九年级数学上册期末试卷2

合集下载

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。

九年级数学上期末复习第二章简单事件的概率试卷(浙教版含解析)

九年级数学上期末复习第二章简单事件的概率试卷(浙教版含解析)

期末复习:浙教版九年级数学学上册第二章简单事件的概率一、单选题(共10题;共30分)1.抛掷一枚均匀的硬币一次,出现正面朝上的概率是()A. B. C. D. 12.从1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是()A. B. C. D.3.某电视台体育直播节目从接到的5000条短信(每人只许发一条短信)中,抽取10名“幸运观众”.小明给此直播节目发了一条短信,他成为“幸运观众”的概率是()A. B. C. D.4.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A. B. C. 1 D.5.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A. B. C. D.6.甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是()A. 游戏的规则由甲方确定B. 游戏的规则由乙方确定C. 游戏的规则由甲乙双方商定D. 游戏双方要各有50%赢的机会7.今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为()A. B. C. D.8.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是( )A. B. C. D.9.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A. 此规则有利于小玲B. 此规则有利于小丽C. 此规则对两人是公平的D. 无法判断10.小亮和小刚按如下规则做游戏:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.从概率的角度分析,游戏者事先选择()获胜的可能性较大.A. 5B. 6C. 7D. 8二、填空题(共10题;共30分)11.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是31%和42%,则这个水塘里大约有鲢鱼________尾.12.一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是________.13.某厂生产了1200件衬衫,根据以往经验其合格率为0.95左右,则这1200件衬衫中次品(不合格)的件数大约为________.14.某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为________ 个.15.一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到________球的可能性最大.16.某口袋中有红色、黄色、蓝色玻璃共60个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________ 个.17.一个不透明的袋子中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入20个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是,则袋中红球约为 ________个.18.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.19.口袋中装有除颜色外完全相同的红球3个,白球n个,如果从袋中任意摸出1个球,摸出红球的概率是,那么n= ________个.20.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是________.三、解答题(共8题;共60分)21.现有小莉,小罗,小强三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答)22.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.23.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.24.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从,两个景点中任意选择一个游玩,下午从、、三个景点中任意选择一个游玩,用列表或画树状图的方法列出所有等可能的结果.并求小明恰好选中景点和的概率.25.一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.26.甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.27.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?28.小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?答案解析部分一、单选题1.【答案】A【考点】概率公式【解析】【分析】列举出所有情况,看硬币正面朝上的情况数占总情况数的多少即可.【解答】共抛掷一枚均匀的硬币一次,有正反两种情况,有一次硬币正面朝上,所以概率为.故选A.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到至少有一次硬币正面朝上的情况数是解决本题的关键.2.【答案】B【考点】概率公式【解析】【分析】让是3的倍数的数的个数除以数的总个数即为所求的概率.【解答】∵1、2、3、4、5、6、7、8、9、10这十个数中,3的倍数的有3、6、9共3个数,∴取出的数是3的倍数的概率是:.故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.【答案】B【考点】概率公式【解析】【分析】5000条短信有5000名不同的观众发出,每个观众被抽到的机会是相同的,让“幸运观众”数除以短信总条数即为所求概率.【解答】抽取一名幸运观众有5000个结果,小明成为“幸运观众”只要成为所抽的10名中的一个就可以,因而有10个可能结果,所以P(小明成为“幸运观众)==.故选B【点评】本题的解决关键是理解列举法求概率的条件,事件有有限个结果,每个结果出现的机会相等.用到的知识点为:概率=所求情况数与总情况数之比.4.【答案】A【考点】概率公式【解析】【分析】概率的求法:概率=所求情况数与总情况数之比.因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选A.【点评】本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.5.【答案】C【考点】概率公式【解析】【分析】∵共8球在袋中,其中5个红球,∴其概率为,故选C.6.【答案】D【考点】游戏公平性【解析】【解答】解:根据游戏是否公平不在于谁定游戏规则,游戏共是否公平的取决于游戏双方要各有50%赢的机会,∴A.游戏的规则由甲方确定,故此选项错误;B.游戏的规则由乙方确定,故此选项错误;C.游戏的规则由甲乙双方商定,故此选项错误;D.游戏双方要各有50%赢的机会,故此选项正确.故选:D.【分析】根据游戏共是否公平的取决于游戏双方要各有50%赢的机会,游戏是否公平不在于谁定游戏规则,分别判定即可.7.【答案】D【考点】概率公式【解析】【解答】解:因为有36000名学生要抽1200名学生,所以被抽中的概率为:.故选D.8.【答案】C【考点】概率公式【解析】【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。

北师大版九年级上册数学期末考试试卷带答案

北师大版九年级上册数学期末考试试卷带答案

北师大版九年级上册数学期末考试试题一、单选题1.一元二次方程x(x-3)=4的解是()A.1B.4C.-1或4D.1或-42.一个由5个相同的正方体组成的立体图形,如图所示,则这个立体图形的左视图是A.B.C.D.3.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为13的位似图形△OCD,则点C坐标A.(﹣1,﹣1)B.(﹣43,﹣1)C.(﹣1,﹣43)D.(﹣2,﹣1)4.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cosA的值是()A.45B.35C.54D.435.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC =9,则BF的长为()A.4B.C.4.5D.56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.如图,在直角三角形ABC 中,90ACB ∠=︒,3AC =,4BC =,点M 是边AB 上一点(不与点A ,B 重合),作ME AC ⊥于点E ,MF BC ⊥于点F ,若点P 是EF 的中点,则CP 的最小值是()A .1.2B .1.5C .2.4D .2.58.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .49.如图,正方形ABCD 的边长为2,E 为对角线AC 上一动点,90EDP ∠=︒,DE DP =,当点E 从点A 运动到点C 的过程中,EPC ∆的周长的最小值为()A .222B .42C .324D .22310.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=11.如图,某次课外实践活动中,小红在地面点B 处利用标杆FC 测量一旗杆ED 的高度.小红眼睛点A 与标杆顶端点F ,旗杆顶端点E 在同一直线上,点B ,C ,D 也在同一条直线上.已知小红眼睛到地面距离 1.6AB =米,标杆高 3.8FC =米,且1BC =米,7CD =米,则旗杆ED 的高度为()A .15.4米B .17米C .17.6米D .19.2米12.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是A .B .C .D .二、填空题13.一元二次方程220x x -+=的解是______.14.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是_____.15.如图,Rt △ABC 中,∠ACD=90°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F .若S △AEG=13S 四边形EBCG ,则CF AD=_________.16.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.三、解答题17.解方程(1)2230x x --=(公式法);(2)23740x x -+=(配方法);(3)22(2)(23)x x -=+(因式分解法);(4)2(1)22x x -=-(适当的方法).18.现有5个质地、大小完全相同的小球上分别标有数字–1,–2,1,2,3.先将标有数字–2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随机取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.19.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t≤6),那么,当t 为何值时,△POQ 与△AOB 相似?20.如图,△ABC 是等边三角形,点D 在AC 上,连接BD 并延长,与∠ACF 的角平分线交于点E .(1)求证:△ABD ∽△CED ;(2)若AB=8,AD=2CD ,求CE 的长.21.如图,已知反比例函数y 1=1k x与一次函数y 2=k 2x+b 的图象交于点A (1,8)、B (﹣4,m ).(1)求一次函数和反比例函数的表达式;(2)求△AOB 的面积;(3)若y 1<y 2,直接写出x 的取值范围.22.如图,在菱形ABCD ,对角线AC,与BD 交于点O,过点C 作BD 的平行线,过点D 作AC 的平行线,两直线交于点E,(1)求证:四边形OCED 是矩形;(2)若CE=1,菱形ABCD的周长为ABCD 的面积.23.如图,反比例函数ky x(k≠0)的图象经过点A (1,2)和B (2,n ),(1)以原点O 为位似中心画出△A1B1O ,使11AB A B =12;(2)在y 轴上是否存在点P ,使得PA+PB 的值最小?若存在,求出P 的坐标;若不存在,请说明理由.24.某品牌童装平均每天可售出40件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利2400元,那么每件童装应降价多少元?25.如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:AG =CG ;(2)求证:△AEG ∽△FAG ;(3)若GE•GF =9,求CG 的长.参考答案1.C 2.A 3.B 4.B 5.A 6.C 7.A 8.A 9.A 10.D 11.D 12.C13.120,2x x ==【分析】利用因式分解法解一元二次方程即可得.【详解】解:220x x -+=,(2)0x x -+=,0,20x x =-+=,则120,2x x ==,故答案为:120,2x x ==.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题关键.14.6y x=-【分析】根据反比例函数的意义待定系数法求解析式.【详解】解:∵反比例函数的图象过点A(-3,2),∴6k =-∴这个反比例函数的表达式是6y x=-故答案为:6y x=-15.12【详解】解:∵EF BD∥∴∠AEG=∠ABC ,∠AGE=∠ACB ,∴△AEG ∽△ABC ,且S △AEG=13S 四边形EBCG∴S △AEG :S △ABC=1:4,∴AG :AC=1:2,又EF BD∥∴∠AGF=∠ACD ,∠AFG=∠ADC ,∴△AGF ∽△ACD ,且相似比为1:2,∴S △AFG :S △ACD=1:4,∴S △AFG=13S 四边形FDCGS △AFG=14S △ADC ∵AF :AD=GF :CD=AG :AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF :AD=1:2.故答案为:1216.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC ∴=ADE ABC∴ 21(4ADE ABC S DE S BC ∴==△△,即4ABCADES S =△△又12ADES =1422ABCS ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.17.(1)123,1x x ==-(2)124,13x x ==(3)121,53x x =-=-(4)123,1x x ==【分析】(1)利用公式法求解即可;(2)利用配方法求解即可;(3)利用因式分解法求解即可;(4)利用因式分解法求解即可.(1)解:∵2230x x --=,∴1a =,2b =-,3c =-,∴()()22=42413160b ac ∆-=--⨯⨯-=>,∴242x ±==,∴13x =,21x =-;(2)解:∵23740x x -+=,∴2374x x -=-,∴27433x x -=-,∴22277473636x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭,∴271636x ⎛⎫-= ⎪⎝⎭,∴7166x -=±,∴143x =,21x =;(3)解:∵22(2)(23)x x -=+∴22(2)(23)0x x -+-=,∴()(223)2230x x x x -++---=,∴()()3150x x ++=,∴113x =-,25x =-;(4)解:∵2(1)22x x -=-,∴()2(1)210x x --=-,∴()(12)10x x ---=,∴13x =,21x =.18.(1)详见解析;(2)13【分析】(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.【详解】解:(1)列表得:-12-2-30103325则共有6种结果,且它们的可能性相同;(2)∵取出的两个小球上的数字之和等于0的有:(1,-1),(-2,2),∴两个小球上的数字之和等于0的概率为:2163=.19.当t=4或t=2时,△POQ 与△AOB 相似.【详解】试题分析:根据题意可知:OQ=6-t ,OP=t ,然后分OQ OP OB OA =和OQ OP OA OB=两种情况分别求出t 的值.试题解析:解:①若△POQ ∽△AOB 时,=,即=,整理得:12﹣2t=t ,解得:t=4.②若△POQ ∽△BOA 时,=,即=,整理得:6﹣t=2t ,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ 与△AOB 相似.20.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=21.(1)18y x =,y 2=2x+6,过程见解析;(2)15,过程见解析;(3)﹣4<x <0或x >1,过程见解析.【分析】(1)利用待定系数法即可求得结论;(2)设直线AB 与x 轴交于点D ,与y 轴交于点C ,利用直线AB 解析式求得点C ,D 的坐标,用△AOC ,△OCD 和△OBD 的面积之和表示△AOB 的面积即可;(3)利用图象即可确定出x 的取值范围.(1)解:点A (1,8)在反比例函数11ky x =上,∴k 1=1×8=8.∴18y x =.∵点B (﹣4,m )在反比例函数18y x =上,∴﹣4m =8.∴m =﹣2.∴B (﹣4,﹣2).∵点A (1,8)、B (﹣4,﹣2)在一次函数y 2=k 2x+b 的图象上,∴22842k b k b +=⎧⎨-+=-⎩,解得:226k b =⎧⎨=⎩.∴y 2=2x+6.(2)解:设直线AB 与y 轴交于点C,如图,由直线AB:y 2=2x+6,令x =0,则y =6,∴C (0,6).∴OC =6.过点A 作AF ⊥y 轴于点F ,过点B 作BE ⊥y 轴于点E ,∵A (1,8),B (﹣4,﹣2),∴AF =1,BE =4.∴AOBAOC BOC S S S =+△△△11××22OC AF OC BE =+1=6(14)2⨯⨯+=15答:△AOB 的面积是15.(3)解:由图象可知,点A 右侧的部分和点B 与点C 之间的部分y 1<y 2,∴若y 1<y 2,x 的取值范围为:﹣4<x <0或x >1.【点睛】本题是一道反比例函数与一次函数图象的交点问题,主要考查了待定系数法,一次函数图象上点的坐标的特征,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长和利用数形结合的思想方法求得x 的取值范围是解题的关键.22.(1)证明见解析;(2)4.【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥,90COD ︒∴∠=,//,//CE OD DE OC ,所以四边形OCED 是平行四边形,90COD ︒∠= ,∴四边形OCED 是矩形;(2)由(1)知,四边形OCED 是矩形,则CE=OD=1,∵四边形ABCD 是菱形,∴AB=AD=CD=BC ,∵菱形ABCD 的周长为CD ∴2OC∴==,24,22 AC OC BD OD==== ,∴菱形ABCD的面积为:11424 22AC BD⋅=⨯⨯=.23.(1)作图见解析;(2)存在,P(0,5 3).【分析】(1)有两种情形,分别画出图象即可;(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.求出直线BA′的解析式即可解决问题.【详解】(1)△A1B1O的图象如图所示.(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.∵点A(1,2)在反比例函数y=kx上,∴k=2,∴B (2,1),∵A′(﹣1,2),设最小BA′的解析式为y=kx+b ,则有221k b k b -+⎧⎨+⎩==,解得1253k b ⎧-⎪⎪⎨⎪⎪⎩==,∴直线BA′的解析式为y=﹣13x+53,∴P (0,53).24.每件童装应降价20元.【分析】设每件童装应降价x 元,再根据题意即可列出关于x 的一元二次方程,解出x ,最后舍去不合题意的解即可.【详解】解:设每件童装应降价x 元,依题意可列方程为(40)(404)2400x x -+=,解得:121020x x ==,,∵要减少库存,∴20x =,答:每件童装应降价20元.【点睛】本题考查一元二次方程的实际应用.根据题意找出等量关系,列出方程是解题关键.25.(1)见解析;(2)见解析;(3)CG =3【分析】(1)根据正方形的性质得到∠ADB =∠CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG ≌△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD ∥CB ,推出∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,利用全等三角形的性质得到∠DAG =∠DCG ,结合图形根据角之间的和差关系∠DAB−∠DAG =∠DCB−∠DCG ,推出∠BCF =∠BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG ∽△FAG ,(3)根据相似三角形的性质进行求解即可.【详解】(1)证明:∵BD 是正方形ABCD 的对角线,∴∠ADB =∠CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CDADG CDG DG DG=⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△CDG (SAS ),∴AG =CG ;(2)解:∵四边形ABCD 是正方形,∴AD ∥CB ,∴∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,∴∠DAG =∠DCG ,∴∠DAB−∠DAG =∠DCB−∠DCG ,即∠BCF =∠BAG ,∴∠EAG =∠F ,又∠EGA =∠AGF ,∴△AEG ∽△FAG ;(3)∵△AEG ∽△FAG ,∴GEGAGA GF =,即GA 2=GE•GF ,∴GA =3或GA =−3(舍去),根据(1)中的结论AG =CG ,∴CG =3.。

苏科版九年级上期末数学试卷2(含答案及解析)

苏科版九年级上期末数学试卷2(含答案及解析)

苏科版九年级(上)期末数学试卷一、选择题(本大题共有6 小题,每小题3 分,共18 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3 分)(cos30°)﹣1 的值为()A.2B. C.D.2.(3 分)下列说法正确的是()A.三角形的外心一定在三角形的外部B.三角形的内心到三个顶点的距离相等C.外心和内心重合的三角形一定是等边三角形D.直角三角形内心到两锐角顶点连线的夹角为125°3.(3 分)下列说法:①概率为0 的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数有关;④在抛掷图钉的试验中针尖朝上的概率为,表示3 次这样的试验必有1 次针尖朝上.其中正确的是()A.①②B.②③C.①③D.①④4.(3 分)如图1,在△ABC 中,AB=BC,AC=m,D,E 分别是AB,BC 边的中点,点P 为AC 边上的一个动点,连接PD,PB,PE.设AP=x,图1 中某条线段长为y,若表示y 与x 的函数关系的图象大致如图2 所示,则这条线段可能是()A.PD B.PB C.PE D.PC5.(3 分)△ABC 中,∠C=90°,内切圆与AB 相切于点D,AD=2,BD=3,则△ABC 的面积为()A.3B.6 C.12 D.无法确定6.(3 分)若二次函数y=﹣x2+px+q 的图象经过A(1+m,n)、B(0,y1)、C(3﹣m,n)、D(m2﹣2m+5,y2)、E(2m﹣m2﹣5,y3),则y1、y2、y3 的大小关系是()A.y3<y2≤y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y1二、填空题(本大题共有10 小题,每小题 3 分,共30 分.请把答案直接填写在答题卡相应位置上)7.(3 分)二次函数y=2x2+4x+1 图象的顶点坐标为.8.(3 分)在Rt△ABC 中,∠C=90°,AC=6,BC=8,则sin A 的值为.9.(3 分)数据3000,2998,3002,2999,3001 的方差为.10.(3 分)某人感染了某种病毒,经过两轮传染共感染了121 人.设该病毒一人平均每轮传染x 人,则关于x 的方程为.11.(3 分)一元二次方程有一个根为2﹣,二次项系数为1,且一次项系数和常数项都是非0 的有理数,这个方程可以是.12.(3 分)若x1、x2 为关于x 的方程x2+2mx+m=0(m≠0)的两个实数根,则+的值为.13.(3 分)A、B 为⊙O 上两点,C 为⊙O 上一点(与A、B 不重合),若∠ACB=100°,则∠AOB 的度数为°.14.(3 分)如图,⊙O 与矩形ABCD 的边AB、CD 分别相交于点E、F、G、H,若AE+CH =6,则BG+DF 为.15.(3 分)如图,半圆O 的直径AB=18,C 为半圆O 上一动点,∠CAB=a,点G 为△ABC 的重心.则GO 的长为.16.(3 分)用正五边形钢板制作一个边框总长为40cm 的五角星(如图),则正五边形的边长为cm(保留根号).三、解答题17.(12 分)(1)计算:+sin60°﹣tan45°;(2)解方程:2(x﹣1)2=(x﹣1)18.(8 分)已知:关于x 的方程x2﹣(m+1)x+m2﹣1=0,根据下列条件求m 的值.(1)方程有一个根为1;(2)方程两个实数根的和与积相等.19.(8 分)我市有2000 名学生参加了2018 年全省八年级数学学业水平测试.其中有这样一题:如图,分别以线段BD 的端点B、D 为圆心,相同的长为半径画弧,两弧相交于A、C 两点,连接AB、AD、CB、CD.若AB=2,BD=2,求四边形ABCD 的面积.统计我市学生解答和得分情况,并制作如下图表:解答类型及得分情况表(1)求学业水平测试中四边形ABCD 的面积;(2)请你补全条形统计图;(3)我市该题的平均得分为多少?(4)我市得3 分以上的人数为多少?20.(8 分)证明相似三角形对应角平分线的比等于相似比.已知:如图,△ABC∽△A′B′C′,相似比为k,.求证:.(先填空,再证明)证明:21.(10 分)如图,⊙O 的半径为2a,A、B 为⊙O 上两点,C 为⊙O 内一点,AC⊥BC,AC =a,BC=a.(1)判断点O、C、B 的位置关系;(2)求图中阴影部分的面积.22.(10 分)一次函数y=3x+6 的图象与x 轴相交于点A,与y 轴相交于点B,二次函数y=ax2+x+b 图象经过点A、B,与x 轴相交于另一点C.(1)求a、b 的值;(2)在直角坐标系中画出该二次函数的图象;(3)求∠ABC 的度数.23.(10 分)在Rt△ABC 中,∠C=90°.(1)如图①,点O 在斜边AB 上,以点O 为圆心,OB 长为半径的圆交AB 于点D,交BC 于点E,与边AC 相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB 上;②经过点B;③与边AC 相切.(尺规作图,只保留作图痕迹,不要求写出作法)24.(10 分)某软件开发公司开发了A、B 两种软件,每种软件成本均为1400 元,售价分别为2000 元、1800 元,这两种软件每天的销售额共为112000 元,总利润为28000 元.(1)该店每天销售这两种软件共多少个?(2)根据市场行情,公司拟对A 种软件降价销售,同时提高B 种软件价格.此时发现,A 种软件每降50 元可多卖1 件,B 种软件每提高50 元就少卖1 件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?25.(12 分)定义:点P 在△ABC 的边上,且与△ABC 的顶点不重合.若满足△P AB、△ PBC、△P AC 至少有一个三角形与△ABC 相似(但不全等),则称点P 为△ABC 的自相似点.如图①,已知点A、B、C 的坐标分别为(1,0)、(3,0)、(0,1).(1)若点P 的坐标为(2,0),求证:点P 是△ABC 的自相似点;(2)求除点(2,0)外△ABC 所有自相似点的坐标;(3)如图②,过点B 作DB⊥BC 交直线AC 于点D,在直线AC 上是否存在点G,使△ GBD 与△GBC 有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.26.(14 分)已知:二次函数y1=﹣(x+m)2+m2﹣3、y2=a(x﹣m﹣1)2+m2+2m﹣2 图象的顶点分别为A、B(其中m、a 为实数),点C 的坐标为(0,﹣3).(1)试判断函数y1 的图象是否经过点C,并说明理由;(2)若m 为任意实数时,函数y2 的图象始终经过点C,求a 的值;(3)在(2)的条件下,存在不唯一的x 值,当x 增大时,函数y1 的值减小且函数y2 的值增大.①直接写出m 的范围;②点P 为x 轴上异于原点O 的任意一点,过点P 作y 轴的平行线,与函数y1、y2 的图象分别相交于点D、E.试说明的值只与点P 的位置有关.苏科版九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有6 小题,每小题3 分,共18 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3 分)(cos30°)﹣1 的值为()A.2B. C. D.【解答】解:原式=()﹣1=,故选:D.2.(3 分)下列说法正确的是()A.三角形的外心一定在三角形的外部B.三角形的内心到三个顶点的距离相等C.外心和内心重合的三角形一定是等边三角形D.直角三角形内心到两锐角顶点连线的夹角为125°【解答】解:A、三角形的外心不一定在三角形的外部,错误;B、三角形的内心到三个边的距离相等,错误;C、外心和内心重合的三角形一定是等边三角形,正确;D、直角三角形内心到两锐角顶点连线的夹角为135°,错误;故选:C.3.(3 分)下列说法:①概率为0 的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数有关;④在抛掷图钉的试验中针尖朝上的概率为,表示3 次这样的试验必有1 次针尖朝上.其中正确的是()A.①②B.②③C.①③D.①④【解答】解:①不可能事件发生的概率为0,但是概率为0 的事件不一定是不可能事件,还有可能是检测的手段问题,不能说明该事件是不可能事件,这个和测度论有关,所以①正确;②试验次数越多,某情况发生的频率越接近概率,正确;③事件发生的概率与实验次数有关,错误;④在抛掷图钉的试验中针尖朝上的概率为,是偶然事件,不一定3 次这样的试验必有1 次针尖朝上,故本选项错误;故选:A.4.(3 分)如图1,在△ABC 中,AB=BC,AC=m,D,E 分别是AB,BC 边的中点,点P 为AC 边上的一个动点,连接PD,PB,PE.设AP=x,图1 中某条线段长为y,若表示y 与x 的函数关系的图象大致如图2 所示,则这条线段可能是()A.PD B.PB C.PE D.PC【解答】解:A 错误,观察图2 可知PD 在x=取得最小值.B、错误.观察图2 可知PB 在x=取得最小值.C、正确.观察图2 可知PE 在x=取得最小值.D、错误.观察图2 可知PC 在x=m 取得最小值为0.故选:C.5.(3 分)△ABC 中,∠C=90°,内切圆与AB 相切于点D,AD=2,BD=3,则△ABC 的面积为()A.3B.6 C.12 D.无法确定【解答】解:设△ABC 的内切圆分别与AC、BC 相切于点E、F,CE 的长为x.根据切线长定理,得AE=AD=2,BF=BD=3,CF=CE=x.根据勾股定理,得(x+2)2+(x+3)2=(2+3)2.整理,得x2+5x=6.所以S△ABC=AC•BC=(x+2)(x+3)=(x2+5x+6)=×(6+6)=6.故选:B.6.(3 分)若二次函数y=﹣x2+px+q 的图象经过A(1+m,n)、B(0,y1)、C(3﹣m,n)、D(m2﹣2m+5,y2)、E(2m﹣m2﹣5,y3),则y1、y2、y3 的大小关系是()A.y3<y2≤y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y1【解答】解:∵经过A(1+m,n)、C(3﹣m,n),∴二次函数的对称轴x=,∵m2﹣2m+5=(m﹣1)2+4≥4,2m﹣m2﹣5=﹣(m﹣1)2﹣4≤﹣4,∴(m2﹣2m+5﹣2)﹣[2﹣(2m﹣m2﹣5)]=﹣4<0,∴D 点离对称轴x=2 比E 点离对称轴x=2 近,∴B(0,y1)、D(m2﹣2m+5,y2)、E(2m﹣m2﹣5,y3)与对称轴的距离E 最远,B 最近,∵a=﹣1<0,∴y1≥y2>y3;故选:A.二、填空题(本大题共有10 小题,每小题 3 分,共30 分.请把答案直接填写在答题卡相应位置上)7.(3 分)二次函数y=2x2+4x+1 图象的顶点坐标为(﹣1,﹣1).【解答】解:∵y=2x2+4x+1=2(x2+2x)+1=2[(x+1)2﹣1]+1=2(x+1)2﹣1,∴二次函数的图象的顶点坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1).8.(3 分)在Rt△ABC 中,∠C=90°,AC=6,BC=8,则sin A 的值为.【解答】解:∵∠C=90°,AC=6,BC=8,∴AB==10,∴sin A===;故答案为:.9.(3 分)数据3000,2998,3002,2999,3001 的方差为2.【解答】解:=(3000+2998+3002+2999+3001)=3000,S2=[(3000﹣3000)2+(3000﹣2998)2+(3000﹣3002)2+(3000﹣2999)2+(3000 ﹣3001)2]=×10=2;故答案为:2.10.(3 分)某人感染了某种病毒,经过两轮传染共感染了121 人.设该病毒一人平均每轮传染x 人,则关于x 的方程为(1+x)2=121 .【解答】解:∵1 人患流感,一个人传染x 人,∴第一轮传染x 人,此时患病总人数为1+x;∴第二轮传染的人数为(1+x)x,此时患病总人数为1+x+(1+x)x,∵经过两轮传染后共有121 人患了流感,∴可列方程为:(1+x)2=121.故答案为:(1+x)2=121.11.(3 分)一元二次方程有一个根为2﹣,二次项系数为1,且一次项系数和常数项都是非0 的有理数,这个方程可以是x2﹣4x+1=0 .【解答】解:∵这个一元二次方程的二次项系数是1,∴设一元二次方程为:(x﹣2﹣)(x﹣2+)=0,整理为:x2﹣4x+1=0.故答案为:x2﹣4x+1=0.12.(3 分)若x1、x2 为关于x 的方程x2+2mx+m=0(m≠0)的两个实数根,则+的值为﹣2 .【解答】解:∵x1、x2 为关于x 的方程x2+2mx+m=0(m≠0)的两个实数根,∴x1+x2=﹣2m,x1•x2=m,∴+ ===﹣2.故答案为:﹣2.13.(3 分)A、B 为⊙O 上两点,C 为⊙O 上一点(与A、B 不重合),若∠ACB=100°,则∠AOB 的度数为160 °.【解答】解:如图,在优弧上取一点D,连接AD,BD.∵∠ADB+∠ACB=180°,∴∠ADB=180°﹣∠ACB=180°﹣100°=80°,∴∠AOB=2∠ADB=160°.故答案为160.14.(3 分)如图,⊙O 与矩形ABCD 的边AB、CD 分别相交于点E、F、G、H,若AE+CH =6,则BG+DF 为6 .【解答】解:作OM⊥GH 于M,OM 交EF 于N,如图,∵EF∥GH,∴OM⊥EF,∴EN=FN,GM=HM,易得四边形ABMN 和四边形MNDC 为矩形,∴AN=BM,DN=CM,∴BG+DF=BM﹣GM+DN﹣NF=AN﹣HM+CM﹣EN=AN﹣EN+CM﹣HM=AE+CH=6.故答案为6.15.(3 分)如图,半圆O 的直径AB=18,C 为半圆O 上一动点,∠CAB=a,点G 为△ABC 的重心.则GO 的长为3 .【解答】解:连接OC,∵半圆O 的直径AB=18,∴OC=9,∵点G 为△ABC 的重心,∴OC 经过G,∴GO=OC=3.故答案为:3.16.(3 分)用正五边形钢板制作一个边框总长为40cm 的五角星(如图),则正五边形的边长为2+2cm(保留根号).【解答】解:∵五边形ABCDE 是正五边形,∴五边形ABCDE 为圆内接正五边形,∴====,∴∠BAE==108°,∠HAN=∠AEH=∠BAC=∠DAE=∠ABE=∠BAE=×108°=36°,∴∠EAH=∠BAN=36°+36°=72°,∴∠AHE=180°﹣72°﹣36°=72°,∠ANB=180°﹣72°﹣36°=72°,∴∠EAH=∠EHA=72°,∠ANH=∠AHN=72°,∴AE=HE,∠EAH=∠EHA=∠ANH=∠AHN,∴△AEH∽△AHN,∴=,∵五角星的边框总长为40cm,∴AH=AN=EN==4,HN=HE﹣NE=AE﹣4,∴=,整理得:(AE﹣2)2=20,∴AE=2+2(cm),故答案为:2 +2.三、解答题17.(12 分)(1)计算:+sin60°﹣tan45°;(2)解方程:2(x﹣1)2=(x﹣1)【解答】解:(1)原式=|tan30°﹣1|+﹣1=| ﹣1|+ ﹣1=1﹣+ ﹣1=;(2)∵2(x﹣1)2﹣(x﹣1)=0,∴(x﹣1)(2x﹣2﹣)=0,则x﹣1=0 或2x﹣2﹣=0,解得x=1 或x=.18.(8 分)已知:关于x 的方程x2﹣(m+1)x+m2﹣1=0,根据下列条件求m 的值.(1)方程有一个根为1;(2)方程两个实数根的和与积相等.【解答】解:(1)依题意有1﹣(m+1)+m2﹣1=0,m2﹣m﹣1=0,解得m=;(2)依题意有m+1=m2﹣1,m2﹣m﹣2=0,解得m=﹣1 或2,当m=2 时△<0,方程无实数根,故m=﹣1.19.(8 分)我市有2000 名学生参加了2018 年全省八年级数学学业水平测试.其中有这样一题:如图,分别以线段BD 的端点B、D 为圆心,相同的长为半径画弧,两弧相交于A、C 两点,连接AB、AD、CB、CD.若AB=2,BD=2,求四边形ABCD 的面积.统计我市学生解答和得分情况,并制作如下图表:解答类型及得分情况表3 D 正确计算出AO 的长;E 结论正确,过程不完整;4 F 正确,与参考答案一致;G 用其他方法,完全正确.(1)求学业水平测试中四边形ABCD 的面积;(2)请你补全条形统计图;(3)我市该题的平均得分为多少?(4)我市得3 分以上的人数为多少?【解答】解:(1)连接AC 交BD 于点O;由作图可知AB=BC=CD=DA,∴ABCD 是菱形,∴AC⊥BD,OA=OC,OB=OD=BD=,在Rt△AOB 中,OA==1,∴AC=2OA=2,∴S 菱形=AC•BD=2 ;(2)100﹣1.4﹣6.7﹣9.2﹣28.7﹣10.8﹣8.9=34.3,补全条形统计图如图所示:(3)2×1.4%+3×(6.7%+9.2%)+4×(34.3%+28.7%)=3.025(分)答:我市该题的平均得分为 3.025 分;(4)2000×(6.7%+9.2%+34.3%+28.7%)=1578(人).答:我市得3 分及以上的人数有1578 人.20.(8 分)证明相似三角形对应角平分线的比等于相似比.已知:如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是△ABC 和△A′B′C′的角平分线.求证:=k.(先填空,再证明)证明:【解答】解:已知:如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是△ ABC 和△A′B′C′的角平分线.求证:=k.(先填空,再证明)证明:∵△ABC∽△A′B′C′,∴∠B=∠B′,∠BAC=∠B′A′C′,∵AD、A′D′分别是△ABC 和△A′B′C′的角平分线,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,∴△ABD∽△A′B′D′,∴==k.故答案为:AD、A′D′分别是△ABC 和△A′B′C′的角平分线;=k.21.(10 分)如图,⊙O 的半径为2a,A、B 为⊙O 上两点,C 为⊙O 内一点,AC⊥BC,AC =a,BC=a.(1)判断点O、C、B 的位置关系;(2)求图中阴影部分的面积.【解答】(1)解:O、C、B 三点在一条直线上.证明:连接OA、OB、OC,在Rt△ABC 中,AB==2a,∴∠ABC=60°,∴OA=OB=AB,∴△OAB 是等边三角形,∴∠ABO=60°,故点C 在线段OB 上,即O、C、B 三点在一条直线上.(2)∵=.S 扇形AOB==.∴阴影部分的面积为=.22.(10 分)一次函数y=3x+6 的图象与x 轴相交于点A,与y 轴相交于点B,二次函数y=ax2+x+b 图象经过点A、B,与x 轴相交于另一点C.(1)求a、b 的值;(2)在直角坐标系中画出该二次函数的图象;(3)求∠ABC 的度数.【解答】解:(1)当x=0,y=3x+6=6,则B(0,6);当y=0 时,3x+6=0,解得x=﹣2,则A(﹣2,0),把B(0,6),A(﹣2,0)代入y=ax2+x+b 得,解得;(2)抛物线解析式为y=﹣x2+x+6,∵y=﹣x2+x+6=﹣(x+ )2+∴抛物线的顶点坐标为(﹣,);当y=0 时,﹣x2+x+6=0,解得x1=﹣2,x2=3,∴抛物线与x 轴的交点坐标为A(﹣2,0),C(3,0),如图,(3)作AH⊥BC 于H,如图,BC==3 ,AB==2 ,∵OB•AC=•AH•BC,∴AH==2 ,在Rt△ABH,sin∠ABH===,∴∠ABH=45°,即∠ABC=45°.23.(10 分)在Rt△ABC 中,∠C=90°.(1)如图①,点O 在斜边AB 上,以点O 为圆心,OB 长为半径的圆交AB 于点D,交BC 于点E,与边AC 相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB 上;②经过点B;③与边AC 相切.(尺规作图,只保留作图痕迹,不要求写出作法)【解答】解:(1)证明:如图①,连接OF,∵AC 是⊙O 的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M 为所求.①作∠ABC 平分线交AC 于F 点,②作BF 的垂直平分线交AB 于M,以MB 为半径作圆,即⊙M 为所求.证明:∵M 在BF 的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF 平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M 与边AC 相切.24.(10 分)某软件开发公司开发了A、B 两种软件,每种软件成本均为1400 元,售价分别为2000 元、1800 元,这两种软件每天的销售额共为112000 元,总利润为28000 元.(1)该店每天销售这两种软件共多少个?(2)根据市场行情,公司拟对A 种软件降价销售,同时提高B 种软件价格.此时发现,A 种软件每降50 元可多卖1 件,B 种软件每提高50 元就少卖1 件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?【解答】解:(1)设每天销售A 种软件x 个,B 种软件y个.由题意得:,解得:,20+40=60.∴该公司每天销售这两种软件共60 个.(2)设这两种软件一天的总利润为W,A 种软件每天多销售m 个,则B 种软件每天少销售m 个.W=(2000﹣1400﹣50m)(20+m)+(1800﹣1400+50m)(40﹣m)=﹣100(m﹣6)2+31600(0≤m≤12).当m=6 时,W 的值最大,且最大值为31600.∴这两种软件一天的总利润最多为31600 元.25.(12 分)定义:点P 在△ABC 的边上,且与△ABC 的顶点不重合.若满足△P AB、△ PBC、△P AC 至少有一个三角形与△ABC 相似(但不全等),则称点P 为△ABC 的自相似点.如图①,已知点A、B、C 的坐标分别为(1,0)、(3,0)、(0,1).(1)若点P 的坐标为(2,0),求证:点P 是△ABC 的自相似点;(2)求除点(2,0)外△ABC 所有自相似点的坐标;(3)如图②,过点B 作DB⊥BC 交直线AC 于点D,在直线AC 上是否存在点G,使△ GBD 与△GBC 有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.【解答】证明:(1)连接CP,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=1,AC=,AB=2,∴=,,∴,且∠PAC=∠CAB,∴△APC∽△CAB,∴点P 是△ABC 的自相似点;(2)由题意可得点P 只能在BC 上,∵A(1,0),B(3,0),C(0,1),∴AC=,BC=,AB=2,如图,若△CP'A∽△CAB,∴∴2=×CP',∴CP'=,∴=,∴点P′(3×,1×),即点P′坐标(,);若△ABP''∽△CBA,∴,∴4=•P''B,∴P''B=,∴,∴点P″(,);(3)存在.当点G 的坐标为(5,﹣4)时,△GBD 与△GBC 公共的自相似点为S(3,﹣2).理由如下:由题意D(,﹣).∵点G、S 在直线AC:y=﹣x+1 上,且在△DBG、△GBC 的边上∵△DBG∽△DSB 且△GBS∽△GCB.由S(3,﹣2)、B(3,0)知BS⊥AB,可得△ABS 为等腰直角三角形.∵SG=|x G﹣x S|=2 ,所以AC•SG=×2 =4,而AB2=4,所以AB2=AC•SG,∵AB=BS,∴=,∵∠BAC=∠BSG=135°,∴△ABC∽△SGB,有∠SBG=∠BCA,∴△GBS∽△GCB,所以点S 是△GBC 的自相似点;由上可得∠CBG=135°,而BD⊥BC,所以∠DBG=45°,即∠DBS+∠GBS=45°,∵∠GBS+∠BGS=45°,∴∠DBS=∠BGS,可得△DBS∽△DGB,故点S 是△GBD 的自相似点.所以S(3,﹣2)是△GBD 与△GBC 公共的自相似点.26.(14 分)已知:二次函数y1=﹣(x+m)2+m2﹣3、y2=a(x﹣m﹣1)2+m2+2m﹣2 图象的顶点分别为A、B(其中m、a 为实数),点C 的坐标为(0,﹣3).(1)试判断函数y1 的图象是否经过点C,并说明理由;(2)若m 为任意实数时,函数y2 的图象始终经过点C,求a 的值;(3)在(2)的条件下,存在不唯一的x 值,当x 增大时,函数y1 的值减小且函数y2 的值增大.①直接写出m 的范围;②点P 为x 轴上异于原点O 的任意一点,过点P 作y 轴的平行线,与函数y1、y2 的图象分别相交于点D、E.试说明的值只与点P 的位置有关.【解答】解:(1)函数y1 的图象经过点C.理由如下:当x=0 时,y1=﹣(0+m)2+m2﹣3=﹣m2+m2﹣3=﹣3,∴函数y1 的图象经过点C.(2)将点C(0,﹣3)代入y2 得:a(0﹣m﹣1)2+m2+2m﹣2=﹣3,∴(a+1)(2m+1)2=0,∵m 为任意实数时,函数y2 的图象始终经过点C,∴(a+1)(2m+1)2=0 的成立与m 无关,∴a+1=0,∴a=﹣1;(3)①m>﹣;②设点P 的坐标为(n,0),则y D=﹣(n+m)2+m2﹣3,y E=﹣(n﹣m﹣1)2+m2+2m ﹣2,∴DE=|y D﹣y E|=|﹣(n+m)2+m2﹣3﹣[﹣(n﹣m﹣1)2+m2+2m﹣2]|=|2n(2m+1)| 由①可知:2m+1>0,∴DE=|2n|(2m+1);过A 点作x 轴的平行线,过B 点作y 轴的平行线,两平行线相交点F,则点F 的坐标为(m+1,m2﹣3),∴AF=|m+1﹣(﹣m)|=2m+1,BF=|m2+2m﹣2﹣(m2﹣3)|=2m+1,∴AB==(2m+1),∴==|n|,故的值只与点P 的位置有关.。

北师大版数学九年级上册期末试卷及参考答案

北师大版数学九年级上册期末试卷及参考答案

北师大版数学九年级上册期末试卷1一、选择题(每题3分,共30分)1.用配方法解方程3x2-6x+2=0,则方程可变形为()A.(x-3)2=23B.3(x-1)2=23C.(3x-1)2=1 D.(x-1)2=132.关于x的一元二次方程(a-1)x2+a2-1=0的一个根是0,则a的值为()A.1 B.-1 C.1或-1 D.1 23.已知反比例函数的图象经过点P(1,-2),则这个函数的图象位于() A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限4.如图是一次数学活动课上制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数(当指针恰好指在分界线上时,不记,重转),则记录的两个数都是正数的概率为()A.18B.16C.14D.125.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()6.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为()A.6 B.8 C.10 D.127.如图,线段AB的两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3)C.(3,1) D.(4,1)8.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A.5 B.4 C.342D.349.如图,两个反比例函数y=1x和y=-2x的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△P AB的面积为()A.3 B.4 C.92D.510.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A.22B.32C.1 D.62二、填空题(每题3分,共30分)11.如图,添加一个条件:______________,使△ADE∽△ACB(写出一个即可).12.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是____________.13.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k 的取值范围是___________________________.14.从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为________.15.若干桶方便面摆放在桌子上,三视图如图所示,则这一堆方便面共有___桶.16.若矩形ABCD的两邻边长分别为一元二次方程x2-7x+12=0的两个实数根,则矩形ABCD的对角线长为________.17.如图,在△ABC中,M,N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM=________.18.如图,在菱形ABCD中,AC交BD于点O,DE⊥BC于点E,连接OE,若∠ABC=140°,则∠OED=________.19.如图,A,B两点在函数y=4x(x>0)的图象上,分别经过A,B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=________.20.如图,正方形ABCD的边长为4,E是BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值是________.三、解答题(21~25题每题8分,其余每题10分,共60分)21.解下列方程:(1)x2-6x-6=0;(2)(x+2)(x+3)=1.22.如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是________.23.关于x的一元二次方程x2-(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.24.现有5个质地、大小完全相同的小球,上面分别标有数-1,-2,1,2,3.先将标有数-2,1,3的小球放在一个不透明的盒子里,再将其余小球放在另一个不透明的盒子里.现分别从这两个盒子里各随机取出一个小球.(1)请利用画树状图或列表的方法表示取出的两个小球上的数之和的所有可能结果;(2)求取出的两个小球上的数之和等于0的概率.25.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售.销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.如果这批旅游纪念品共获利1 250元,则第二周每个旅游纪念品的销售价格为多少元?26.如图,一次函数y1=kx+b和反比例函数y2=mx的图象交于A,B两点.(1)求一次函数y1=kx+b和反比例函数y2=mx的表达式;(2)观察图象,当y1<y2时,x的取值范围为________________;(3)求△OAB的面积.27.如图,在Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B 出发,在BA边上以5 cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4 cm/s的速度向点B匀速运动,运动时间为t s(0<t<2),连接PQ.(1)若△BPQ和△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值.答案一、1.D 2.B 3.C 4.C 5.A 6.C 7.A 8.D 9.C 10.C 二、11.∠ADE =∠ACB (答案不唯一) 12.y =-6x 13.k >12且k ≠1 14.23 15.6 16.5 17.3 18.20° 19.6 20.6三、21.解:(1)移项,得x 2-6x =6,配方,得x 2-6x +9=6+9,即(x -3)2=15. 两边开平方,得x -3=±15, 即x -3=15或x -3=-15. ∴x 1=3+15,x 2=3-15.(2)将原方程化为一般形式,得x 2+5x +5=0.∵b 2-4ac =52-4×1×5=5,∴x =-5±52.∴x 1=-5+52,x 2=-5-52.22.(1)证明:∵DE ∥CA ,AE ∥BD ,∴四边形AODE 是平行四边形. ∵矩形ABCD 的对角线相交于点O , ∴AC =BD ,OA =OC =12AC ,OB =OD =12BD . ∴OA =OD .∴四边形AODE 是菱形. (2)矩形23.(1)证明:∵在方程x 2-(k +3)x +2k +2=0中,Δ=[-(k +3)]2-4×1×(2k +2)=k 2-2k +1=(k -1)2≥0, ∴方程总有两个实数根.(2)解:∵x 2-(k +3)x +2k +2=(x -2)(x -k -1)=0,∴x 1=2,x 2=k +1.∵方程有一个根小于1,∴k +1<1,解得k <0.24.解:(1)画树状图如图所示.(2)因为所有等可能的结果有6种,其中和为0的有2种,所以所求概率为26=13.25.解:由题意得出200×(10-6)+(10-x -6)×(200+50x )+(4-6)[600-200-(200+50x )]=1 250,即800+(4-x )(200+50x )-2(200-50x )=1 250, 整理得x 2-2x +1=0, 解得x 1=x 2=1. ∴10-1=9(元).答:第二周每个旅游纪念品的销售价格为9元. 26.解:(1)由图象可知点A 的坐标为(-2,-2).∵反比例函数y 2=mx 的图象过点A ,∴m =4. ∴反比例函数的表达式是y 2=4x .把x =3代入y 2=4x ,得y 2=43,∴点B 的坐标为⎝ ⎛⎭⎪⎫3,43.∵直线y 1=kx +b 过A ,B 两点, ∴⎩⎪⎨⎪⎧-2k +b =-2,3k +b =43,解得⎩⎪⎨⎪⎧k =23,b =-23. ∴一次函数的表达式是y 1=23x -23. (2)x <-2或0<x <3(3)设直线AB 与y 轴的交点为C ,由一次函数y 1=23x -23可知C ⎝ ⎛⎭⎪⎫0,-23,∴S △OAB =S △OAC +S △OBC =12×23×2+12×23×3=53.27.解:(1)由题易知AB=10 cm,BP=5t cm,CQ=4t cm,∴BQ=(8-4t) cm.当△ABC∽△PBQ时,有BPBA=BQBC,即5t10=8-4t8,∴t=1;当△ABC∽△QBP时,有BQBA=BPBC,即8-4t10=5t8,∴t=3241.∴若△BPQ和△ABC相似,则t=1 或t=32 41.(2)如图,过点P作PD⊥BC于点D.由(1)知BP=5t cm,CQ=4t cm,可求得PD=3t cm,BD=4t cm,∴CD=(8-4t) cm.∵AQ⊥CP,∠ACB=90°,∴∠CAQ+∠ACP=90°,∠DCP+∠ACP=90°.∴∠CAQ=∠DCP.又∵∠CDP=∠ACQ=90°,∴△CPD∽△AQC.∴CDAC=PDQC,即8-4t6=3t4t.∴t=78.北师大版数学九年级上册期末试卷2一、选择题(每题3分,共30分)1. 下列方程中,不是一元二次方程的是()A.3y2+2y+1=0B.12x2=1-3x C.110a2-16a+23=0D.x2+x-3=x22.如图放置的几何体的左视图是()3.下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形4.若反比例函数y=kx的图象经过点(m,3m),其中m≠0,则反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个实数根,则k的取值范围是()A.k≤-2 B.k≤2 C.k≥2 D.k≤2且k≠16.有三张正面分别标有数-2,3,4的不透明卡片,它们除数不同外,其他全部相同.现将它们背面朝上洗匀后,从中任取两张,则抽取的两张卡片上的数之积为正偶数的概率是()A.49 B.112 C.13 D.167.如图,在△ABC中,已知点D,E分别是边AC,BC上的点,DE∥AB,且CE:EB=2:3,则DE AB等于()A.2:3 B.2:5 C.3:5 D.4:58.如图,在菱形纸片ABCD中,∠A=60°,P为AB的中点,折叠该纸片使点C 落在点C′处,且点P在DC′上,折痕为DE,则∠CDE的度数为()A.30°B.40°C.45°D.60°9.设△ABC的一边长为x,这条边上的高为y,y与x之间的反比例函数关系如图所示.当△ABC为等腰直角三角形时,x+y的值为()A.4 B.5 C.5或3 2 D.4或3 210.如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边上的中线,点D,E分别在边AC和BC上,DB=DE,DE与BM相交于点N,EF⊥AC于点F,有以下结论:①∠DBM=∠CDE;②S△BDE<S四边形BMFE;③CD·EN=BN·BD;④AC=2DF.其中正确结论的数量是()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.已知一元二次方程(m-2)x2-3x+m2-4=0的一个根为0,则m=________.12.如图,物理课上张明做小孔成像实验,已知蜡烛与成像板之间的距离为24 cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间带小孔的纸板应放在离蜡烛________的地方.13.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.14.为预防流感,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y(mg)与时间x(min)之间的函数关系如图所示.已知在药物燃烧阶段,y与x成正比例,燃烧完后y与x成反比例.现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg.当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用.那么从消毒开始,经过________min后教室内的空气才能达到安全要求.15.已知三角形纸片(△ABC)中,AB=AC=5,BC=8,将三角形按照如图所示的方式折叠,使点B落在直线AC上,记为点B′,折痕为EF.若以点B′,F,C 为顶点的三角形与△ABC相似,则BF的长度是________.16.为了估计鱼塘中鱼的数量,养鱼者首先从鱼塘中捕获10条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞100条鱼.如果在这100条鱼中有2条鱼是有记号的,则可估计鱼塘中约有鱼________条.17.如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A,C的坐标分别为(2,4),(3,0),过点A的反比例函数y=kx的图象交BC于点D,连接AD,则四边形AOCD的面积是________.18.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.三、解答题(19~22题每题8分,23,24题每题11分,25题12分,共66分) 19.解方程:(1)x2-6x-6=0; (2)(x+2)(x+3)=1.20.已知关于x的一元二次方程kx2+x-2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1,x2,且满足(x1+x2)2+x1·x2=3,求k的值.21.在一个不透明的布袋里装有4个分别标有数字1,2,3,4的小球,它们除所标数字外其他完全相同,小明从布袋里随机取出1个小球,记下数字为x,小红在剩下的3个小球中随机取出1个小球,记下数字为y.(1)计算由x,y确定的点(x,y)在函数y=-x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x,y满足xy>6,则小明胜,若x,y满足xy<6,则小红胜,这个游戏公平吗?请说明理由.若不公平,请写出公平的游戏规则.22.如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竹竿AB的长为3 m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2 m.(1)请你在图中画出此时旗杆DE在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6 m,请你计算旗杆DE的高度.23.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,-2),反比例函数y=kx的图象经过点C,一次函数y=ax+b的图象经过A,C两点.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求点P的坐标.24.如图①,在正方形ABCD中,P是BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.25.在等腰三角形ABC中,AB=AC,D是AB延长线上一点,E是AC上一点,DE交BC于点F.(1)如图①,若BD=CE,求证:DF=EF.(2)如图②,若BD=1n CE,试写出DF和EF之间的数量关系,并证明.(3)如图③,在(2)的条件下,若点E在CA的延长线上,那么(2)中的结论还成立吗?试证明.答案一、1.D 2.C 3.C4.B 【点拨】把点(m ,3m )的坐标代入y =kx ,得到k =3m 2,因为m ≠0,所以k >0.所以图象在第一、三象限. 5.D 6.C 7.B 8.C9.D 【点拨】由题意得xy =4,当等腰直角三角形ABC 的斜边长为x 时,x =2y ,所以2y 2=4,解得y =2或y =-2(不合题意,舍去),所以x =22,所以x +y =32;当等腰直角三角形ABC 的一条直角边长为x 时,x =y ,所以y 2=4,解得y =2或y =-2(不合题意,舍去),所以x =2,所以x +y =4.故x +y 的值为4或3 2.故选D.10.C 【点拨】设∠EDC =x ,则∠DEF =90°-x ,从而可得到∠DBE =∠DEB =180°-(90°-x )-45°=45°+x ,∠DBM =∠DBE -∠MBE =45°+x -45°=x ,从而可得到∠DBM =∠CDE ,所以①正确.可证明△BDM ≌△DEF ,然后可证明S △DNB =S 四边形NMFE ,所以S △DNB +S △BNE =S 四边形NMFE+S △BNE ,即S △BDE =S 四边形BMFE .所以②错误.可证明△DBC ∽△NEB ,所以CD BD =BNEN ,即CD ·EN =BN ·BD .所以③正确. 由△BDM ≌△DEF ,可知DF =BM ,由直角三角形斜边上的中线的性质可知BM =12AC ,所以DF =12AC ,即AC =2DF .所以④正确.故选C. 二、11.-2 12.8 cm13.5 【点拨】综合左视图和主视图知,这个几何体有两层,底层最少有2+1=3(个)小正方体,第二层有2个小正方体,因此组成这个几何体的小正方体最少有3+2=5(个).14.50 【点拨】设药物燃烧完后y 与x 之间的函数表达式为y =kx ,把点(10,8)的坐标代入y =k x ,得8=k10,解得k =80,所以药物燃烧完后y 与x 之间的函数表达式为y =80x .当y =1.6时,由y =80x 得x =50,所以从消毒开始,经过50 min后教室内的空气才能达到安全要求. 15.4或4013 16.50017.9 【点拨】由题易知OC =3,点B 的坐标为(5,4),▱ABCO 的面积为12.设直线BC 对应的函数表达式为y =k ′x +b ,则⎩⎨⎧3k ′+b =0,5k ′+b =4,解得⎩⎨⎧k ′=2,b =-6.∴直线BC 对应的函数表达式为y =2x -6.∵点A (2,4)在反比例函数y =k x 的图象上,∴k =8.∴反比例函数的表达式为y =8x .由⎩⎪⎨⎪⎧y =2x -6,y =8x解得⎩⎨⎧x =4,y =2或⎩⎨⎧x =-1,y =-8(舍去).∴点D 的坐标为(4,2). ∴△ABD 的面积为12×2×3=3. ∴四边形AOCD 的面积是9.18.12 【点拨】易知EF ∥BD ∥HG , 且EF =HG =12BD =3,EH ∥AC ∥GF 且EH =GF =12AC =4. ∵AC ⊥BD ,∴EF ⊥FG . ∴四边形EFGH 是矩形.∴四边形EFGH 的面积=EF ·EH =3×4=12. 三、19.解:(1)x 2-6x -6=0, x 2-6x +9= 15, (x -3)2= 15, x -3= ±15,∴x 1=3+15,x 2=3-15.(2)(x +2)(x +3)=1, x 2+5x +6= 1, x 2+5x +5= 0, ∵a =1,b =5,c =5, ∴b 2-4ac =52-4×1×5=5. ∴x =-5±52. ∴x 1=-5+52,x 2=-5-52. 20.解:(1)∵方程有两个不相等的实数根, ∴Δ=12+8k >0, ∴k >-18. 又∵k ≠0,∴k 的取值范围是k >-18且k ≠0.(2)由根与系数的关系,得x 1+x 2=-1k ,x 1·x 2=-2k . ∵(x 1+x 2)2+x 1·x 2=3,∴⎝ ⎛⎭⎪⎫-1k 2-2k =3,即3k 2+2k -1=0, 解得k =13或k =-1. 由(1)得k >-18且k ≠0, ∴k =13.21.解:(1)画树状图如图.由树状图可知共有12种等可能的结果.其中在函数y =-x +5的图象上的有(1,4),(2,3),(3,2),(4,1), ∴点(x ,y )在函数y =-x +5的图象上的概率为412=13.(2)不公平.理由:∵x ,y 满足xy >6的有(2,4),(3,4),(4,2),(4,3),共4种结果,x ,y 满足xy <6的有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),共6种结果, ∴P (小明胜)=412=13, P (小红胜)=612=12. ∵13≠12,∴游戏不公平.公平的游戏规则为:若x ,y 满足xy ≥6,则小明胜,若x ,y 满足xy <6,则小红胜.(规则不唯一)22.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(2)∵AC ∥DF ,∴∠ACB =∠DFE . 又∠ABC =∠DEF =90°, ∴△ABC ∽△DEF .∴AB DE =BC EF . ∵AB =3 m ,BC =2 m ,EF =6 m , ∴3DE =26. ∴DE =9 m.即旗杆DE 的高度为9 m.23.解:(1)∵点A 的坐标为(0,1),点B 的坐标为(0,-2), ∴AB =1+2=3,即正方形ABCD 的边长为3,∴点C 的坐标为(3,-2).将点C 的坐标代入y =kx 可得k =-6, ∴反比例函数的表达式为y =-6x .将C (3,-2),A (0,1)的坐标分别代入y =ax +b ,得⎩⎨⎧3a +b =-2,b =1,解得⎩⎨⎧a =-1,b =1,∴一次函数的表达式为y =-x +1. (2)设P ⎝ ⎛⎭⎪⎫t ,-6t ,∵△OAP 的面积恰好等于正方形ABCD 的面积, ∴12×1×|t |=3×3,解得t =±18.∴点P 的坐标为⎝ ⎛⎭⎪⎫18,-13或⎝ ⎛⎭⎪⎫-18,13. 24.(1)证明:∵四边形ABCD 是正方形, ∴AD =CD ,∠ADP =∠CDP . 又∵DP =DP ,∴△ADP ≌△CDP . ∴P A =PC .又∵P A =PE ,∴PC =PE . (2)解:由(1)知△ADP ≌△CDP , ∴∠DAP =∠DCP . ∵P A =PE ,∴∠DAP =∠E . ∴∠FCP =∠E .又∵∠PFC =∠DFE ,∠EDF =90°, ∴∠CPE =∠EDF =90°. (3)解:AP =CE .理由如下: ∵四边形ABCD 是菱形, ∴AD =CD ,∠ADP =∠CDP . 又∵DP =DP ,∴△ADP ≌△CDP . ∴P A =PC ,∠DAP =∠DCP .又∵P A=PE,∴PC=PE,∠DAP=∠DEP.∴∠DCP=∠DEP.又∵∠PFC=∠DFE,∴∠CPF=∠EDF.∵在菱形ABCD中,∠ABC=120°,∴∠ADC=120°.∴∠EDC=60°.∴∠CPE=∠EDF=60°.又∵PC=PE,∴△PCE是等边三角形.∴PE=CE.又∵P A=PE,∴AP=CE.25.(1)证明:在题图①中作EG∥AB交BC于点G,则∠ABC=∠EGC,∠D=∠FEG.∵AB=AC,∴∠ABC=∠C.∴∠EGC=∠C.∴EG=EC.∵BD=CE,∴BD=EG.又∵∠D=∠FEG,∠BFD=∠GFE,∴△BFD≌△GFE.∴DF=EF.(2)解:DF=1n EF.证明:在题图②中作EG∥AB交BC于点G,则∠D=∠FEG. 同(1)可得EG=EC.∵∠D=∠FEG,∠BFD=∠EFG,∴△BFD∽△GFE.∴BDEG=DFEF.∵BD=1n CE=1n EG,∴DF=1n EF.(3)解:成立.证明:在题图③中作EG∥AB交CB的延长线于点G,则仍有EG =EC ,△BFD ∽△GFE . ∴BD EG =DF EF .∵BD =1n CE =1n EG ,∴DF =1n EF .。

数学 2020-2021学年山西省太原市九年级(上)期末数学试卷(2)

数学   2020-2021学年山西省太原市九年级(上)期末数学试卷(2)

2020-2021学年山西省太原市九年级(上)期末数学试卷一、选择题(本大题含10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入下表相应位置.1.如图所示的几何体的左视图是()A.B.C.D.2.当x<0时,反比例函数y=的图象在()A.第三象限B.第二象限C.第一象限D.第四象限3.太原市轨道交通2号线一期于2020年12月26日12:00开通初期运营,从此山西驶入地铁时代.全线23个站厅的设计,有机融合了“晋阳古八景”、“锦绣太原城”等文化元素,打造成一条亮丽的“地下艺术走廊”在一幅比例尺为1:200000的设计图纸上,测得地铁线路全长约11.8cm,则地铁线路的实际长度约为()A.5.9km B.11.8km.C.23.6km D.57.2km4.下列四幅图,表示两棵树在同一时刻阳光下的影子是()A.B.C.D.5.同学们在物理课上做“小孔成像”实验.如图,蜡烛与带“小孔”的纸板之间的距离为l,当蜡烛火焰的高度AB是它在光屏上所成的像A'B'高度的一半时,带“小孔”的纸板距离光屏()A.3l B.2l C.l D.l6.已知A(﹣1,y1),B(2,y2),C(6,y3)三点都在反比例函数y=的图象上,则y1,y2,y3,的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y1<y3<y2D.y2<y1<y37.在Rt△ABC 中,∠C=90°,sinA=54,AC=6cm,则BC 的长度为()A.6cm B.7cm C .8cm D.9cm8.二次函数y=x 2的图象平移后的函数表达式为y=(x-2)2+1,则下列平移方法正确的是()A.向左平移2个单位长度,向下平移2个单位长度B.向左平移1个单位长度,向上平移2个单位长度C .向右平移1个单位长度,向下平移1个单位长度D.向右平移2个单位长度,向上平移1个单位长度9.如图,一艘海轮位于灯塔P 的北P 偏东55°方向,距离灯塔2海里的点A 处.如果海轮沿正南方向航行到灯塔的正东方向,那么海轮航行的距离AB 的长是()A .2海里B .2sin55°海里C .2cos55°海里D .2tan55°海里10.小明从如图所示的二次函数y=ax 2+bx+c 的图象中,观察得出了下面四个结论:①c<0;②abc>0;③a-b+c>0;④2a 一3b=0;.其中正确的有()A .1个B .2个 C.3个D .4个9题10题二、填空题(本大题含5个小题,每小题3分,共15分)把答案写在题中横线上11.如图,△A 'B 'C '是△ABC 以点O 为位似中心经过位似变换得到的三角形,若△A 'B 'C '的面积与△ABC 的面积比是4:9,则OB ':OB 等于.12.如图,矩形ABCD 的面积为4,顶点A 和D 在x 轴的正半轴上,顶点B ,C 分别落在反比例函数y 1=和y 2=的图象上,则k 的值等于.13.如图,一工人为了测量山上塔楼ED 的高,他在山下某点A 处测得塔尖D 的仰角为45°,再沿AC 方向前进24.40m 到达山脚点B ,测得塔尖D 的仰角为60°,且斜坡BE 的坡度为1:3.那么塔楼ED 的高度约为(参考数据:3≈1.7,2≈1.4,结果保留两位小数).11题12题13题14.若二次函数7123y 2+-=x x 的图象上有三点:A(-2,y 1),B(1,y 2),C(4,y 3).则y 1,y 2,y 3的大小关系是.(用“<”连接)15.如图,矩形纸片ABCD 中,AD =6,AB =8,点E 在边DC 上.将纸片沿AE 折叠,点D 落在点D '处.从下面A 、B 两题中任选一题作答..A .当点D '在对角线AC 上时,DE 的长为.B .当点D '在对角线DB 上时,DE 的长为.三、解答题(本大题含8个小题,共55分)解答应写出必要的文字说明、演算步骤或推理过程。

江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg 4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 .8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 .10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = °.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 .12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 cm2.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 环.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 .15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 .16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 y2.(填“>”“<”或“=”)19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 .21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 .2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.【分析】根据二次函数的定义判断即可.【解答】解:A、y=1﹣3x3,x的最高次数是3,不是二次函数,不符合题意;B、y=x2﹣5x,是二次函数,符合题意;C、y=x4+2x2﹣1,x的最高次数是4,不是二次函数,不符合题意;D、y=,不是二次函数,不符合题意.故选:B.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】根据点P到圆心的距离与圆的半径比较大小即可得出结论.【解答】解:∵⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,1<2,∴点P与⊙O的位置关系是:点P在⊙O内,故选:C.3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中51出现了1次,次数最多,故众数是51kg;将这组数据从小到大的顺序排列为:47,51,51,53,60,处于中间位置的那个数是51,那么由中位数的定义可知,这组数据的中位数是51kg.4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根【分析】根据一元二次方程根的判别式解答即可.【解答】解:一元二次方程﹣2(2x+1)2+a2=0可化为﹣8x2﹣8x+a2﹣2=0,∵a=﹣8,b=﹣8,c=a2﹣2,a≠0,∴Δ=(﹣8)2﹣4×(﹣8)×(a2﹣2)=64+32a2﹣64=32a2>0,∴方程有两个不相等的实数根.故选:A.6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2【分析】先用a,b表示出二次函数图象的顶点坐标,再结合该顶点在线段AB上即可解【解答】解:∵二次函数解析式为y=x2﹣2ax+b(a,b是常数),∴顶点坐标为(a,﹣a2+b).又∵A(2,0),B(0,2),∴直线AB的函数解析式为y=﹣x+2.∵二次函数图象的顶点在线段AB上,∴﹣a2+b=﹣a+2,且0≤a≤2,则b=a2﹣a+2=()2+,∴当a=时,b有最小值为.故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=﹣=.故答案为:.9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 60°或120° .【分析】分点C在优弧和劣弧上两种情况,当点C在优弧上时,可直接利用圆周角定理得到∠ACB是∠AOB的一半,当点C在劣弧上时,可以优弧上找点D,则可求得∠ADB 是∠AOB的一半,再利用圆内接四边形的性质可求得∠ACB【解答】解:如图1,当点C在优弧上时,则∠ACB=∠AOB=60°;如图2,当点C在劣弧上时,在优弧上找点D,连接DA、DB,则可得∠ADB=∠AOB=60°,又∵四边形ACBD为圆的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=180°﹣60°=120°,∴∠ACB的度数是60°或120°;故答案为:60°或120°.10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = 80 °.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=80°故答案为:80.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 36(1﹣x)2=25 .【分析】根据某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元,可以列出相应的方程.【解答】解:由题意可得,36(1﹣x)2=25,故答案为:36(1﹣x)2=25.12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 15π cm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15π(cm2).故答案为:15π.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 8 环.【分析】根据前3箭的平均成绩为7环,可以得到前三箭的总环数,从而可以得到这六箭的总环数,从而可以得到平均成绩.【解答】解:由题意可得,x1+x2+x3=3×7=21,∴(x1+x2+x3+x1+1+x2+2+x3+3)÷6=48÷6=8(环),即这6箭的平均成绩为8环,故答案为:8.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 3﹣ .【分析】连接OB,根据圆心角、弦、弧的关系推出AD⊥BC,根据垂径定理求出BE=BC=,再根据勾股定理求解即可.【解答】解:如图,连接OB,∵D为的中点,直径AD交BC于点E,∴AD⊥BC,∴BE=BC=,∵AD=6,∴OB=OD=3,在Rt△BOE中,OB2=OE2+BE2,∴32=OE2+,∴OE=或OE=﹣(舍去),∴DE=OD﹣OE=3﹣,故答案为:3﹣.15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 y=x2﹣2x .【分析】先解方程x2﹣2x﹣3=0得到A(﹣1,0),B(3,0),则AB=4,所以CD=2,由于函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,对称轴为直线x=1,而C、D关于直线x=1对称,所以C(0,0),D(2,0),然后利用交点式写出平移后抛物线的解析式.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,∵AB=2CD,∴CD=2,∵函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,仍然为直线x=1,∴C(0,0),D(2,0),∴平移后抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.故答案为:y=x2﹣2x.16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 13 .【分析】过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,根据切线长定理得到AF=AH,BF=BG,CG=CH,ME=HE,MD=GD,由△CDE的周长是4求出CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,根据勾股定理得到xy=2(x+y)+4①,根据三角形的面积公式得到xy=60﹣2(x+y)②,①②求得x+y即可.【解答】解:过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,∵⊙O是△ABC的内切圆,∴AF=AH,BF=BG,CG=CH,∵DE与⊙O相切,设切点为M,∴ME=HE,MD=GD,∵△CDE的周长是4,CG+CH=4,∴CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,∵∠ACB=90°,∴AB2=BC2+AC2,∴(x+y)2=(x+2)2+(y+2)2,化简得xy=2(x+y)+4①,∵△ABC的面积是30,∴BC•AC=30,∴(x+2)(y+2)=60,∴xy=60﹣2(x+y)②,由①②得x+y=13,∴AB=13.故答案为:13.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.【分析】(1)利用配方法得到(x+1)2=5,然后利用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x﹣3=0或x+1=0,然后解两个一次方程即可.【解答】解:(1)x2+2x﹣4=0,x2+2x=4,x2+2x+1=5,(x+1)2=5,x+1=±,所以x1=﹣1+,x2=﹣1﹣;(2)x(x﹣3)=3﹣x,x(x﹣3)+x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 > y2.(填“>”“<”或“=”)【分析】(1)用待定系数法即可解决问题.(2)分别求出y1和y2即可解决问题.【解答】解:(1)由题知,将点(0,5),(1,2),(2,1)分别代入函数表达式得,,解得,所以该二次函数表达式为y=x2﹣4x+5.(2)当x=﹣1时,;当x=4时,;∴y1>y2.故答案为:>.19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.【分析】设边AB边的长为x m,根据花圃的面积为45m2,列出一元二次方程,解之取符合题意的值即可.【解答】解:设边AB边的长为x m,由题意得:x(24﹣3x)=45,整理得:x2﹣8x+15=0,解得:x1=3(不符合题意,舍去),x2=5,答:边AB的长为5m.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 3 .【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】(1)证明:∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)解:∵∠CAD=∠ABC,∴=,∴AC=CD,∵AD是⊙O的直径,AD=6,∴∠ACD=90°,在Rt△ACD中,2AC2=AD2=62,解得:AC=3.故答案为:3.21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 2 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及2次摸到的球颜色不同的结果数,再利用概率公式可得出答案.【解答】解:∵从袋中任意摸出1个球是白球的概率是,∴,解得a=2,经检验,a=2是原方程的解且符合题意.故答案为:2.(2)列表如下:白红红白(白,白)(白,红)(白,红)红(红,白)(红,红)(红,红)红(红,(红,(红,白)红)红)共有9种等可能的结果,其中2次摸到的球颜色不同的结果有4种,∴2次摸到的球颜色不同的概率为.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)【分析】(1)过O点画直线交⊙O于点A、B,则根据圆周角定理得到∠APB满足条件;(2)任取点A,以A为圆心,AO为半径画弧交⊙O于点B,则△AOB为等边三角形,所以∠AOB=60°,然后根据圆周角定理得到∠APB满足条件.【解答】解:(1)如图①,∠APB为所作;(2)如图②,∠APB为所作;23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.【分析】(1)先求出Δ的值,再判断出其符号即可;(2)把x=1代入方程,求出m的值即可.【解答】(1)证明:方程x2﹣(2m+2)x+m2+2m=0中,∵a=1,b=﹣(2m+2),c=m2+2m,∴Δ=[﹣(2m+2)]2﹣4×1×(m2+2m)=4>0,∴无论m取何值,方程总有两个不相等的实数根;(2)∵方程有一个根为1,∴12﹣(2m+2)×1+m2+2m=0,即m2﹣1=0,∴m=±1.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 ⑤ .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.【分析】(1)根据平均数和方差的定义列式计算即可;(2)对照表格可得答案;(3)参照天气情况图可得答案.【解答】解:(1)这7天最低气温的平均数=4(℃),方差为×[(17﹣4)2+(5﹣4)2+(0﹣4)2+(0﹣4)2+(2﹣4)2+(6﹣4)2+(﹣2﹣4)2]=;(2)由题意知,本次来临的冷空气的等级是⑤,故答案为:⑤;(3)本次冷空气来临后,除导致气温下降外,还带来雨雪.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)【分析】依据题意,设每件商品的售价是x元,先求出每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100(x﹣17)2+4900,再由二次函数的性质进行判断可以得解.【解答】解:由题意,设每件商品的售价是x元,∴每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100x2+3400x﹣24000=﹣100(x﹣17)2+4900.∴当每件商品的售价是17元时,利润最大为4900元.∴每月最大利润为147000元.答:当每件商品的售价是17元时,该商家捐赠的金额最大,最大捐赠金额是147000元.26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.【分析】(1)根据点P(a,b)在反比例函数的图象上,得ab=2,对于点(2a,2b),则x=2a,y=2b,则xy=4ab=8,由此可得出答案;(2)根据点P(a,b)在一次函数y=2x的图象上,得b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,进而得得,由此可得出结论.【解答】解:(1)∵点P(a,b)在反比例函数的图象上,∴ab=2,对于点(2a,2b),则x=2a,y=2b,∴xy=4ab,将ab=2代入xy=4ab,得xy=8,即,∴点(2a,2b)一定在这个函数的图象上;如下图所示:(2)点(a+b,ab)一定在这个函数的图象上,理由如下:∵点P(a,b)在一次函数y=2x的图象上,∴b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,∵x=3a,∴,∴.∴点(a+b,ab)一定在这个函数的图象上.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 0≤d<2 .【分析】(1)当点C运动到优弧AB的中点时,连接AD,AE,BE,利用同圆中等弧所对的圆周角相等可以推导出DE∥AB,再证明四边形ABED是矩形可以得出DE=AB;(2)在条件(1)下,连接CE,根据圆周角相等和等腰三角形可以推导出BG=2FG,最后推导出FG+AB=AF+BG;(3)根据点C的运动轨迹就可以推导出d的取值范围.【解答】解:(1)当点C运动到优弧AB的中点时,DE∥AB且DE=AB,连接AD,BE,AE,CE,∵A,B是⊙O的2个三等分点,∴==,∴AB=AC=BC,∴△ABC是等边三角形,又∵D,E分别是,的中点,∴===,∴∠DEA=∠EAB=∠DEC=∠CBE=∠DAC=∠CED=∠ECB=30°,∴DE∥AB,∴∠DAB=∠EBA=90°,∴DA⊥AB,EB⊥AB,∴四边形ABED是矩形,∴AB=DE;证明:(2)在(1)的条件下,∵∠ACB=60°,FG∥AB,∴∠CFG=∠CGF=60°,∴△CFG为等边三角形,∴CF=FG=CG,又∵∠CED=∠ECB=30°,∴CG=GE,∵在△GEB中,∠GBE=30°,∠GEB=90°,∴BG=2GE=2FG,∵AB=AF+CF,∴AB+FG=AF+CF+FG=AF+BG;解:(3)连接OB,作OM⊥AB,∵当点C运动到优弧AB的中点时,此时AE,BD的交点I与圆心O重回,∴点O与点I的距离d为0,∵A,B是⊙O的2个三等分点,∴劣弧对的圆心角为120°,∴∠OBM=30°,又∵AB=6,∴OB=2,∵OI≤OB+IB,∴当点C运动到点A或点B时,OI=OB=2,∵点C不与A,B两点重合,∴OI<2,∴0≤d<2,故答案为:0≤d<2.。

人教版九年级(上)期末数学试卷(解析版)

人教版九年级(上)期末数学试卷(解析版)

人教版九年级第一学期期末数学试卷及答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.15.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.58.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.811.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+512.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.413.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.414.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<015.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为,m的值是.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为m(用含x的代数式表示);(2)请列出方程,求出问题的解.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?参考答案一、选择题(本大题共16小题,1-10每小题3分,11-16每小题3分,共42分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180°,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)逐项判断即可得.解:选项A、B、D的图形都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项C的图形能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:C.【点评】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2.在平面直角坐标系中,已知点A(2,﹣1)和点B(﹣2,1),则A、B两点()A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=﹣x对称【分析】直接利用关于原点对称点的性质可得答案.解:因为点A(2,﹣1)和点B(﹣2,1)的横坐标和纵坐标均互为相反数,所以A、B两点关于原点对称.故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).3.抛物线y=﹣2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(﹣3,﹣5)D.(3,﹣5)【分析】根据二次函数的顶点式解析式解答即可.解:抛物线y=﹣2(x+3)2+5的顶点坐标是(﹣3,5).故选:B.【点评】本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.4.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.1【分析】根据几何概率的求法:最终停留在黑色的砖上的概率就是黑色区域的面积与总面积的比值.解:观察这个图可知:黑砖(4块)的面积占总面积(9块)的.故选:B.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.方程x2﹣3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.解:∵a=1,b=0,c=﹣3,∴Δ=02﹣4×1×(﹣3)=12>0,则方程x2﹣3=0有两个不相等的实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.6.下列说法正确的是()A.过圆心的线段是直径B.面积相等的圆是等圆C.两个半圆是等弧D.相等的圆心角所对的弧相等【分析】根据直径的定义,等圆的定义,等弧的定义,弧和圆心角的关系定理解答即可.解:A.过圆心且两个端点在圆上的线段是直径,故A选项说法错误;B.面积相等的圆,则半径相等,是等圆,故B选项说法正确;C.在同圆或等圆中,两个半圆是等弧,故C选项说法错误;D.在同圆或等圆中,相等的圆心角所对的弧相等,故C选项说法错误;故选:B.【点评】本题主要考查了对圆的认识和弧、弦、圆心角的关系,熟练掌握相关定义和定理是解答本题的关键.7.2021年顺平县森林覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x,那么符合题意的方程是()A.0.397(1+x)=0.5B.0.397(1+2x)=0.5C.0.397(1+x)2=0.5D.0.397(1﹣x)2=0.5【分析】利用2023年顺平县森林覆盖率=2021年顺平县森林覆盖率×(1+这两年顺平县的森林覆盖年平均增长率)2,即可得出关于x的一元二次方程,此题得解.解:根据题意得39.7%(1+x)2=50%,即0.397(1+x)2=0.5,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.矩形的面积是200,它的长y和宽x之间的关系表达式是()A.y=200x B.y=200+x C.D.【分析】根据题意得到xy=200(定值),故y与x之间的函数解析式,且根据x、y实际意义x、y应>0,其图象在第一象限;于是得到结论.解:∵根据题意xy=200,∴y=(x>0,y>0).故选:D.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.9.对于二次函数y=x2+4x+5的图象,下列说法不正确的是()A.开口向上B.对称轴是直线x=2C.顶点坐标是(﹣2,1)D.与x轴没有交点【分析】把解析式化为顶点式,利用二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线开口向上,对称轴为直线x=﹣2,顶点坐标为(﹣2,1),∴抛物线与x轴没有交点.故A,C,D正确;B不正确.故选:B.【点评】本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.10.一个四边形ABCD各边长为2,3,4,5,另一个和它相似的四边形A1B1C1D1最长边为15,则四边形A1B1C1D1的最短边长为()A.2B.4C.6D.8【分析】设四边形A1B1C1D1的最短边长为x,然后利用相似多边形的性质可得=,进行计算即可解答.解:设四边形A1B1C1D1的最短边长为x,∵四边形ABCD与四边形A1B1C1D1相似,∴=,解得:x=6,故选:C.【点评】本题考查了相似多边形的性质,熟练掌握相似多边形的性质是解题的关键.11.下列函数中,当x<0时,y随x的增大而减小的是()A.B.y=2x﹣1C.y=﹣3x2D.y=x2+4x+5【分析】直接利用正比例函数的性质、二次函数的性质、反比例函数的性质分别判断得出答案.解:A、y=,当x<0时,y随x的增大而减小,符合题意;B、y=2x﹣1,y随x的增大与增大,不合题意;C、y=﹣3x2,当x<0时,y随x的增大而增大,不合题意;D、y=x2+4x+5,当x<0时,y随x先减小,然后增大,不合题意;故选:A.【点评】此题主要考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.12.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1B.C.2D.4【分析】根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等边三角形的性质求出OH即可.解:如图所示,连接OB、OA,过点O作OH⊥AB于点H,∵⊙O的直径为4cm,∴OB=OA=2cm,∵多边形ABCDEF是正六边形,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2cm,∵六边形ABCDEF是正六边形∴∠AOB=360°÷6=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=2cm,∵OH⊥AB,∴BH=AB=×2=1(cm),∴OH==(cm),∴正六边形纸片的边心距是cm,故选:B.【点评】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.13.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.3B.2C.5D.4【分析】过O作OM′⊥AB,连接OA,由“过直线外一点与直线上的所有连线中垂线段最短”的知识可知,当OM于OM′重合时OM最短,由垂径定理可得出AM′的长,再根据勾股定理可求出OM′的长,即线段OM 长的最小值.解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=×8=4,∴在Rt△OAM′中,OM′===3,∴线段OM长的最小值为3.故选:A.【点评】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.14.二次函数y=a2+bx+c的图象如图所示,OP=1,则下列判断正确的是()A.a>0B.b>0C.c<0D.a+b+c<0【分析】根据抛物线开口方向、对称轴和与y轴交点位置确定a、b、c的取值范围,结合函数图象,当x=1时,函数值为负,求得a+b+c<0,从而求解.解:∵抛物线开口向下,∴a<0;故A错误;∵﹣<0,∴b<0,故B错误;∵与y轴的交点在正半轴,∴c>0;故C错误;由图象观察知,当x=1时,函数值为负,∴a+b+c<0,故D正确;故选:D.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).15.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△AB'C',则图中阴影部分面积为()A.πB.C.D.【分析】解直角三角形得到AB=BC=,AC=2BC=2,然后根据扇形的面积公式即可得到结论.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=﹣.故选:C.【点评】本题主要考查了图形的旋转,扇形的面积公式,解直角三角形,熟练掌握扇形的面积公式是解决问题的关键.16.对于反比例函数,下列结论:①图象分布在第二,四象限;②当x<0时,y随x的增大而增大;③图象经过点(﹣2,3);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②③④【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个小题中的结论是否正确.解:∵反比例函数y=﹣,∴该函数的图象分布在第二、四象限,故①正确;当x>0时,y随x的增大而增大,故②正确;当x=﹣2时,y=3,故③正确;若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,故④错误;故选:A.【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题有3个小题,每小题各有2空,每空2分,共12分.把答案写在题中横线上)17.已知关于x的一元二次方程x2﹣5x+m=0的一个根是2,则另一个根为3,m的值是6.【分析】设另一个根为x1,则根据根与系数的关系得出x1+2=5,2x1=m,求出即可.解:设另一个根为x1,则x1+2=5,2x1=m,解得:x1=3,m=6.故答案为:3,6.【点评】本题考查了一元二次方程的解,根与系数的关系的应用,解此题的关键是根据根与系数的关系得出x1+2=5,2x1=m.18.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为1,则弦BC的长为,劣弧BC长为.【分析】先作OD⊥BC于D,由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,BD=BC,在Rt△BOD中,利用特殊三角函数值易求BD,进而可求BC.解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=BC,∴BD=sin60°×OB=,∴BC=2BD=,劣弧BC==.故答案为:,.【点评】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.19.二次函数y=﹣x2+bx+3的图象如图,对称轴为直线x=﹣1.(1)b=﹣2;(2)若直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,则t的取值范围是0≤t<4.【分析】(1)通过抛物线对称轴为直线x=﹣求解;(2)将抛物线解析式化为顶点式,通过﹣3≤x≤1时y的取值范围求解.解:(1)∵抛物线对称轴为直线x=﹣=﹣1,∴b=﹣2.故答案为:﹣2.(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴函数最大值为y=4,∵(﹣1)﹣(﹣3)>1﹣(﹣1),∴x=1时,y=﹣1﹣2+3=0为﹣3≤x≤1的函数最小值,∴0≤t<4时,直线y=t与抛物线y=﹣x2+bx+3在﹣3≤x≤1的范围内有两个交点,故答案为:0≤t<4.【点评】本题考查二次函数的性质,解题关键是掌握抛物线顶点坐标公式,掌握二次函数与方程的关系.三、解答题(本大题共7个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)20.解方程:(1)x2+4x=5;(2)x(2x﹣1)=4x﹣2.【分析】(1)先将原方程整理成一元二次方程的一般形式,然后再利用解一元二次方程﹣因式分解法,进行计算即可解答;(2)利用解一元二次方程﹣因式分解法,进行计算即可解答.解:(1)x2+4x=5,x2+4x﹣5=0,(x+5)(x﹣1)=0,x﹣1=0或x+5=0,x1=1,x2=﹣5;(2)x(2x﹣1)=4x﹣2,x(2x﹣1)﹣2(2x﹣1)=0,(2x﹣1)(x﹣2)=0,x﹣2=0或2x﹣1=0,x1=2,x2=.【点评】本题考查了解一元二次方程﹣因式分解法,熟练掌握解一元二次方程﹣因式分解法是解题的关键.21.一个黑箱子里装有红,白两种颜色的球4只,除颜色外完全相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,形把它放回不斯重复实验,将多次实验结果列出如下频率统计表.摸球次数10018060010001500摸到白球次数2446149251371摸到白球频率0.240.2560.2480.2510.247(1)当揽球次数很大时,摸到白球的频率将会接近0.25(精确到0.01),若从箱子中摸一次球,摸到红球的概率是.(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用树状图或列表法求出摸到一个红球一个白球的概率.【分析】(1)当试验次数达到1500次时,摸到白球的频率接近于0.25,据此可得答案;(2)用总数量乘以摸到白球的频率求出其个数,再列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得答案.解:(1)由频率统计表知,当摸球次数很大时,摸到白球的频率将会接近0.25,从箱子中摸一次球,摸到红球的概率为1﹣0.25=0.75=,故答案为:0.25,;(2)由(1)知,袋中白球的个数约为4×0.25=1,红球的个数为4﹣1=3,列表如下:白红1红2红3白白红1白红2白红3红1红1白红1红2红1红3红2红2白红2红1红2红3红3红3白红3红1红3红2由表可知共有12种情况,其中一红一白的有6种,所以摸到一个红球一个白球的概率为=.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了列表法与树状图法.22.G234国道顺平段改造工程于2021年10月顺利完工,花园式路景成为顺平一道美丽的风景线.工程队在路边改造中,计划建造一个面积为60m2的长方形花坛,花坛的一边靠墙(墙AB长为11m),另外三边用木栏围成,木栏总长22m,求花坛CD边和DE边的长分别是多少?设花坛CD边的长为xm.(1)填空:花坛DE边的长为(22﹣2x)m(用含x的代数式表示);(2)请列出方程,求出问题的解.【分析】(1)由题意即可得出结论;(2)由题意:建造一个面积为60m2的长方形花坛,列出一元二次方程,解方程,即可解决问题.解:(1)由题意得:花坛DE边的长为(22﹣2x)m,故答案为:(22﹣2x),(2)根据题意得:x(22﹣2x)=60,整理得:x2﹣11x+30=0,解得:x1=5,x2=6,当x=5时,DE=22﹣2×5=12>11(不符合题意,舍去);当x=6时,DE=22﹣2×6=10<11,符合题意;答:CD边的长为6m,DE边的长为10m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBF的位置,连接EF,EF的长为.(1)求BF的长;(2)若AE=1,EC=3,求∠AEB的度数.【分析】(1)由旋转的性质可得BE=BF,∠EBF=∠ABC=90°,由等腰直角三角形的性质可求解;(2)由勾股定理的逆定理可求∠EFC=90°,即可求解.解:(1)∵△ABE绕点B顺时针旋转90°得到△CBF,∴BE=BF,∠EBF=∠ABC=90°,∴△BEF为等腰直角三角形,设BE=BF=x,则x2+x2=(2)2,解得:x=2,∴BF的长为2;(2)∵△ABE绕点B顺时针旋转90°得到△CBF,∴∠AEB=∠BFC,AE=CF=1,在△CEF中,EF=2,CF=1,EC=3,∵CF2+EF2=12+(2)2=9,CE2=9,∴CF2+EF2=CE2,∴△CEF为直角三角形,∴∠EFC=90°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.【点评】本题考查了旋转的性质,正方形的性质,勾股定理的逆定理,掌握旋转的性质是解题的关键.24.如图,AB为⊙O直径,点C在⊙O上,AC平分∠EAB,AE⊥CD,垂足为E.(1)求证:DE为⊙O切线.(2)若AE=2,AC=3,求⊙O的半径.【分析】(1)连接OC,如图,由AC平分∠EAB得到∠BAC=∠EAC,加上∠OAC=∠ACO,则∠EAC=∠ACO,于是可判断OC∥AE,根据平行线的性质得OC⊥CD,然后根据切线的判定定理得到结论.(2)通过证明△AEC∽△ACB,进而根据比例式求得半径.【解答】(1)连OC(如图),∵AE⊥CD,∴∠AEC=90°,又∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠EAB,∴∠EAC=∠OAC,∵∠EAC=∠OCA,∴OC∥AE,∴OC⊥DE,∵点C在⊙O上,∴OC=r,∴DE为⊙O的切线.(2)连BC(如上图),∵AB为直径,∴∠ACB=90°,又∵∠AEC=90°,∴∠ACB=∠AEC,又∵∠EAC=∠BAC,∴△AEC∽△ACB,∴=,∴=,∴AB=r=,∴r=.【点评】本题考查了切线的判定,平行线的判定与性质,等腰三角形的性质,熟练掌握切线的判定是解题的关键.25.在平面直角坐标系中,反比例函数的图象经过A(2,6)点.(1)求反比例函数的解析式;(2)点B在该反比例函数图象上,过B点作y轴的垂线,垂足为C,当△ABC的面积为9时,求点B的坐标.(3)请直接写出y<3时,自变量x的取值范围.【分析】(1)根据反比例函数图象上点的坐标特点可得k=6×2=12,进而可得反比例函数解析式;(2)根据反比例函数图象上点的坐标特点可得mn=12,再根据△ABC面积为9,可得×BC×(6﹣n)=9,解可得m的值,进而可得n的值,从而可得点B的坐标;(3)根据函数图象即可得到结论.【解答】解;(1)把A点坐标为(2,6)代入反比例函数y=得,k=12,∴反比例函数的解析式为y=;(2)设点B坐标为(m,n),分三种情况:①当B点在第一象限且在A点的上方时,(y B﹣y A)×CB=9 即(n﹣6)×m=9,×(﹣6)×m=9,解得m=﹣1(不符合题意,舍去),②当B点在第一象限且在A点的下方时,(y A﹣y B)×CB=9 即(6﹣n)×m=9,(6﹣)×m=9,解得m=5,∴点B坐标为(5,);③当B点在第三象限时,(y A﹣y B)×CB=9,(6﹣n)×(﹣m)=9 (6)×(﹣m)=9,解得m=﹣1,∴点B坐标为(﹣1,﹣12),所以点B的坐标为(5,)或(﹣1,﹣12);(3)由图象知,当y<3时,自变量x的取值范围为x>4 或x<0.【点评】此题主要考查了待定系数法求反比例函数解析式,以及反比例函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.26.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,当0≤x≤30时,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,1800);当30<x≤40时,累计人数保持不变.(1)求y与x之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)①当0≤x≤30时由顶点坐标为(10,1800),可设y=a(x﹣30)2+1800,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;②当30<x≤40时,根据等候的人数不变得出函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w 关于x的二次函数和一次函数,按照二次函数和一次函数的性质可得答案;(3)设从一开始就应该增加m个监测点,根据在10分钟内让全部学生完成体温检测得到关于m的不等式解不等式即可.解:(1)①当0≤x≤30时,∴设y=a(x﹣30)2+1800,将(0,0)代入,得:900a+1800=0,解得a=﹣2,∴y=﹣2(x﹣30)2+1800=﹣2x2+120x(0≤x≤30),②当30<x≤40时,y=1800(30<x≤40),∴y与x之间的函数表达式为y=;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x,①0≤x≤30时,w=﹣2x2+120x﹣40x=﹣2x2+80x=﹣2(x﹣20)2+800,∵﹣2<0,∴当x=20时,w的最大值是800;②当30<x≤40时,w=1800﹣40x,∵﹣4<0,∴w随x的增大而减小,∴200≤w<600,∴排队人数最多是600人,要全部学生都完成体温检测:1800﹣40x=0,解得:x=45,∴要全部学生都完成体温检测需要45分钟,(3)设从一开始就应该增加m个监测点,由题意得:10×20(m+2)≥1800,解得:m≥7,∴从一开始就应该增加7个监测点.【点评】本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.。

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)

2024年全新九年级数学上册期末试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 2B. 4C. 6D. 82. 一个三角形的两边长分别为5厘米和8厘米,第三边长为多少厘米?A. 3B. 6C. 10D. 123. 下列哪个图形是等腰三角形?A. △ABCB. △DEFC. △GHID. △JKL4. 下列哪个图形是直角三角形?A. △ABCB. △DEFC. △GHID. △JKL5. 下列哪个图形是等边三角形?A. △ABCB. △DEFC. △GHID. △JKL6. 下列哪个数是合数?A. 2B. 3C. 4D. 57. 一个正方形的边长为6厘米,它的周长是多少厘米?A. 12B. 18C. 24D. 308. 一个长方形的长为8厘米,宽为4厘米,它的面积是多少平方厘米?A. 16B. 24C. 32D. 409. 下列哪个数是偶数?A. 2B. 3C. 5D. 710. 下列哪个数是奇数?A. 2B. 3C. 4D. 6二、填空题(每题2分,共20分)1. 一个等边三角形的边长是5厘米,它的周长是______厘米。

2. 一个正方形的边长是8厘米,它的面积是______平方厘米。

3. 一个长方形的长是10厘米,宽是5厘米,它的周长是______厘米。

4. 一个三角形的两边长分别是6厘米和8厘米,第三边长是______厘米。

5. 一个直角三角形的两条直角边长分别是3厘米和4厘米,它的斜边长是______厘米。

6. 一个等腰三角形的底边长是10厘米,腰长是8厘米,它的周长是______厘米。

7. 一个长方形的长是12厘米,宽是6厘米,它的面积是______平方厘米。

8. 一个正方形的边长是7厘米,它的周长是______厘米。

9. 一个三角形的两边长分别是5厘米和12厘米,第三边长是______厘米。

10. 一个直角三角形的两条直角边长分别是5厘米和12厘米,它的斜边长是______厘米。

九年级上册数学期末试卷【含答案】

九年级上册数学期末试卷【含答案】

九年级上册数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项一定成立?A. a + c > b + cB. a c > b cC. ac > bcD. a/c > b/c (c ≠ 0)2. 下列哪个数是实数?A. √-1B. 3/0C. 2.5D. √-93. 已知一组数据的平均数为10,方差为4,则这组数据中不可能出现的值为?A. 6B. 12C. 8D. 144. 下列哪个函数是奇函数?A. y = x²B. y = |x|C. y = x³D. y = x² + 15. 在直角坐标系中,点P(2, -3)关于原点的对称点是?A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)二、判断题(每题1分,共5分)1. 若 a > b,则 1/a < 1/b。

()2. 任何两个奇数之和都是偶数。

()3. 方程x² + 1 = 0 有实数解。

()4. 一组数据的众数可以不止一个。

()5. 在直角坐标系中,所有关于y轴对称的点的横坐标互为相反数。

()三、填空题(每题1分,共5分)1. 若a² = b²,则 a = ______ 或 a = ______。

2. 两个连续奇数的平均数是 ______。

3. 函数 y = 2x + 3 的图像是一条 ______。

4. 若一组数据从小到大排列为 2, 4, 5, 7, 9,则这组数据的中位数是 ______。

5. 在直角坐标系中,点 (3, -2) 的第四象限的对称点是 ______。

四、简答题(每题2分,共10分)1. 简述有理数的定义。

2. 什么是算术平方根?如何计算一个数的算术平方根?3. 解释一次函数的图像特点。

4. 什么是众数?如何找出一组数据的众数?5. 简述坐标轴上点的坐标特征。

九年级数学上册期末检测题(二)(HK)

九年级数学上册期末检测题(二)(HK)

九年级数学上册期末检测题(二)(HK)时间:120分钟 满分:120分 分数________一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分.)1.下列函数中,是反比例函数的是 ( D )A .x(y -1)=1B .y =1x +1C .y =1x 2D .y =13x2.已知x y =52,那么下列等式中不一定正确的是 ( D ) A .2x =5y B.x 2x +y =512 C.x +y y =72 D.x +2y +2=743.将二次函数y =x 2的图象先向下平移2个单位,再向右平移5个单位,得到的函数表达式是 ( A )A .y =(x -5)2-2B .y =(x +5)2-2C .y =(x -5)2+2D .y =(x +5)2+24.在△ABC 中,∠C =90°,sin A =35,则sin B 的值是 ( C ) A.23 B.25 C.45 D.2155.如图,已知二次函数y =ax 2+bx +c 的图象分别与x轴的正半轴和负半轴交于A ,B 两点,且OA <OB ,则一次函数y =ax +b 和反比例函数y =a +b x的图象可能是( D )6.如图所示,在△ABC 中,∠A =30°,tan B =32,AC =23,则AB的长为( A )A .5B .4.5C .3+ 3D .2+2 37.如图,一座公路桥离地面高度AC 为6m ,引桥AB 的水平宽度BC 为24 m ,为降低坡度,现决定将引桥坡面改为AD ,使其坡度为1∶6,则BD 的长是 ( C )A .36 mB .24 mC .12 mD .6 m8.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数表达式为s =-6t 2+bt(b 为常数),已知t =12时,s =6,则汽车刹车后行驶的最大距离为 ( C ) A.152 m B .8 m C.758m D .10 m9.如图,已知直线l 1∥l 2∥l 3∥l 4∥l 5,相邻两条平行直线间的距离都相等,若直角梯形ABCD 的三个顶点在平行直线上,∠ABC =90°且AB =3AD ,则tan α为( C )A .3 B.13 C.34 D.43 10.(哈尔滨中考)如图,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论中一定正确的是( D )A.AB AE =AG ADB.DF CF =DG ADC.FG AC =EG BDD.AE BE =CF DF11.如图,Rt △ABC 的顶点B 在反比例函数y =12x的图象上,AC 边在x 轴上,已知∠ACB =90°,∠A =30°,BC =4,则图中阴影部分的面积是 ( D )A .12B .4 3C .12-3 3D .12-323 12.如图,在锐角△ABC 中,BC =6,S △ABC =12,两动点M ,N 分别在边AB ,AC 上滑动,且MN ∥BC ,MP ⊥BC ,NQ⊥BC ,得矩形MPQN ,设MN 的长为x ,矩形MPQN 的面积为y ,则y 关于x 的函数图象大致是 ( B )A B C D二、填空题(本大题共6小题,每小题3分,共18分.)13.二次函数y =(x -1)2+2的最小值是2. 14.(梧州中考)已知直线y =ax(a ≠0)与反比例函数y =k x(k ≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是(-2,-4).15.如图,河流两岸a ,b 互相平行,点A ,B 是河岸a 上的两座建筑物,点C ,D 是河岸b 上的两点,A ,B 的距离约为200 m ,某人在河岸b 上的点P 处测得∠APC =75°,∠BPD =30°,则河流的宽度约为100m.16.(梧州中考)如图,已知在△ABC 中,D ,E 分别是AB ,AC 的中点,F ,G 分别是AD ,AE 的中点,且FG =2 cm ,则BC 的长度是8cm.17.如图,在平面直角坐标系中,矩形ABCD 的边AB ∶BC =3∶2,点A(3,0),B(0,6)分别在x 轴、y 轴上,反比例函数y =k x(x >0)的图象经过点D ,且与边BC 交于点E ,则点E 的坐标为(2,7).【解析】首先过点D 作DF ⊥x 轴于点F ,易证得△AOB ∽△DFA ,然后由相似三角形的对应边成比例,求得点D 的坐标,即可求得反比例函数的表达式,再利用平移的性质求得点C的坐标,继而求得直线BC 的表达式,则可求得点E的坐标.18.(岳阳中考)如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论中正确的是③④.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.三、解答题(本大题共8小题,满分66分.)19.(本题满分6分)计算:2cos 45°-(π+1)0+14+⎝⎛⎭⎪⎫-12-1+tan260°.解:原式=2×22-1+12-2+3=2+12.20.(本题满分6分)如图,已知O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)如果△OBC内部一点M的坐标为(x,y),写出点B,C,M的对应点B′,C′,M′的坐标.解:(1)画图略.(2)B′(-6,2),C′(-4,-2),M′(-2x,-2y).21.(本题满分6分)如图,在矩形ABCD 中,点E 是BC 边上的一动点,DF ⊥AE 于F ,连接DE ,AE =BC.(1)求证:△ABE ≌△DFA ;(2)如果BC =10,AB =6,试求出tan ∠EDF 的值.(1)证明:AE =BC =AD ,∠AFD =∠B =90°,∠DAF =∠AEB ,∴△ABE ≌△DFA.(2)解:AD =BC =AE =10,由△ABE ≌△DFA ,DF =AB =6,∴AF =AD 2-DF 2=102-62=8,EF =AE -AF =10-8=2,∴tan ∠EDF =26=13.22.(本题满分8分)如图,为了缓解交通拥堵,方便行人,在某街道计划修建一座横断面为梯形ABCD 的过街天桥,若天桥斜坡AB 的坡角∠BAD 为35°,斜坡CD 的坡度为i =1∶1.2(垂直高度CE 与水平宽度DE 的比),上底BC =10 m ,天桥高度CE =5 m ,求天桥下底AD 的长度?(结果精确到0.1 m ,参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70)解:过B 作BF ⊥AD 于F ,则四边形BCEF 为矩形,则BF =CE =5 m ,BC =EF =10 m ,在Rt △ABF 中, BF AF =tan 35°,则AF ≈50.7≈7.1 m , 在Rt △CDE 中,∵CD 的坡度为i =1∶ 1.2,∴CE ED=1∶ 1.2,则ED =6 m , ∴AD =AF +EF +ED =7.1+10+6=23.1(m).∴AD 长约为23.1 m.23.(本题满分8分)如图,一次函数y =kx +b 的图象与反比例函数y=m x (x >0)的图象交于A(n ,-1),B ⎝ ⎛⎭⎪⎫12,-4两点,点C 坐标为(0,2). (1)求反比例函数的表达式;(2)求一次函数的表达式;(3)求△ABC 的面积.解:(1)∵y =m x过点 B ⎝ ⎛⎭⎪⎫12,-4,∴m =-2. ∴反比例函数的表达式为y =-2x. (2)∵点A(n ,-1)在y =-2x 上,∴-1=-2n,解得n =2, ∴A(2,-1).∵直线y =kx +b 过点A(2,-1),B ⎝ ⎛⎭⎪⎫12,-4,∴⎩⎪⎨⎪⎧-1=2k +b ,-4=12k +b ,解得⎩⎪⎨⎪⎧k =2,b =-5. ∴一次函数的表达式为y =2x -5.(3)设一次函数y =2x -5的图象交y 轴于点D ,∴D(0,-5). ∴S △ABC =S △ACD -S △BCD=12×7×2-12×7×12=214.24.(本题满分10分)如图,已知正方形ABCD 中,BE 平分∠DBC 且交CD 边于点E ,将△BCE 绕点C 顺时针旋转到△DCF 的位置,并延长BE 交DF 于点G.(1)求证:△BDG ∽△DEG ;(2)若EG ·BG =4,求BE 的长.(1)证明:∠DBG =∠FBG =∠FDC ,又∠BGD =∠DGE ,∴△BDG ∽△DEG.(2)解:由△BDG ∽△DEG ,得DG BG =EG DG, ∴DG 2=BG ·EG =4,∵DG > 0,∴DG =2,∠BGD =∠FBG +∠F =∠FDC +∠F =90°.∴∠BGD =∠BGF ,易证△BGD ≌△BGF ,∴FG =DG =2,DF =4,∴BE =DF =4.25.(本题满分10分)如图是一种新型的滑梯的示意图,其中线段PA是高度为6 m 的平台,滑道AB 是函数y =10x 的图象的一部分,滑道BCD 是二次函数图象的一部分,两滑道的连接点B 为抛物线的顶点,且B 点到地面的距离为2 m ,当甲同学滑到C 点时,距地面的距离为1 m ,距点B 的水平距离CE 也为1 m.(1)试求滑道BCD 所在抛物线的表达式;(2)试求甲同学从点A 滑到地面上D 点时,所经过的水平距离.解:(1)由题意,得B(5,2),故设滑道BCD 所在抛物线的表达式为y =a(x -5)2+2,将C 的坐标(6,1)代入,得a +2=1,解得a =-1,则y =-(x -5)2+2.(2)令y =0,解得x =2+5,又将y =6代入y =10x ,得x =53;甲同学从点A 滑到地面上D 点时,所经过的水平距离为2+5-53=103+2.26.(本题满分12分)(绥化中考)如图,已知抛物线y =ax 2+bx +c 与x 轴交于点A ,B ,与直线AC :y =-x -6交y 轴于点C ,点D 是抛物线的顶点,且横坐标为-2.(1)求出抛物线的表达式;(2)判断△ACD 的形状,并说明理由;(3)直线AD 交y 轴于点F ,在线段AD 上是否存在一点P ,使∠ADC =∠PCF ?若存在,直接写出点P 的坐标;若不存在,说明理由. 解:(1)抛物线的表达式为y =12x 2+2x -6.(2)△ACD 是直角三角形,理由:∵y =12x 2+2x -6=12(x +2)2-8,∴顶点D 的坐标是(-2,-8).∵A(-6,0),C(0,-6),∴AC 2=62+62=72,CD 2=22+(-8+6)2=8,AD 2=(-2+6)2+82=80,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∠ACD =90°.(3)存在满足条件的点P.假设在线段AD 上存在一点P ,使∠ADC =∠PCF.设直线AD 的表达式为y =mx +n ,∵A(-6,0),D(-2,-8),∴⎩⎪⎨⎪⎧-6m +n =0,-2m +n =-8,解得⎩⎪⎨⎪⎧m =-2,n =-12,课时掌控 九年级 数学 上册 沪科版∴直线AD 的表达式为y =-2x -12.∴F 点坐标为(0,-12),设点P 坐标为(x ,-2x -12),易证△CPD ∽△FPC ,∴CP FP =CD FC ,∴x 2+(-2x -12+6)2x 2+(2x )2=862 , 整理,得35x 2+216x +324=0,解得x 1=-187,x 2=-185. 当x =-187时,-2x -12=-487, 当x =-185时,-2x -12=-245,此时P 点纵坐标大于C 点纵坐标,∠PCF >90°,舍去.∴点P 的坐标为⎝ ⎛⎭⎪⎫-187,-487.。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.下列关系式中y 是x 的反比例函数的是()A .5y x=B .k y x=C .25y x =D .3xy =2.如图,三视图正确的是()A .主视图B .左视图C .左视图D .俯视图3.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=4.反比例函数ky x=的图象如图所示,则k 值可能是()A .-2B .2C .4D .85.已知四边形ABCD 是平行四边形,下列结论:①当AB =BC 时,它是菱形;②当AC ⊥BD 时,它是菱形;③当∠ABC =90°时,它是矩形;④当AC =BD 时,它是正方形,其中错误的有()A .1个B .2个C .3个D .4个6.如图,在△ABC 中,点D 、E 在边AB 上,点F 、G 在边AC 上,且DF ∥EG ∥BC ,AD=DE =EB ,若Δ1ADF S =,则EBCG S =四边形()A .3B .4C .5D .67.若关于x 的方程()()22222280x x x x +++-=有实数根,则22x x +的值为()A .-4B .2C .-4或2D .4或-28.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是()A .3B .4C .5D .69.如图,O 是矩形ABCD 对角线AC 的中点,M 是AD 的中点,若BC =8,OB =5,则OM 的长为()A .1B .2C .3D .410.如图,将矩形ABCD 沿对角线BD 折叠,点A 落在点E 处,DE 交BC 于点F ,若∠CFD =40°,则∠ABD 的度数为()A .50°B .60°C .70°D .80°二、填空题11.反比例函数ky x=图象上有两点A (-3,4)、B (m ,2),则m =_____.12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.13.已知一元二次方程(m -2)m x +3x -4=0,那么m 的值是_____.14.在平面直角坐标系中,△ABC 中点A 的坐标是(2,3),以原点O 为位似中心把△ABC 放大,使放大后的三角形与△ABC 的相似比为3:1,则点A 的对应点A′的坐标为_____.15.若一元二次方程220x -=的两根分别为m 与n ,则m nn m+=_____.16.在矩形ABCD 中,AB =6,BC =8,BD ⊥DE 交AC 的延长线于点E ,则DE =_____.17.如图,在平行四边形ABCD 中,CE ⊥AB 且E 为垂足,如果∠A =125°,则∠BCE =____.三、解答题18.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BC 相交于点N ,连接BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求菱形BMDN 的面积.19.等腰三角形的三边长分别为a 、b 、c ,若6a =,b 与c 是方程22(31)220x m x m m -+++=的两根,求此三角形的周长.20.如图,一次函数2y kx =+与y 轴交于点A ,与反比例函数my x=的图象相交于B 、C 两点,BD ⊥y 轴交y 轴于点D ,OA =OD ,8ABDS ∆=.(1)求一次函数与反比例函数的表达式;(2)求点C 的坐标,并直接写出不等式2mkx x+>的解集;(3)在所在平面内,存在点E 使以点B 、C 、D 、E 为顶点的四边形为平行四边形,请直接写出所有满足条件的点E 的坐标.21.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.22.某数学小组为调查实验学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A :乘坐电动车,B :乘坐普通公交车或地铁,C :乘坐学校的定制公交车,D :乘坐家庭汽车,E :步行或其他”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中一共调查了名学生;扇形统计图中,E选项对应的扇形圆心角是度;(2)请补全条形统计图;(3)若甲、乙两名学生放学时从A、B、C三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具上班的概率.23.如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=45,求AF的长.24.已知:如图,△ABO与△BCD都是等边三角形,点O为坐标原点,点B、D在x轴上,AO=2,点A、C在一反比例函数图象上.(1)求此反比例函数解析式;(2)求点C的坐标;(3)问:以点A为顶点,且经过点C的抛物线是否经过点(0?请说明理由.25.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.26.如图,点A、B在反比例函数kyx的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2(1)求该反比例函数的解析式;(2)若点(﹣a,y1),(﹣2a,y2)在该反比例函数的图象上,试比较y1与y2的大小;(3)求△AOB的面积.参考答案1.D 【分析】根据反比例函数的定义:(0)ky k x=≠且k 为比例系数,即可作出判断.【详解】A 、此函数为一次函数,故不符合题意;B 、不一定反比例函数,当k=0时,则y=0,故不符合题意;C 、不是反比例函数,未知数x 的指数不满足反比例函数的定义,故不符合题意;D 、由3xy =得:3y x=,符合反比例函数的定义,故符合题意;故选:D【点睛】本题主要考查了反比例函数的定义,掌握其解析形式是关键,特别注意k 是不为零的常数.2.A 【分析】根据几何体的形状,从三个角度得到其三视图即可.【详解】解:主视图是一个矩形,内部有两条纵向的实线,故选项A 符合题意;左视图是一个矩形,内部有一条纵向的实线,故选项B 、C 不符合题意;俯视图是一个“T ”字,故选项D 不符合题意;故选:A .【点睛】此题主要考查了画三视图的知识,解题的关键是掌握主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.B 【分析】根据配方法解一元二次方程的步骤首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式.【详解】解:2250x x --=移项得:225x x -=方程两边同时加上一次项系数一半的平方得:22151x x -+=+配方得:()216x -=.故选:B .【点睛】此题考查了配方法解一元二次方程的步骤,解题的关键是熟练掌握配方法解一元二次方程的步骤.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4.B 【分析】根据函数所在象限和反比例函数上的点的横纵坐标的积小于4判断.【详解】解:∵反比例函数图象在第一、三象限,∴k >0,∵当图象上的点的横坐标为2时,纵坐标小于2,∴k <4,故选:B .【点睛】本题考查了反比例函数图象上点的坐标特点,反比例函数的图象与性质,比例系数等于在它上面的点的横纵坐标的积,熟练掌握反比例函数的图象与性质是解答本题的关键.5.A 【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解: 四边形ABCD 是平行四边形,A 、当AB BC =时,它是菱形,选项不符合题意,B 、当AC BD ⊥时,它是菱形,选项不符合题意,C 、当90ABC ∠=︒时,它是矩形,选项不符合题意,D 、当AC BD =时,它是矩形,不一定是正方形,选项符合题意,故选:A .【点睛】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.6.C 【分析】利用////DF EG BC ,得到ADF ABC ∆∆∽,ADF AEG ∆∆∽,利用AD DE EB ==,得到13AD AB =,12AD AE =,利用相似三角形的性质,相似三角形的面积比等于相似比的平方,分别求得AEG ∆和ABC ∆的面积,利用ABC AEG EBCG S S S ∆∆=-四边形即可求得结论.【详解】解:AD DE EB == ,∴13AD AB =,12AD AE =.////DF EG BC ,ADF ABC ∴∆∆∽,ADF AEG ∆∆∽.∴2(ADF ABC S AD S AB∆∆=,2(ADF AEG S AD S AE ∆∆=.99ABC ADF S S ∆∆∴==,44AEG ADF S S ∆∆==.945ABC AEG EBCG S S S ∆∆∴=-=-=四边形.故选:C .【点睛】本题主要考查了相似三角形的判定与性质,解题的关键是利用相似三角形的面积比等于相似比的平方,用ABC AEG EBCGS S S ∆∆=-四边形解答.7.B 【分析】设22x x y +=,则原方程可化为2280y y +-=,解得y 的值,即可得到22x x +的值.【详解】解:设22x x y +=,则原方程可化为2280y y +-=,解得:14y =-,22y =,当4y =-时,224x x +=-,即2240x x ++=,△224140=-⨯⨯<,方程无解,当2y =时,222x x +=,即2220x x +-=,△()22412=120=-⨯⨯->,方程有实数根,22x x ∴+的值为2,故选:B .【点睛】本题考查了换元法解一元二次方程,的关键是把22x x +看成一个整体来计算,即换元法思想.8.A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得.【详解】解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解,即放入口袋中的黄球总数n =3,故选:A .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.9.C 【分析】由O 是矩形ABCD 对角线AC 的中点,可求得AC 的长,然后运用勾股定理求得AB 、CD 的长,又由M 是AD 的中点,可得OM 是△ACD 的中位线,即可解答.【详解】解:∵O 是矩形ABCD 对角线AC 的中点,OB =5,∴AC =2OB =10,∴CD =AB 6,∵M 是AD 的中点,∴OM =12CD =3.故答案为:C .【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.10.C 【分析】根据矩形的性质和平行线的性质得到∠FDA =40°,根据翻折变换的性质得到∠ADB =∠EDB =20°,根据直角三角形的性质可求出∠ABD 的度数,即可求出答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∠A =90°,∴∠FDA =∠CFD =40°,由翻折变换的性质得到∠ADB =∠EDB =20°∴∠ABD =70°故选C .【点睛】本题考查平行线的性质、图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.6-【分析】由点A 的坐标得到反比例函数的解析式,再把点B 的坐标代入可得m 的值.【详解】解:把(3,4)A -代入ky x =可得3412k =-⨯=-,所以反比例函数的解析式是12y x=-,当2y =时,6m =-.故答案为:6-.【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是掌握待定系数法求得解析式.12.20000【详解】试题分析:1000÷10200=20000(条).考点:用样本估计总体.13.2-【分析】根据一元二次方程的定义进行计算即可.【详解】解:由题意可得:||2m =且20m -≠,2m ∴=±且2m ≠,2m ∴=-,故答案为:2-.【点睛】本题考查了绝对值,一元二次方程的定义,解题的关键是熟练掌握一元二次方程的定义,即()200ax bx c a ++=≠.14.(6,9)或(6,9)--【分析】根据如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -进行解答.【详解】解:以原点O 为位似中心,把ABC ∆放大,使放大后的三角形与ABC ∆的相似比为3:1,则点(2,3)A 的对应点A '的坐标为(6,9)或(6,9)--.故答案为:(6,9)或(6,9)--.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -.15.72-【分析】先根据根与系数的关系得m n +=mn=-2,再把原式变形为2()2m n mn mn+-,然后利用整体代入的方法计算.【详解】解:∵一元二次方程220x -=的两根分别为m 与n ,根据根与系数的关系得m n +=,mn=-2,所以原式=()(()2222222722m n mn m n mn mn -⨯-+-+===--.故答案为:72-.16.1207【分析】由勾股定理可求AC 的长,由矩形的性质可得5OD OB ==,由面积法可求DH 的长,通过证明OD DE OH DH =,即可求解.【详解】解:如图:过点D 作DH AC ⊥于H ,6AB = ,8BC =,10AC ∴==,四边形ABCD 是矩形,152AO CO BO DO AC ∴=====, 11··22ADC S AD CD AC DH == ,6810DH ∴⨯=,245DH ∴=,75OH ∴===,∵=90DOH ODH ∠+︒∠,=90DOH E ∠+︒∠,∴ODH E∠=∠90DHO EHD ∠=∠=︒Q ,ODH DEH ∴∆∆∽,∴OD DE OH DH=,∴572455DE =,1207DE ∴=,故答案为:1207.17.35【详解】分析:根据平行四边形的性质和已知,可求出∠B ,再进一步利用直角三角形的性质求解即可.详解:∵AD ∥BC ,∴∠A+∠B=180°,∴∠B=180°-125°=55°,∵CE ⊥AB ,∴在Rt △BCE 中,∠BCE=90°-∠B=90°-55°=35°.故答案为35.点睛:本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.18.(1)见解析;(2)菱形BMDN 的面积是20【分析】(1)证△DMO ≌△BNO ,得出OM =ON ,根据对角线互相平分证四边形BMDN 是平行四边形,再根据对角线互相垂直证菱形即可;(2)设BM=x ,根据勾股定理列出方程,求出菱形边长,再用面积公式求解即可.【详解】解:(1)证明:∵四边形ABCD 是矩形,MN 垂直平分BD ,∴AD ∥BC ,∠A =90°,OB =OD ,∴∠MDO =∠NBO ,∠DMO =∠BNO ,∵在△DMO 和△BNO 中,DMO BNO MDO NBO OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DMO ≌△BNO (AAS )∴OM =ON又∵OB =OD∴四边形BMDN 是平行四边形∵MN 垂直平分BD ,即MN ⊥BD∴平行四边形BMDN 是菱形.(2)解:∵四边形BMDN 是菱形∴MB =MD在Rt △AMB 中,设BM=x ,BM 2=AM 2+AB 2即x 2=(8﹣x )2+42解得:x =5,MD=5∴BN=MD=5∴5420BMDN S BN AB =⨯=⨯=菱形答:菱形BMDN 的面积是20.19.此三角形的周长为16或22.【分析】分两种情况进行讨论分析:①若6a =是三角形的腰,则b 与c 中至少有一边长为6;若6a =是三角形的底边,则b 、c 为腰,即b c =;根据题意,代入方程确定m 的值,然后代入方程求解,确定三边长度,考虑三边关系判定能否构成三角形,然后求周长即可得.【详解】解:①若6a =是三角形的腰,则b 与c 中至少有一边长为6,代入方程得:()226316220m m m -+⨯++=,解得3m =或5m =,∴当3m =时,方程可化为210240x x -+=,解得14x =,26x =,∴三角形三边长分别为4、6、6,周长为:46616++=;当5m =时,方程可化为216600x x -+=,解得16x =,210x =;三角形三边长分别为6、6、10,周长为:106622++=;∴三角形的周长为16或22;②若6a =是三角形的底边,则b 、c 为腰,即b c =,则方程有两个相等的实数根,∴()()22314220m m m ⎡⎤-+-+=⎣⎦,解得1m =,∴原方程可化为2440x x -+=,解得122x x ==,此时,6a =,2b c ==,不能构成三角形,舍去;综上所述,三角形的周长为16或22.【点睛】题目主要考查等腰三角形的定义及一元二次方程的解法,三角形的三边关系等,理解题意,进行分类讨论是解题关键.20.(1)一次函数的解析式为:2y x =+;反比例函数的解析式为:8y x=(2)40x -<<或2x >(3)(6,4)、(-6,-8)、(-2,4)【分析】(1)首先求出点D 的坐标,从而得出AD 的长,由8ABD S ∆=,得出BD 的长,从而得出点B 的坐标,从而解决问题;(2)由(1)可联立方程组28y x y x =+⎧⎪⎨=⎪⎩,解方程组得出点C 的坐标,根据图象可得答案;(3)分当BC 、CD 、BD 为对角线三种情形,分别通过对角互相平分进行求解.(1)解: 点A 是一次函数2y kx =+与y 轴的交点,∴令0x =,则022y k =⨯+=,即(0,2)A 2OA ∴=,又OD OA =Q ,2OD ∴=,(0,2)D ∴-,24AD OD ∴==.BD y ⊥ 轴,∴点B 的纵坐标为2-,8ABD S ∆= ,∴182AD BD ⋅=,∴1482BD ⨯⨯=,4BD ∴=,∴点B 的坐标为(4,2)--,把点(4,2)B --分别代入一次函数2y kx =+与反比例函数my x =,可得:422k -=-+,24m-=-,1k ∴=,8m =,∴一次函数的解析式为:2y x =+,反比例函数的解析式为:8y x =;(2)解:由(1)可联立方程组28y x y x=+⎧⎪⎨=⎪⎩,解这个方程组得:42x y =-⎧⎨=-⎩或24xy =⎧⎨=⎩,点C 在第一象限,故点C 坐标为(2,4),由图象可得当40x -<<或2x >时,2mkx x +>;(3)解:如图,当BC 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为1,BC DE 的中点,(4,2),(2,4),(0.2)B C D --- ,42241,122x y -+-+==-==,设111(,)E x y ,11021,122x y+-+-==,解得:112,4x y =-=,1(2,4)E ∴-;如图,当CD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为2,CD BE 的中点,(4,2),(2,4),(0.2)B C D --- ,20421,122x y +-====,设222(,)E x y ,22421,122x y --==,解得:116,4x y ==,2(6,4)E ∴;如图,当BD 为对角线时,取对角线的交点为(,)F x y ,根据对角线互相平分,即(,)F x y 为3,BD CE 的中点,(4,2),(2,4),(0.2)B C D --- ,40222,222x y -+--==-==-,设333(,)E x y ,33242,222x y ++-=-=,解得:336,8x y =-=-,3(6,8)E ∴--;∴符合条件的点E 的坐标为:(6,4)、(6,8)--、(2,4)-.【点睛】本题是反比例函数综合题,主要考查了反比例函数图象与一次函数图象交点问题,平行四边形的性质,函数与不等式的关系等知识,解题的关键是运用分类思想来解答.21.(1)见解析;(2)AC =(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可.【详解】(1)证明:2AD BC = ,E 为AD 的中点,DE BC ∴=.//AD BC ,∴四边形BCDE 是平行四边形.90ABD ∠=︒ ,AE DE =,BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC ,//AD BC ,AC 平分BAD ∠,BAC DAC BCA ∴∠=∠=∠.1AB BC ∴==.22AD BC ∴==,2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒.在Rt ACD ∆中2AD = ,1CD ∴=,∴AC ==.22.(1)200,72;(2)见解析;(3)13.【分析】(1)根据B 的人数以及百分比得到被调查的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)求出C 组的人数即可补全图形;(3)列表得出所有等可能结果,即可运用概率公式得甲、乙两名学生恰好选择同一种交通工具回家的概率.【详解】解:(1)本次调查的学生人数为6030%200÷=(名),扇形统计图中,B项对应的扇形圆心角是40 36072200︒⨯=︒,故答案为:200;72;(2)C选项的人数为200(20603040)50-+++=(名),补全条形图如下:(3)画树状图如图:共有9个等可能的结果,甲、乙两名学生恰好选择同一种交通工具上班的结果有3个,∴甲、乙两名学生恰好选择同一种交通工具上班的概率为31 93=.【点睛】此题考查了列表法与树状图法、条形统计图、扇形统计图和概率公式,解题的关键是仔细观察统计图并从中整理出解题的有关信息,正确画出树状图.23.(1)证明见解析;(2)【分析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB ,∴△ABF ∽△BEC ;(2)解:∵AE ⊥DC ,AB ∥DC ,∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:=在Rt △ADE 中,AE=AD•sinD=5×45=4,∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴AF AB BC BE=,即5AF =解得:.24.(1)y =(2)(1C -;(3)是,理由见解析.【分析】(1)首先过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,根据AO =2,△ABO 与△BCD 是等边三角形,得出A 点坐标,进而求出反比例函数解析式;(2)首先表示出C 点坐标,进而代入函数解析式求出即可;(3)首先设y =a (x +1)2C 坐标代入得出a 的值,进而将点(0答案.【详解】解:(1)过点A 、C 分别作AF ⊥OB 于点F ,CE ⊥DB 于点E ,∵AO =2,△ABO 与△BCD 是等边三角形,∴OF =1,FAA 的坐标是(-1,把(-1k y x=,得k∴反比例函数的解析式是y =(2)设BE =a ,则CE∴点C 的坐标是(-2-a),把点C 的坐标代入y=2-a a 1,∴点C的坐标是(-1-);(3)过点C的抛物线是经过点(0.理由:设y=a(x+1)2把点C坐标代入得a,∴y(x+1)2当x=0时,代入上式得y=2,∴点C的抛物线是经过点(0,2).【点睛】此题主要考查了反比例函数的综合应用以及图象上点的坐标特点等知识,根据已知表示出C点坐标是解题关键.25.(1)见解析(2)四边形CEFG的面积为20 3.【分析】(1)根据题意和翻折的性质,可以得到△BCE≌△BFE,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF的长,进而求得EF和DF的值,从而可以得到四边形CEFG的面积.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG 是平行四边形,又∵CE=FE ,∴四边形CEFG 是菱形;(2)解:∵矩形ABCD 中,AB=6,AD=10,BC=BF ,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x ,则CE=x ,DE=6-x ,∵∠FDE=90°,∴22+(6-x )2=x 2,解得,x=103,∴CE=103,∴四边形CEFG 的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.(1)4y x =(2)y 1<y 2(3)3【分析】(1)由122AOC S xy ∆==,设反比例函数的解析式k y x =,则4k xy ==;(2)由于反比例函数的性质是:在0x <时,y 随x 的增大而减小,2a a ->-,则12y y <;(3)连接AB ,过点B 作BE x ⊥轴,交x 轴于E 点,通过分割面积法AOB AOC BOE ACEB S S S S ∆∆∆=+-梯形求得.(1)解:2AOC S ∆= ,24AOC k S ∆∴==;4y x ∴=;(2)解:0k > ,∴函数y 的值在各自象限内随x 的增大而减小;0a > ,2a a ∴-<-;12y y ∴<;(3)解:连接AB ,过点B 作BE x ⊥轴,2AOC BOE S S ∆∆==,4(,)A a a ∴,2(2,)B a a ;()124232ACEB S a a a a ⎛⎫=+⨯-= ⎪⎝⎭梯形,3AOB AOC BOE ACEB S S S S ∆∆∆∴=+-=梯形.。

九年级数学上册期末试卷及答案【完整版】

九年级数学上册期末试卷及答案【完整版】

九年级数学上册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. 2 C. D.2.若点A(1+m, 1﹣n)与点B(﹣3, 2)关于y轴对称, 则m+n的值是()A. ﹣5B. ﹣3C. 3D. 13.若点, , 都在反比例函数的图象上, 则, , 的大小关系是()A. B. C. D.4.为考察甲、乙、丙、丁四种小麦的长势, 在同一时期分别从中随机抽取部分麦苗, 获得苗高(单位: cm)的平均数与方差为: = =13, = =15: s甲2=s丁2=3.6, s乙2=s丙2=6.3.则麦苗又高又整齐的是()A. 甲B. 乙C. 丙D. 丁5.一个整数815550…0用科学记数法表示为8.1555×1010, 则原数中“0”的个数为()A. 4B. 6C. 7D. 106. 对于二次函数,下列说法正确的是()A. 当x>0, y随x的增大而增大B. 当x=2时, y有最大值-3C.图像的顶点坐标为(-2, -7)D. 图像与x轴有两个交点7.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 18.如图, AB是⊙O的直径, BC与⊙O相切于点B, AC交⊙O于点D, 若∠ACB=50°, 则∠BOD等于()A. 40°B. 50°C. 60°D. 80°9.如图, 四边形ABCD内接于⊙O, 点I是△ABC的内心, ∠AIC=124°, 点E 在AD的延长线上, 则∠CDE的度数为()A. 56°B. 62°C. 68°D. 78°10.两个一次函数与, 它们在同一直角坐标系中的图象可能是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: =______________.2. 分解因式: a2b+4ab+4b=_______.3. 若二次根式有意义, 则x的取值范围是__________.4.如图, 在Rt△ACB中, ∠ACB=90°, ∠A=25°, D是AB上一点, 将Rt △ABC沿CD折叠, 使点B落在AC边上的B′处, 则∠ADB′等于______.5. 如图所示, 直线a经过正方形ABCD的顶点A, 分别过正方形的顶点B.D作BF⊥a于点F, DE⊥a于点E, 若DE=8, BF=5, 则EF的长为__________.6. 如图抛物线y=x2+2x﹣3与x轴交于A, B两点, 与y轴交于点C, 点P是抛物线对称轴上任意一点, 若点D.E、F分别是BC.BP、PC的中点, 连接DE, DF, 则DE+DF的最小值为__________.三、解答题(本大题共6小题, 共72分)1. 解方程:=12. 在平面直角坐标系中, 已知点, 直线经过点. 抛物线恰好经过三点中的两点.(1)判断点是否在直线上. 并说明理由;(2)求,a b的值;(3)平移抛物线, 使其顶点仍在直线上, 求平移后所得抛物线与轴交点纵坐标的最大值.3. 正方形ABCD的边长为3, E、F分别是AB.BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°, 得到△DCM.(1)求证: EF=FM(2)当AE=1时, 求EF的长.4. 已知是的直径, 弦与相交, .(Ⅰ)如图①, 若为的中点, 求和的大小;(Ⅱ)如图②, 过点作的切线, 与的延长线交于点, 若, 求的大小.5. 学校开展“书香校园”活动以来, 受到同学们的广泛关注, 学校为了解全校学生课外阅读的情况, 随机调查了部分0次1次2次3次4次及以上学生在一周内借阅图书的次数, 并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数人数7 13 a 10 3请你根据统计图表中的信息, 解答下列问题:______, ______.该调查统计数据的中位数是______, 众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生, 根据调查结果, 估计该校学生在一周内借阅图书“4次及以上”的人数.6. 俄罗斯世界杯足球赛期间, 某商店销售一批足球纪念册, 每本进价40元, 规定销售单价不低于44元, 且获利不高于30%. 试销售期间发现, 当销售单价定为44元时, 每天可售出300本, 销售单价每上涨1元, 每天销售量减少10本, 现商店决定提价销售. 设每天销售量为y本, 销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时, 商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时, 商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.D2.D3.B4.D5.B6.B7、B8、D9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、.2.b(a+2)23.4、40°.5.136.三、解答题(本大题共6小题, 共72分)1.x=12、(1)点在直线上, 理由见详解;(2)a=-1, b=2;(3)3.(1)略;(2)5 2.4.(1)52°, 45°;(2)26°5、17、20;2次、2次;;人.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时, 商店每天获利2400元;(3)将足球纪念册销售单价定为52元时, 商店每天销售纪念册获得的利润w元最大, 最大利润是2640元.。

九年级数学上学期期末考试题 试题 (2)

九年级数学上学期期末考试题  试题 (2)

第51中2021-2021学年九年级数学上学期期末考试题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日〔考试时间是是:120分钟;满分是:120分〕题号 一 二三 四合计 合计人复核人15 1617 18 19 20 21 22 23 24得分真情提示:亲爱的同学,欢送你参加本次考试,祝你答题成功! 1.请必须在规定的正确位置填写上座号,并将密封线内的工程填写上清楚.2.本试题一共有24道题.其中1—8题为选择题,请将所选答案的标号填写上在第8题后面给出表格的相应位置上;9—14题为填空题,请将做出之答案填写上在第14题后面给出表格的相应位置上;15—24题请在试卷给出的此题位置上做答.一、选择题〔此题满分是24分,一共有8道小题,每一小题3分〕以下每一小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每一小题选对得分;不选、选错或者选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写上在第8小题后面的表格内.+sin300= 〔 〕A. 2B.233+ C. 23D. 231+2. 如图,由高和直径一样的5个圆柱搭成的几何体,其左视图是〔 〕得 分 阅卷人 复核人A. B. C. D.3. 以下模拟掷硬币的试验不正确的选项是〔〕A.用计算器随机地取数,取奇数相当于正面朝上,取偶数相当于硬币正面朝下。

B.在袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上。

C.在没有大小王的扑克牌中随机地抽一张牌,抽到红色牌表示硬币正面朝上。

D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上。

4. 将抛物线y=x2平移得到抛物线y=(x+2)2,那么这个平移过程正确的选项是〔〕A. 向左平移2个单位 B 向下平移2个单位.C . 向上平移2个单位D. 向左平移2个单位5. 一个不透明的口袋里装有除颜色外都一样的8个白球和假设干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:现将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮一共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A. 92 B 72 .C . 80 D. 886. 如图是二次函数y=ax2+bx+c图象的一局部,且过点A〔3,0〕,二次函数图象的对称轴是x=1,以下结论正确的选项是〔〕A. b2>4ac B ac>0 .C . a﹣b+c>0 D. 4a+2b+c<07. 如图,Rt△ABC 内有边长分别有a,b,c 的三个正方形,那么a,b,c 满足的关系式是〔 〕 A 、b=a+c B 、b=ac C 、b²=a²+c² D 、b=2a=2b8. 如图,在矩形ABCD 中,AD=2AB ,AE 平分∠BAD ,DF ⊥AE 于F ,BF 交DE 、CD 于O 、H ,以下结论:①∠DEA=∠DEC ;②BF=FH ;③OE=OD ;④BC-CH=2EF .⑤AB=HF,其中正确结论的个数是〔 〕A. 2个 B 3个 .C . 4个 D. 5个请将1—8各小题所选答案的标号填写上在下面的表格内: 题号 1 2 3 4 5 6 7 8 答案二、填空题〔此题满分是18分,一共有6道小题,每一小题3分〕 请将 9—14各小题之答案填写上在第14小题后面的表格内.9.方程x 〔x —2〕=x —2的解是 。

2020-2021学年北京市朝阳中学明德分校九年级(上)期末数学模拟练习试卷(二)

2020-2021学年北京市朝阳中学明德分校九年级(上)期末数学模拟练习试卷(二)

2020-2021学年北京市朝阳中学明德分校九年级(上)期末数学模拟练习试卷(二)1.(单选题,2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(单选题,2分)五张完全相同的卡片上,分别写有数字1,2,3,4,5,现从中随机抽取一张,抽到的卡片上所写数字小于3的概率是()A. 15B. 25C. 35D. 453.(单选题,2分)方程x2-3x-1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定4.(单选题,2分)如图,△ABC的顶点都在方格纸的格点上,那么sinA的值为()A. 32B. 34C. 45D. 355.(单选题,2分)如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是()A.B.C.D.6.(单选题,2分)如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交BĈ于点D,连接CD,OD,BD.下列结论中正确的是()A.AC || ODB.CE=OEC.△ODE∽△ADOD.AC=2CD7.(单选题,2分)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE || BC,的值为()EF || AB.若AD=2BD,则CFBFA. 12B. 13C. 14D. 238.(单选题,2分)如图,双曲线y= kx 与直线y=- 12x交于A、B两点,且A(-2,m),则点B的坐标是()A.(2,-1)B.(1,-2)C.(12,-1)D.(-1,12)9.(单选题,2分)如图,反比例函数y=- 6x在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3,直线AB与x轴交于点C,则△AOC的面积为()A.8B.10C.12D.2410.(单选题,2分)如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.3B.4C.5D.611.(填空题,3分)如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么abc___ 0(填“>”,“=”,或“<”).12.(填空题,3分)写出一个当自变量x>0时,y随x的增大而减小的反比例函数的表达式___ .13.(填空题,3分)一元二次方程(x-2)(x+3)=x+1化为一般形式是___ .14.(填空题,3分)若点A(2,a)关于原点的对称点是B(b,-3),则ab的值是___ .15.(填空题,3分)袋子中装有红、黄、绿三种颜色的小球各一个,从中任意摸出一个放回搅匀,再摸出一个球,则两次摸出的球都是黄色的概率是___ .16.(填空题,3分)如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为___ .17.(填空题,3分)如图抛物线y=-x2+bx+c的图象与x轴的一个交点(1,0),则抛物线与x轴的另一个交点坐标是___ .18.(填空题,3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:① abc>0;② 4a+2b+c>0;③ 4ac-b2<-4a;④ 13<a<23;⑤ b>c.其中正确结论有___ (填写所有正确结论的序号).19.(填空题,3分)若点A(2m-1,2n+3)与B(2-m,2-n)关于原点O对称,则m=___ 且n=___ .20.(填空题,3分)如图,这个图形是由“基本图案”ABCDE绕着点___ 顺时针依次旋转___ 次得到的,则每次旋转的角度为___ .21.(问答)用公式法解下列方程:(1)x2+2x-1=0(2)16x2+8x=3.22.(问答)在平面直角坐标系中,已知反比例函数y= k的图象经过点A(1,√3).x(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.23.(问答)如图,在⊙O中,AĈ = CB̂,CD⊥OA于点D,CE⊥OB于点E.(1)求证:CD=CE;(2)若∠AOB=120°,OA=2,求四边形DOEC的面积.的图象与一次函数y=k(x-2)24.(问答)如图,在平面直角坐标系xOy中,反比例函数y= mx的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.25.(问答)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.26.(问答)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=-x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)若该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)在(2)的条件下,第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.27.(问答)在平面直角坐标系xOy中,已知抛物线G:y=ax2-2ax+4(a≠0).(1)当a=1时,① 抛物线G的对称轴为x=___ ;② 若在抛物线G上有两点(2,y1),(m,y2),且y2>y1,则m的取值范围是 ___ ;(2)抛物线G的对称轴与x轴交于点M,点M与点A关于y轴对称,将点M向右平移3个单位得到点B,若抛物线G与线段AB恰有一个公共点,结合图象,求a的取值范围.。

北师大版九年级(上)期末数学试卷(含答案)二

北师大版九年级(上)期末数学试卷(含答案)二

北师大版九年级(上)期末数学试卷及答案一、选择题(本大题共8小题,每小题2分,共16分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)如图所示的几何体的左视图是()A.B.C.D.2.(2分)如图,a∥b∥c,,DF=12,则BD的长为()A.2B.3C.4D.63.(2分)育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:抽查小麦粒数100300800100020003000发芽粒数962877709581923a则a的值最有可能是()A.2700B.2780C.2880D.29404.(2分)若关于x的一元二次方程ax2﹣4x+2=0有两个实数根,则a的取值范围是()A.a≤2B.a≤2且a≠0C.a<2D.a<2且a≠05.(2分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD 于点F,则OE+EF的值为()A.B.2C.D.26.(2分)对于反比例函数y=,下列结论错误的是()A.函数图象分布在第一、三象限B.函数图象经过点(﹣3,﹣2)C.函数图象在每一象限内,y的值随x值的增大而减小D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y27.(2分)如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,若∠CDE=∠B,则∠A等于()A.36°B.40°C.48°D.54°8.(2分)如图,在正方形ABCD中,E为BC的中点,F为CD的中点,AE和BF相交于点G,延长CG交AB于点H,下列结论:①AE=BF;②∠CBF=∠DGF;③=;④.其中结论正确的是()A.①②③B.①②④C.①③④D.②③④二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)若m是方程3x2+2x﹣3=0的一个根,则代数式6m2+4m的值为.10.(3分)在一个暗箱里放有x个大小相同、质地均匀的白球,为了估计白球的个数,再放入5个和白球大小、质地均相同,只有颜色不同的黄球,将球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回暗箱中,通过大量重复试验,发现摸到黄球的频率稳定在0.2,推算x的值大约是.11.(3分)为了响应全民阅读的号召,某校图书馆利用节假日面向社会开放.据统计,第一个月进馆560人次,进馆人次逐月增加,第三个月进馆830人次.设该校图书馆第二个月、第三个月进馆人次的平均增长率为x,则可列方程为.12.(3分)某天上午的大课间,小明和小刚站在操场上,同一时刻测得他们的影子长分别是2m和2.2m,已知小明的身高是1.6m,则小刚的身高是m.13.(3分)如图,在△ABC中,AB=12,BC=15,D为BC上一点,且BD=BC,在AB边上取一点E,使以B,D,E为顶点的三角形与△ABC相似,则BE=.14.(3分)如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为.15.(3分)如图,点A在反比例函数y=(x<0)的图象上,点B在y轴负半轴上,AB交x轴于点C,若AC:BC=3:2,S△AOC=6,则k的值为.16.(3分)如图,已知正方形ABCD的边长为2,在BC的延长线上取点B1,使∠CB1D=60°,分别过点D,B1作DB1,BC的垂线,两垂线交于点A1,再以A1B1为边向右侧作正方形A1B1C1D1;在BC1的延长线上取点B2,使∠C1B2D1=60°,分别过点D1,B2作D1B2,BC1的垂线,两垂线交于点A2,再以A2B2为边向右侧作正方形A2B2C2D2;……,按此规律继续作下去,则正方形A2022B2022C2022D2022的面积为.三、解答题(本大题共3题,17题8分,18,19题各6分,共20分)17.(8分)用适当方法解下列一元二次方程:(1)x2﹣6x=1;(2)x2﹣4=3(x﹣2).18.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,﹣2),B(2,﹣1),C(4,﹣4).(1)画出△ABC绕点A顺时针旋转90°得到的△AB1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且相似比为2:1;(3)若P(a,b)是△ABC边AB上任意一点,通过(2)的位似变换后,点P的对应点为P2,请写出点P2的坐标.19.(6分)如图,一盏路灯(点O)距地面6.4m,身高1.6m的小明从距离路灯的底部(点P)9m的A处,沿AP 所在的直线行走到点D处时,小明在路灯下的影子长度缩短了1.8m,求小明行走的距离.四、解答题(本大题共2题,每题7分,共14分)20.(7分)李老师参加“新星杯”教学大赛,在课堂教学的练习环节中,设计了一个学生选题活动,即从4道题目中任选两道作答.李老师用课件在同一页面展示了A,B,C,D四张美丽的图片,其中每张图片链接一道练习题目,李老师找甲、乙两名同学随机各选取一张图片,并要求全班同学作答选取图片所链接的题目.(1)甲同学选取A图片链接题目的概率是;(2)求全班同学作答图片A和B所链接题目的概率.(请用列表法或画树状图法求解)21.(7分)某电商销售一种商品,售价为85元时,每天能销售100件,获得销售利润为1000元,根据销售经验可知,当售价每上涨1元时,销售量减少5件.(1)该商品的成本价为元/件;(2)该电商销售这种商品,每天想获得1080元的利润,问该商品的售价应定为多少元.五、解答题(本大题共3题,22,23题各8分,24题10分,共26分)22.(8分)如图,在▱ABCD中,对角线AC,BD相交于点O,E为AO上一点,BF⊥BD交DE的延长线于点F,且EF=DE.(1)求证:四边形ABCD是菱形;(2)DF交AB于点G,若OD2=OE•OA,求证:DF•AG=AE•BD.23.(8分)初中阶段关于函数性质的研究都是建立在图象基础之上的.学习了反比例函数的图象与性质后,小强带领数学兴趣小组进步研究形如y =(k是常数,k≠0)的函数图象与性质.(1)k取某一个有理数时,如表列举出满足函数y =的多组x,y的对应值:x……﹣2﹣1﹣0234……y =……﹣﹣﹣﹣1﹣2﹣4421……①有理数k=;②描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象(如图所示).请你把没画完的图象补充完整;(2)在(1)的条件下,请结合图象,总结函数y=的相关性质;①该函数图象的对称中心是点(填点的坐标);②具体描述y的值随x值的变化情况:;③该函数的图象可以看作反比例函数y=的图象向平移个单位长度得到的.24.(10分)在△ABC中,∠BAC=90°,P是线段AC上一动点,CQ⊥BP于点Q,D是线段BQ上一点,E是射线CQ上一点,且满足,连接AE,DE.(1)如图1,当AB=AC时,用等式表示线段DE与AE之间的数量关系,并证明;(2)如图2,当AC=2AB=6时,用等式表示线段DE与AE之间的数量关系,并证明;(3)在(2)的条件下,若,AE⊥CQ,直接写出A,D两点之间的距离.参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分。

苏州市2022-2023学年九年级(上)期末数学复习卷二

苏州市2022-2023学年九年级(上)期末数学复习卷二

2022-2023学年九年级(上)期末数学复习卷二一、选择题(本大题共6小题,每小题3分,共18分。

在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)一元二次方程2x2﹣1=4x化成一般形式后,常数项是﹣1,一次项系数是()A.2B.﹣2C.4D.﹣42.(3分)如图,AB是⊙O的直径,,则∠BAC的度数为()A.22.5°B.30°C.45°D.67.5°3.(3分)在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是()A.B.C.D.4.(3分)将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为()A.y=x2﹣1B.y=x2+1C.y=(x﹣1)2D.y=(x+1)2第2题第5题5.(3分)如图,若⊙O的半径为6,圆心O到一条直线的距离为3,则这条直线可能是()A.l1B.l2C.l3D.l46.(3分)在平面直角坐标系xOy中,一次函数y=﹣的图象与x轴、y轴的交点分别为A、B,则∠OAB的余弦值为()A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分。

请把答案填写在答题卡相应位置)7.(3分)二次函数y=﹣3x2﹣2的最大值为.8.(3分)一组数据7,﹣2,﹣1,6的极差为.9.(3分)若α、β是方程x2+2022x+2021=0的两个实数根,则α+β的值为.10.(3分)若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是°.11.(3分)若方程x2﹣4084441=0的两根为±2021,则方程x2﹣2x﹣4084440=0的两根为.12.(3分)如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是.第12题第13题第14题13.(3分)如图,AB是⊙O的直径,C是⊙O上一点,若∠A=25°,则∠B=°.14.(3分)如图,在边长为1的正方形网格中,A、B、C、D为格点,连接AB、CD相交于点E,则AE的长为.15.(3分)如图,在⊙O中,半径OC与弦AB垂直于点D,M为AD的中点,N为上的点,且MN∥CD.若CD=5,MN=4,则⊙O的半径为.16.(3分)如图,在Rt△ABC中,P是斜边AB边上一点,且BP=2AP,分别过点A、B作l1、l2平行于CP,若CP=4,则l1与l2之间的最大距离为.第15题第16题三、解答题(本大题共12小题,共82分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x2﹣4x﹣1=0;(2)100(x﹣1)2=121.18.(6分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9;乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲880.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).19.(8分)为落实“垃圾分类”,环保部门要求垃圾要按A,B,C,D四类分别装袋、投放,其中A 类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收物,D 类指出其他垃圾,小明、小亮各投放了一袋垃圾.(1)直接写出小明投放的垃圾恰好是A类的概率;(2)求小亮投放的垃圾与小明投放的垃圾是同一类的概率.20.(6分)已知二次函数y=x2﹣4mx+3m2.(m≠0)(1)求证:该二次函数的图象与x轴总有两个公共点;(2)若m>0,且两交点间的距离为2,求m的值并直接写出y>3时,x的取值范围.21.(6分)如图,以AB为直径的⊙O经过点C,CP为⊙O的切线,E是AB上一点,以C为圆心,CE长为半径作圆交CP于点F,连接AF,且AF=AE.求证:AB是⊙C的切线.23.(6分)如图,正方形ABCD的边长为4,E是BC上一动点,过点E作EF⊥AE,交DC于点F,连接AF.(1)求证:△ABE∽△ECF;(2)求AF长度的最小值.24.(8分)如图,已知二次函数y=ax2+bx+3的图象经过点A(1,0),B(﹣2,3).(1)求该二次函数的表达式;(2)用无刻度直尺画出抛物线的对称轴l;(用虚线表示画图过程,实线表示画图结果)(3)结合图象,直接写出当y>3时,x的取值范围是.25.(8分)已知二次函数y=x2﹣2mx+m+2(m是常数)的图象是抛物线.(1)若抛物线与x轴只有一个公共点,求m的值;(2)求证:抛物线顶点在函数y=﹣x2+x+2的图象上;(3)若点B(2,a),C(5,b)在抛物线上,且a>b,则m的取值范围是.26.(8分)某公司电商平台,在2021年国庆长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)(x为正整数)的一次函数,如表列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)该商品进价(元/件),y关于x的函数表达式是(不要求写出自变量的取值范围);(2)因该商品原料涨价,进价提高了m(元/件)(m为正整数),该商品在今后的销售中,公司发现当售价为63元/件时,周销售利润最大,求m值.27.(8分)(1)如图1,将直角三角板的直角顶点放在正方形ABCD上,使直角顶点与D重合,三角板的一边交AB于点P,另一边交BC的延长线于点Q.则DP DQ(填“>”“<”或“=”);(2)将(1)中“正方形ABCD”改成“矩形ABCD”,且AD=2,CD=4,其他条件不变.①如图2,若PQ=5,求AP长.②如图3,若BD平分∠PDQ,则DP的长为.28. (10分)已知:∠MBN=90°,点A在射线BM上,点C在射线BN上,D在线段BA上,⊙O 是△ACD的外接圆;(1)若⊙O与BN的另一个交点为E,如图1,当,BD=1,AD=2时,求CE的长;(2)如图2,当∠BCA=∠BDC时,判断BN与⊙O的位置关系,并说明理由;(3)如图3,在BN上作出C点,使得∠ACD最大,并求当AD=2,时,⊙O的半径.A.l1B.l2C.l3D.l4【分析】直接根据直线与圆的位置关系可得出结论.【解答】解:∵⊙O的半径是6,圆心O到直线l的距离是3,6>3,∴直线l与⊙O相交.故选:B.【点评】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l的距离为d,当d<r时直线l和⊙O相交是解答此题的关键.6.(3分)在平面直角坐标系xOy中,一次函数y=﹣的图象与x轴、y轴的交点分别为A、B,则∠OAB的余弦值为()A.B.C.D.【分析】利用一次函数图象上点的坐标特征可得出点A,B的坐标,进而可得出OA,OB的长,在Rt△OAB中,利用勾股定理可求出AB的长,再结合cos∠OAB=即可求出结论.【解答】解:依照题意画出图形,如图所示.当x=0时,y=﹣×0+b=b,∴点B的坐标为(0,b),∴OB=|b|;当y=0时,﹣x+b=0,解得:x=b,∴点A的坐标为(b,0),∴OA=|b|.在Rt△OAB中,AB===|b|,∴cos∠OAB===.故选:D.【点评】本题考查了一次函数图象上点的坐标特征以及解直角三角形,利用一次函数图象上点的坐标特征及勾股定理,用含b的代数式表示出OA,AB的长是解题的关键.二、填空题(本大题共10小题,每小题3分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期期末试题(A )
一、选择题(每小题3分,满分24分) 1.一元二次方程2
560x x --=的根是( )
A .x 1=1,x 2=6
B .x 1=2,x 2=3
C .x 1=1,x 2=-6
D .x 1=-1,x 2=6 2.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( ) A .球 B .圆柱 C .三棱柱 D .圆锥 3.到三角形三条边的距离相等的点是三角形( ) A .三条角平分线的交点
B .三条高的交点
C .三边的垂直平分线的交点
D .三条中线的交点
4.如果矩形的面积为6cm 2
,那么它的长y cm 与宽x cm 之间的函数关系用图象表示 大致( )
5.下列函数中,属于反比例函数的是( )
A .3x
y =
B .1
3y x
= C .52y x =-
D .2
1y x =+
6.在Rt △ABC 中,∠C=90°,a =4,b =3,则cosA 的值是( )
A .45
B .3
5
C .43
D .5
4
7.如图(1),△ABC 中,∠A=30°,∠C=90°AB 的垂直平分线 (1)
交AC 于D 点,交AB 于E 点,则下列结论错误的是( ) A 、AD=DB B 、DE=DC C 、BC=AE D 、AD=BC
8.顺次连结等腰梯形各边中点得到的四边形是 ( )
A 、矩形
B 、菱形
C 、正方形
D 、平行四边形
二、填空题(每小题3分,满分21分)
9.计算tan45°= .
10.已知函数22(1)m y m x -=+是反比例函数,则m 的值为 .
11.请你写出一个反比例函数的解析式,使它的图象在第二、四象限 . 12.在直角三角形中,若两条直角边长分别为6cm 和8cm ,则斜边上的中线长为 cm .
13. 已知菱形的周长为cm 40,一条对角线长为cm 16,则这个菱形的面积为 (cm)2.
14.已知正比例函数kx y =与反比例函数()0>=
k x
k
y 的一个交点是(2,3)
,则另一个 交点是 .
15.如图,已知AC=DB ,要使△ABC ≌△DCB ,需添加的一个条件是 . 三、解答题(本大题共9个小题,满分75分) 16.(本小题8分)解方程:2(2)x x x -=-
17.(本小题8分)如图,在△ABD 中,C 是BD 上的一点,
且AC ⊥BD ,AC=BC=CD .(1)求证:△ABD 是等腰三角形.(2)求∠BAD 的度数.
18.(本小题8分)如图所示,课外活动中,小明在离旗杆AB 的10米C 处,用测角仪测得旗杆顶部
A 的仰角为40︒,已知测角仪器的高CD=1.5米,求旗杆A
B 的高.(供选用的数据:sin 400.64≈,cos 400.77≈,tan 400.84≈
A
B C
D
A
19.(本小题8分)某商店四月份的营业额为40万元,五月份的营业额比四月份有所增长,六月份比五月份又增加了5个百分点,即增加了5%,营业额达到了50.6万元。

求五月份增长的百分率。

20.(本小题8分)“一方有难,八方支援”.今年11月2日,鄂嘉出现洪涝灾害,牵动着全县人民的
心,医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援鄂嘉防汛救灾工作.
(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果. (2)求恰好选中医生甲和护士A 的概率.
21.本小题12分)如图,已知直线y =-x +4与反比例函数y k
=的图象相交于点A (-2,a ),并且与x 轴相交于点B 。

(1)求a 的值;
(2)求反比例函数的表达式; (3)求△AOB
的面积。

22(10分)甲楼在乙楼的南面,它们的高AB=CD=20米 ,该地区冬天的阳光与水平面的夹角为300。

(1)若两楼相距20米,则甲楼的影子落在乙楼上有多高?
(2)要使加甲楼的影子不会落在乙楼上,建筑时,两楼之间的距离至少是多少米?
23 如图,一次函数b ax y +=的图像与反比例函数x
k
y =
的图像交于M 、N 两点。

(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图像写出使反比例函数的值大于一次函数的值的x 的取值范围。

(3)连接OM 、ON ,求三角形OMN 的面积。

A B。

相关文档
最新文档