抛物线C:y2=mx的焦点F(,0),设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,由|FM|:|MN|=1:,可得|KM|:|MN|=1:,则|KN|:|KM|=2:1,k FN==﹣,又k FN=﹣=﹣2即有=2,求得m=4,则三角形OFN的面积为•y N•|OF|=×4×1=2.故选:A.5.(2015•泉州模拟)P为曲线C:x2=2py(p>0)上任意一点,O为坐标原点,则线段PO 的中点M的轨迹方程是()A.x2=py(x≠0)B.y2=px(y≠0)C.x2=4py(x≠0)D.y2=4px(y≠0)【解答】解:设M(x,y),P(x1,y1),则x1=2x,y1=2y∵P为曲线C:x2=2py(p>0)上任意一点,∴(2x)2=2p•2y,整理得:x2=py.∴线段PO的中点M的轨迹方程是x2=py(x≠0).故选:A.6.(2016•中山市校级模拟)过点P(4,﹣3)作抛物线y=x2的两切线,切点分别为A,B,则直线AB的方程为()A.2x﹣y+3=0 B.2x+y+3=0 C.2x﹣y﹣3=0 D.2x+y﹣3=0【解答】解:设切点为A(x1,y1),B(x2,y2),又y'=x,则切线PA的方程为:y﹣y1=x1(x﹣x1),即y=x1x﹣y1,切线PB的方程为:y﹣y2=x2(x﹣x2)即y=x2x﹣y2,由P(4,﹣3)是PA、PB交点可知:﹣3=2x1﹣y1,﹣3=2x2﹣y2,由两点确定一条直线,可得过A、B的直线方程为﹣3=2x﹣y,即2x﹣y+3=0.故选:A.7.(2016•重庆校级模拟)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若∠AMB=90°,则k=()A.B.C.D.2【解答】解:抛物线焦点F(2,0),设直线AB的方程为y=k(x﹣2),联立方程组,消元得k2x﹣(4k2+8)x+4k2=0.设A(x1,y1),B(x2,y2),则x1+x2=4+,x1x2=4.∴y1+y2=k(x1+x2)﹣4k=,y1y2=﹣16.∵∠AMB=90°,∴k AM•k BM=﹣1,即.∴y1y2﹣2(y1+y2)+4+x1x2+2(x1+x2)+4=0.∴﹣16﹣+4+4+2(4+)+4=0,整理得:k2﹣4k+4=0,解得k=2.故选:D.8.(2016•沧州模拟)抛物线y2=mx(m>0)的焦点为F,抛物线的弦AB经过点F,并且以AB为直径的圆与直线x=﹣3相切于点M(﹣3,6),则线段AB的长为()A.12 B.16 C.18 D.24【解答】解:依题意可得直线x=﹣3是抛物线的准线,故m=2p=12.即抛物线方程为y2=12x.又可得线段AB的中点纵坐标为6.并且F(3,0).设直线AB的方程为y=k(x﹣3),则.∴,∴k=1.从而求得|AB|==24.故选:D.9.(2016•河南模拟)若抛物线y2=2px的焦点与椭圆+=1的左焦点重合,则抛物线y2=2px的准线方程为()A.x=4 B.x=﹣2 C.x=﹣4 D.x=2【解答】解:由题意椭圆+=1,故它的左焦点坐标是(﹣2,0),又y2=2px的焦点与椭圆+=1的左焦点重合,故﹣=2得p=﹣4,∴抛物线的准线方程为x=2.故选:D.10.(2016•哈尔滨校级二模)已知F是抛物线x2=4y的焦点,直线y=kx+1与该抛物线相交于A,B两点,且在第一象限的交点为点A,若|AF|=3|FB|,则k的值是()A.B.C.D.【解答】解:设抛物线C:x2=4y的准线为l:y=﹣1,直线y=kx+1(k>0)恒过定点F(0,1)过A、B分别作AP⊥l于P,BQ⊥l于Q,BC⊥AP,垂足为C,由|AF|=3|FB|=3m,则|AP|=3|BQ|=3m,∴|AC|=2m,|AB|=4m,|BC|=2m∴k=,故选B.11.(2016•安徽二模)抛物线y2=4x的准线与x轴相交于点P,过点P作斜率k(k>0)的直线交抛物线于A,B两点,F为抛物线的焦点,若|FA|=3|FB|,则直线AB的斜率k=()A.B.C.D.【解答】解:设A(x1,y1),B(x2,y2),由已知|FA|=3|FB|,得:x1+1=3(x2+1),即x1=3x2+2,①∵P(﹣1,0),则AB的方程:y=kx+k,与y2=4x联立,得:k2x2+(2k2﹣4)x+k2=0,则x1x2=1,②由①②得x2=3,则A(,),∴k==,故选:B.12.(2016•湖南模拟)若双曲线﹣=1的一条渐近线过点(2,3),则此双曲线的离心率为()A.2 B.C.D.【解答】解:双曲线的渐近线方程为y=±x,∵双曲线﹣=1的一条渐近线过点(2,3),∴(2,3)在y=x上,即2×=3,即=,则双曲线的离心率e=====,故选:D13.(2016•河南模拟)已知双曲线C:﹣=1(a>0,b>0)的右焦点F与虚轴的两个端点构成的三角形为等边三角形,则双曲线C的渐近线方程为()A.x±y=0 B.x±y=0 C.x±y=0 D.x±y=0【解答】解:∵右焦点F与虚轴的两个端点构成的三角形为等边三角形,∴tan∠OFB1=tan30°=,即,则b2=c2=(a2+b2),即a2=2b2,则a=b,即双曲线的渐近线方程为y==±x,则x±y=0,故选:C.14.(2016•和平区四模)已知双曲线﹣y2=1的渐近线上的一点A到其右焦点F的距离等于2,抛物线y2=2px(p>0)过点A,则该抛物线的方程为()A.y2=2x B.y2=x C.y2=x D.y2=x【解答】解:∵双曲线﹣y2=1的渐近线方程为y=±x,其中a=,b=1,则c=2,F点坐标为(2,0),设A点横坐标为x,(x≠0),则y=±x,由|AF|=2得=2,即x2﹣4x=0,得x=3,∴y=±,代入y2=2px得3=6p,即p=,所以,y2=x故选:B.15.(2014•广西)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.16.(2015•天津)已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【解答】解:由题意,=,∵抛物线y2=4x的准线方程为x=﹣,双曲线的一个焦点在抛物线y2=4x的准线上,∴c=,∴a2+b2=c2=7,∴a=2,b=,∴双曲线的方程为.故选:D.17.(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P 是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选D.18.(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6 D.4【解答】解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A=2,y B=﹣2,∴|AB|=4.故选:D.19.(2015•陕西)已知抛物线y2=2px(p>0)的准线经过点(﹣1,1),则该抛物线焦点坐标为()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【解答】解:∵抛物线y2=2px(p>0)的准线经过点(﹣1,1),∴=1,∴该抛物线焦点坐标为(1,0).故选:B.20.(2016•淮南一模)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P 是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.【解答】解:设|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选A.21.(2014•四川二模)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C. D.12【解答】解:由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长为4a=,故选C22.(2015•天津)已知双曲线﹣=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x﹣2)2+y2=3相切,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣y2=1 D.x2﹣=1【解答】解:双曲线的渐近线方程为bx±ay=0,∵双曲线的渐近线与圆(x﹣2)2+y2=3相切,∴,∴b=a,∵焦点为F(2,0),∴a2+b2=4,∴a=1,b=,∴双曲线的方程为x2﹣=1.故选:D.23.(2015•重庆)设双曲线=1(a>0,b>0)的右焦点是F,左、右顶点分别是A1,A2,过F做A1A2的垂线与双曲线交于B,C两点,若A1B⊥A2C,则该双曲线的渐近线的斜率为()A.± B.±C.±1 D.±【解答】解:由题意,A1(﹣a,0),A2(a,0),B(c,),C(c,﹣),∵A1B⊥A2C,∴,∴a=b,∴双曲线的渐近线的斜率为±1.故选:C.24.(2015•湖南)若双曲线﹣=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为()A.B.C.D.【解答】解:双曲线﹣=1的一条渐近线经过点(3,﹣4),可得3b=4a,即9(c2﹣a2)=16a2,解得=.故选:D.25.(2015•青羊区校级模拟)点F1,F2为椭圆+=1(a>b>0)的左右焦点,若椭圆上存在点A使△AF1F2为正三角形,那么椭圆的离心率为()A.B.C.D.﹣1【解答】解:∵点F1,F2为椭圆+=1(a>b>0)的左右焦点,椭圆上存在点A使△AF1F2为正三角形,∴a=2c,∴椭圆的离心率为e==.故选:B.26.(2014•邯郸一模)椭圆=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的()A.7倍B.5倍C.4倍D.3倍【解答】解:由题设知F1(﹣3,0),F2(3,0),如图,设P点的坐标是(x,y),线段PF1的中点坐标为(,)∵线段PF1的中点M在y轴上,∴=0∴x=3将P(3,y)代入椭圆=1,得到y2=.∴|PF1|=,|PF2|=.∴.故选A.27.(2015•江西校级一模)已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为()A.+=1 B.+=1 C.+=1 D.+=1【解答】解:由题意设椭圆G的方程为(a>b>0),因为椭圆G上一点到其两个焦点的距离之和为12,所以a=6,由离心率为得,所以,解得c=,所以b2=a2﹣c2=36﹣27=9,则椭圆G的方程为,故选:A.28.(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.29.(2015•江西二模)椭圆的两顶点为A(a,0),B(0,b),且左焦点为F,△FAB是以角B为直角的直角三角形,则椭圆的离心率e为()A.B.C.D.【解答】解:依题意可知点F(﹣c,0)直线AB斜率为=,直线BF的斜率为=∵∠FBA=90°,∴()•=﹣=﹣1整理得c2+ac﹣a2=0,即()2+﹣1=0,即e2+e﹣1=0解得e=或﹣∵0<e<1∴e=,故选C.30.(2016•南阳校级三模)已知椭圆C:=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF,若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为()A.B.C.D.【解答】解:如图所示,在△AFB中,|AB|=10,|BF|=8,cos∠ABF=,由余弦定理得|AF|2=|AB|2+|BF|2﹣2|AB||BF|cos∠ABF=100+64﹣2×10×8×=36,∴|AF|=6,∠BFA=90°,设F′为椭圆的右焦点,连接BF′,AF′.根据对称性可得四边形AFBF′是矩形.∴|BF′|=6,|FF′|=10.∴2a=8+6,2c=10,解得a=7,c=5.∴e==.故选B.31.(2015•福建)若双曲线E:=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于()A.11 B.9 C.5 D.3【解答】解:由题意,双曲线E:=1中a=3.∵|PF1|=3,∴P在双曲线的左支上,∴由双曲线的定义可得|PF2|﹣|PF1|=6,∴|PF2|=9.故选:B.32.(2016•红桥区模拟)焦点在y轴上,焦距等于4,离心率等于的椭圆的标准方程是()A.B.C.D.【解答】解:焦点在y轴上,焦距等于4,离心率等于,可得c=2,a=2,b=2,所求的椭圆方程为:.故选:C.33.(2015•河北区模拟)若焦点在x轴上的椭圆+=1的离心率是,则m等于()A.B.C.D.【解答】解:由题意,则,化简后得m=1.5,故选A34.(2014•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.二.填空题(共2小题)35.(2014•辽宁)已知椭圆C:+=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=12.【解答】解:如图:MN的中点为Q,易得,,∵Q在椭圆C上,∴|QF1|+|QF2|=2a=6,∴|AN|+|BN|=12.故答案为:12.36.(2015•河北)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.三.解答题(共1小题)37.(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,),且A,C关于x轴对称,∴C(,﹣),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.。