2015-2016年江苏省南京外国语学校八年级(下)期中数学试卷(解析版)
南京外国语学校八年级下期中数学试卷及答案-超值
2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列分式中是最简分式的是()A.B.C.D.3.下列各式从左到右的变形正确的是()A. =B.C.D.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A. =+5+B. =+5﹣C. =+5﹣D. =﹣5﹣10.如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5C.8 D.10二、填空题11.当x 时,分式有意义;当x 时,分式值为0.12.若=,则= ;若==,则= .13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.15.,,的最简公分母是.16.当m= 时,关于x的方程=2的根为.17.若分式方程有增根,则m的值是.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有个;(2)任意摸出一个球是红色的概率是.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.三、解答题(共50分)23.计算:①;②.24.解方程:①;②.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.26.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),绘制成如下统计21~30min,时间取整数):a= ;b= ;c= .(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.(3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min的学生人数.27.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?28.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.29.一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了b天完成,其中a、b均为正整数,且a<46,b<52,求甲、乙两队各做了多少天?30.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF ⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列分式中是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、=;D、;故选A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.3.下列各式从左到右的变形正确的是()A. =B.C.D.【考点】65:分式的基本性质.【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选C.【点评】本题考查了分式的基本性质.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于【考点】X3:概率的意义.【分析】根据概率的定义对各选项进行逐一分析即可.【解答】解:A、随着抛掷次数的增加,正面向上的频率不能确定,故本选项错误;B、当抛掷的次数n很大时,正面向上的次数接近,故本选项错误;C、不同次数的试验,正面向上的频率可能会不相同,故本选项正确;D、连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率可能是,故本选项错误.故选C.【点评】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了【考点】VD:折线统计图;VC:条形统计图.【分析】用1月份的销售总额乘以商场服装部1月份销售额占商场当月销售总额的百分比,即可判断A;分别求出2月份与3月份商场服装部的销售额,即可判断B;用总销售额减去其他月份的销售额即可得到4月份的销售额,即可判断C;分别求出4月份与5月份商场服装部的销售额,即可判断D.【解答】解:A、∵商场服装部1月份销售额占商场当月销售总额的22%,∴1月份商场服装部的销售额是100×22%=22(万元).故本选项正确,不符合题意;B、∵2月份商场服装部的销售额是90×14%=12.6(万元),3月份商场服装部的销售额是65×12%=7.8(万元),∴3月份商场服装部的销售额比2月份减少了.故本选项正确,不符合题意.C、∵商场今年1~5月的商品销售总额一共是410万元,∴4月份销售总额=410﹣100﹣90﹣65﹣80=75(万元).故本选项正确,不符合题意;C、∵4月份商场服装部的销售额是75×17%=12.75(万元),5月份商场服装部的销售额是80×16%=12.8(万元),∴5月份商场服装部的销售额比4月份增加了.故本选项错误,符合题意;故选D.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】要判定是正方形,则需能判定它既是菱形又是矩形.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.【点评】本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定【考点】LB:矩形的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【专题】31 :数形结合.【分析】根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.【解答】解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△OBF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选:B.【点评】本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.【考点】LN:中点四边形.【分析】根据平行四边形的面积计算方法分别求得各选项的面积,找到不同的答案即可.【解答】解:由题意可得,A、C、D三选项中的阴影部分的面积均为平行四边形ABCD面积的一半,只有B选项中阴影部分的面积与其他选项不等,故选:B.【点评】本题考查了平行四边形的性质,解题的关键是根据平行四边形的面积公式求得阴影部分的面积,难度一般.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A. =+5+B. =+5﹣C. =+5﹣D. =﹣5﹣【考点】B6:由实际问题抽象出分式方程.【分析】别求出两辆汽车从A地到B地的时间,然后找出等量关系:大汽车的行驶时间+=小汽车的行驶时间+5,据此列方程.【解答】解:设大汽车的速度为2xkm/h,小汽车的速度为5xkm/h,由题意得, +=+5.故选B.【点评】本题考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.10.如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5C.8 D.10【考点】E7:动点问题的函数图象.【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8,故选C.【点评】本题考查了函数的图象,根据图象理解AB的长度,正确求得平行四边形的高是关键.二、填空题11.当x ≠3 时,分式有意义;当x =3 时,分式值为0.【考点】63:分式的值为零的条件;62:分式有意义的条件.【分析】直接利用分式有意义的条件以及分式的值为零的条件分析得出答案.【解答】解:当x≠3时,x﹣3≠0,则分式有意义;当x2﹣9=0,x+3≠0时,分式值为0,解得:x=3.故答案为:≠3,=3.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.12.若=,则= ;若==,则= .【考点】S1:比例的性质.【分析】根据合比性质,反比性质,可得答案;根据等式的性质,可用k表示x,y,z,根据分式的性质,可得答案.【解答】解:由合比性质,得=.由反比性质,得=,故答案为:;设===k,得x=4k,y=3k,z=2k.==,故答案为:.【点评】本题考查了比例的性质,利用合比性质、反比性质是解题关键.13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为答案不唯一,如.【考点】63:分式的值为零的条件;62:分式有意义的条件;64:分式的值.【专题】26 :开放型.【分析】(1)分式的分母不为零、分子不为零;(2)分式有意义,分母不等于零;(3)将x=0代入后,分式的分子、分母互为相反数.【解答】解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠±2,即当x=±2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;故答案是:.【点评】本题考查了分式的值、分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:分子分母都乘以﹣12,得,故答案为:.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.15.,,的最简公分母是10x3yz .【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:∵,,的分母分别是xy、2x3、5xyz,∴它们的最简公分母是10x3yz.故答案为:10x3yz.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.16.当m= 2 时,关于x的方程=2的根为.【考点】B2:分式方程的解.【分析】根据方程的解满足方程,把方程的解代入方程,可得关于m的分式方程,根据解分式方程,可得答案.【解答】解:把x=代入=2,得=2,解得m=2,经检验m=2是分式方程的解,故答案为:2.【点评】本题考查了分式方程的解,注意要检验分式方程的解.17.若分式方程有增根,则m的值是 3 .【考点】B5:分式方程的增根.【分析】根据方程有增根,可得出x=1,再代入整式方程即可得出m的值.【解答】解:∵分式方程有增根,∴x﹣1=0,∴x=1,2x﹣(m﹣1)=x﹣1,把x=1代入得2﹣(m﹣1)=0,∴m=3,故答案为3.【点评】本题考查了分式方程的增根,掌握把分式方程化为整式方程以及使分母为0的根是增根是解题的关键.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有 6 个;(2)任意摸出一个球是红色的概率是.【考点】X4:概率公式.【分析】(1)设黄球有x根,根据绿球的概率公式列示求解即可;(2)直接利用红球的个数除以球的总个数即可求得摸到红球的概率.【解答】解:(1)设黄色球有x个,由形状、大小相同的红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是,得=,解得x=6;(2)P(红色)==,故答案为:6,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程=+3 .【考点】B6:由实际问题抽象出分式方程.【分析】根据原来每个同学需摊的车费=现在每个同学应摊的车费+3列方程即可.【解答】解:设参加游览的同学共x人,由题意得, =+3,故答案为: =+3.【点评】本题考查的是分式方程的应用,正确找出等量关系是解题的关键.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .【考点】R4:中心对称;L8:菱形的性质.【专题】121:几何图形问题.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【解答】解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.【点评】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为7 .【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【专题】11 :计算题;16 :压轴题.【分析】过O作OF垂直于BC,再过A作AM垂直于OF,由四边形ABDE为正方形,得到OA=OB,∠AOB为直角,可得出两个角互余,再由AM垂直于MO,得到△AOM为直角三角形,其两个锐角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,OA=OB,利用AAS可得出△AOM与△BOF全等,由全等三角形的对应边相等可得出AM=OF,OM=FB,由三个角为直角的四边形为矩形得到ACFM为矩形,根据矩形的对边相等可得出AC=MF,AM=CF,等量代换可得出CF=OF,即△COF为等腰直角三角形,由斜边OC的长,利用勾股定理求出OF与CF的长,根据OF﹣MF求出OM的长,即为FB的长,由CF+FB即可求出BC的长.【解答】解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AM O=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.【点评】此题考查了正方形的性质,全等三角形的判定与性质,勾股定理,以及等腰直角三角形的判定与性质、角平分线的判定,利用了转化及等量代换的思想,根据题意作出相应的辅助线是解本题的关键.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:x=n+3或x=n+4 .【考点】B2:分式方程的解.【专题】16 :压轴题;2A :规律型.【分析】首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.【解答】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b 的根为:x=a或x=b是解此题的关键.三、解答题(共50分)23.计算:①;②.【考点】6C:分式的混合运算.【分析】①先变形,再根据同分母的分式进行加减即可;②先因式分解,再约分即可.【解答】解:①原式=﹣==2;②原式=﹣••=.【点评】本题考查了分式的混合运算,掌握因式分解以及分式的通分、约分是解题的关键.24.解方程:①;②.【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:①去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;②方程整理得: =,即=,去分母得:x2﹣5x+6=x2+x﹣2,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再因式分解,再约分即可,注意分母不为0.【解答】解:原式=•=,∵a+2≠0,a﹣2≠0,a﹣1≠0,∴a≠1,±2,∴取a=0,∴原式==2.【点评】本题考查了分式的化简求值,掌握因式分解以及分式的约分、通分是解题的关键.26.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),绘制成如下统计21~30min,时间取整数):。
2016江苏省南京外国语学校八年级下期中数学试卷
2016-2017学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题(每题2分,共12分)1.(2分)完成下列任务,适合用抽样调查的是()A.为订购校服,了解学生衣服的尺寸B.对航天飞机上的零部件进行检查C.考察一批炮弹的杀伤半径D.语文老师检查某学生一篇作文中的错别字2.(2分)在、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个3.(2分)下列算式正确的是()A.=B.=C.=D.=4.(2分)如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多5.(2分)下列样本的选取具有代表性的是()A.利用某地七月份的日平均气温估计当地全年的日平均气温B.为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验C.调查某校七年级(1)班学生的身高,来估计该校全体学生的身高D.为了解我国居民的年平均阅读时间,从大学生中随机抽取10万人进行调查6.(2分)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD 一定满足()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线相等且互相平分二、填空题(每题2分,共20分)7.(2分)要了解我县九年级学生的视力状况,从中抽查了1000名学生的视力状况,那么样本是指.8.(2分)当x时,分式有意义;若分式的值为0,则x=.9.(2分)已知某班有40名学生,将他们的身高分成4组,在160~165 cm间的有8名学生,那么160~165 cm这个小组的频率为.10.(2分)如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC 边上.已知∠C=80°,则∠EAB=°.11.(2分)在菱形ABCD中,对角线AC=6,BD=8,则菱形ABCD的周长为.12.(2分)矩形两条对角线的夹角是60°,若矩形较短的边长为4cm,则对角线长.13.(2分)如图,正方形ABCD中,以对角线AC为一边作菱形AEFC,则∠FAB=.14.(2分)某市对4000米长的道路进行绿化改造.为了尽快完成,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则可列方程.15.(2分)关于x的方程的解是正数,则a的取值范围是.16.(2分)如图,在▱ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G 分别是OC、OD、AB的中点,下列结论:①∠OBE=∠ADO;②EG=EF;③GF平分∠AGE;④EF⊥GE,其中正确的是.三、解答题(共68分)17.(8分)计算:(1)a﹣1﹣(2).18.(8分)(1);(2).19.(6分)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.20.(7分)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校1500名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了部分参赛学生的成绩作为样本进行处理,得到下列不完整的统计图表.请你根据表中提供的信息,解答下列问题:(1)此次调查的样本容量为;(2)在表中:m=;n=;(3)补全频数分布直方图;(4)若成绩在80分以上(包括80分)的为“优”等,则该校参加这次比赛的1500名学生中,成绩“优”等约有多少人?21.(6分)如图,平行四边形ABCD的对角线AC、BD相交于点O、E、F分别是OA、OC的中点,求证:BE=DF.22.(7分)某商店用1000元购进一批套尺,很快销售一空;商店又用1500元购进第二批同款套尺,购进单价比第一批贵25%,所购数量比第一批多100套.(1)求第一批套尺购进的单价;(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?23.(7分)阅读理解与运用.例解分式不等式:>2.解:移项,得:﹣2>0,即>0.由“同号得正、异号得负”得,两种情况:①;②.解不等式组①得:x>1:解不等式组②得:x<﹣4.∴原不等式的解集是:x>1或x<1,试运用上述方法解分式不等式:.24.(10分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED 交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.(1)求证:△CBG≌△CDG;(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,当G点在何位置时四边形AEBD是矩形?请说明理由并求出点H的坐标.25.(9分)邻边不相等的平行四边形纸片,减去一个菱形,余下一个四边形,称为第一次操作,在余下的四边形纸片中再剪去一个菱形,余下一个四边形,称为第二次操作,…依此类推,若第n次余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四边形ABCD为1阶准菱形.(1)理解与判断:①邻边长分别为1和3的平行四边形是阶准菱形.②如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,四边形ABFE的形状一定是.若AB=2,AD=3,则图2中的平行四边形ABCD是阶准菱形.(2)操作、探究、计算:①已知某平行四边形的边长分别为2,a(a>2)且是3阶准菱形,请画出平行四边形ABCD及裁剪线的所有可能示意图,并在图形下方写出a的值.②已知平行四边形ABCD是一个2017阶准菱形,其邻边长分别为1,m(1<m <2),请直接写出m的最大值是.2016-2017学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题2分,共12分)1.(2分)完成下列任务,适合用抽样调查的是()A.为订购校服,了解学生衣服的尺寸B.对航天飞机上的零部件进行检查C.考察一批炮弹的杀伤半径D.语文老师检查某学生一篇作文中的错别字【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、为订购校服,了解学生衣服的尺寸普查,故A不符合题意;B、对航天飞机上的零部件进行检查适合普查,故B不符合题意;C、考察一批炮弹的杀伤半径适合抽样调查,故C符合题意;D、语文老师检查某学生一篇作文中的错别字适合普查,故D不符合题意;故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(2分)在、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【分析】根据分式的定义对各式进行逐一判断即可.【解答】解:在、、的分母中含有字母,属于分式,故选:B.【点评】本题考查的是分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式是解答此题的关键.3.(2分)下列算式正确的是()A.=B.=C.=D.=【分析】根据分式的基本性质逐个判断,即可得出选项.【解答】解:A、当a、b异号时,两边不相等,故本选项错误;B、结果是,故本选项错误;C、不符合分式的基本性质,故本选项错误;D、分式的两边都除以a﹣b,符合分式的基本性质,故本选项正确;故选D.【点评】本题考查了对分式的基本性质的应用,注意:分式的分子和分母都乘以(或除以)同一个不等于0的整式,分式值不变.4.(2分)如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多【分析】根据扇形图的定义,本题中的总量不明确,所以在两个图中无法确定哪一户多.【解答】解:因为两个扇形统计图的总体都不明确,所以A、B、C都错误,故选:D.【点评】本题考查的是扇形图的定义.利用圆和扇形来表示总体和部分的关系用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.5.(2分)下列样本的选取具有代表性的是()A.利用某地七月份的日平均气温估计当地全年的日平均气温B.为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验C.调查某校七年级(1)班学生的身高,来估计该校全体学生的身高D.为了解我国居民的年平均阅读时间,从大学生中随机抽取10万人进行调查【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的.【解答】解:A、利用某地七月份的日平均气温估计当地全年的日平均气温不具代表性,故A错误;B、为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验,调查具有广泛性,代表性,故B正确;C、调查某些七年级(1)班学生的身高来估计该校全体学生的身高,调查不具代表性,故C错误;B、为了解我国居民的年平均阅读时间,从大学生中随机抽取10万人进行抽查,调查不具代表性,故D错误;故选:B.【点评】本题考查了抽样调查的可靠性,解题时注意:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.6.(2分)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD 一定满足()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线相等且互相平分【分析】根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.【解答】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:A.【点评】本题主要考查对菱形的判定,三角形的中位线定理,平行四边形的判定等知识点的理解和掌握,灵活运用性质进行推理是解此题的关键.二、填空题(每题2分,共20分)7.(2分)要了解我县九年级学生的视力状况,从中抽查了1000名学生的视力状况,那么样本是指被抽查1000名学生的视力状况.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:了解我县九年级学生的视力状况,从中抽查了1000名学生的视力状况,那么样本是指被抽查1000名学生的视力状况,故答案为:被抽查1000名学生的视力状况.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.(2分)当x≠3时,分式有意义;若分式的值为0,则x=﹣1.【分析】分式有意义时,分母不等于零;分式的值为零时,分子等于零,分母不等于零.【解答】解:当分母x﹣3≠0即x≠3时,分式有意义;若分式的值为0,则x2﹣1=0且x﹣1≠0,所以x=﹣1.故答案是:≠3;﹣1.【点评】本题考查了分式有意义的条件和分式的值为零的条件.分式有意义的条件是分母不等于零.9.(2分)已知某班有40名学生,将他们的身高分成4组,在160~165 cm间的有8名学生,那么160~165 cm这个小组的频率为0.20.【分析】根据频率、频数的关系:频率=,即可解决.【解答】解:这个小组的频率为=0.20.故答案为:0.20.【点评】此题考查了频数与频率的关系,解题的关键是了解频率=,难度不大.10.(2分)如图,将△ABC的绕点A顺时针旋转得到△AED,点D正好落在BC 边上.已知∠C=80°,则∠EAB=20°.【分析】根据旋转的性质可得AC=AD,∠BAC=∠EAD,再根据等边对等角可得∠C=∠ADC,然后求出∠CAD,∠BAE=∠CAD,从而得解.【解答】解:∵△ABC的绕点A顺时针旋转得到△AED,∴AC=AD,∠BAC=∠EAD,∵点D正好落在BC边上,∴∠C=∠ADC=80°,∴∠CAD=180°﹣2×80°=20°,∵∠BAE=∠EAD﹣∠BAD,∠CAD=∠BAC﹣∠BAD,∴∠BAE=∠CAD,∴∠EAB=20°.故答案为:20.【点评】本题考查了旋转的性质,等腰三角形的性质,熟记性质并确定出△ACD 是等腰三角形是解题的关键.11.(2分)在菱形ABCD中,对角线AC=6,BD=8,则菱形ABCD的周长为20.【分析】由菱形ABCD,根据菱形的对角线互相平分且垂直,可得AC⊥BD,OA=OC,OB=OD,易得AB=5;根据菱形的四条边都相等,可得菱形的周长=20.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=3,OB=OD=BD=4,AB=BC=CD=AD,∴AB==5,∴菱形的周长L=20.故答案为:20.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的四条边都相等.12.(2分)矩形两条对角线的夹角是60°,若矩形较短的边长为4cm,则对角线长8cm.【分析】根据题意,画出图形,根据夹角为60°,结合矩形的性质,得出短边长为对角线的一半,即可得出对角线的长度.【解答】解:∵四边形ABCD为矩形,∴OA=OB,∵两对角线的夹角为60°,∴△AOB为等边三角形,∴OA=OB=AB=4cm,∴AC=BD=8cm,即对角线的长度为8cm.故答案为8cm.【点评】本题考查矩形的基本性质:对角线相等且互相平分.熟练掌握矩形的性质是解决此类问题的基本要求.13.(2分)如图,正方形ABCD中,以对角线AC为一边作菱形AEFC,则∠FAB= 22.5°.【分析】由正方形的性质得出∠BAC=∠BAC=45°,由菱形的对角线平分一组对角得出∠FAB=∠BAC=22.5°即可.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=∠BAC=45°,∵四边形AEFC是菱形,∴∠FAB=∠FAC=∠BAC=22.5°.故答案为:22.5°.【点评】本题考查了正方形的性质、菱形的性质;熟练掌握正方形和菱形的性质,并能进行推理论证与计算是解决问题的关键.14.(2分)某市对4000米长的道路进行绿化改造.为了尽快完成,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则可列方程﹣=2.【分析】关键描述语是:“提前2天完成”.等量关系为:原计划的工作时间﹣实际的工作时间=2.【解答】解:若设原计划每天绿化xm,则实际每天绿化(x+10)m,原计划的工作时间为:,实际的工作时间为:,根据题意,得:﹣=2.故答案是:﹣=2.【点评】此题主要考查了由实际问题抽象出分式方程,列方程解应用题的关键步骤在于找相等关系.本题主要用到的关系为:工作时间=工作总量÷工作效率.15.(2分)关于x的方程的解是正数,则a的取值范围是a<﹣1且a ≠﹣2.【分析】先去分母得2x+a=x﹣1,可解得x=﹣a﹣1,由于关于x的方程的解是正数,则x>0并且x﹣1≠0,即﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a ≠﹣2.【解答】解:去分母得2x+a=x﹣1,解得x=﹣a﹣1,∵关于x的方程的解是正数,∴x>0且x≠1,∴﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2,∴a的取值范围是a<﹣1且a≠﹣2.故答案为:a<﹣1且a≠﹣2.【点评】本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.16.(2分)如图,在▱ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G 分别是OC、OD、AB的中点,下列结论:①∠OBE=∠ADO;②EG=EF;③GF平分∠AGE;④EF⊥GE,其中正确的是①②③.【分析】根据平行四边形的性质可得∠ADB=∠DBC,再证明△BOC是等腰三角形,根据等腰三角形的性质可得∠OBE=∠OBC,进而得到∠OBE=∠ADO;首先证明EG=AB,再根据三角形中位线的性质可得EF=CD,进而得到EG=EF;证明EF∥AB,根据平行线的性质可得∠EFG=∠AGF,再根据等边对等角可得∠EFG=∠EGF,进而得到∠EGF=∠AGF.然后利用排除法可得A正确.【解答】①②③解:①∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,DO=BO=BD,∴∠ADB=∠DBC,∵BD=2AD,∴AD=DO,∴BC=BO,∵E是CO中点,∴∠OBE=∠OBC,∴∠OBE=∠ADO,故①正确;②∵BC=BO,∴△BOC是等腰三角形,∵E是CO中点,∴EB⊥CO,∴∠BEA=90°,∵G为AB中点,∴EG=AB,∵四边形ABCD是平行四边形,∴AB=CD,∵E、F分别是OC、OD的中点,∴EF=CD∴EG=EF,故②正确;③∵,E、F分别是OC、OD的中点,∴EF∥DC,∵DC∥AB,∴EF∥AB,∴∠EFG=∠AGF,∵EF=EG,∴∠EFG=∠EGF,∴∠EGF=∠AGF,∴GF平分∠AGE,故③正确;故答案为:①②③.【点评】此题主要考查了平行四边形的性质、直角三角形的性质、三角形中位线的性质、等腰三角形的性质,关键是掌握等腰三角形三线合一的性质.三、解答题(共68分)17.(8分)计算:(1)a﹣1﹣(2).【分析】根据分式的运算法则即可求出答案.【解答】解:(1)原式=﹣=(2)原式=﹣•=﹣=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(1);(2).【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x2﹣9=4x2﹣5x+1,移项合并得:5x=10,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(6分)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标(﹣4,1).【分析】(1)根据题意所述的旋转三要素,依此找到各点旋转后的对应点,顺次连接可得出△A1B1C;(2)根据中心对称点平分对应点连线,可找到各点的对应点,顺次连接可得△A2B2C2,结合直角坐标系可得出点C2的坐标.【解答】解:根据旋转中心为点C,旋转方向为顺时针,旋转角度为90°,所作图形如下:.(2)所作图形如下:结合图形可得点C2坐标为(﹣4,1).【点评】此题考查了旋转作图的知识,解答本题关键是仔细审题,找到旋转的三要素,另外要求我们掌握中心对称点平分对应点连线,难度一般.20.(7分)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校1500名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了部分参赛学生的成绩作为样本进行处理,得到下列不完整的统计图表.请你根据表中提供的信息,解答下列问题:(1)此次调查的样本容量为200;(2)在表中:m=70;n=0.2;(3)补全频数分布直方图;(4)若成绩在80分以上(包括80分)的为“优”等,则该校参加这次比赛的1500名学生中,成绩“优”等约有多少人?【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,(2)再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(3)根据(2)的计算结果即可补全频数分布直方图;(4)利用总数1500乘以“优”等学生的所占的频率即可.【解答】解:(1)样本容量是:10÷0.05=200,故答案为:200;(2)m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;(3)补全频数分布直方图,如下:(4)1500×(0.35+0.25)=900(人),答:该校参加这次比赛的1500名学生中,成绩“优”等约有900人.【点评】本题考查频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.21.(6分)如图,平行四边形ABCD的对角线AC、BD相交于点O、E、F分别是OA、OC的中点,求证:BE=DF.【分析】根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形∴OA=OC,OB=OD∵E、F分别是OA、OC的中点∴OE=OA,OF=OC∴OE=OF∴四边形BFDE是平行四边形∴BE=DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.22.(7分)某商店用1000元购进一批套尺,很快销售一空;商店又用1500元购进第二批同款套尺,购进单价比第一批贵25%,所购数量比第一批多100套.(1)求第一批套尺购进的单价;(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?【分析】(1)设第一批套尺购进的单价为x元,根据题意列出方程解答即可;(2)根据盈利的定义解答即可.【解答】解:(1)设第一批套尺购进的单价为x元.解得x=2)经检验:x=2是所列方程的解答:第一批套尺购进的单价是2元.(2)1000÷2=500(套)500+500+100=1100(套)1100×4﹣(1000+1500)=1900(元)答:可盈利1900元.【点评】此题考查了分式方程的应用,根据商店又用1500元购进第二批同款套尺,购进单价比第一批贵25%,所购数量比第一批多100套列出方程是解答本题的关键.23.(7分)阅读理解与运用.例解分式不等式:>2.解:移项,得:﹣2>0,即>0.由“同号得正、异号得负”得,两种情况:①;②.解不等式组①得:x>1:解不等式组②得:x<﹣4.∴原不等式的解集是:x>1或x<1,试运用上述方法解分式不等式:.【分析】不等式整理后,转化为不等式组,求出解集即可.【解答】解:移项,得:+<0,即<0,由“同号得正、异号得负”得,两种情况:①或②,解不等式组①得:﹣3<x<1;解不等式组②得:不等式组无解;∴原不等式的解集是﹣3<x<1.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.24.(10分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED 交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.(1)求证:△CBG≌△CDG;(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,当G点在何位置时四边形AEBD是矩形?请说明理由并求出点H的坐标.【分析】(1)根据旋转变换的性质得到DC=CO,∠CDG=∠COA=90°,根据正方形的性质得到CB=CO,∠B=90°,根据直角三角形的全等的判定定理证明即可;(2)证明Rt△COH≌Rt△CDH,得到∠OCH=∠DCH,HO=DH,等量代换即可;(3)根据矩形的判定定理证明四边形AEBD是矩形,设点H的坐标为(x,0),根据勾股定理列出方程,解方程求出x的值,得到点H的坐标.【解答】解(1)∵将正方形ABCO绕点C逆时针旋转角度α,∴DC=CO,∠CDG=∠COA=90°,∵四边形OCBA是正方形,∴CB=CO,∠B=90°,∴CB=CD,∠B=∠CDG=90°在Rt△CDG与Rt△CBG中,,∴Rt△CDG≌Rt△CBG;(2)∵∠CDG=90°,∴∠CDH=90°,在Rt△COH与Rt△CDH中,,∴Rt△COH≌Rt△CDH,∴∠OCH=∠DCH,HO=DH,∵Rt△CDG≌Rt△CBG,∴∠DCG=∠BCG,DG=BG,∴∠HCG=∠DCG+∠DCH=45°,HG=HD+DG=HO+BG;(3)当G是AB中点时,四边形ADBE是矩形,∵G是AB中点,∴BG=AG=AB由(2)得DG=BG,又∵AB=DE,∴DG=DE,∴DG=GE=BG=AG,∴四边形AEBD是平行四边形,∵AB=DE,∴□ADBE是矩形,设点H的坐标为(x,0),则HO=HD=x,DG=BG=AG=3,AH=6﹣x,由勾股定理得,(6﹣x)2+33=(3+x)2,解得,x=2,∴H(2,0).【点评】本题考查的是正方形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、正方形的四条边相等、四个角都是90°是解题的关键.25.(9分)邻边不相等的平行四边形纸片,减去一个菱形,余下一个四边形,称为第一次操作,在余下的四边形纸片中再剪去一个菱形,余下一个四边形,称为第二次操作,…依此类推,若第n次余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四边形ABCD为1阶准菱形.(1)理解与判断:①邻边长分别为1和3的平行四边形是2阶准菱形.②如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,四边形ABFE的形状一定是菱形.若AB=2,AD=3,则图2中的平行四边形ABCD是2阶准菱形.(2)操作、探究、计算:①已知某平行四边形的边长分别为2,a(a>2)且是3阶准菱形,请画出平行四边形ABCD及裁剪线的所有可能示意图,并在图形下方写出a的值.②已知平行四边形ABCD是一个2017阶准菱形,其邻边长分别为1,m(1<m <2),请直接写出m的最大值是2018.【分析】(1)①根据邻边长分别为1和3的平行四边形经过两次操作,即可得出。
南京外国语学校八年级下期中数学试卷及答案-精选
2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列分式中是最简分式的是()A.B.C.D.3.下列各式从左到右的变形正确的是()A. =B.C.D.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①② B.选②③C.选①③D.选②④7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A. =+5+B. =+5﹣C. =+5﹣D. =﹣5﹣10.如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x 轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5C.8 D.10二、填空题11.当x 时,分式有意义;当x 时,分式值为0.12.若=,则= ;若==,则= .13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.15.,,的最简公分母是.16.当m= 时,关于x的方程=2的根为.17.若分式方程有增根,则m的值是.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有个;(2)任意摸出一个球是红色的概率是.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.三、解答题(共50分)23.计算:①;②.24.解方程:①;②.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.26.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),绘制成如下统计表(其中A表示0~10min;B表示11~20min;C表示21~30min,时间取整数):(1)统计表中的a= ;b= ;c= .(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.(3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min的学生人数.27.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?28.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.29.一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了b天完成,其中a、b均为正整数,且a<46,b<52,求甲、乙两队各做了多少天?30.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列分式中是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、=;D、;故选A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.3.下列各式从左到右的变形正确的是()A. =B.C.D.【考点】65:分式的基本性质.【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选C.【点评】本题考查了分式的基本性质.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于【考点】X3:概率的意义.【分析】根据概率的定义对各选项进行逐一分析即可.【解答】解:A、随着抛掷次数的增加,正面向上的频率不能确定,故本选项错误;B、当抛掷的次数n很大时,正面向上的次数接近,故本选项错误;C、不同次数的试验,正面向上的频率可能会不相同,故本选项正确;D、连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率可能是,故本选项错误.故选C.【点评】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了【考点】VD:折线统计图;VC:条形统计图.【分析】用1月份的销售总额乘以商场服装部1月份销售额占商场当月销售总额的百分比,即可判断A;分别求出2月份与3月份商场服装部的销售额,即可判断B;用总销售额减去其他月份的销售额即可得到4月份的销售额,即可判断C;分别求出4月份与5月份商场服装部的销售额,即可判断D.【解答】解:A、∵商场服装部1月份销售额占商场当月销售总额的22%,∴1月份商场服装部的销售额是100×22%=22(万元).故本选项正确,不符合题意;B、∵2月份商场服装部的销售额是90×14%=12.6(万元),3月份商场服装部的销售额是65×12%=7.8(万元),∴3月份商场服装部的销售额比2月份减少了.故本选项正确,不符合题意.C、∵商场今年1~5月的商品销售总额一共是410万元,∴4月份销售总额=410﹣100﹣90﹣65﹣80=75(万元).故本选项正确,不符合题意;C、∵4月份商场服装部的销售额是75×17%=12.75(万元),5月份商场服装部的销售额是80×16%=12.8(万元),∴5月份商场服装部的销售额比4月份增加了.故本选项错误,符合题意;故选D.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①② B.选②③C.选①③D.选②④【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】要判定是正方形,则需能判定它既是菱形又是矩形.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.【点评】本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定【考点】LB:矩形的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【专题】31 :数形结合.【分析】根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.【解答】解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△OBF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选:B.【点评】本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.【考点】LN:中点四边形.【分析】根据平行四边形的面积计算方法分别求得各选项的面积,找到不同的答案即可.【解答】解:由题意可得,A、C、D三选项中的阴影部分的面积均为平行四边形ABCD面积的一半,只有B选项中阴影部分的面积与其他选项不等,故选:B.【点评】本题考查了平行四边形的性质,解题的关键是根据平行四边形的面积公式求得阴影部分的面积,难度一般.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A. =+5+B. =+5﹣C. =+5﹣D. =﹣5﹣【考点】B6:由实际问题抽象出分式方程.【分析】别求出两辆汽车从A地到B地的时间,然后找出等量关系:大汽车的行驶时间+=小汽车的行驶时间+5,据此列方程.【解答】解:设大汽车的速度为2xkm/h,小汽车的速度为5xkm/h,由题意得, +=+5.故选B.【点评】本题考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.10.如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x 轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5C.8 D.10【考点】E7:动点问题的函数图象.【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8,故选C.【点评】本题考查了函数的图象,根据图象理解AB的长度,正确求得平行四边形的高是关键.二、填空题11.当x ≠3 时,分式有意义;当x =3 时,分式值为0.【考点】63:分式的值为零的条件;62:分式有意义的条件.【分析】直接利用分式有意义的条件以及分式的值为零的条件分析得出答案.【解答】解:当x≠3时,x﹣3≠0,则分式有意义;当x2﹣9=0,x+3≠0时,分式值为0,解得:x=3.故答案为:≠3,=3.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.12.若=,则= ;若==,则= .【考点】S1:比例的性质.【分析】根据合比性质,反比性质,可得答案;根据等式的性质,可用k表示x,y,z,根据分式的性质,可得答案.【解答】解:由合比性质,得=.由反比性质,得=,故答案为:;设===k,得x=4k,y=3k,z=2k.==,故答案为:.【点评】本题考查了比例的性质,利用合比性质、反比性质是解题关键.13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为答案不唯一,如.【考点】63:分式的值为零的条件;62:分式有意义的条件;64:分式的值.【专题】26 :开放型.【分析】(1)分式的分母不为零、分子不为零;(2)分式有意义,分母不等于零;(3)将x=0代入后,分式的分子、分母互为相反数.【解答】解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠±2,即当x=±2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;故答案是:.【点评】本题考查了分式的值、分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:分子分母都乘以﹣12,得,故答案为:.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.15.,,的最简公分母是10x3yz .【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:∵,,的分母分别是xy、2x3、5xyz,∴它们的最简公分母是10x3yz.故答案为:10x3yz.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.16.当m= 2 时,关于x的方程=2的根为.【考点】B2:分式方程的解.【分析】根据方程的解满足方程,把方程的解代入方程,可得关于m的分式方程,根据解分式方程,可得答案.【解答】解:把x=代入=2,得=2,解得m=2,经检验m=2是分式方程的解,故答案为:2.【点评】本题考查了分式方程的解,注意要检验分式方程的解.17.若分式方程有增根,则m的值是 3 .【考点】B5:分式方程的增根.【分析】根据方程有增根,可得出x=1,再代入整式方程即可得出m的值.【解答】解:∵分式方程有增根,∴x﹣1=0,∴x=1,2x﹣(m﹣1)=x﹣1,把x=1代入得2﹣(m﹣1)=0,∴m=3,故答案为3.【点评】本题考查了分式方程的增根,掌握把分式方程化为整式方程以及使分母为0的根是增根是解题的关键.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有 6 个;(2)任意摸出一个球是红色的概率是.【考点】X4:概率公式.【分析】(1)设黄球有x根,根据绿球的概率公式列示求解即可;(2)直接利用红球的个数除以球的总个数即可求得摸到红球的概率.【解答】解:(1)设黄色球有x个,由形状、大小相同的红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是,得=,解得x=6;(2)P(红色)==,故答案为:6,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程=+3 .【考点】B6:由实际问题抽象出分式方程.【分析】根据原来每个同学需摊的车费=现在每个同学应摊的车费+3列方程即可.【解答】解:设参加游览的同学共x人,由题意得, =+3,故答案为: =+3.【点评】本题考查的是分式方程的应用,正确找出等量关系是解题的关键.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .【考点】R4:中心对称;L8:菱形的性质.【专题】121:几何图形问题.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【解答】解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.【点评】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为7 .【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【专题】11 :计算题;16 :压轴题.【分析】过O作OF垂直于BC,再过A作AM垂直于OF,由四边形ABDE为正方形,得到OA=OB,∠AOB为直角,可得出两个角互余,再由AM垂直于MO,得到△AOM为直角三角形,其两个锐角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,OA=OB,利用AAS可得出△AOM与△BOF全等,由全等三角形的对应边相等可得出AM=OF,OM=FB,由三个角为直角的四边形为矩形得到ACFM为矩形,根据矩形的对边相等可得出AC=MF,AM=CF,等量代换可得出CF=OF,即△COF为等腰直角三角形,由斜边OC的长,利用勾股定理求出OF与CF的长,根据OF﹣MF求出OM的长,即为FB的长,由CF+FB即可求出BC的长.【解答】解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AM O=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.【点评】此题考查了正方形的性质,全等三角形的判定与性质,勾股定理,以及等腰直角三角形的判定与性质、角平分线的判定,利用了转化及等量代换的思想,根据题意作出相应的辅助线是解本题的关键.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:x=n+3或x=n+4 .【考点】B2:分式方程的解.【专题】16 :压轴题;2A :规律型.【分析】首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.【解答】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.三、解答题(共50分)23.计算:①;②.【考点】6C:分式的混合运算.【分析】①先变形,再根据同分母的分式进行加减即可;②先因式分解,再约分即可.【解答】解:①原式=﹣==2;②原式=﹣••=.【点评】本题考查了分式的混合运算,掌握因式分解以及分式的通分、约分是解题的关键.24.解方程:①;②.【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:①去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;②方程整理得: =,即=,去分母得:x2﹣5x+6=x2+x﹣2,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再因式分解,再约分即可,注意分母不为0.【解答】解:原式=•=,∵a+2≠0,a﹣2≠0,a﹣1≠0,∴a≠1,±2,∴取a=0,∴原式==2.。
南京外国语学校八年级下期中数学试卷及答案
2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列分式中是最简分式的是()A.B.C.D.3.下列各式从左到右的变形正确的是()A. =B.C.D.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A. =+5+B. =+5﹣C. =+5﹣D. =﹣5﹣10.如图1,在平面下角坐标系中,将?ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x 轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5C.8 D.10二、填空题11.当x 时,分式有意义;当x 时,分式值为0.12.若=,则= ;若==,则= .13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.15.,,的最简公分母是.16.当m= 时,关于x的方程=2的根为.17.若分式方程有增根,则m的值是.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有个;(2)任意摸出一个球是红色的概率是.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.三、解答题(共50分)23.计算:①;②.24.解方程:①;②.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.26.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),绘制成如下统计表(其中A表示0~10min;B表示11~20min;C表示21~30min,时间取整数):频数百分比干家务活平均时间A 10 25%B a 62.5%C 5 b合计 c 1(1)统计表中的a= ;b= ;c= .(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.(3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min的学生人数.27.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?28.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE 绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.29.一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了b天完成,其中a、b均为正整数,且a<46,b<52,求甲、乙两队各做了多少天?30.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D 作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列分式中是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、=;D、;故选A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.3.下列各式从左到右的变形正确的是()A. =B.C.D.【考点】65:分式的基本性质.【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选C.【点评】本题考查了分式的基本性质.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于【考点】X3:概率的意义.【分析】根据概率的定义对各选项进行逐一分析即可.【解答】解:A、随着抛掷次数的增加,正面向上的频率不能确定,故本选项错误;B、当抛掷的次数n很大时,正面向上的次数接近,故本选项错误;C、不同次数的试验,正面向上的频率可能会不相同,故本选项正确;D、连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率可能是,故本选项错误.故选C.【点评】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了【考点】VD:折线统计图;VC:条形统计图.【分析】用1月份的销售总额乘以商场服装部1月份销售额占商场当月销售总额的百分比,即可判断A;分别求出2月份与3月份商场服装部的销售额,即可判断B;用总销售额减去其他月份的销售额即可得到4月份的销售额,即可判断C;分别求出4月份与5月份商场服装部的销售额,即可判断D.【解答】解:A、∵商场服装部1月份销售额占商场当月销售总额的22%,∴1月份商场服装部的销售额是100×22%=22(万元).故本选项正确,不符合题意;B、∵2月份商场服装部的销售额是90×14%=12.6(万元),3月份商场服装部的销售额是65×12%=7.8(万元),∴3月份商场服装部的销售额比2月份减少了.故本选项正确,不符合题意.C、∵商场今年1~5月的商品销售总额一共是410万元,∴4月份销售总额=410﹣100﹣90﹣65﹣80=75(万元).故本选项正确,不符合题意;C、∵4月份商场服装部的销售额是75×17%=12.75(万元),5月份商场服装部的销售额是80×16%=12.8(万元),∴5月份商场服装部的销售额比4月份增加了.故本选项错误,符合题意;故选D.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】要判定是正方形,则需能判定它既是菱形又是矩形.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.【点评】本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定【考点】LB:矩形的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【专题】31 :数形结合.【分析】根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.【解答】解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△OBF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选:B.【点评】本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.【考点】LN:中点四边形.【分析】根据平行四边形的面积计算方法分别求得各选项的面积,找到不同的答案即可.【解答】解:由题意可得,A、C、D三选项中的阴影部分的面积均为平行四边形ABCD面积的一半,只有B选项中阴影部分的面积与其他选项不等,故选:B.【点评】本题考查了平行四边形的性质,解题的关键是根据平行四边形的面积公式求得阴影部分的面积,难度一般.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x 千米/小时,则可列方程为()A. =+5+B. =+5﹣C. =+5﹣D. =﹣5﹣【考点】B6:由实际问题抽象出分式方程.【分析】别求出两辆汽车从A地到B地的时间,然后找出等量关系:大汽车的行驶时间+=小汽车的行驶时间+5,据此列方程.【解答】解:设大汽车的速度为2xkm/h,小汽车的速度为5xkm/h,由题意得, +=+5.故选B.【点评】本题考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.10.如图1,在平面下角坐标系中,将?ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x 轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5C.8 D.10【考点】E7:动点问题的函数图象.【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN?sin45°=2×=2,则平行四边形的面积是:AB?DM=4×2=8,故选C.【点评】本题考查了函数的图象,根据图象理解AB的长度,正确求得平行四边形的高是关键.二、填空题11.当x ≠3 时,分式有意义;当x =3 时,分式值为0.【考点】63:分式的值为零的条件;62:分式有意义的条件.【分析】直接利用分式有意义的条件以及分式的值为零的条件分析得出答案.【解答】解:当x≠3时,x﹣3≠0,则分式有意义;当x2﹣9=0,x+3≠0时,分式值为0,解得:x=3.故答案为:≠3,=3.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.12.若=,则= ;若==,则= .【考点】S1:比例的性质.【分析】根据合比性质,反比性质,可得答案;根据等式的性质,可用k表示x,y,z,根据分式的性质,可得答案.【解答】解:由合比性质,得=.由反比性质,得=,故答案为:;设===k,得x=4k,y=3k,z=2k.==,故答案为:.【点评】本题考查了比例的性质,利用合比性质、反比性质是解题关键.13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为答案不唯一,如.【考点】63:分式的值为零的条件;62:分式有意义的条件;64:分式的值.【专题】26 :开放型.【分析】(1)分式的分母不为零、分子不为零;(2)分式有意义,分母不等于零;(3)将x=0代入后,分式的分子、分母互为相反数.【解答】解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠±2,即当x=±2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;故答案是:.【点评】本题考查了分式的值、分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:分子分母都乘以﹣12,得,故答案为:.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.15.,,的最简公分母是10x3yz .【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:∵,,的分母分别是xy、2x3、5xyz,∴它们的最简公分母是10x3yz.故答案为:10x3yz.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.16.当m= 2 时,关于x的方程=2的根为.【考点】B2:分式方程的解.【分析】根据方程的解满足方程,把方程的解代入方程,可得关于m的分式方程,根据解分式方程,可得答案.【解答】解:把x=代入=2,得=2,解得m=2,经检验m=2是分式方程的解,故答案为:2.【点评】本题考查了分式方程的解,注意要检验分式方程的解.17.若分式方程有增根,则m的值是 3 .【考点】B5:分式方程的增根.【分析】根据方程有增根,可得出x=1,再代入整式方程即可得出m的值.【解答】解:∵分式方程有增根,∴x﹣1=0,∴x=1,2x﹣(m﹣1)=x﹣1,把x=1代入得2﹣(m﹣1)=0,∴m=3,故答案为3.【点评】本题考查了分式方程的增根,掌握把分式方程化为整式方程以及使分母为0的根是增根是解题的关键.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有 6 个;(2)任意摸出一个球是红色的概率是.【考点】X4:概率公式.【分析】(1)设黄球有x根,根据绿球的概率公式列示求解即可;(2)直接利用红球的个数除以球的总个数即可求得摸到红球的概率.【解答】解:(1)设黄色球有x个,由形状、大小相同的红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是,得=,解得x=6;(2)P(红色)==,故答案为:6,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程=+3 .【考点】B6:由实际问题抽象出分式方程.【分析】根据原来每个同学需摊的车费=现在每个同学应摊的车费+3列方程即可.【解答】解:设参加游览的同学共x人,由题意得, =+3,故答案为: =+3.【点评】本题考查的是分式方程的应用,正确找出等量关系是解题的关键.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .【考点】R4:中心对称;L8:菱形的性质.【专题】121:几何图形问题.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【解答】解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.【点评】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为7 .【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【专题】11 :计算题;16 :压轴题.【分析】过O作OF垂直于BC,再过A作AM垂直于OF,由四边形ABDE为正方形,得到OA=OB,∠AOB为直角,可得出两个角互余,再由AM垂直于MO,得到△AOM为直角三角形,其两个锐角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,OA=OB,利用AAS可得出△AOM与△BOF全等,由全等三角形的对应边相等可得出AM=OF,OM=FB,由三个角为直角的四边形为矩形得到ACFM为矩形,根据矩形的对边相等可得出AC=MF,AM=CF,等量代换可得出CF=OF,即△COF为等腰直角三角形,由斜边OC的长,利用勾股定理求出OF与CF的长,根据OF﹣MF求出OM的长,即为FB的长,由CF+FB即可求出BC的长.【解答】解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AM O=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,﹣FM=6﹣5=1,∴FB=OM=OF则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,.∴BC=CN+NB=6+1=7故答案为:7.【点评】此题考查了正方形的性质,全等三角形的判定与性质,勾股定理,以及等腰直角三角形的判定与性质、角平分线的判定,利用了转化及等量代换的思想,根据题意作出相应的辅助线是解本题的关键.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:x=n+3或x=n+4 .【考点】B2:分式方程的解.【专题】16 :压轴题;2A :规律型.【分析】首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.【解答】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.三、解答题(共50分)23.计算:①;②.【考点】6C:分式的混合运算.【分析】①先变形,再根据同分母的分式进行加减即可;②先因式分解,再约分即可.【解答】解:①原式=﹣==2;②原式=﹣??=.【点评】本题考查了分式的混合运算,掌握因式分解以及分式的通分、约分是解题的关键.24.解方程:①;②.【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:①去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;②方程整理得: =,即=,去分母得:x2﹣5x+6=x2+x﹣2,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再因式分解,再约分即可,注意分母不为0.。
【南外】初二(下)数学期中(试卷+答案)
【南外】初二(下)期中考试一、选择题1. 某汽车制造厂为了使顾客了解一种新车的耗油量,公布了调查 20辆该车每辆行驶 100 千米的耗油量,在这个问题中总体是( ) A .20辆汽车 B .20 辆该种新车的100 千米耗油量 C .所有该种新车 D .所有该种新车的100千米耗油量2. 下列函数中,能表示y 是x 的反比例函数的是()A. y =x2 B. y =-2xC. y =1 2 -xD . y =1- 2x3. 在一个透明的口袋中装有大小、外形一模一样的5个黄球,2个红球和2个白球,将这些球在口袋中充分搅匀,则下列事件必然发生的是( ) ⑴从口袋中任意摸出一个球是黄球或白球 ⑵从口袋中一次任意摸出 5 个球,全是黄球 ⑶从口袋中一次任意摸出 8 个球,三种颜色都有⑷从口袋中一次任意摸出 6 个球,有黄球和红球,或有黄球和白球,或三种颜色都有 A .⑴⑵ B .⑵⑶ C .⑶⑷ D .⑴⑵⑶⑷4. 无论x 取什么值,下列分式总有意义的是()A. 2 +xx B. x2+1C.3x(x - 1)2x 2+ 1 D .5. 如图,△ABC 中,DE ∥BC ,EF ∥AB ,要判定四边形DBFE 是菱形,还需要添加的条件是( ) A .AB =ACB .AD =BDC .BE ⊥ACD .BE 平分∠ABC6. 函数 y = -12的图像经过点 A (x 1,y 1)、B (x 2、y 2),若 x 1<x 2<0,则 y 1、y 2、0 的大小关系 x是( ) A .y 1<y 2<0 B .y 2<y 1<0 C .y 1>y 2>0 D .y 2>y 1>07. 如图,将□ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为()A .66°B .104°C .114°D .124°8. 下列各式从左到右的变形正确的是()a 2-0.2aa 2-2ax +1x - 1 A .a 2-0.3a 31 -1a=a 2- 3a 3B .-=x -yx -yC . 2 =6 -3aa +1 6a +2b 2-a 2 D .a +b=a -b39. 以相同的效率做某件工作,a 人做b 天可以完工,若增加c 人,则提前完工的天数为( )A. aba +c B. -b a+cC. b -ab a +cD. b - b a+c- b10.如图,已知□ABCD的四个内角的平分线分别相交于点E、F、G、H,连接A C,若EF=2,FG=GC=5,则AC的长是()A.12 B.13第5题第7题第10 题二、填空题11.为了了解某地区45000名九年级学生的睡眠情况,运用所学统计知识解决上述问题所要经历的几个主要步骤:①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据,按操作的先后顺序进行排序为_________ .(只写序号)12.如图,下面的扑克牌中,牌面是中心对称图形的是_________ .(填序号)13.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全形同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件:A.摸出的三个球中至少有一个球是黑球;B.摸出的三个球都是白球;C.摸出的三个球都是黑球;D.摸出的三个球中有两个球是白球.其中是不可能事件的为___________ .(填序号)14.下列4个分式:①a + 3;②a2 + 3x -y;③x2 -y2m;④22m3n m +1中最简分式有_________ 个.15.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是 _________ .①②③④第12题第15 题16.若函数y=kx k-2的图像是双曲线,且图像在第二、四象限内,那么k= _____________ .17.已知四边形ABCD是菱形,△AEF是正三角形,E、F分别在BC、CD上,且EF=CD,则∠BAD= ___________ 度.18.若关于x的分式方程x=x - 4mx -4+2有增根,则m= __________ .19.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB、BC、AC为边,在AB同侧作正方形ABMN、正方形ACDE和正方形BCFG,其中线段DE经过点N,CF与BM交于点P,CD与MN交于点Q,则图中阴影部分的面积为___________________ .20.如图,在菱形 ABCD 中,对角线 AC 、BD 相交于点 O ,点 E 是线段 BO 上的一个动点 ,但 F 为射线 DC 上一点,若∠ABC =60°,∠AEF =120°,AB =4,则 EF 可能是整数值是 __________.第19题第20 题三、解答题(共 56 分) 21.(10 分)计算: m 242b 2⑴+m -22 -m⑵a -b- a -b⑶化简代数式(1 -3)÷ a + 2a 2- 2a +1 a 2- 4,再从-2、2、0、1 四个数中选一个恰当的数作为 a的值代入求值.22.(6 分)解分式方程:⑴ x +2 =1 ⑵2+ x =1 x +3 x3 3x -1 9x -323.(6分)南京市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:图 2图 1⑴这次被调查的总人数是_________ ;⑵补全条形统计图;⑶在扇形统计图中,求表示 A 组(t 10 分)的扇形圆心角的度数;⑷如果骑共享单车的平均速度为12km/h,请估算,在租用共享单车的市民中,骑车路程不超过6km 的人数所占的百分比.24.(7 分)如图,在△ABC 中,D 是BC 边的中点,分别过点B、C 作射线AD 的垂线,垂足分别为E、F,连接BF、CE.⑴求证:四边形BECF 是平行四边形;⑵若AF=FD,在不添加辅助线的条件下,直接写出与△ABD 面积相等的所有三角形.25.(7分)某中学开学初在商场购进 A 、B 两种品牌的足球,购买 A 品牌足球花费了 2500 元,购买 B 品牌足球花费了 2000 元,且购买 A 品牌足球数量是购买 B 品牌足球数量的 2 倍,已知购买一个 B 品牌足球比购买一个 A 品牌足球多花 30 元. ⑴求购买一个A 品牌、一个 B 品牌的足球各需多少元?⑵此中学决定两次购进A 、B 两种品牌足球共 50 个,恰逢商场对两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了 8,B 品牌足球按第一次购买时售价的 9 折出售,如果这所中学此次购买 A 、B 两种品牌足球的总费用不超过 3260 元,那么这个中学此次最多可购买多少个B 品牌足球?26.(10 分)我们知道:分式和分数有着很多相似点,如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式,反之称为假分式,对于任何一个假分式都可以化成整式与真分式的和的形式,如:x + 1 =x - 1 + 2 =x - 1 +2 = 1 +2 x -1 x -1 x -1 x -1 x - 1 2x -3 =2x + 2 - 5 =2x + 2 +-5 = 2 +-5x +1 x +1 x +1 x +1 x + 1 ⑴下列分式中,属于真分式的是 _________ (填序号);①a -2 a +1 x 2 ② x +1 ③ 2bb 2+3 a 2+3 ④ a 2-1⑵将假分式 4a + 3化成整式与真分式的和的形式;2a - 1 若假分式4a +3的值为正整数,则整数a 的值为 ____________ ;2a -1a 2+3⑶将假分式a -1化成整式与真分式的和的形式.27.(10 分)如图1,在平面直角坐标系中,正方形ABCO 的顶点C、A 分别在x、y 轴上,A(0,6)、E(0,2),点H、F 分别在边AB、OC 上,以H、E、F 为顶点作菱形EFGH.⑴当H( -2,6)时,求证:四边形EFGH 为正方形;⑵若F( -5,0),求点G 的坐标;⑶如图2,点Q 为对角线BO 上一动点,D 为边OA 上一点,DQ⊥CQ,点Q 从点B 出发,沿BO 方向移动,若移动的路径长为3,直接写出CD 的中点M 移动的路径长为__________.图1 图22018【南外】初二(下)期中考试(答案)题号 1 2 3 4 5 6 7 8 9 10 答案 D BC BDDCCCB二、填空题题号 1112 13 14 15答案 ②①④⑤③①③ B 2 40° 题号 16 17 18 19 20 答案-11004132 或3 或 4三、解答题21、⑴ m +23b 2-a 2 ⑵a -b ⑶化简结果a - 2,求值 2a - 122、⑴ x = 6 (经检验为原方程的解)⑵ x =1(经检验为原方程的增根,∴原方程无解)3 23、⑴50 ⑵略 ⑶108° ⑷92 24、⑴∵D 为 BC 中点∴BD =CD∵BE ⊥AE ,CF ⊥AD ,即∠BED =∠CFD =90∠BDE =∠CDF∴△BED ≌△CFD (AAS )∴ DF =DE∴四边形 BECF 为平行四边形⑵△ADC 、△BEF 、△BCF 、△CEF 、△BEC25、⑴设一个 A 品牌的足球需 x 元,则一个 B 品牌的足球需(x +30)元,由题意得2500=2000 2x x +30解得:x =50经检验 x =50 是原方程的解 x +30=80答:一个 A 品牌的足球需 50 元,则一个 B 品牌的足球需 80 元. ⑵设此次可购买 a 个 B 品牌足球,则购进 A 牌足球(50﹣a )个,由题意得50(1+8)(50﹣a )+800.9a ≤32601解得 a ≤319∵a 是整数∴a 最大等于 31答:华昌中学此次最多可购买 31 个 B 品牌足球.⎩26、⑴③ ⑵2 +52a -1;1 或 3 或-2 ⑶a +1+4a -127、⑴证明:如图 1 中∵E (0,2),H (﹣2,6) ∴OE =AH =2,∵四边形 ABCO 是正方形 ∴∠HAE =∠EOF =90° ∵四边形 EFGH 是菱形 ∴EH =EF在 Rt △AHE 和 Rt △OEF 中 ⎧AH =EO ⎨HE =EF ∴Rt △AHE ≌△Rt △OEF (HL ) ∴∠AEH =∠EFO , ∵∠EFO +∠FEO =90° ∴∠AEH +∠FEO =90° ∴∠HEF =90°∴四边形 EFGH 是正方形⑵解:如图 1 中,连接 GE 、FH 交于点 K ∵F (﹣5,0),E (0,2) ∴OF =5,OE =2,EA =4 ∵HE =EF∴52+22=42+AH 2 ∴AH =∴H (- ,6)∵四边形 EFGH 是菱形∴HK =KF ,KE =KG ,设G (m ,n ),则有m +0=-5-13, n + 2 =6 + 0∴m =﹣5﹣ ∴G (﹣5﹣,n =4 ,4)2 2 2 2⑶如图,连接 AC 交OB 于点 H ,连接 HM 过点Q 作 EF ∥AB首先易得 HM 为△ACD 中位线,可得 M 点运动轨迹为平行于OA 的一条线段当 BQ = 3 时,证△QEC ≌△DFQ (AAS )(三垂直全等)3 2∴ QE =DF =2 又 ∵ AF =BE =3 22∴AD = 3∴ HM =1 AD =3 22 2。
南京外国语学校八年级下期中数学试卷及答案-精
2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列分式中是最简分式的是( )A .B .C .D .3.下列各式从左到右的变形正确的是( )A . =B .C .D .4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是( ) A .随着抛掷次数的增加,正面向上的频率越来越小B .当抛掷的次数n 很大时,正面向上的次数一定为C .不同次数的试验,正面向上的频率可能会不相同D .连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是( )A .1月份商场服装部的销售额是22万元B .3月份商场服装部的销售额比2月份减少了C .4月份商场的商品销售额是75万元D .5月份商场服装部的销售额比4月份减少了6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A.=+5+B.=+5﹣C.=+5﹣D.=﹣5﹣10.如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x 从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x 轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5 C.8 D.10二、填空题11.当x 时,分式有意义;当x 时,分式值为0.12.若=,则= ;若==,则= .13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.15.,,的最简公分母是.16.当m= 时,关于x的方程=2的根为.17.若分式方程有增根,则m的值是.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有个;(2)任意摸出一个球是红色的概率是.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.三、解答题(共50分)23.计算:①;②.24.解方程:①;②.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.26.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),绘制成如下统计表(其中A表示0~10min;B表示11~20min;C表示21~30min,时间取整数):a= ;b= ;c= .(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.(3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min的学生人数.27.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?28.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.29.一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了b天完成,其中a、b均为正整数,且a<46,b<52,求甲、乙两队各做了多少天?30.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列分式中是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、=;D、;故选A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.3.下列各式从左到右的变形正确的是()A.=B.C.D.【考点】65:分式的基本性质.【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选C.【点评】本题考查了分式的基本性质.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于【考点】X3:概率的意义.【分析】根据概率的定义对各选项进行逐一分析即可.【解答】解:A、随着抛掷次数的增加,正面向上的频率不能确定,故本选项错误;B、当抛掷的次数n很大时,正面向上的次数接近,故本选项错误;C、不同次数的试验,正面向上的频率可能会不相同,故本选项正确;D、连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率可能是,故本选项错误.故选C.【点评】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了【考点】VD:折线统计图;VC:条形统计图.【分析】用1月份的销售总额乘以商场服装部1月份销售额占商场当月销售总额的百分比,即可判断A;分别求出2月份与3月份商场服装部的销售额,即可判断B;用总销售额减去其他月份的销售额即可得到4月份的销售额,即可判断C;分别求出4月份与5月份商场服装部的销售额,即可判断D.【解答】解:A、∵商场服装部1月份销售额占商场当月销售总额的22%,∴1月份商场服装部的销售额是100×22%=22(万元).故本选项正确,不符合题意;B、∵2月份商场服装部的销售额是90×14%=12.6(万元),3月份商场服装部的销售额是65×12%=7.8(万元),∴3月份商场服装部的销售额比2月份减少了.故本选项正确,不符合题意.C、∵商场今年1~5月的商品销售总额一共是410万元,∴4月份销售总额=410﹣100﹣90﹣65﹣80=75(万元).故本选项正确,不符合题意;C、∵4月份商场服装部的销售额是75×17%=12.75(万元),5月份商场服装部的销售额是80×16%=12.8(万元),∴5月份商场服装部的销售额比4月份增加了.故本选项错误,符合题意;故选D.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】要判定是正方形,则需能判定它既是菱形又是矩形.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.【点评】本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定【考点】LB:矩形的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【专题】31 :数形结合.【分析】根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.【解答】解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△OBF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选:B.【点评】本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.【考点】LN:中点四边形.【分析】根据平行四边形的面积计算方法分别求得各选项的面积,找到不同的答案即可.【解答】解:由题意可得,A、C、D三选项中的阴影部分的面积均为平行四边形ABCD面积的一半,只有B选项中阴影部分的面积与其他选项不等,故选:B.【点评】本题考查了平行四边形的性质,解题的关键是根据平行四边形的面积公式求得阴影部分的面积,难度一般.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A.=+5+B.=+5﹣C.=+5﹣D.=﹣5﹣【考点】B6:由实际问题抽象出分式方程.【分析】别求出两辆汽车从A地到B地的时间,然后找出等量关系:大汽车的行驶时间+=小汽车的行驶时间+5,据此列方程.【解答】解:设大汽车的速度为2xkm/h,小汽车的速度为5xkm/h,由题意得,+=+5.故选B.【点评】本题考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.10.如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x 从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x 轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5 C.8 D.10【考点】E7:动点问题的函数图象.【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8,故选C.【点评】本题考查了函数的图象,根据图象理解AB的长度,正确求得平行四边形的高是关键.二、填空题11.当x ≠3 时,分式有意义;当x =3 时,分式值为0.【考点】63:分式的值为零的条件;62:分式有意义的条件.【分析】直接利用分式有意义的条件以及分式的值为零的条件分析得出答案.【解答】解:当x≠3时,x﹣3≠0,则分式有意义;当x2﹣9=0,x+3≠0时,分式值为0,解得:x=3.故答案为:≠3,=3.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.12.若=,则= ;若==,则= .【考点】S1:比例的性质.【分析】根据合比性质,反比性质,可得答案;根据等式的性质,可用k表示x,y,z,根据分式的性质,可得答案.【解答】解:由合比性质,得=.由反比性质,得=,故答案为:;设===k,得x=4k,y=3k,z=2k.==,故答案为:.【点评】本题考查了比例的性质,利用合比性质、反比性质是解题关键.13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为答案不唯一,如.【考点】63:分式的值为零的条件;62:分式有意义的条件;64:分式的值.【专题】26 :开放型.【分析】(1)分式的分母不为零、分子不为零;(2)分式有意义,分母不等于零;(3)将x=0代入后,分式的分子、分母互为相反数.【解答】解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠±2,即当x=±2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;故答案是:.【点评】本题考查了分式的值、分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:分子分母都乘以﹣12,得,故答案为:.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.15.,,的最简公分母是10x3yz .【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:∵,,的分母分别是xy、2x3、5xyz,∴它们的最简公分母是10x3yz.故答案为:10x3yz.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.16.当m= 2 时,关于x的方程=2的根为.【考点】B2:分式方程的解.【分析】根据方程的解满足方程,把方程的解代入方程,可得关于m的分式方程,根据解分式方程,可得答案.【解答】解:把x=代入=2,得=2,解得m=2,经检验m=2是分式方程的解,故答案为:2.【点评】本题考查了分式方程的解,注意要检验分式方程的解.17.若分式方程有增根,则m的值是 3 .【考点】B5:分式方程的增根.【分析】根据方程有增根,可得出x=1,再代入整式方程即可得出m的值.【解答】解:∵分式方程有增根,∴x﹣1=0,∴x=1,2x﹣(m﹣1)=x﹣1,把x=1代入得2﹣(m﹣1)=0,∴m=3,故答案为3.【点评】本题考查了分式方程的增根,掌握把分式方程化为整式方程以及使分母为0的根是增根是解题的关键.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有 6 个;(2)任意摸出一个球是红色的概率是.【考点】X4:概率公式.【分析】(1)设黄球有x根,根据绿球的概率公式列示求解即可;(2)直接利用红球的个数除以球的总个数即可求得摸到红球的概率.【解答】解:(1)设黄色球有x个,由形状、大小相同的红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是,得=,解得x=6;(2)P(红色)==,故答案为:6,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程=+3 .【考点】B6:由实际问题抽象出分式方程.【分析】根据原来每个同学需摊的车费=现在每个同学应摊的车费+3列方程即可.【解答】解:设参加游览的同学共x人,由题意得,=+3,故答案为:=+3.【点评】本题考查的是分式方程的应用,正确找出等量关系是解题的关键.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .【考点】R4:中心对称;L8:菱形的性质.【专题】121:几何图形问题.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【解答】解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.【点评】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为7 .【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【专题】11 :计算题;16 :压轴题.【分析】过O作OF垂直于BC,再过A作AM垂直于OF,由四边形ABDE为正方形,得到OA=OB,∠AOB为直角,可得出两个角互余,再由AM垂直于MO,得到△AOM为直角三角形,其两个锐角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,OA=OB,利用AAS可得出△AOM与△BOF全等,由全等三角形的对应边相等可得出AM=OF,OM=FB,由三个角为直角的四边形为矩形得到ACFM为矩形,根据矩形的对边相等可得出AC=MF,AM=CF,等量代换可得出CF=OF,即△COF为等腰直角三角形,由斜边OC的长,利用勾股定理求出OF与CF的长,根据OF﹣MF求出OM的长,即为FB的长,由CF+FB即可求出BC的长.【解答】解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AM O=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.【点评】此题考查了正方形的性质,全等三角形的判定与性质,勾股定理,以及等腰直角三角形的判定与性质、角平分线的判定,利用了转化及等量代换的思想,根据题意作出相应的辅助线是解本题的关键.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:x=n+3或x=n+4 .【考点】B2:分式方程的解.【专题】16 :压轴题;2A :规律型.【分析】首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.【解答】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.三、解答题(共50分)23.计算:①;②.【考点】6C:分式的混合运算.【分析】①先变形,再根据同分母的分式进行加减即可;②先因式分解,再约分即可.【解答】解:①原式=﹣==2;②原式=﹣••=.【点评】本题考查了分式的混合运算,掌握因式分解以及分式的通分、约分是解题的关键.24.解方程:①;②.【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:①去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;②方程整理得:=,即=,去分母得:x2﹣5x+6=x2+x﹣2,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再因式分解,再约分即可,注意分母不为0.【解答】解:原式=•=,∵a+2≠0,a﹣2≠0,a﹣1≠0,∴a≠1,±2,∴取a=0,∴原式==2.【点评】本题考查了分式的化简求值,掌握因式分解以及分式的约分、通分是解题的关键.。
【精品】南京外国语学校八年级下期中数学试卷及答案
2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列分式中是最简分式的是()A.B.C.D.3.下列各式从左到右的变形正确的是()A. =B.C.D.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A. =+5+B. =+5﹣C. =+5﹣D. =﹣5﹣10.如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5C.8 D.10二、填空题11.当x 时,分式有意义;当x 时,分式值为0.12.若=,则= ;若==,则= .13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.15.,,的最简公分母是.16.当m= 时,关于x的方程=2的根为.17.若分式方程有增根,则m的值是.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有个;(2)任意摸出一个球是红色的概率是.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.三、解答题(共50分)23.计算:①;②.24.解方程:①;②.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.26.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),绘制成如下统计21~30min,时间取整数):a= ;b= ;c= .(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.(3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min的学生人数.27.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?28.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.29.一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了b天完成,其中a、b均为正整数,且a<46,b<52,求甲、乙两队各做了多少天?30.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF ⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列分式中是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、=;D、;故选A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.3.下列各式从左到右的变形正确的是()A. =B.C.D.【考点】65:分式的基本性质.【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选C.【点评】本题考查了分式的基本性质.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于【考点】X3:概率的意义.【分析】根据概率的定义对各选项进行逐一分析即可.【解答】解:A、随着抛掷次数的增加,正面向上的频率不能确定,故本选项错误;B、当抛掷的次数n很大时,正面向上的次数接近,故本选项错误;C、不同次数的试验,正面向上的频率可能会不相同,故本选项正确;D、连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率可能是,故本选项错误.故选C.【点评】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了【考点】VD:折线统计图;VC:条形统计图.【分析】用1月份的销售总额乘以商场服装部1月份销售额占商场当月销售总额的百分比,即可判断A;分别求出2月份与3月份商场服装部的销售额,即可判断B;用总销售额减去其他月份的销售额即可得到4月份的销售额,即可判断C;分别求出4月份与5月份商场服装部的销售额,即可判断D.【解答】解:A、∵商场服装部1月份销售额占商场当月销售总额的22%,∴1月份商场服装部的销售额是100×22%=22(万元).故本选项正确,不符合题意;B、∵2月份商场服装部的销售额是90×14%=12.6(万元),3月份商场服装部的销售额是65×12%=7.8(万元),∴3月份商场服装部的销售额比2月份减少了.故本选项正确,不符合题意.C、∵商场今年1~5月的商品销售总额一共是410万元,∴4月份销售总额=410﹣100﹣90﹣65﹣80=75(万元).故本选项正确,不符合题意;C、∵4月份商场服装部的销售额是75×17%=12.75(万元),5月份商场服装部的销售额是80×16%=12.8(万元),∴5月份商场服装部的销售额比4月份增加了.故本选项错误,符合题意;故选D.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】要判定是正方形,则需能判定它既是菱形又是矩形.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.【点评】本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定【考点】LB:矩形的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【专题】31 :数形结合.【分析】根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.【解答】解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△OBF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选:B.【点评】本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.【考点】LN:中点四边形.【分析】根据平行四边形的面积计算方法分别求得各选项的面积,找到不同的答案即可.【解答】解:由题意可得,A、C、D三选项中的阴影部分的面积均为平行四边形ABCD面积的一半,只有B选项中阴影部分的面积与其他选项不等,故选:B.【点评】本题考查了平行四边形的性质,解题的关键是根据平行四边形的面积公式求得阴影部分的面积,难度一般.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A. =+5+B. =+5﹣C. =+5﹣D. =﹣5﹣【考点】B6:由实际问题抽象出分式方程.【分析】别求出两辆汽车从A地到B地的时间,然后找出等量关系:大汽车的行驶时间+=小汽车的行驶时间+5,据此列方程.【解答】解:设大汽车的速度为2xkm/h,小汽车的速度为5xkm/h,由题意得, +=+5.故选B.【点评】本题考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.10.如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5C.8 D.10【考点】E7:动点问题的函数图象.【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8,故选C.【点评】本题考查了函数的图象,根据图象理解AB的长度,正确求得平行四边形的高是关键.二、填空题11.当x ≠3 时,分式有意义;当x =3 时,分式值为0.【考点】63:分式的值为零的条件;62:分式有意义的条件.【分析】直接利用分式有意义的条件以及分式的值为零的条件分析得出答案.【解答】解:当x≠3时,x﹣3≠0,则分式有意义;当x2﹣9=0,x+3≠0时,分式值为0,解得:x=3.故答案为:≠3,=3.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.12.若=,则= ;若==,则= .【考点】S1:比例的性质.【分析】根据合比性质,反比性质,可得答案;根据等式的性质,可用k表示x,y,z,根据分式的性质,可得答案.【解答】解:由合比性质,得=.由反比性质,得=,故答案为:;设===k,得x=4k,y=3k,z=2k.==,故答案为:.【点评】本题考查了比例的性质,利用合比性质、反比性质是解题关键.13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为答案不唯一,如.【考点】63:分式的值为零的条件;62:分式有意义的条件;64:分式的值.【专题】26 :开放型.【分析】(1)分式的分母不为零、分子不为零;(2)分式有意义,分母不等于零;(3)将x=0代入后,分式的分子、分母互为相反数.【解答】解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠±2,即当x=±2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;故答案是:.【点评】本题考查了分式的值、分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:分子分母都乘以﹣12,得,故答案为:.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.15.,,的最简公分母是10x3yz .【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:∵,,的分母分别是xy、2x3、5xyz,∴它们的最简公分母是10x3yz.故答案为:10x3yz.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.16.当m= 2 时,关于x的方程=2的根为.【考点】B2:分式方程的解.【分析】根据方程的解满足方程,把方程的解代入方程,可得关于m的分式方程,根据解分式方程,可得答案.【解答】解:把x=代入=2,得=2,解得m=2,经检验m=2是分式方程的解,故答案为:2.【点评】本题考查了分式方程的解,注意要检验分式方程的解.17.若分式方程有增根,则m的值是 3 .【考点】B5:分式方程的增根.【分析】根据方程有增根,可得出x=1,再代入整式方程即可得出m的值.【解答】解:∵分式方程有增根,∴x﹣1=0,∴x=1,2x﹣(m﹣1)=x﹣1,把x=1代入得2﹣(m﹣1)=0,∴m=3,故答案为3.【点评】本题考查了分式方程的增根,掌握把分式方程化为整式方程以及使分母为0的根是增根是解题的关键.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有 6 个;(2)任意摸出一个球是红色的概率是.【考点】X4:概率公式.【分析】(1)设黄球有x根,根据绿球的概率公式列示求解即可;(2)直接利用红球的个数除以球的总个数即可求得摸到红球的概率.【解答】解:(1)设黄色球有x个,由形状、大小相同的红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是,得=,解得x=6;(2)P(红色)==,故答案为:6,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程=+3 .【考点】B6:由实际问题抽象出分式方程.【分析】根据原来每个同学需摊的车费=现在每个同学应摊的车费+3列方程即可.【解答】解:设参加游览的同学共x人,由题意得, =+3,故答案为: =+3.【点评】本题考查的是分式方程的应用,正确找出等量关系是解题的关键.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .【考点】R4:中心对称;L8:菱形的性质.【专题】121:几何图形问题.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【解答】解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.【点评】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为7 .【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【专题】11 :计算题;16 :压轴题.【分析】过O作OF垂直于BC,再过A作AM垂直于OF,由四边形ABDE为正方形,得到OA=OB,∠AOB为直角,可得出两个角互余,再由AM垂直于MO,得到△AOM为直角三角形,其两个锐角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,OA=OB,利用AAS可得出△AOM与△BOF全等,由全等三角形的对应边相等可得出AM=OF,OM=FB,由三个角为直角的四边形为矩形得到ACFM为矩形,根据矩形的对边相等可得出AC=MF,AM=CF,等量代换可得出CF=OF,即△COF为等腰直角三角形,由斜边OC的长,利用勾股定理求出OF与CF的长,根据OF﹣MF求出OM的长,即为FB的长,由CF+FB即可求出BC的长.【解答】解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AM O=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.【点评】此题考查了正方形的性质,全等三角形的判定与性质,勾股定理,以及等腰直角三角形的判定与性质、角平分线的判定,利用了转化及等量代换的思想,根据题意作出相应的辅助线是解本题的关键.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:x=n+3或x=n+4 .【考点】B2:分式方程的解.【专题】16 :压轴题;2A :规律型.【分析】首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.【解答】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b 的根为:x=a或x=b是解此题的关键.三、解答题(共50分)23.计算:①;②.【考点】6C:分式的混合运算.【分析】①先变形,再根据同分母的分式进行加减即可;②先因式分解,再约分即可.【解答】解:①原式=﹣==2;②原式=﹣••=.【点评】本题考查了分式的混合运算,掌握因式分解以及分式的通分、约分是解题的关键.24.解方程:①;②.【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:①去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;②方程整理得: =,即=,去分母得:x2﹣5x+6=x2+x﹣2,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再因式分解,再约分即可,注意分母不为0.【解答】解:原式=•=,∵a+2≠0,a﹣2≠0,a﹣1≠0,∴a≠1,±2,∴取a=0,∴原式==2.【点评】本题考查了分式的化简求值,掌握因式分解以及分式的约分、通分是解题的关键.26.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),绘制成如下统计表(其中A表示0~10min;B表示11~20min;C表示21~30min,时间取整数):。
2015-2016学年苏科版八年级数学第二学期期中试卷及答案
2015-2016学年八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x25.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣17.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.148.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC 翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2 D.4二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠时,分式有意义.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.11.当x=时,分式的值为0.12.若,则=.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是.16.已知:a2﹣3a+1=0,则a+﹣2的值为.17.已知关于x的方程的解是正数,则m的取值范围是.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)20.解下列方程:(1)=(2)﹣=1.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是;②MB,BN的位置关系是.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目【考点】全面调查与抽样调查.【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【解答】解:A、调查过程带有破坏性,只能采取抽样调查,选项错误;B、数量多,不适合全面调查,适合抽查;C、数量多,不适合全面调查,适合抽查;D、人数不多,容易调查,因而适合全面调查,选项正确.故选D.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选:D.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.5.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍【考点】分式的基本性质.【分析】根据分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变,可得答案.【解答】解:分式中的x,y都扩大到原来的3倍,那么分式的值缩小到原来的,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变.6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣1【考点】分式方程的增根.【专题】计算题.【分析】由分式方程有增根,得到最简公分母为0,求出x的值即为增根.【解答】解:由分式方程有增根,得到x﹣4=0,即x=4,则增根为4.故选C.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC 翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2 D.4【考点】菱形的判定;翻折变换(折叠问题).【专题】动点型.【分析】首先设Q点运动的时间t秒,则CQ=tcm,BP=xcm,根据菱形的性质可得QP=BP=tcm,∠P′BQ=∠QBP,再根据勾股定理可得(t)2+(t)2=(6﹣t)2,再解方程即可.【解答】解:设Q点运动的时间t秒,则CQ=tcm,BP=xcm,∵四边形QPBP′为菱形,∴QP=BP=tcm,∠P′BQ=∠QBP,∵∠C=90°,AC=BC,∴∠CBP=45°,∴∠P′BP=90°,∴∠QPB=90°,∴(t)2+(t)2=(6﹣t)2,解得:t1=2,t2=﹣6(不合题意舍去),故选:B.【点评】此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形对角线平分每一组对角.二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠2时,分式有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式有意义的条件为x﹣2≠0.即可求得x的值.【解答】解:根据条件得:x﹣2≠0.解得:x≠2.故答案为2.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得x的取值范围即可.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.【考点】概率公式.【分析】让二等品数除以总产品数即为所求的概率.【解答】解:∵现有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,可能出现12种结果,是二等品的有3种可能,∴概率==.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.当x=1时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.若,则=.【考点】比例的性质.【分析】先用b表示出a,然后代入比例式进行计算即可得解.【解答】解:∵=,∴a=,∴=.故答案为:.【点评】本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于3.【考点】矩形的性质.【分析】先由矩形的性质得出OA=OB=3,再由∠AOB=60°,证出△AOB是等边三角形,即可得出AB=OA=3.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD=6,∴OA=OB=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3;故答案为:3.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为5cm.【考点】平行四边形的性质;线段垂直平分线的性质.【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为10cm,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=50cm.故答案为:5cm.【点评】此题考查了平行四边形的性质及线段的中垂线的性质,属于基础题,解答本题的关键是判断出EO是线段BD的中垂线,难度一般.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是5.【考点】平行线的性质;正方形的性质.【分析】过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=1,DF=2.根据勾股定理可求CD2得正方形的面积.【解答】解:作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.∵AD=CD,∴△ADE≌△DCF,∴CF=DE=1.∵DF=2,∴CD2=12+22=5,即正方形ABCD的面积为5.故答案为:5.【点评】题考查正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.16.已知:a2﹣3a+1=0,则a+﹣2的值为1.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a,求出a+的值,代入原式计算即可得到结果.【解答】解:∵a2﹣3a+1=0,∴a+=3,则原式=3﹣2=1,故答案为:1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.已知关于x的方程的解是正数,则m的取值范围是m.>﹣6且m≠﹣4【考点】分式方程的解.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x 的不等式是本题的一个难点.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)【考点】分式的混合运算.【分析】(1)先把被除式与分子因式分解,把除法改为乘法,进一步约分得出答案即可;(2)先通分算减法,再进一步把除法改为乘法,进一步约分得出答案即可.【解答】解:(1)原式=a(a+3)×=a;(2)原式=÷=•=.【点评】此题考查分式的混合运算,掌握运算顺序,正确通分约分,因式分解是解决问题的关键.20.解下列方程:(1)=(2)﹣=1.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程两边乘以x(x﹣2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x=x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,原分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据x是小于3的非负整数选取合适的x的值,代入进行计算即可.【解答】解:原式=•=•=•=x+4.∵x是小于3的非负整数,∴x=0,1,2,∵x=0,2,∴x=1,∴原式=1+4=5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.【考点】菱形的性质;矩形的判定与性质.【专题】证明题.【分析】先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形,利用勾股定理即可求出BC=OE.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴DE=OC,∵OB=OD,∠BOC=∠ODE=90°,∴BC===OE【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?【考点】分式方程的应用.【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【解答】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.【考点】翻折变换(折叠问题);菱形的判定与性质.【分析】(1)证得DE=DF,得四边形BFDE是平行四边形,根据折叠的性质知:BF=DF,得四边形BFDE 是菱形;=EF•BD,(2)在Rt△DCF中,利用勾股定理可求得DF的长;连接BD,得BD=8cm,利用S菱形BFDE易得EF的长.【解答】解:(1)由折叠的性质可得∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴四边形BFDE是平行四边形,由折叠知,BF=DF.∴四边形BFDE是菱形;(3)在Rt△DCF中,设DF=x,则BF=x,CF=16﹣x,由勾股定理得:x2=(16﹣x)2+82,解得x=10,DF=10cm,连接BD.在Rt△BCD中,BD==8,∵S=EF•BD=BF•DC,菱形BFDE∴EF×8=10×8解得EF=4cm.【点评】本题主要考查了勾股定理、平行四边形的判定、菱形的判定和性质,解题的关键是作好辅助线找到相关的三角形.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用非负数的性质求出最小值即可.【解答】解:(1)设﹣x4﹣8x2+10=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=9,b=1.∴=x2+9+;(2)由=x2+9+知,当x=0时,x2+9和分别有最小值,因此当x=0时,的最小值为10.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?【考点】几何变换综合题.【分析】(1)延长AF交EC于G,交BC于H,利用正方形ABCD的性质和等腰△BEF的性质,证明△ABF≌△CBE,得到AF=CE,∠BAF=∠BCE,根据∠BAF+AHB=90°,∠AHB=∠CHG,所以∠BCE+∠CHG=90°,即可解答.(2)①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直;(3)MA=MN,MA⊥MN,理由:如图4,连接DE,利用正方形ABCD的性质和等腰△BEF的性质,证明△ADF≌△CDE,得到DF=DE,∠1=∠2,利用在Rt△ADF中,点M是DF的中点,得到MA=DF=MD=MF,再利用中位线的性质,得到得到MN=DE,MN∥DE,通过角之间的等量代换和三角形内角和,得到∠6=90°,从而得到∠7=∠6=90°,即可解答.【解答】解:(1)如图2,延长AF交EC于G,交BC于H,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABF+∠FBC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∴∠CBE+∠FBC=90°,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE,∴AF=CE,∠BAF=∠BCE,∵∠BAF+AHB=90°,∠AHB=∠CHG,∴∠BCE+∠CHG=90°,∴AF⊥CE.(2)①相等;②垂直.故答案为:相等,垂直.(3)MA=MN,MA⊥MN,理由:如图4,连接DE,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∵点E、F分别在正方形CB、AB的延长线上,∴AB+BF=CB+BE,即AF=CE,∵,∴△ADF≌△CDE,∴DF=DE,∠1=∠2,在Rt△ADF中,∵点M是DF的中点,∴MA=DF=MD=MF,∴∠1=∠3,∵点N是EF的中点,∴MN是△DEF的中位线,∴MN=DE,MN∥DE,∴MA=MN,∠2=∠3,∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°﹣(∠3+∠5)=90°,∴∠7=∠6=90°,MA⊥MN.【点评】本题考查了图形的旋转的性质、全等三角形的性质与判定、等腰三角形的性质,解决本题的关键是证明三角形全等,得到相等的边与角,作辅助线也是解决本题的关键.。
南京外国语学校八年级下期中数学试卷及答案-推荐
2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列分式中是最简分式的是( )A .B .C .D .3.下列各式从左到右的变形正确的是( )A . =B .C .D .4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是( ) A .随着抛掷次数的增加,正面向上的频率越来越小B .当抛掷的次数n 很大时,正面向上的次数一定为C .不同次数的试验,正面向上的频率可能会不相同D .连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是( )A .1月份商场服装部的销售额是22万元B .3月份商场服装部的销售额比2月份减少了C .4月份商场的商品销售额是75万元D .5月份商场服装部的销售额比4月份减少了6.已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( )A .选①②B .选②③C .选①③D .选②④7.已知矩形ABCD 的周长为20cm ,两条对角线AC ,BD 相交于点O ,过点O 作AC 的垂线EF ,分别交两边AD ,BC 于E ,F (不与顶点重合),则以下关于△CDE 与△ABF 判断完全正确的一项为( )A .△CDE 与△ABF 的周长都等于10cm ,但面积不一定相等B .△CDE 与△ABF 全等,且周长都为10cmC .△CDE 与△ABF 全等,且周长都为5cmD .△CDE 与△ABF 全等,但它们的周长和面积都不能确定8.如图,在平行四边形ABCD 中,E 、F 、G 、H 分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是( )A .B .C .D .9.A 、B 两地相距135千米,两辆汽车均从A 开往B ,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x 千米/小时,则可列方程为( )A . =+5+B . =+5﹣C .=+5﹣D .=﹣5﹣10.如图1,在平面下角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴,直线y=﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2所示,则平行四边形ABCD 的面积为( )A .5B .5C .8D .10二、填空题11.当x 时,分式有意义;当x 时,分式值为0.12.若=,则= ;若==,则= .13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.15.,,的最简公分母是.16.当m= 时,关于x的方程=2的根为.17.若分式方程有增根,则m的值是.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有个;(2)任意摸出一个球是红色的概率是.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:.三、解答题(共50分)23.计算:①;②.24.解方程:①;②.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.26.为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),绘制成如下统表示21~30min,时间取整数):(1)统计表中的a= ;b= ;c= .(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.(3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min的学生人数.27.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?28.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.29.一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了b天完成,其中a、b均为正整数,且a<46,b<52,求甲、乙两队各做了多少天?30.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s 的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列分式中是最简分式的是()A.B.C.D.【考点】68:最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、=;D、;故选A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.3.下列各式从左到右的变形正确的是()A. =B.C.D.【考点】65:分式的基本性质.【分析】依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选C.【点评】本题考查了分式的基本性质.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.4.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于【考点】X3:概率的意义.【分析】根据概率的定义对各选项进行逐一分析即可.【解答】解:A、随着抛掷次数的增加,正面向上的频率不能确定,故本选项错误;B、当抛掷的次数n很大时,正面向上的次数接近,故本选项错误;C、不同次数的试验,正面向上的频率可能会不相同,故本选项正确;D、连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率可能是,故本选项错误.故选C.【点评】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键.5.某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了【考点】VD:折线统计图;VC:条形统计图.【分析】用1月份的销售总额乘以商场服装部1月份销售额占商场当月销售总额的百分比,即可判断A;分别求出2月份与3月份商场服装部的销售额,即可判断B;用总销售额减去其他月份的销售额即可得到4月份的销售额,即可判断C;分别求出4月份与5月份商场服装部的销售额,即可判断D.【解答】解:A、∵商场服装部1月份销售额占商场当月销售总额的22%,∴1月份商场服装部的销售额是100×22%=22(万元).故本选项正确,不符合题意;B、∵2月份商场服装部的销售额是90×14%=12.6(万元),3月份商场服装部的销售额是65×12%=7.8(万元),∴3月份商场服装部的销售额比2月份减少了.故本选项正确,不符合题意.C、∵商场今年1~5月的商品销售总额一共是410万元,∴4月份销售总额=410﹣100﹣90﹣65﹣80=75(万元).故本选项正确,不符合题意;C、∵4月份商场服装部的销售额是75×17%=12.75(万元),5月份商场服装部的销售额是80×16%=12.8(万元),∴5月份商场服装部的销售额比4月份增加了.故本选项错误,符合题意;故选D.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.6.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④【考点】LF:正方形的判定;L5:平行四边形的性质.【分析】要判定是正方形,则需能判定它既是菱形又是矩形.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.【点评】本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.7.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定【考点】LB:矩形的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【专题】31 :数形结合.【分析】根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.【解答】解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△OBF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选:B.【点评】本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.8.如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.【考点】LN:中点四边形.【分析】根据平行四边形的面积计算方法分别求得各选项的面积,找到不同的答案即可.【解答】解:由题意可得,A、C、D三选项中的阴影部分的面积均为平行四边形ABCD面积的一半,只有B选项中阴影部分的面积与其他选项不等,故选:B.【点评】本题考查了平行四边形的性质,解题的关键是根据平行四边形的面积公式求得阴影部分的面积,难度一般.9.A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A. =+5+B. =+5﹣C. =+5﹣D. =﹣5﹣【考点】B6:由实际问题抽象出分式方程.【分析】别求出两辆汽车从A地到B地的时间,然后找出等量关系:大汽车的行驶时间+=小汽车的行驶时间+5,据此列方程.【解答】解:设大汽车的速度为2xkm/h,小汽车的速度为5xkm/h,由题意得, +=+5.故选B.【点评】本题考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.10.如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x 轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5 B.5C.8 D.10【考点】E7:动点问题的函数图象.【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8,故选C.【点评】本题考查了函数的图象,根据图象理解AB的长度,正确求得平行四边形的高是关键.二、填空题11.当x ≠3 时,分式有意义;当x =3 时,分式值为0.【考点】63:分式的值为零的条件;62:分式有意义的条件.【分析】直接利用分式有意义的条件以及分式的值为零的条件分析得出答案.【解答】解:当x≠3时,x﹣3≠0,则分式有意义;当x2﹣9=0,x+3≠0时,分式值为0,解得:x=3.故答案为:≠3,=3.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.12.若=,则= ;若==,则= .【考点】S1:比例的性质.【分析】根据合比性质,反比性质,可得答案;根据等式的性质,可用k表示x,y,z,根据分式的性质,可得答案.【解答】解:由合比性质,得=.由反比性质,得=,故答案为:;设===k,得x=4k,y=3k,z=2k.==,故答案为:.【点评】本题考查了比例的性质,利用合比性质、反比性质是解题关键.13.请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为答案不唯一,如.【考点】63:分式的值为零的条件;62:分式有意义的条件;64:分式的值.【专题】26 :开放型.【分析】(1)分式的分母不为零、分子不为零;(2)分式有意义,分母不等于零;(3)将x=0代入后,分式的分子、分母互为相反数.【解答】解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠±2,即当x=±2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;故答案是:.【点评】本题考查了分式的值、分式有意义的条件、分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.【考点】65:分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变,可得答案.【解答】解:分子分母都乘以﹣12,得,故答案为:.【点评】此题考查了分式的基本性质,关键是熟悉分式的分子分母都乘以(或除以)同一个不为零整式,分式的值不变的知识点.15.,,的最简公分母是10x3yz .【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:∵,,的分母分别是xy、2x3、5xyz,∴它们的最简公分母是10x3yz.故答案为:10x3yz.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.16.当m= 2 时,关于x的方程=2的根为.【考点】B2:分式方程的解.【分析】根据方程的解满足方程,把方程的解代入方程,可得关于m的分式方程,根据解分式方程,可得答案.【解答】解:把x=代入=2,得=2,解得m=2,经检验m=2是分式方程的解,故答案为:2.【点评】本题考查了分式方程的解,注意要检验分式方程的解.17.若分式方程有增根,则m的值是 3 .【考点】B5:分式方程的增根.【分析】根据方程有增根,可得出x=1,再代入整式方程即可得出m的值.【解答】解:∵分式方程有增根,∴x﹣1=0,∴x=1,2x﹣(m﹣1)=x﹣1,把x=1代入得2﹣(m﹣1)=0,∴m=3,故答案为3.【点评】本题考查了分式方程的增根,掌握把分式方程化为整式方程以及使分母为0的根是增根是解题的关键.18.不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有 6 个;(2)任意摸出一个球是红色的概率是.【考点】X4:概率公式.【分析】(1)设黄球有x根,根据绿球的概率公式列示求解即可;(2)直接利用红球的个数除以球的总个数即可求得摸到红球的概率.【解答】解:(1)设黄色球有x个,由形状、大小相同的红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是,得=,解得x=6;(2)P(红色)==,故答案为:6,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.19.几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程=+3 .【考点】B6:由实际问题抽象出分式方程.【分析】根据原来每个同学需摊的车费=现在每个同学应摊的车费+3列方程即可.【解答】解:设参加游览的同学共x人,由题意得, =+3,故答案为: =+3.【点评】本题考查的是分式方程的应用,正确找出等量关系是解题的关键.20.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .【考点】R4:中心对称;L8:菱形的性质.【专题】121:几何图形问题.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【解答】解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.【点评】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.21.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为7 .【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【专题】11 :计算题;16 :压轴题.【分析】过O作OF垂直于BC,再过A作AM垂直于OF,由四边形ABDE为正方形,得到OA=OB,∠AOB为直角,可得出两个角互余,再由AM垂直于MO,得到△AOM为直角三角形,其两个锐角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,OA=OB,利用AAS可得出△AOM与△BOF全等,由全等三角形的对应边相等可得出AM=OF,OM=FB,由三个角为直角的四边形为矩形得到ACFM为矩形,根据矩形的对边相等可得出AC=MF,AM=CF,等量代换可得出CF=OF,即△COF为等腰直角三角形,由斜边OC的长,利用勾股定理求出OF与CF的长,根据OF﹣MF求出OM的长,即为FB的长,由CF+FB即可求出BC的长.【解答】解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AM O=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.【点评】此题考查了正方形的性质,全等三角形的判定与性质,勾股定理,以及等腰直角三角形的判定与性质、角平分线的判定,利用了转化及等量代换的思想,根据题意作出相应的辅助线是解本题的关键.22.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:x=n+3或x=n+4 .【考点】B2:分式方程的解.【专题】16 :压轴题;2A :规律型.【分析】首先求得分式方程①②③的解,即可得规律:方程x+=a+b的根为:x=a或x=b,然后将x+=2n+4化为(x﹣3)+=n+(n+1),利用规律求解即可求得答案.【解答】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.【点评】此题考查了分式方程的解的知识.此题属于规律性题目,注意找到规律:方程x+=a+b的根为:x=a或x=b是解此题的关键.三、解答题(共50分)23.计算:①;②.【考点】6C:分式的混合运算.【分析】①先变形,再根据同分母的分式进行加减即可;②先因式分解,再约分即可.【解答】解:①原式=﹣==2;②原式=﹣••=.【点评】本题考查了分式的混合运算,掌握因式分解以及分式的通分、约分是解题的关键.24.解方程:①;②.【考点】B3:解分式方程.【专题】11 :计算题;522:分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:①去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;②方程整理得: =,即=,去分母得:x2﹣5x+6=x2+x﹣2,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.【考点】6D:分式的化简求值.【分析】先算括号里面的,再因式分解,再约分即可,注意分母不为0.【解答】解:原式=•=,∵a+2≠0,a﹣2≠0,a﹣1≠0,∴a≠1,±2,∴取a=0,。
南京XX学校八年级下期中数学试卷及答案-推荐
2015-2016学年江苏省南京XX学校八年级(下)期中数学试卷一、选择题:(本大题共6小题,每小题2分,共计12分)1.为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指()A.1 000名学生B.被抽取的50名学生C.1 000名学生的身高D.被抽取的50名学生的身高2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个3.“十次投掷一枚硬币,十次正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件4.若已知分式的值为0,则m的值为()A.±2 B.2 C.0 D.﹣25.代数式,,,中分式有()A.4个B.3个C.2个D.1个6.如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?()A.20 B.35 C.40 D.55二、填空题:(本大题共10小题,每小题2分,共计20分)7.3个人站成一排,其中小亮“站在中间”的可能性小亮“站在两边”的可能.(填“大于”、“等于”或“小于”)8.分式与的最简公分母是.9.如图,D、E、F分别是△ABC各边的中点,AH是高,如果ED=5cm,那么HF的长为.10.如图是一枚图钉被抛起后钉尖触地频率和抛掷次数变化趋势图,则一枚图钉被抛起后钉尖触地的概率估计值是.11.为鼓励学生课外阅读,某校制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形图,则赞成该方案所对应扇形的圆心角的度数为°.12.已知菱形ABCD的两条对角线AC,BD长分别为6cm、8cm,且AE⊥BC,这个菱形的面积S= cm2,AE= cm.13.若x﹣=,则x2+= .14.分式方程的解题步骤是:(1)去分母(2)去括号(3)移项(4)合并同类项(5)“系数化为1”(6)验根,其中可能产生增根的步骤是,产生增根的原因是.15.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数= 度.16.如图,是两种品牌的方便面销售增长率折线统计图,则AA牌方便面2003年的销售量2002年的销售量,2002年BB牌方便面的销售量AA牌方便面的销售量(填“高于”“低于”“不一定高于”)三、解答题:(本大题共10小题,共计68分)17.化简:(1)﹣(2)÷(x+2﹣).18.如图,△A1B1C1由△ABC绕某点旋转而成,请你用尺规作图,找出旋转中心O,并用量角器度量出旋转的大小(完成填空).旋转角(∠)是度.19.解方程: +=2.20.如图,在平行四边形ABCD中,点E、F分别在AD、BC边上,且AE=CF,AF与BE交于G,CE与DF交于H.求证:四边形EGFH是平行四边形.21.2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?22.为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前4天完成任务,原计划每天种树多少棵?23.在正方形ABCD中,E是CD上一点,AF⊥AE交CB的延长线于点F,连接DF,分别交AE、AB于点G、P.已知∠BAF=∠BFD.(1)图中存在直角三角形全等,找出其中的一对,并加以证明;(2)证明四边形APED是矩形.24.(1)当整数x为何整数时,分式的值也是整数?(2)化简代数式﹣÷,并直接写出x为何整数时,该代数式的值也为整数.25.观察下列方程以及解的特征:=2;①x+=2+的解为x1=3;②x+=3+的解为x1=4;③x+=4+的解为x1…(1)猜想关于x方程x+=m+的解,并利用“方程解的概念”进行验证;(2)利用(1)结论解分式方程:①y3+=②x+=.26.已知:如图1,点P在线段AB上(AP>PB),C、D、E分别是AP、PB、AB的中点,正方形CPFG和正方形PDHK在直线AB同侧.(1)求证:GC=ED(2)求证:△EHG是等腰直角三角形;(3)若将图1中的射线PB连同正方形PDHK绕点P顺时针旋转一个角度后,其它已知条件不变,如图2,判断△EHG还是等腰直角三角形吗?若是,给予证明;若不是,请说明理由.2015-2016学年江苏省南京XX学校八年级(下)期中数学试卷参考答案与试题解析一、选择题:(本大题共6小题,每小题2分,共计12分)1.为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指()A.1 000名学生B.被抽取的50名学生C.1 000名学生的身高D.被抽取的50名学生的身高【考点】总体、个体、样本、样本容量.【分析】根据总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,可得答案.【解答】解:某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指八年级1 000名学生的身高,故选:C.2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称的概念对各图形分析判断即可得解.【解答】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.3.“十次投掷一枚硬币,十次正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件【考点】随机事件.【分析】根据随机事件的概念可知是随机事件.【解答】解:“十次投掷一枚硬币,十次正面朝上”可能发生,这一事件是随机事件,故选:B.4.若已知分式的值为0,则m的值为()A.±2 B.2 C.0 D.﹣2【考点】分式的值为零的条件.【分析】根据分式的值为零的条件即可求出m的值.【解答】解:由题意可知:,解得:m=﹣2故选(D)5.代数式,,,中分式有()A.4个B.3个C.2个D.1个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:分式有:,共有2个.故选C.6.如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?()A.20 B.35 C.40 D.55【考点】矩形的性质;等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠BCP,然后求出∠MCP,再根据等边对等角求解即可.【解答】解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,∴BP=BC,MP=MC,∵∠PBC=70°,∴∠BCP===55°,在长方形ABCD中,∠BCD=90°,∴∠MCP=90°﹣∠BCP=90°﹣55°=35°,∴∠MPC=∠MCP=35°.故选:B.二、填空题:(本大题共10小题,每小题2分,共计20分)7.3个人站成一排,其中小亮“站在中间”的可能性小于小亮“站在两边”的可能.(填“大于”、“等于”或“小于”)【考点】可能性的大小.【分析】要求“小亮站在正中间”与“小亮站在两端”这两个事件发生的可能性的大小,只需求出各自所占的比例大小即可得到相应的可能性,比较即可.【解答】解:3个人站成一排,小亮站在那个位置都有可能,“小亮站在正中间”的可能性为,“小亮站在两端”的可能性有,故小亮“站在中间”的可能性<小亮“站在两边”的可能,故答案为:小于.8.分式与的最简公分母是12a2bc .【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的分母分别是4ac、6a2b,故最简公分母是12a2bc.故答案为12a2bc.9.如图,D、E、F分别是△ABC各边的中点,AH是高,如果ED=5cm,那么HF的长为5cm .【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】由三角形中位线定理和直角三角形的性质可知,DE=AC=HF.【解答】解:∵点E,D分别是AB,BC的中点,∴DE是三角形ABC的中位线,有DE=AC,∵AH⊥BC,点F是AC的中点,∴HF是Rt△AHC中斜边AC上的中线,有HF=AC,∴FH=DE=5cm.故答案为:5cm.10.如图是一枚图钉被抛起后钉尖触地频率和抛掷次数变化趋势图,则一枚图钉被抛起后钉尖触地的概率估计值是0.46 .【考点】利用频率估计概率.【分析】从频率分布直方图上可以看出,数值都集中在46.0%,所以可看出一枚图钉被抛起后钉尖触地的概率估计值.【解答】解:∵从一枚图钉被抛起后钉尖触地频率随抛掷次数变化趋势图可看出数据都集中在46.0%附近.∴一枚图钉被抛起后钉尖触地的概率估计值是0.46.故答案为:0.46.11.为鼓励学生课外阅读,某校制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形图,则赞成该方案所对应扇形的圆心角的度数为252 °.【考点】扇形统计图.【分析】利用360°乘以对应的比例即可求解.【解答】解:表示赞成的百分比是1﹣10%﹣20%=70%,则赞成该方案所对应扇形的圆心角的度数为:360°×70%=252°.故答案是:252.12.已知菱形ABCD的两条对角线AC,BD长分别为6cm、8cm,且AE⊥BC,这个菱形的面积S=24 cm2,AE= cm.【考点】菱形的性质.【分析】根据菱形的性质可得AO=AC=3cm,BO=BD=4cm,且AO⊥BO,利用勾股定理可计算出AB长,然后利用菱形的面积公式可得S=AC×BD,进而可得答案,再利用面积计算出AE 即可.【解答】解:根据题意,设对角线AC、BD相交于O,∵四边形ABCD是菱形,∴AO=AC=3cm,BO=BD=4cm,且AO⊥BO,∴AB==5cm,∵菱形对角线相互垂直,∴菱形面积是S=AC×BD=24cm,∴菱形的高是AE=cm.故答案为:24,.13.若x﹣=,则x2+= .【考点】完全平方公式.【分析】把已知条件两边平方,然后根据完全平方公式展开整理即可得解.【解答】解:∵x﹣=,∴(x﹣)2=,即x2﹣2+=,∴x2+=.故答案为:.14.分式方程的解题步骤是:(1)去分母(2)去括号(3)移项(4)合并同类项(5)“系数化为1”(6)验根,其中可能产生增根的步骤是(1),产生增根的原因是(1).【考点】分式方程的增根.【分析】根据分式方程的解题步骤,可得出方程两边都乘以最简公分母时,未考虑是否为0,则产生增根,故得出答案.【解答】解:可能产生增根的步骤是(1),产生增根的原因是(1),故答案为(1),(1).15.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数= 60 度.【考点】线段垂直平分线的性质;菱形的性质.【分析】根据菱形的性质求出∠ADC=100°,再根据垂直平分线的性质得出AF=DF,从而计算出∠CDF的值.【解答】解:连接BD,BF∵∠BAD=80°∴∠ADC=100°又∵EF垂直平分AB,AC垂直平分BD∴AF=BF,BF=DF∴AF=DF∴∠FAD=∠FDA=40°∴∠CDF=100°﹣40°=60°.故答案为:60.16.如图,是两种品牌的方便面销售增长率折线统计图,则AA牌方便面2003年的销售量低于2002年的销售量,2002年BB牌方便面的销售量高于AA牌方便面的销售量(填“高于”“低于”“不一定高于”)【考点】折线统计图.【分析】根据折线统计图可以直接解答本题.【解答】解:由折线统计图可得,AA牌方便面2003年的销售量低于2002年的销售量,2002年BB牌方便面的销售量高于AA牌方便面的销售量,故答案为:低于,高于.三、解答题:(本大题共10小题,共计68分)17.化简:(1)﹣(2)÷(x+2﹣).【考点】分式的混合运算.【分析】(1)首先通分,然后利用同分母的分式加法法则求解;(2)首先对括号内的分式进行通分相加,然后把除法转化为乘法,然后进行约分即可.【解答】解:(1)原式=+===1;(2)原式=÷=÷=•=.18.如图,△A1B1C1由△ABC绕某点旋转而成,请你用尺规作图,找出旋转中心O,并用量角器度量出旋转的大小(完成填空).旋转角(∠COC1)是90 度.【考点】作图﹣旋转变换.【分析】(1)利用旋转的性质,连接AA1,CC1,作它们的垂直平分线,则它们的交点为旋转中心O;(2)利用旋转的性质得到∠COC1为旋转角,然后测得∠COC1即可.【解答】解:如图,点O为所作.∠COC1为旋转角,测得∠COC1=90°.故答案为COC1,90.19.解方程: +=2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+9﹣12x+21=6x﹣18,移项合并得:﹣16x=﹣48,解得:x=3.20.如图,在平行四边形ABCD中,点E、F分别在AD、BC边上,且AE=CF,AF与BE交于G,CE与DF交于H.求证:四边形EGFH是平行四边形.【考点】平行四边形的判定与性质.【分析】先证明四边形AFCE是平行四边形,得AF∥EC,再证明四边形EBFD是平行四边形,得∠EBF=∠EDF,易证明△BGF≌△HED,则GF=EH,根据一组对边平行且相等的四边形是平行四边得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AE∥FC,∵AE=FC,∴四边形AFCE是平行四边形,∴AF∥EC,∵AD=BC,AE=FC,∴ED=BF,∵ED∥BF,∴四边形EBFD是平行四边形,∴∠EBF=∠EDF,∵AF∥EC,AD∥BC,∴∠AFB=∠ECB,∠ECB=∠CED,∴∠AFB=∠CED,在△BGF和△DHE中,∵,∴△BGF≌△HED(ASA),∴GF=EH,∴四边形EGFH是平行四边形.21.2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:(1)这次抽取了200 名学生的竞赛成绩进行统计,其中:m= 70 ,n= 0.12 ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)用第一个分数段的频数除以它的频率可得到调查的总人数,然后用总人数成以0.35得到m的值,用24除以总人数可得到n的值;(2)利用80﹣90的频数为70可补全频数分布直方图;(3)估计样本估计总体,用1500乘以前面两分数段的频率之和可估计出该校安全意识不强的学生数.【解答】解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)1500×(0.08+0.2)=420,所以该校安全意识不强的学生约有420人.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前4天完成任务,原计划每天种树多少棵?【考点】分式方程的应用.【分析】设原计划每天种树x棵,则实际每天种树为x棵,根据实际比原计划提前4天完成任务,列方程求解.【解答】解:设原计划每天种树x棵,则实际每天种树为x棵,由题意得,﹣=4,解得:x=60,经检验,x=60是原方程的解,且符合题意.答:原计划每天种树60棵.23.在正方形ABCD中,E是CD上一点,AF⊥AE交CB的延长线于点F,连接DF,分别交AE、AB于点G、P.已知∠BAF=∠BFD.(1)图中存在直角三角形全等,找出其中的一对,并加以证明;(2)证明四边形APED是矩形.【考点】正方形的性质;直角三角形全等的判定;矩形的判定.【分析】(1)证得AE=AF,则可证明以上两条线段所在的三角形全等即可;(2)利用正方形的性质以及垂直定义得出∠1=∠3=∠4=∠5,进而利用全等三角形的判定与性质得出AP=DE,进而利用平行四边形的判定以及矩形的判定得出即可.【解答】证明:(1)△ADE≌△ABF;∵四边形ABCD是正方形,∴∠ADE=∠ABC=∠DAB=90°,AD=AB,AD∥BC,AB∥CD,∵AF⊥AE,∴∠EAF=90°,∴∠DAE=∠BAF,在△ADE和△ABF中,,∴△ADE≌△ABF(ASA);(2)∵AF⊥AE,∴∠1+∠2=90°,∵∠2+∠3=90°,∴∠1=∠3,∵AD∥FC,∴∠4=∠5,∵∠1=∠5,∴∠1=∠3=∠4=∠5,在△ADE和△DAP中,,∴△ADE≌△DAP(ASA),∴AP=DE,又∵AP∥DE,∴四边形APED是平行四边形,∵∠PAD=90°,∴平行四边形APED是矩形.24.(1)当整数x为何整数时,分式的值也是整数?(2)化简代数式﹣÷,并直接写出x为何整数时,该代数式的值也为整数.【考点】分式的混合运算;分式的值.【分析】(1)根据题意可以得到当整数x为何整数时,分式的值也是整数;(2)先化简题目中的代数式,可以发现与(1)的关系,从而可以解答本题.【解答】解:(1)若分式的值也是整数,则x+1=±1或x+1=±2,解得,x1=0,x2=﹣2,x3=1,x4=﹣3,即当x为0、﹣2、1或3时,分式的值也是整数;(2)﹣÷===,由(1)知当x为0、﹣2、1或3时,分式的值也是整数,故当x为0、﹣2、1或3时,代数式﹣÷的值也是整数.25.观察下列方程以及解的特征:①x+=2+的解为x1=2;②x+=3+的解为x1=3;③x+=4+的解为x1=4;…(1)猜想关于x方程x+=m+的解,并利用“方程解的概念”进行验证;(2)利用(1)结论解分式方程:①y3+=②x+=.【考点】解分式方程.【分析】(1)根据题意可得方程x+=m+的解为x1=m,x2=,代入检验即可得;(2)①根据y3+=8+可得y3=8, =,可得答案;②令4x﹣8=t,则x=,原方程变形为+2+=,即+=a+,得出=a,即t=2a,得出2x﹣4=2a,解之可得.【解答】解:(1)关于x方程x+=m+的解为x1=m,x2=,验证:当x=m时,左边=m+=右边,∴x=m是该分式方程的解;当x=时,左边=+=+m=右边,∴x=是该分式方程的解;(2)①∵y3+=8+,∴y3=8, =,∴y=2;②令4x﹣8=t,则x=,∴原方程变形为+2+=,+=,+=,即+=a+,则=a,或=,∴t=2a,即4x﹣8=2a,解得:x==.26.已知:如图1,点P在线段AB上(AP>PB),C、D、E分别是AP、PB、AB的中点,正方形CPFG和正方形PDHK在直线AB同侧.(1)求证:GC=ED(2)求证:△EHG是等腰直角三角形;(3)若将图1中的射线PB连同正方形PDHK绕点P顺时针旋转一个角度后,其它已知条件不变,如图2,判断△EHG还是等腰直角三角形吗?若是,给予证明;若不是,请说明理由.【考点】四边形综合题.【分析】(1)由先根据C、D、E分别是AP、PB、AB的中点,易证得CE=DP,继而可证得CP=DE,然后由四边形CPFG和四边形PDHK都是正方形,证得结论;(2)由四边形CPFG和四边形PDHK都是正方形,易得CE=DP=DH,CG=CP=DE,∠GCE=∠EDH=90°,然后由全等三角形的判定定理求出△CEG≌△DHE,由直角三角形的两锐角互补即可解答;(3)连接CE、ED,根据三角形中位线定理及直角三角形的性质可得▱CEDP,再由CE=DP=DH,CG=CP=DE,∠GCE=∠EDH=90°可求出△CEG≌△DHE,再通过等量代换即可解答.【解答】(1)证明:∵C、D、E分别是AP、PB、AB的中点,∴CE=AE﹣AC=AB﹣AP=(AB﹣AP)=BP=DP,∴CE+EP=DP+EP,即CP=DE,∵四边形CPFG和四边形PDHK都是正方形,∴CP=CG,∴GC=ED;(2)证明:∵四边形CPFG和四边形PDHK都是正方形,∴CE=DP=DH,CG=CP=DE,∠GCE=∠EDH=90°,∴在△CEG和△DHE中,,∴△CEG≌△DHE(SAS).∴EG=HE,∠EGC=∠HED而∠EGC+∠CEG=90°,∴∠HED+∠CEG=90°.∴∠GEH=90°.又∵EG=HE,∴△EHG是等腰直角三角形.(3)解:△EHG还是等腰直角三角形.理由如下:连接CE、ED,∵点C、D、E分别是AP、PB及AB的中点,∴CE∥PB,DE∥AP,∴四边形CEDP是平行四边形,∴∠PCE=∠PDE.∴∠GCE=∠EDH,∵CE=BP=DP=DH,CG=CP=AP=DE,∴在△CEG和△DHE中,,∴△CEG≌△DHE(SAS),∴EG=HE,∠EGC=∠HED.如图,设EG和CP相交于M,则∠GEH=∠GED﹣∠HED=∠GMP﹣∠EGC=∠GCM=90°,∴△EHG是等腰直角三角形.2017年5月8日21。
2015-2016学年八年级(下)期中数学试卷含答案解析
=﹣4C.
=×
4.如图,直角三角形的三边长分为 a、b、c,下列各式正确的是(
D. ﹣ = )
A.a2+b2=c2 B.b2+c2=a2 C.c2+a2=b2 D.以上都不对 5.一个直角三角形的两边长分别为 4cm、3cm,则第三条边长为( ) A.5cm B.4cm C. cm D.5cm 或 cm 6.下列各组数中不能作为直角三角形的三边长的是( ) A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15 7.如图,在▱ABCD中,已知 AD=5cm,AB=3cm,AE平分∠BAD交 BC边于点 E,则 EC等于( )
A.1cm B.2cm C.3cm D. 4cm 8.菱形具有而矩形不具有的性质是( ) A.对角线互相平分 B.四条边都相等 C.对角相等 D.邻角互补 9.两条对角线互相垂直平分且相等的四边形是( ) A.矩形 B.菱形 C.正方形 D.都有可能 10.如图,在矩形 ABCD中,AB=8,BC=4,将矩形沿 AC折叠,点 D 落在点 D′处,则重叠部分△
【解答】解:∵式子
有意义,
∴x﹣5≥0,解得 x≥5.
故选 C. 【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的
关键.
2.下列二次根式中,属于最简二次根式的是( )
A. B.
C. D.
【考点】最简二次根式. 【分析】根据最简二次根式的条件进行判断即可. 【解答】解: = ,被开方数含分母,不是最简二次根式;
2015-2016 学年八年级(下)期中数学试卷 参考答案与试题解析
一、选择题(本题共 10 小题,每小题 3 分,共 30 分)
1.使式子
苏科版2015-2016学年八年级第二学期期中考试数学试题及答案
苏科版2015-2016学年八年级第二学期期中考试数学试题时间:120分钟 总分:100分 2016.4.20一、选择题(本大题共8小题,每小题3分,共24分.每小题都有四个选项,将正确的一个答案的代号填在答题卷相应位置上)1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个2、下列事件中,是随机事件的为 ( )A .水涨船高B .守株待兔C .水中捞月D .冬去春来3.在4y ,y x +6,x x x -2,πy +5,yx 1+中分式的个数有( )A.1个B.2个C.3个D.4个4. 下列约分正确的是 ( )A.632a a a = B.a x ab x b +=+ C.22a b a b a b +=++ D.1x y x y--=-+ 5.已知□ABCD 中,∠B=4∠A,则∠D=( )A .18°B .36°C .72°D .144°6.如图,P 是矩形ABCD 的边AD 上一个动点,矩形的两条边AB 、BC 的长分别为3和4, 那么点P 到矩形的两条对角线AC 和BD 的距离之和是 ( ) A .125 B .65 C .245D .不确定7.如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点E 、F ,AE=3,则四边形AECF 的周长为( ) A . 22 B . 18 C . 14 D . 11第6题第7题第8题8.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B 到直线AE 的距离为;③EB⊥ED;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+. 其中正确结论的序号是( ) A.①③④ B .①②⑤ C .③④⑤ D .①③⑤二.填空题(本大题共10小题,每小题2分,共20分)9.当x= 时,分式112--x x 的值是0。
2015-2016年江苏省南京师大附中八年级(下)期中数学试卷(解析版)
2015-2016学年江苏省南京师大附中八年级(下)期中数学试卷一、先把题(每小题2分,共12分)1.(2分)下列汽车标志中,不是中心对称图形的是()A.B.C.D.2.(2分)“三次投掷一枚硬币,三次正面朝上”这一事件是()A.必然事件B.随机事件C.不可能事件D.确定事件3.(2分)甲校女生占全校总人数的54%,乙校女生占全校总人数的50%,则女生人数()A.甲校多于乙校B.甲校少于乙校C.不能确定D.两校一样多4.(2分)我校学生会成员的年龄如下表:则出现频数最多的年龄是()A.4B.14C.13和15D.25.(2分)如图,在周长为10m的长方形窗户上钉一块宽为1m的长方形遮阳布,使透光部分正好是一正方形,则钉好后透光面积为()A.4m2B.9m2C.16m2D.25m26.(2分)如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=2.若∠EOF=45°,则F点的纵坐标是()A.B.1C.D.﹣1二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到球的可能性最大.8.(2分)如图,菱形ABCD的对角线AC=6,BD=8,则菱形ABCD的周长为.9.(2分)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是.10.(2分)在平面直角坐标系中,已知三点O(0,0),A(1,﹣2),B(3,1),若以A、B、C、O为顶点的四边形是平行四边形,则C点不可能在第象限.11.(2分)从1984年起,我国参加了多届夏季奥运会,取得了骄人的成绩.如图是根据第23届至30届夏季奥运会我国获得的金牌数绘制的折线统计图,观察统计图可得:与上一届相比增长量最大的是第届夏季奥运会.12.(2分)如图,为某冷饮店一天售出各种口味雪糕数量的扇形统计图,其中售出红豆口味的雪糕200支,那么售出奶油口味雪糕的数量是支.13.(2分)如图,矩形ABCD的对角线AC、BD相交于点O,∠BOC=120°,则∠OAD=°.14.(2分)已知:如图,平行四边形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,若AB=3,BC=5,则EF=.15.(2分)已知:如图,以正方形ABCD的一边BC向正方形内作等边△EBC,则∠AEB=°.16.(2分)如图,在△ABC中,AB=2,AC=,∠BAC=105°,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为.三、解答题(本大题共10小题,共68分)17.(6分)将两块全等的含30°角的三角尺按如图的方式摆放在一起.求证:四边形ABCD是平行四边形.18.(6分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(精确到0.01)(2)估算袋中白球的个数.19.(6分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=,n=;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.20.(6分)请按要求,只用无刻度的直尺作图(请保留画图痕迹,不写作法)如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,在图中画出∠AOB的平分线.21.(6分)如图,已知长方形ABCD的周长为20,AB=4,点E在BC上,AE⊥EF,AE=EF,求CF的长.22.(6分)证明:三角形中位线定理.已知:如图,DE是△ABC的中位线.求证:.证明:.23.(6分)4月22日是世界地球日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充;(2)补全频数分布直方图;(3)总体是.24.(8分)如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.(1)求证:FE=FD;(2)若∠CAD=∠CAB=24°,求∠EDF的度数.25.(8分)已知:如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD 相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求菱形BMDN的面积.26.(10分)阅读下列材料:如图(1),在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为筝形.(1)写出筝形的两个性质(定义除外).①;②.(2)如图(2),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.求证:四边形AECF是筝形.(3)如图(3),在筝形ABCD中,AB=AD=26,BC=DC=25,AC=17,求筝形ABCD 的面积.2015-2016学年江苏省南京师大附中八年级(下)期中数学试卷参考答案与试题解析一、先把题(每小题2分,共12分)1.(2分)下列汽车标志中,不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故选项错误;B、不是中心对称图形,故选项正确;C、是中心对称图形,故选项错误;D、是中心对称图形,故选项错误.故选:B.2.(2分)“三次投掷一枚硬币,三次正面朝上”这一事件是()A.必然事件B.随机事件C.不可能事件D.确定事件【解答】解:“三次投掷一枚硬币,三次正面朝上”这一事件是随机事件,故选:B.3.(2分)甲校女生占全校总人数的54%,乙校女生占全校总人数的50%,则女生人数()A.甲校多于乙校B.甲校少于乙校C.不能确定D.两校一样多【解答】解:两个学校的总人数不能确定,故甲校女生和乙校女生的人数不能确定.故选:C.4.(2分)我校学生会成员的年龄如下表:则出现频数最多的年龄是()A.4B.14C.13和15D.2【解答】解:由表格可得,14岁出现的人数最多,故出现频数最多的年龄是14岁.故选:B.5.(2分)如图,在周长为10m的长方形窗户上钉一块宽为1m的长方形遮阳布,使透光部分正好是一正方形,则钉好后透光面积为()A.4m2B.9m2C.16m2D.25m2【解答】解:若设正方形的边长为am,则有2a+2(a+1)=10,解得a=2,故正方形的面积为4m2,即透光面积为4m2.故选:A.6.(2分)如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=2.若∠EOF=45°,则F点的纵坐标是()A.B.1C.D.﹣1【解答】解:如图连接EF,延长BA使得AM=CE,则△OCE≌△OAM.∴OE=OM,∠COE=∠MOA,∵∠EOF=45°,∴∠COE+∠AOF=45°,∴∠MOA+∠AOF=45°,∴∠EOF=∠MOF,在△OFE和△OFM中,,∴△OFE≌△FOM,∴EF=FM=AF+AM=AF+CE,设AF=x,∵CE===2,∴EF=2+x,EB=2,FB=4﹣x,∴(2+x)2=22+(4﹣x)2,∴x=,∴点F的纵坐标为,故选:A.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到红球的可能性最大.【解答】解:∵袋中装有6个红球,5个黄球,3个白球,∴总球数是:6+5+3=14个,∴摸到红球的概率是==;摸到黄球的概率是;摸到白球的概率是;∴摸出红球的可能性最大.故答案为:红.8.(2分)如图,菱形ABCD的对角线AC=6,BD=8,则菱形ABCD的周长为20.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=3,OB=OD=BD=4,AB=BC=CD=AD,∴AB==5,∴菱形的周长L=20.故答案为:20.9.(2分)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是5.【解答】解:事件A发生的概率为,大量重复做这种试验,则事件A平均每100次发生的次数为:100×=5.故答案为:5.10.(2分)在平面直角坐标系中,已知三点O(0,0),A(1,﹣2),B(3,1),若以A、B、C、O为顶点的四边形是平行四边形,则C点不可能在第二象限.【解答】解:如图所示:以A、B、C、O为顶点的四边形是平行四边形,则C点不可能在第二象限.故答案为:二.11.(2分)从1984年起,我国参加了多届夏季奥运会,取得了骄人的成绩.如图是根据第23届至30届夏季奥运会我国获得的金牌数绘制的折线统计图,观察统计图可得:与上一届相比增长量最大的是第29届夏季奥运会.【解答】解:观察统计图可得:与上一届相比增长量最大的是第29届夏季奥运会.故答案为:29.12.(2分)如图,为某冷饮店一天售出各种口味雪糕数量的扇形统计图,其中售出红豆口味的雪糕200支,那么售出奶油口味雪糕的数量是150支.【解答】解:由扇形统计图可知,售出红豆口味的雪糕200支,占40%,则冷饮店一天售出各种口味雪糕数量为200÷40%=500支,则售出奶油口味雪糕的数量是500×30%=150支,故答案为:150.13.(2分)如图,矩形ABCD的对角线AC、BD相交于点O,∠BOC=120°,则∠OAD=30°.【解答】解:∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA,∵∠AOD=∠BOC=120°,∴∠OAD=(180°﹣120°)÷2=30°.故答案为:30.14.(2分)已知:如图,平行四边形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,若AB=3,BC=5,则EF=1.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=3,BC=AD=5,AD∥BC,∵BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,∴∠ABF=∠CBE=∠AEB,∠BCF=∠DCF=∠CFD,∴AB=AE=3,DC=DF=3,∴EF=AE+DF﹣AD=3+3﹣5=1.故答案为1.15.(2分)已知:如图,以正方形ABCD的一边BC向正方形内作等边△EBC,则∠AEB=75°.【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD,∵△EBC是等边三角形,∴BE=BC,∠EBC=60°,∴∠ABE=90°﹣60°=30°,AB=BE,∴∠AEB=∠BAE=(180°﹣30°)=75°;故答案为:75.16.(2分)如图,在△ABC中,AB=2,AC=,∠BAC=105°,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为2.【解答】解:∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,∵∠BAC=105°,∴∠DAE=135°,∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.在△ABC与△DBF中,∴△ABC≌△DBF(SAS),∴AC=DF=AE=,同理可证△ABC≌△EFC,∴AB=EF=AD=2,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).∴∠FDA=180°﹣∠DAE=45°,∴S▱AEFD=AD•(DF•sin45°)=2×(×)=2.即四边形AEFD的面积是2,故答案为:2.三、解答题(本大题共10小题,共68分)17.(6分)将两块全等的含30°角的三角尺按如图的方式摆放在一起.求证:四边形ABCD 是平行四边形.【解答】证明:由题意得:△ABD ≌△CDB , ∴AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形.18.(6分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是 0.25 ;(精确到0.01) (2)估算袋中白球的个数.【解答】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近, ∴估计从袋中摸出一个球是黑球的概率是0.25; (2)设袋中白球为x 个,=0.25, x=3.答:估计袋中有3个白球, 故答案为:(1)0.25.19.(6分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=40,n=60;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.【解答】解:(1)本次调查中,一共调查了:70÷35%=200人,科普类人数为:n=200×30%=60人,则m=200﹣70﹣30﹣60=40人,故答案为:40,60;(2)艺术类读物所在扇形的圆心角是:×360°=72°.20.(6分)请按要求,只用无刻度的直尺作图(请保留画图痕迹,不写作法)如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,在图中画出∠AOB的平分线.【解答】解:如图所示:射线OP即为所求.21.(6分)如图,已知长方形ABCD的周长为20,AB=4,点E在BC上,AE⊥EF,AE=EF,求CF的长.【解答】解:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥AE,∴∠AEF=90°,∴∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,在△ABE和△ECF中,,∴△ABE≌△ECF,∴AB=CE=4,∵矩形的周长为20,∴BC=6,∴CF=BE=BC﹣CE=BC﹣AB=2.22.(6分)证明:三角形中位线定理.已知:如图,DE是△ABC的中位线.求证:DE∥BC,DE=BC.证明:略.【解答】求证:DE∥BC,DE=BC.证明:如图,延长DE到F,使FE=DE,连接CF,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DE∥BC,DE=BC.23.(6分)4月22日是世界地球日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充;(2)补全频数分布直方图;(3)总体是 900名学生该次竞赛的成绩的全体 .【解答】解:(1)∵50.5﹣60.5频数为4,频率为0.08, ∴总人数为:4÷0.08=50人,∴90.5﹣100.5的人数为:50﹣4﹣8﹣10﹣16=12(人), 频率为:12÷50=0.24,填表如下:(2)补全频数分布直方图如图:(3)总体是900名学生该次竞赛的成绩的全体.故答案为:(1)12、0.24,50、1;(2)900名学生该次竞赛的成绩的全体.24.(8分)如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.(1)求证:FE=FD;(2)若∠CAD=∠CAB=24°,求∠EDF的度数.【解答】(1)证明:∵E、F分别是BC、AC的中点,∴FE=AB,∵F是AC的中点,∠ADC=90°,∴FD=AC,∵AB=AC,∴FE=FD;(2)解:∵E、F分别是BC、AC的中点,∴FE∥AB,∴∠EFC=∠BAC=24°,∵F是AC的中点,∠ADC=90°,∴FD=AF.∴∠ADF=∠DAF=24°,∴∠DFC=48°,∴∠EFD=72°,∵FE=FD,∴∠FED=∠EDF=54°.25.(8分)已知:如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD 相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求菱形BMDN的面积.【解答】(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,∴S=DM•AB=5×4=20.菱形BMDN26.(10分)阅读下列材料:如图(1),在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为筝形.(1)写出筝形的两个性质(定义除外).①∠BAC=∠DAC;②∠ABC=∠ADC.(2)如图(2),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.求证:四边形AECF是筝形.(3)如图(3),在筝形ABCD中,AB=AD=26,BC=DC=25,AC=17,求筝形ABCD 的面积.【解答】解:(1)在△ABC和△ADC中,,∴△ABC≌△ADC∴∠BAC=∠DAC,∠ABC=∠ADC,故答案为∠BAC=∠DAC,∠ABC=∠ADC(2)证明:∵四边形ABCD是平行四边形,∴∠B=∠D.∵∠AEC=∠AFC,∠AEC+∠AEB=∠AFC+∠AFD=180°,∴∠AEB=∠AFD.∵AE=AF,∴△AEB≌△AFD(AAS).∴AB=AD,BE=DF.∴平行四边形ABCD是菱形.∴BC=DC,∴EC=FC,∴四边形AECF是筝形.(3)如图∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC.∴S=S△ADC.△ABC过点B作BH⊥AC,垂足为H.在Rt△ABH中,BH2=AB2﹣AH2=262﹣AH2.在Rt△CBH中,BH2=CB2﹣CH2=252﹣(17﹣AH)2.∴262﹣AH2=252﹣(17﹣AH)2,∴AH=10.∴BH=24.=×17×24=204.∴S△ABC∴筝形ABCD的面积为408.。
【全国百强校】江苏省南京外国语学校2015-2016学年八年级下学期期中考试数学试题答案
−
2 3
a<52
a<46
解得 42<a<46
∵a、b 均为正整数
∴a=45,b=50
答:甲队做了 45 天,乙队做了 50 天.
27. (本题 9 分) (1)证明:∵直角△ABC 中,∠C=90°﹣∠A=30° ∵CD=4t,AE=2t ∵在直角△CDF 中,∠C=30° ∴DF= 1 CD=2t 2 ∴DF=AE
(2)①解方程得 x = 1,经检验, x = 1是原方程的增根,∴原方程无解
②解方程得 x = 4 ,经检验, x = 4 是原方程的解
3
3
22. (本题 5 分) 化简得,原式= a + 2 ,当 a = 0 时,原式= −2 a −1
23. (本题 6 分) (1) a = 25 , b = 12.5% , c = 40 (2)如图
2 AD=AC﹣CD=60﹣4t,AE=DF= 1 CD=2t
2 ∴60﹣4t=t 解得 t=12 综上所述,当 t= 15 或 12 时,△DEF 是直角三角形.
2
2016 年南外数学八下期中考试参考答案
当 t=12 时,△DEF 是直角三角形(∠DEF=90°). 理由如下:①当∠EDF=90°时,DE∥BC
∴∠ADE=∠C=30° ∴AD=2AE ∵CD=4t ∴DF=2t=AE ∴AD=4t ∴4t+4t=60, ∴t= 15 时,∠EDF=90°
2 ②当∠DEF=90°时,DE⊥EF
∵四边形 AEFD 是平行四边形 ∴AD∥EF ∴DE⊥AD ∴△ADE 是直角三角形,∠ADE=90° ∵∠A=60° ∴∠DEA=30° ∴AD= 1 AE
(2)∵DF∥AB,DF=AE ∴四边形 AEFD 是平行四边形 当 AD=AE 时,四边形 AEFD 是菱形 即 60﹣4t=2t 解得:t=10 即当 t=10 时,□AEFD 是菱形
2015-2016学年南京XX学校八年级下期中数学试卷含答案解析
2015-2016学年江苏省南京XX学校八年级(下)期中数学试卷一、选择题:(本大题共6小题,每小题2分,共计12分)1.为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指()A.1 000名学生B.被抽取的50名学生C.1 000名学生的身高D.被抽取的50名学生的身高2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个3.“十次投掷一枚硬币,十次正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件4.若已知分式的值为0,则m的值为()A.±2 B.2 C.0 D.﹣25.代数式,,,中分式有()A.4个 B.3个 C.2个 D.1个6.如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?()A.20 B.35 C.40 D.55二、填空题:(本大题共10小题,每小题2分,共计20分)7.3个人站成一排,其中小亮“站在中间”的可能性小亮“站在两边”的可能.(填“大于”、“等于”或“小于”)8.分式与的最简公分母是.9.如图,D、E、F分别是△ABC各边的中点,AH是高,如果ED=5cm,那么HF 的长为.10.如图是一枚图钉被抛起后钉尖触地频率和抛掷次数变化趋势图,则一枚图钉被抛起后钉尖触地的概率估计值是.11.为鼓励学生课外阅读,某校制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形图,则赞成该方案所对应扇形的圆心角的度数为°.12.已知菱形ABCD的两条对角线AC,BD长分别为6cm、8cm,且AE⊥BC,这个菱形的面积S=cm2,AE=cm.13.若x ﹣=,则x 2+= .14.分式方程的解题步骤是:(1)去分母(2)去括号(3)移项(4)合并同类项(5)“系数化为1”(6)验根,其中可能产生增根的步骤是 ,产生增根的原因是 .15.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则∠CDF 的度数= 度.16.如图,是两种品牌的方便面销售增长率折线统计图,则AA 牌方便面2003年的销售量 2002年的销售量,2002年BB 牌方便面的销售量 AA 牌方便面的销售量(填“高于”“低于”“不一定高于”)三、解答题:(本大题共10小题,共计68分)17.化简:(1)﹣(2)÷(x +2﹣).18.如图,△A 1B 1C 1由△ABC 绕某点旋转而成,请你用尺规作图,找出旋转中心O ,并用量角器度量出旋转的大小(完成填空).旋转角(∠ )是 度.19.解方程: +=2.20.如图,在平行四边形ABCD中,点E、F分别在AD、BC边上,且AE=CF,AF 与BE交于G,CE与DF交于H.求证:四边形EGFH是平行四边形.21.2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?22.为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前4天完成任务,原计划每天种树多少棵?23.在正方形ABCD中,E是CD上一点,AF⊥AE交CB的延长线于点F,连接DF,分别交AE、AB于点G、P.已知∠BAF=∠BFD.(1)图中存在直角三角形全等,找出其中的一对,并加以证明;(2)证明四边形APED是矩形.24.(1)当整数x为何整数时,分式的值也是整数?(2)化简代数式﹣÷,并直接写出x为何整数时,该代数式的值也为整数.25.观察下列方程以及解的特征:①x+=2+的解为x1=2;②x+=3+的解为x1=3;③x+=4+的解为x1=4;…(1)猜想关于x方程x+=m+的解,并利用“方程解的概念”进行验证;(2)利用(1)结论解分式方程:①y3+=②x+=.26.已知:如图1,点P在线段AB上(AP>PB),C、D、E分别是AP、PB、AB 的中点,正方形CPFG和正方形PDHK在直线AB同侧.(1)求证:GC=ED(2)求证:△EHG是等腰直角三角形;(3)若将图1中的射线PB连同正方形PDHK绕点P顺时针旋转一个角度后,其它已知条件不变,如图2,判断△EHG还是等腰直角三角形吗?若是,给予证明;若不是,请说明理由.2015-2016学年江苏省南京XX学校八年级(下)期中数学试卷参考答案与试题解析一、选择题:(本大题共6小题,每小题2分,共计12分)1.为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指()A.1 000名学生B.被抽取的50名学生C.1 000名学生的身高D.被抽取的50名学生的身高【考点】总体、个体、样本、样本容量.【分析】根据总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,可得答案.【解答】解:某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指八年级1 000名学生的身高,故选:C.2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个 B.2个 C.3个 D.4个【考点】中心对称图形.【分析】根据中心对称的概念对各图形分析判断即可得解.【解答】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选:B.3.“十次投掷一枚硬币,十次正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件【考点】随机事件.【分析】根据随机事件的概念可知是随机事件.【解答】解:“十次投掷一枚硬币,十次正面朝上”可能发生,这一事件是随机事件,故选:B.4.若已知分式的值为0,则m的值为()A.±2 B.2 C.0 D.﹣2【考点】分式的值为零的条件.【分析】根据分式的值为零的条件即可求出m的值.【解答】解:由题意可知:,解得:m=﹣2故选(D)5.代数式,,,中分式有()A.4个 B.3个 C.2个 D.1个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:分式有:,共有2个.故选C.6.如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?()A.20 B.35 C.40 D.55【考点】矩形的性质;等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠BCP,然后求出∠MCP,再根据等边对等角求解即可.【解答】解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P 点,∴BP=BC,MP=MC,∵∠PBC=70°,∴∠BCP===55°,在长方形ABCD中,∠BCD=90°,∴∠MCP=90°﹣∠BCP=90°﹣55°=35°,∴∠MPC=∠MCP=35°.故选:B.二、填空题:(本大题共10小题,每小题2分,共计20分)7.3个人站成一排,其中小亮“站在中间”的可能性小于小亮“站在两边”的可能.(填“大于”、“等于”或“小于”)【考点】可能性的大小.【分析】要求“小亮站在正中间”与“小亮站在两端”这两个事件发生的可能性的大小,只需求出各自所占的比例大小即可得到相应的可能性,比较即可.【解答】解:3个人站成一排,小亮站在那个位置都有可能,“小亮站在正中间”的可能性为,“小亮站在两端”的可能性有,故小亮“站在中间”的可能性<小亮“站在两边”的可能,故答案为:小于.8.分式与的最简公分母是12a2bc.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的分母分别是4ac、6a2b,故最简公分母是12a2bc.故答案为12a2bc.9.如图,D、E、F分别是△ABC各边的中点,AH是高,如果ED=5cm,那么HF 的长为5cm.【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】由三角形中位线定理和直角三角形的性质可知,DE=AC=HF.【解答】解:∵点E,D分别是AB,BC的中点,∴DE是三角形ABC的中位线,有DE=AC,∵AH⊥BC,点F是AC的中点,∴HF是Rt△AHC中斜边AC上的中线,有HF=AC,∴FH=DE=5cm.故答案为:5cm.10.如图是一枚图钉被抛起后钉尖触地频率和抛掷次数变化趋势图,则一枚图钉被抛起后钉尖触地的概率估计值是0.46.【考点】利用频率估计概率.【分析】从频率分布直方图上可以看出,数值都集中在46.0%,所以可看出一枚图钉被抛起后钉尖触地的概率估计值.【解答】解:∵从一枚图钉被抛起后钉尖触地频率随抛掷次数变化趋势图可看出数据都集中在46.0%附近.∴一枚图钉被抛起后钉尖触地的概率估计值是0.46.故答案为:0.46.11.为鼓励学生课外阅读,某校制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形图,则赞成该方案所对应扇形的圆心角的度数为252°.【考点】扇形统计图.【分析】利用360°乘以对应的比例即可求解.【解答】解:表示赞成的百分比是1﹣10%﹣20%=70%,则赞成该方案所对应扇形的圆心角的度数为:360°×70%=252°.故答案是:252.12.已知菱形ABCD的两条对角线AC,BD长分别为6cm、8cm,且AE⊥BC,这个菱形的面积S=24cm2,AE=cm.【考点】菱形的性质.【分析】根据菱形的性质可得AO=AC=3cm,BO=BD=4cm,且AO⊥BO,利用勾股定理可计算出AB长,然后利用菱形的面积公式可得S=AC×BD,进而可得答案,再利用面积计算出AE即可.【解答】解:根据题意,设对角线AC、BD相交于O,∵四边形ABCD是菱形,∴AO=AC=3cm,BO=BD=4cm,且AO⊥BO,∴AB==5cm,∵菱形对角线相互垂直,∴菱形面积是S=AC×BD=24cm,∴菱形的高是AE=cm.故答案为:24,.13.若x﹣=,则x2+=.【考点】完全平方公式.【分析】把已知条件两边平方,然后根据完全平方公式展开整理即可得解.【解答】解:∵x﹣=,∴(x﹣)2=,即x2﹣2+=,∴x2+=.故答案为:.14.分式方程的解题步骤是:(1)去分母(2)去括号(3)移项(4)合并同类项(5)“系数化为1”(6)验根,其中可能产生增根的步骤是(1),产生增根的原因是(1).【考点】分式方程的增根.【分析】根据分式方程的解题步骤,可得出方程两边都乘以最简公分母时,未考虑是否为0,则产生增根,故得出答案.【解答】解:可能产生增根的步骤是(1),产生增根的原因是(1),故答案为(1),(1).15.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数=60度.【考点】线段垂直平分线的性质;菱形的性质.【分析】根据菱形的性质求出∠ADC=100°,再根据垂直平分线的性质得出AF=DF,从而计算出∠CDF的值.【解答】解:连接BD,BF∵∠BAD=80°∴∠ADC=100°又∵EF垂直平分AB,AC垂直平分BD∴AF=BF,BF=DF∴AF=DF∴∠FAD=∠FDA=40°∴∠CDF=100°﹣40°=60°.故答案为:60.16.如图,是两种品牌的方便面销售增长率折线统计图,则AA牌方便面2003年的销售量低于2002年的销售量,2002年BB牌方便面的销售量高于AA 牌方便面的销售量(填“高于”“低于”“不一定高于”)【考点】折线统计图.【分析】根据折线统计图可以直接解答本题.【解答】解:由折线统计图可得,AA牌方便面2003年的销售量低于2002年的销售量,2002年BB牌方便面的销售量高于AA牌方便面的销售量,故答案为:低于,高于.三、解答题:(本大题共10小题,共计68分)17.化简:(1)﹣(2)÷(x+2﹣).【考点】分式的混合运算.【分析】(1)首先通分,然后利用同分母的分式加法法则求解;(2)首先对括号内的分式进行通分相加,然后把除法转化为乘法,然后进行约分即可.【解答】解:(1)原式=+===1;(2)原式=÷=÷=•=.18.如图,△A1B1C1由△ABC绕某点旋转而成,请你用尺规作图,找出旋转中心O,并用量角器度量出旋转的大小(完成填空).旋转角(∠COC1)是90度.【考点】作图﹣旋转变换.【分析】(1)利用旋转的性质,连接AA1,CC1,作它们的垂直平分线,则它们的交点为旋转中心O;(2)利用旋转的性质得到∠COC1为旋转角,然后测得∠COC1即可.【解答】解:如图,点O为所作.∠COC1为旋转角,测得∠COC1=90°.故答案为COC1,90.19.解方程: +=2.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+9﹣12x+21=6x﹣18,移项合并得:﹣16x=﹣48,解得:x=3.20.如图,在平行四边形ABCD中,点E、F分别在AD、BC边上,且AE=CF,AF 与BE交于G,CE与DF交于H.求证:四边形EGFH是平行四边形.【考点】平行四边形的判定与性质.【分析】先证明四边形AFCE是平行四边形,得AF∥EC,再证明四边形EBFD是平行四边形,得∠EBF=∠EDF,易证明△BGF≌△HED,则GF=EH,根据一组对边平行且相等的四边形是平行四边得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AE∥FC,∵AE=FC,∴四边形AFCE是平行四边形,∴AF∥EC,∵AD=BC,AE=FC,∴ED=BF,∵ED∥BF,∴四边形EBFD是平行四边形,∴∠EBF=∠EDF,∵AF∥EC,AD∥BC,∴∠AFB=∠ECB,∠ECB=∠CED,∴∠AFB=∠CED,在△BGF和△DHE中,∵,∴△BGF≌△HED(ASA),∴GF=EH,∴四边形EGFH是平行四边形.21.2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表(1)这次抽取了200名学生的竞赛成绩进行统计,其中:m=70,n= 0.12;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)用第一个分数段的频数除以它的频率可得到调查的总人数,然后用总人数成以0.35得到m的值,用24除以总人数可得到n的值;(2)利用80﹣90的频数为70可补全频数分布直方图;(3)估计样本估计总体,用1500乘以前面两分数段的频率之和可估计出该校安全意识不强的学生数.【解答】解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)1500×(0.08+0.2)=420,所以该校安全意识不强的学生约有420人.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前4天完成任务,原计划每天种树多少棵?【考点】分式方程的应用.【分析】设原计划每天种树x棵,则实际每天种树为x棵,根据实际比原计划提前4天完成任务,列方程求解.【解答】解:设原计划每天种树x棵,则实际每天种树为x棵,由题意得,﹣=4,解得:x=60,经检验,x=60是原方程的解,且符合题意.答:原计划每天种树60棵.23.在正方形ABCD中,E是CD上一点,AF⊥AE交CB的延长线于点F,连接DF,分别交AE、AB于点G、P.已知∠BAF=∠BFD.(1)图中存在直角三角形全等,找出其中的一对,并加以证明;(2)证明四边形APED是矩形.【考点】正方形的性质;直角三角形全等的判定;矩形的判定.【分析】(1)证得AE=AF,则可证明以上两条线段所在的三角形全等即可;(2)利用正方形的性质以及垂直定义得出∠1=∠3=∠4=∠5,进而利用全等三角形的判定与性质得出AP=DE,进而利用平行四边形的判定以及矩形的判定得出即可.【解答】证明:(1)△ADE≌△ABF;∵四边形ABCD是正方形,∴∠ADE=∠ABC=∠DAB=90°,AD=AB,AD∥BC,AB∥CD,∵AF⊥AE,∴∠EAF=90°,∴∠DAE=∠BAF,在△ADE和△ABF中,,∴△ADE≌△ABF(ASA);(2)∵AF⊥AE,∴∠1+∠2=90°,∵∠2+∠3=90°,∴∠1=∠3,∵AD∥FC,∴∠4=∠5,∵∠1=∠5,∴∠1=∠3=∠4=∠5,在△ADE和△DAP中,,∴△ADE≌△DAP(ASA),∴AP=DE,又∵AP∥DE,∴四边形APED是平行四边形,∵∠PAD=90°,∴平行四边形APED是矩形.24.(1)当整数x为何整数时,分式的值也是整数?(2)化简代数式﹣÷,并直接写出x为何整数时,该代数式的值也为整数.【考点】分式的混合运算;分式的值.【分析】(1)根据题意可以得到当整数x为何整数时,分式的值也是整数;(2)先化简题目中的代数式,可以发现与(1)的关系,从而可以解答本题.【解答】解:(1)若分式的值也是整数,则x+1=±1或x+1=±2,解得,x1=0,x2=﹣2,x3=1,x4=﹣3,即当x为0、﹣2、1或3时,分式的值也是整数;(2)﹣÷===,由(1)知当x为0、﹣2、1或3时,分式的值也是整数,故当x为0、﹣2、1或3时,代数式﹣÷的值也是整数.25.观察下列方程以及解的特征:①x+=2+的解为x1=2;②x+=3+的解为x1=3;③x+=4+的解为x1=4;…(1)猜想关于x方程x+=m+的解,并利用“方程解的概念”进行验证;(2)利用(1)结论解分式方程:①y3+=②x+=.【考点】解分式方程.【分析】(1)根据题意可得方程x+=m+的解为x1=m,x2=,代入检验即可得;(2)①根据y3+=8+可得y3=8,=,可得答案;②令4x﹣8=t,则x=,原方程变形为+2+=,即+=a+,得出=a,即t=2a,得出2x﹣4=2a,解之可得.【解答】解:(1)关于x方程x+=m+的解为x1=m,x2=,验证:当x=m时,左边=m+=右边,∴x=m是该分式方程的解;当x=时,左边=+=+m=右边,∴x=是该分式方程的解;(2)①∵y3+=8+,∴y3=8,=,∴y=2;②令4x﹣8=t,则x=,∴原方程变形为+2+=,+=,+=,即+=a+,则=a,或=,∴t=2a,即4x﹣8=2a,解得:x==.26.已知:如图1,点P在线段AB上(AP>PB),C、D、E分别是AP、PB、AB 的中点,正方形CPFG和正方形PDHK在直线AB同侧.(1)求证:GC=ED(2)求证:△EHG是等腰直角三角形;(3)若将图1中的射线PB连同正方形PDHK绕点P顺时针旋转一个角度后,其它已知条件不变,如图2,判断△EHG还是等腰直角三角形吗?若是,给予证明;若不是,请说明理由.【考点】四边形综合题.【分析】(1)由先根据C、D、E分别是AP、PB、AB的中点,易证得CE=DP,继而可证得CP=DE,然后由四边形CPFG和四边形PDHK都是正方形,证得结论;(2)由四边形CPFG和四边形PDHK都是正方形,易得CE=DP=DH,CG=CP=DE,∠GCE=∠EDH=90°,然后由全等三角形的判定定理求出△CEG≌△DHE,由直角三角形的两锐角互补即可解答;(3)连接CE、ED,根据三角形中位线定理及直角三角形的性质可得▱CEDP,再由CE=DP=DH,CG=CP=DE,∠GCE=∠EDH=90°可求出△CEG≌△DHE,再通过等量代换即可解答.【解答】(1)证明:∵C、D、E分别是AP、PB、AB的中点,∴CE=AE﹣AC=AB﹣AP=(AB﹣AP)=BP=DP,∴CE+EP=DP+EP,即CP=DE,∵四边形CPFG和四边形PDHK都是正方形,∴CP=CG,∴GC=ED;(2)证明:∵四边形CPFG和四边形PDHK都是正方形,∴CE=DP=DH,CG=CP=DE,∠GCE=∠EDH=90°,∴在△CEG和△DHE中,,∴△CEG≌△DHE(SAS).∴EG=HE,∠EGC=∠HED而∠EGC+∠CEG=90°,∴∠HED+∠CEG=90°.∴∠GEH=90°.又∵EG=HE,∴△EHG是等腰直角三角形.(3)解:△EHG还是等腰直角三角形.理由如下:连接CE、ED,∵点C、D、E分别是AP、PB及AB的中点,∴CE∥PB,DE∥AP,∴四边形CEDP是平行四边形,∴∠PCE=∠PDE.∴∠GCE=∠EDH,∵CE=BP=DP=DH,CG=CP=AP=DE,∴在△CEG和△DHE中,,∴△CEG≌△DHE(SAS),∴EG=HE,∠EGC=∠HED.如图,设EG和CP相交于M,则∠GEH=∠GED﹣∠HED=∠GMP﹣∠EGC=∠GCM=90°,∴△EHG是等腰直角三角形.2017年5月8日。
2015-2016年江苏省南京市玄武外国语学校八年级(下)期中数学试卷(解析版)
2015-2016学年江苏省南京市玄武外国语学校八年级(下)期中数学试卷一、选择题(每题2分,共12分,请把答案涂在答题卡上)1.(2分)民间剪纸是中国民间美术形式之一,有着悠久的历史,如图的图案是中心对称图形的是()A.B.C.D.2.(2分)下列调查中,适合用全面调查方式的是()A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂3.(2分)把分式中的x、y的值都扩大2倍,则分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小一半4.(2分)下列说法中,正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相垂直平分且相等的四边形是菱形5.(2分)已知;如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=4,则AC的长等于()A.7B.C.D.6.56.(2分)边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A.B.C.D.二、填空题(每题3分,共30分)7.(3分)当x为时,分式有意义;当x为时,分式的值为0.8.(3分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为.9.(3分)已知关于x的分式方程的有增根,则m的值是.10.(3分)关于x的方程的解是正数.则a的取值范围是.11.(3分)已知计算结果是,则常数A=,B=.12.(3分)我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯,为提高水资源的利用率,某住宅小区安装了循环用水装置.经测算,原来a天用水b吨,现在这些水可多用4天,现在每天比原来少用水吨.13.(3分)如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.14.(3分)如图,在菱形ABCD中,∠A=100°,M、N分别是边AB、BC的中点,MP⊥CD于点P.则∠NPC的度数为.15.(3分)如图,在边长为2的菱形ABCD中,∠DAB=60°,E是AB边上的一点,且AE=1,点Q为对角线AC上的动点,则△BEQ周长的最小值为.16.(3分)在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;其中正确结论为.三、计算并求值(17题5分,18、19每题各6分,共17分)17.(5分).18.(6分)先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.19.(6分)解方程:=﹣1.四、解答题20.(8分)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达A.从不B.很少C.有时D.常常E总是答题的学生在这五个选项中只能选择一项,下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有名初二年级的学生参加了本次问卷调查;调查的总体是;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比是.21.(6分)平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形.22.(5分)如图,在Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上.(1)画出Rt△COD绕点O沿顺时针方向旋转60°后的图形;(2)若将图中的△COD绕点O按每秒60°的速度沿顺时针方向旋转一周,在旋转的过程中,在秒时,边CD恰好与边AB平行.23.(8分)如图,在平行四边形ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P.(1)求证:BE∥CF;(2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.24.(8分)小强家距学校2000米,某天他步行去上学,走到路程的一半时发现忘记带课本,此时离上课时间还有21分钟,于是他立刻步行回家取课本,随后小强爸爸骑电瓶车送他去学校.已知小强爸骑电瓶车送小强到学校比小强步行到学校少用20分钟,且小强爸骑电瓶车的平均速度是小强步行速度的5倍,小强到家取课本与小强爸启动电瓶车等共用4分钟.(1)求小强步行的平均速度与小强爸的骑车速度;(2)请你判断小强上学是否迟到,并说明理由.25.(8分)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.26.(8分)阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母x+1,可设x2﹣x+3=(x+1)(x+a)+b则x2﹣x+3=(x+1)(x+a)+b=x2+ax+x+a+b=x2+(a+1)x+a+b∵对于任意x上述等式成立∴解得:∴这样,分式就拆分成一个整式x﹣2与一个分式的和的形式.(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式为;(2)已知整数x使分式的值为整数,则满足条件的整数x=;(3)当﹣1<x<1时,求分式的最小值.27.(10分)在数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)试猜想:DG与BE的关系;(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时BE的长;(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE 将相交,交点为H,写出△GHE与△BHD面积之和的最大值.2015-2016学年江苏省南京市玄武外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题2分,共12分,请把答案涂在答题卡上)1.(2分)民间剪纸是中国民间美术形式之一,有着悠久的历史,如图的图案是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形.故选项错误;B、不是中心对称图形.故选项错误;C、不是中心对称图形.故选项错误;D、是中心对称图形.故选项正确.故选:D.2.(2分)下列调查中,适合用全面调查方式的是()A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂【解答】解:A、了解某班学生“50米跑”的成绩,是精确度要求高的调查,适于全面调查;B、C、D了解一批灯泡的使用寿命,了解一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,故不适于全面调查.故选:A.3.(2分)把分式中的x、y的值都扩大2倍,则分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小一半【解答】解:由题意可知:==×,故选:D.4.(2分)下列说法中,正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相垂直平分且相等的四边形是菱形【解答】解:A、两条对角线相等的四边形不一定是平行四边形,如等腰梯形,此选项错误;B、两条对角线相等且互相垂直的四边形不一定是矩形,故此选项错误;C、两条对角线互相垂直平分的四边形是菱形,正确;D、两条对角线互相垂直平分且相等的四边形是正方形,故此选项错误.故选:C.5.(2分)已知;如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=4,则AC的长等于()A.7B.C.D.6.5【解答】解:过D点作DF∥BE,∵AD是△ABC的中线,AD⊥BE,∴F为EC中点,AD⊥DF,∵AD=BE=4,则DF=2,AF==2,∵BE是△ABC的角平分线,AD⊥BE,∴△ABG≌△DBG,∴G为AD中点,∴E为AF中点,∴AC=AF=3.故选:C.6.(2分)边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A.B.C.D.【解答】解:连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a ; 同理第第三个等边三角形的边长是×a ,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a ;同理第四个等边三角形的边长是××a ,第四个正六边形的边长是×××a ;第五个等边三角形的边长是×××a ,第五个正六边形的边长是××××a ;第六个等边三角形的边长是××××a ,第六个正六边形的边长是×××××a , 即第六个正六边形的边长是×a ,故选:A .二、填空题(每题3分,共30分)7.(3分)当x 为 任意实数 时,分式有意义;当x 为 ﹣3 时,分式的值为0.【解答】解:要使分式有意义,则分母不为0,即x 2+2≠0,x 为任意实数; 而分式值为0,即分子x 2﹣9=0,分母x ﹣3≠0,解得:x=﹣3,故答案为:任意实数,﹣3.8.(3分)在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为 15 .【解答】解:由题意可得,×100%=20%,解得,a=15.故答案为15.9.(3分)已知关于x的分式方程的有增根,则m的值是3.【解答】解:去分母得:,m﹣3x=2(x﹣1)分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=3,故答案为:3.10.(3分)关于x的方程的解是正数.则a的取值范围是a<﹣2且a ≠﹣6.【解答】解:3x+a=x﹣2∴x=把x=代入x﹣2≠0,∴a≠﹣6∵x>0,∴>0,∴a<﹣2∴a<﹣2且a≠﹣6故答案为:a<﹣2且a≠﹣611.(3分)已知计算结果是,则常数A=1,B=2.【解答】解:∵计算结果是,∴,∴,∴,∴,解得,,故答案为:1,2.12.(3分)我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯,为提高水资源的利用率,某住宅小区安装了循环用水装置.经测算,原来a天用水b吨,现在这些水可多用4天,现在每天比原来少用水吨.【解答】解:依题意得:﹣==.故答案为:.13.(3分)如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC ⊥BD条件,才能保证四边形EFGH是矩形.【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.14.(3分)如图,在菱形ABCD中,∠A=100°,M、N分别是边AB、BC的中点,MP⊥CD于点P.则∠NPC的度数为50°.【解答】解:连接AC,延长MN交PC延长线于点O,∵M、N分别是边AB和BC的中点,∴MN为△ABC中位线,∴MN∥AC,MN=AC,在菱形ABCD中,AB∥CD,AC平分∠BAD,∴在四边形AMOC中,AM∥OC,AC=MO,∴四边形AMOC为平行四边形,∵∠BAD=100°,∴∠BAC=∠BAD=50°,∴∠MOC=∠BAC=50°,∵MN=AC,∴MN=ON,∴PN为△MPO的中线,∵MP⊥CD于点P,∴∠MPO=90°,∴△MPO为直角三角形,∴PN=ON(直角三角形斜边上的中线等于斜边的一半),∴△NPO为等腰三角形,∴∠NPC=∠MOC=50°.故答案为:50°.15.(3分)如图,在边长为2的菱形ABCD中,∠DAB=60°,E是AB边上的一点,且AE=1,点Q为对角线AC上的动点,则△BEQ周长的最小值为1+.【解答】解:作点E关于AC的对称点,E′,连结E′Q,E′B,E′B.∵ABCD为菱形,∴点E′在AD上.∵点E与点E′关于AQ对称,∴QE′=QE.∵EB为定值,∴当EQ与BQ和最小时,△QEB的周长最小.∵QE+QB=QE′+QB,∴当点E′、Q、B在一条直线上时,△QEB的周长最小.∵AE=AE′,∠DAB=60°,∴△AEE′为等边三角形.∴∠E′EA=∠AE′E=60°,EE′=AE.∵AB=2,AE=1,∴EB=AE,∴EE′=EB.∴∠EE′B=∠EBE′=∠E′EA=30°.∴∠AE′B=90°.∴E′B==.∴△QEB的周长的最小值=1+.故答案为:1.16.(3分)在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;其中正确结论为①②.【解答】解:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CF=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠DBE=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2,故③错误;故答案为①②三、计算并求值(17题5分,18、19每题各6分,共17分)17.(5分).【解答】解:原式=﹣=.18.(6分)先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.【解答】解:原式=•﹣=•﹣=x﹣=,∵x2﹣x﹣1=0,∴x2=x+1,则原式=1.19.(6分)解方程:=﹣1.【解答】解:去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.四、解答题20.(8分)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达EA.从不B.很少C.有时D.常常E总是答题的学生在这五个选项中只能选择一项,下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有3200名初二年级的学生参加了本次问卷调查;调查的总体是本区初二年级的学生;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比是42%.【解答】解:(1)96÷3%=3200,调查的总体是:本区初二年级的学生;故答案为:3200;本区初二年级的学生;(2)“有时”的人数=3200﹣96﹣320﹣736﹣1344=704;如图所示:(3)“总是”所占的百分比=×100%=42%,故答案为:42%.21.(6分)平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是(0,0),旋转角是90度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形.【解答】解:(1)旋转中心的坐标是(0,0),旋转角是90度;(2)如图所示,△A1A2C2是△A1AC1以O为旋转中心,顺时针旋转90°的三角形,△A2C3B是△A1AC1以O为旋转中心,顺时针旋转180°的三角形.22.(5分)如图,在Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上.(1)画出Rt△COD绕点O沿顺时针方向旋转60°后的图形;(2)若将图中的△COD绕点O按每秒60°的速度沿顺时针方向旋转一周,在旋转的过程中,在或秒时,边CD恰好与边AB平行.【解答】解:(1)如图所示,△C'OD'是△COD绕点O沿顺时针方向旋转60°后的图形;(2)分两种情况:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°,∵每秒旋转60°,∴时间为100°÷60°=秒;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°﹣60°=30°,∴∠DOE=∠CEO﹣∠D=40°﹣30°=10°,∴旋转角为270°+10°=280°,∵每秒旋转60°,∴时间为280°÷60°=秒;综上所述,在第或秒时,边CD恰好与边AB平行.故答案为:或.23.(8分)如图,在平行四边形ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P.(1)求证:BE∥CF;(2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.【解答】(1)证明:∵四边形ABDC是平行四边形,∴AC=BD,AC∥BD,∵E、F分别是AC、BD的中点,∴CE=BF,又∵CE∥BF,∴四边形BECF是平行四边形,∴BE∥CF;(2)解:∠P=90°时,四边形BECF是菱形.理由如下:在▱ABCD中,AB∥CD,∵AP∥BC,∴四边形ABCP是平行四边形,∴∠ABC=∠P=90°,∵E是AC的中点,∴AE=CE=AC,∵E、F分别是AC、BD的中点,∴BF=CE,又∵AC∥BD,∴四边形BECF是平行四边形,∴四边形BECF是菱形(一组邻边相等的平行四边形是菱形).24.(8分)小强家距学校2000米,某天他步行去上学,走到路程的一半时发现忘记带课本,此时离上课时间还有21分钟,于是他立刻步行回家取课本,随后小强爸爸骑电瓶车送他去学校.已知小强爸骑电瓶车送小强到学校比小强步行到学校少用20分钟,且小强爸骑电瓶车的平均速度是小强步行速度的5倍,小强到家取课本与小强爸启动电瓶车等共用4分钟.(1)求小强步行的平均速度与小强爸的骑车速度;(2)请你判断小强上学是否迟到,并说明理由.【解答】解:(1)设小强步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,由题意得,=20,解得:x=80,经检验,x=80是原分式方程的解,且符合题意,则5x=80×5=400,答:小强步行的平均速度为80m/分钟,骑电瓶车的平均速度为400m/分;(2)由(1)得,小强走回家需要的时间为:=12.5(分钟),骑车走到学校的时间为:=5,则小强走到学校所用的时间为:12.5+5+4=21.5>21,答:小强不能按时上学.25.(8分)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.【解答】解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD===4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.26.(8分)阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母x+1,可设x2﹣x+3=(x+1)(x+a)+b则x2﹣x+3=(x+1)(x+a)+b=x2+ax+x+a+b=x2+(a+1)x+a+b∵对于任意x上述等式成立∴解得:∴这样,分式就拆分成一个整式x﹣2与一个分式的和的形式.(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式为;(2)已知整数x使分式的值为整数,则满足条件的整数x=4、16、2、﹣10;(3)当﹣1<x<1时,求分式的最小值.【解答】解:(1)由分母x﹣1,可设x2+6x﹣3=(x﹣1)(x+a)+b则x2+6x﹣3=(x﹣1)(x+a)+b=x2+ax﹣x+a﹣b=x2+(a﹣1)x﹣a+b∵对于任意x上述等式成立,∴,解得,拆分成,故答案为:;(2)由分母x﹣3,可设2x2+5x﹣20=(x﹣3)(2x+a)+b则2x2+5x﹣20=(x﹣3)(2x+a)+b=2x2+ax﹣6x﹣3a+b=2x2+(a﹣6)x﹣3a+b∵对于任意x上述等式成立,,解得,拆分成2x+11+,则满足条件的整数x=4、16、2、﹣10,故答案为:4、16、2、﹣10;(3)由分母x2+1,可设x4+3x2﹣2=(x2+1)(x2+a)+b则x4+3x2﹣2=(x2+1)(x2+a)+b=x4+ax2+x2+a+b=x4+(a+1)x2+a+b∵对于任意x上述等式成立,,解得,,∴,当x=0时,这两式之和最小,所以最小值为﹣2.27.(10分)在数学兴趣小组活动中,小明进行数学探究活动,将边长为的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)试猜想:DG与BE的关系DG=BE,DG⊥BE;(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时BE的长;(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE 将相交,交点为H,写出△GHE与△BHD面积之和的最大值.【解答】解:(1)如图1,四边形ABCD与四边形AEFG是正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,在△ADG和△ABE中,,∴△ADG≌△ABE(SAS),∴DG=BE,且∠AGD=∠AEB,如图1,延长EB交DG于点H,∵△ADG中∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,∴△DEH中,∠DHE=90°,∴DG⊥BE,故答案为:DG=BE,DG⊥BE;(2)∵四边形ABCD和四边形AEFG都是正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,∴∠DAG=∠BAE,在△ADG和△ABE中,,∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG于点M,则∠AMD=∠AMG=90°,∵BD是正方形ABCD的对角线,∴∠MDA=45°,∵AD=,AG=2,∴在Rt△AMD中,DM=AM=1,在Rt△AMG中,GM==,∵DG=DM+GM=1+,∴BE=DG=1+;(3)△GHE与△BHD面积之和的最大值为3.理由:如图,对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大,=AG2=×4=2,∴S△EGH对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,∴S=AD2=×2=1,△BDH∴△GHE与△BHD面积之和的最大值是2+1=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题(每题2分,共20分)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2分)下列分式中是最简分式的是()A.B.C.D.3.(2分)下列各式从左到右的变形正确的是()A.=B.C.D.4.(2分)在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于5.(2分)某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了6.(2分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④7.(2分)已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定8.(2分)如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.9.(2分)A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A.=+5+B.=+5﹣C.=+5﹣D.=﹣5﹣10.(2分)如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x 轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5B.5C.8D.10二、填空题(每空2分,共30分)11.(4分)当x时,分式有意义;当x时,分式值为0.12.(4分)若=,则=;若==,则=.13.(2分)请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为.14.(2分)不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.15.(2分),,的最简公分母是.16.(2分)当m=时,关于x的方程=2的根为.17.(3分)若分式方程=1有增根,则m的值是.18.(4分)不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有个;(2)任意摸出一个球是红色的概率是.19.(2分)几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程.20.(2分)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.21.(2分)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC 的长为.22.(2分)观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n为正整数)的根,你的答案是:.三、解答题(共50分)23.(6分)计算:①;②.24.(6分)解方程:①;②.25.(5分)先化简,再从﹣3<a<3中选取一个你喜欢的整数a的值代入求值.26.(6分)为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min),绘制成如下统计表(其中A表示0~10min;B表示11~20min;C表示21~30min,时间取整数):(1)统计表中的a=;b=;c=.(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示.(3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min的学生人数.27.(6分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?28.(6分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.29.(6分)一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了b天完成,其中a、b均为正整数,且a<46,b<52,求甲、乙两队各做了多少天?30.(8分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C 出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB 方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题2分,共20分)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.2.(2分)下列分式中是最简分式的是()A.B.C.D.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、=;D、;故选:A.3.(2分)下列各式从左到右的变形正确的是()A.=B.C.D.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选:C.4.(2分)在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面向上的频率越来越小B.当抛掷的次数n很大时,正面向上的次数一定为C.不同次数的试验,正面向上的频率可能会不相同D.连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于【解答】解:A、随着抛掷次数的增加,正面向上的频率不能确定,故本选项错误;B、当抛掷的次数n很大时,正面向上的次数接近,故本选项错误;C、不同次数的试验,正面向上的频率可能会不相同,故本选项正确;D、连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率可能是,故本选项错误.故选:C.5.(2分)某商场去年1~5月的商品销售总额一共是410万元,图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察图①、图②,下列说法不正确的是()A.1月份商场服装部的销售额是22万元B.3月份商场服装部的销售额比2月份减少了C.4月份商场的商品销售额是75万元D.5月份商场服装部的销售额比4月份减少了【解答】解:A、∵商场服装部1月份销售额占商场当月销售总额的22%,∴1月份商场服装部的销售额是100×22%=22(万元).故本选项正确,不符合题意;B、∵2月份商场服装部的销售额是90×14%=12.6(万元),3月份商场服装部的销售额是65×12%=7.8(万元),∴3月份商场服装部的销售额比2月份减少了.故本选项正确,不符合题意.C、∵商场今年1~5月的商品销售总额一共是410万元,∴4月份销售总额=410﹣100﹣90﹣65﹣80=75(万元).故本选项正确,不符合题意;C、∵4月份商场服装部的销售额是75×17%=12.75(万元),5月份商场服装部的销售额是80×16%=12.8(万元),∴5月份商场服装部的销售额比4月份增加了.故本选项错误,符合题意;故选:D.6.(2分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选:B.7.(2分)已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定【解答】解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△OBF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选:B.8.(2分)如图,在平行四边形ABCD中,E、F、G、H分别是各边的中点,在下列四个图形中,阴影部分的面积与其他三个阴影部分面积不相等的是()A.B.C.D.【解答】解:由题意可得,A、C、D三选项中的阴影部分的面积均为平行四边形ABCD面积的一半,只有B选项中阴影部分的面积与其他选项不等,故选:B.9.(2分)A、B两地相距135千米,两辆汽车均从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车早到30分钟,已知小汽车与大汽车的速度之比为5:2,若小汽车的速度为5x千米/小时,则可列方程为()A.=+5+B.=+5﹣C.=+5﹣D.=﹣5﹣【解答】解:设大汽车的速度为2xkm/h,小汽车的速度为5xkm/h,由题意得,=+5+.故选:A.10.(2分)如图1,在平面下角坐标系中,将▱ABCD放置在第一象限,且AB∥x 轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为()A.5B.5C.8D.10【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8﹣4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=﹣x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8,故选:C.二、填空题(每空2分,共30分)11.(4分)当x≠3时,分式有意义;当x=3时,分式值为0.【解答】解:当x≠3时,x﹣3≠0,则分式有意义;当x2﹣9=0,x+3≠0时,分式值为0,解得:x=3.故答案为:≠3,=3.12.(4分)若=,则=;若==,则=.【解答】解:由合比性质,得=.由反比性质,得=,故答案为:;设===k,得x=4k,y=3k,z=2k.==,故答案为:.13.(2分)请写出一个同时满足下列条件的分式:(1)分式的值不可能为0;(2)分式有意义时,x的取值范围是x≠±2;(3)当x=0时,分式的值为﹣1.你所写的分式为答案不唯一,如.【解答】解:(1)分式的分子不等于零;(2)分式有意义时,x的取值范围是x≠±2,即当x=±2时,分式的分母等于零;(3)当x=0时,分式的值为﹣1,即把x=0代入后,分式的分子、分母互为相反数.所以满足条件的分式可以是:;故答案是:.14.(2分)不改变分式的值,将分式的分子、分母的各项系数都化为整数,且分子与分母首项都不含“﹣”号:.【解答】解:分子分母都乘以﹣12,得,故答案为:.15.(2分),,的最简公分母是10x3yz.【解答】解:∵,,的分母分别是xy、2x3、5xyz,∴它们的最简公分母是10x3yz.故答案为:10x3yz.16.(2分)当m=2时,关于x的方程=2的根为.【解答】解:把x=代入=2,得=2,解得m=2,经检验m=2是分式方程的解,故答案为:2.17.(3分)若分式方程=1有增根,则m的值是3.【解答】解:∵分式方程有增根,∴x﹣1=0,∴x=1,2x﹣(m﹣1)=x﹣1,把x=1代入得2﹣(m﹣1)=0,∴m=3,故答案为3.18.(4分)不透明口袋里有红球4个、绿球5个和黄球若干个,它们除颜色外都相同,任意摸出一个球是绿色的概率是.(1)口袋里黄球有6个;(2)任意摸出一个球是红色的概率是.【解答】解:(1)设黄色球有x个,由形状、大小相同的红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是,得=,解得x=6;(2)P(红色)==,故答案为:6,.19.(2分)几名同学租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费.设参加游览的同学共x人,则根据题意可列方程=+3.【解答】解:设参加游览的同学共x人,由题意得,=+3,故答案为:=+3.20.(2分)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12.【解答】解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.21.(2分)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为7.【解答】解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.22.(2分)观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x的方程(n为正整数)的根,你的答案是:x=n+3或x=n+4.【解答】解:∵由①得,方程的根为:x=1或x=2,由②得,方程的根为:x=2或x=3,由③得,方程的根为:x=3或x=4,∴方程x+=a+b的根为:x=a或x=b,∴x+=2n+4可化为(x﹣3)+=n+(n+1),∴此方程的根为:x﹣3=n或x﹣3=n+1,即x=n+3或x=n+4.故答案为:x=n+3或x=n+4.三、解答题(共50分)23.(6分)计算:①;②.【解答】解:①原式=﹣==2;②原式=﹣••=.24.(6分)解方程:①;②.【解答】解:①去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;②方程整理得:=,即=,去分母得:x2﹣5x+6=x2+x﹣2,解得:x=,经检验x=是分式方程的解.25.(5分)先化简,再从﹣3<a <3中选取一个你喜欢的整数a 的值代入求值. 【解答】解:原式=•=,∵a +2≠0,a ﹣2≠0,a ﹣1≠0, ∴a ≠1,±2, ∴取a=0, ∴原式==2.26.(6分)为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2015年3月每天干家务活的平均时间(单位:min ),绘制成如下统计表(其中A 表示0~10min ;B 表示11~20min ;C 表示21~30min ,时间取整数):(1)统计表中的a= 25 ;b= 12.5% ;c= 40 .(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示. (3)该校八年级共有240学生,求每天干家务活的平均时间在11~20min 的学生人数.【解答】解:(1)根据题意得: c==40,则a=40×62.5%=25; b=×100%=12.5%;故答案为:25;12.5%;40;(2)根据题意画图如下;(3)根据题意得:240×62.5%=150(名).答:大约有150名学生每天干家务活的平均时间是11~20min.27.(6分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?【解答】(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.28.(6分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.29.(6分)一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了b天完成,其中a、b均为正整数,且a<46,b<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要x天,根据题意得:++=1,解得:x=80,经检验,x=80是原方程的解.答:乙工程队单独完成这项工作需要80天.(2)根据题意得:+=1,整理得:b=80﹣a.∵a、b均为正整数,且a<46,b<52,∴80﹣a<52,且a为3的倍数,∴42<a<46,∴a=45,b=50.答:甲队做了45天,乙队做了50天.30.(8分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C 出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB 方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是ts.过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【解答】(1)证明:∵在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,∴∠C=90°﹣∠A=30°.∵CD=4tcm,AE=2tcm,又∵在直角△CDF中,∠C=30°,∴DF=CD=2tcm,∴DF=AE;(2)解:∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)解:当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4tcm,∴DF=AE=2tcm,∴AD=2AE=4tcm,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t(cm),AE=DF=CD=2tcm,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).。