2019-2020学年广东省深圳市宝安区七年级期中考试数学检测试题及答案详细解析
2019-2020年七年级下学期期中考试数学试题 Word版含答案(II)
xx 学年度宜兴市周铁学区期中考试试卷 2019-2020年七年级下学期期中考试数学试题 Word 版含答案(II) 一、选择题:(本大题共有10小题,每小题3分,共30分.)1.下列计算正确的是 ( )A .a 2+a 2=2a 4B .a 2 • a 3=a 6C .(-3x) 3÷(-3x)=9x 2D .(-ab 2) 2=-a 2b 42. 如果一个多边形的内角和是外角和的3倍,那么这个多边形是 ( )A.八边形B.九边形C.十边形D.十二边形3.下列等式由左边到右边的变形中,属于因式分解的是 ( )A .(a +1)(a -1)=a 2-1B .a 2-6a +9=(a -3) 2C .x 2+2x +1=x(x +2)+1D .-18x 4y 3=-6x 2y 2•3x 2y4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是( )A .70°B .68°C . 60°D .72°5. 若x 、y 满足0)2(12=++++-y x y x ,则 ( )A .1B .2C .–1D .–26.如图,有以下四个条件:①∠B +∠BCD =180°,②∠1=∠2,③∠3=∠4,④∠B =∠5.其中能判定AB ∥CD 的条件的个数有… ( )A .1B .2C .3D .47. 如果a =(-xx) 0、b =(-110)-1、c =(-53)2,那么a 、b 、c 的大小关系为( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b8.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=68°,则∠AED 的度数 ( )A .88°B .92°C .98°D .112°9. 若a m =2,a n =3,则a 2m-n 的值是 ( )A .1B .12C .34D .4310.为求1+2+22+23+…+2xx 的值,可令S =1+2+22+23+…+2xx ,则2S=2+22+23+24+…+2xx ,因此2S -S =2xx -1,所以1+2+22+23+…+2xx=2xx -1.仿照以上推理计算出1+3+32+33+…+3xx 的值是( )A .3xx -1B . 3xx -1C .D .二、填空题:(本大题共8小题,每空2分,共18分.)(第4题) (第8题)(第6题)第16题 第15题11.甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示 米.12. 因式分解:m 2-16= ;2x 2-8xy +8y 2= .13.一个三角形的两边长分别为3 cm 、5 cm ,且第三边为偶数,则这个三角形的周长为______________ cm .14.若,,则15. 如图,BC ⊥ED 于O ,∠A =45°,∠D =20°,则∠B =________°.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23度,那么∠2= 度.17. 如图,将一个长方形纸条折成如图所示的形状,若已知∠2=65°,则∠1=__________。
人教版2019-2020学年七年级上学期期中考试数学试题(II)卷
人教版2019-2020学年七年级上学期期中考试数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下面选项中符合代数式书写要求的是()A.ay·3B.C.D.a×b÷c2 . 一件工作,甲单独做需a天完成,乙单独做需b天完成,如果两人合作7天,完成的工作量是()A.B.7(a-b)C.7(a+b)D.3 . 下列说法错误的是()A.﹣xy的系数是﹣1B.3x3﹣2x2y2﹣y3的次数是4C.当a<2b时,2a+b+2|a﹣2b|=5bD.多项式中x2的系数是﹣34 . 在0,2,,-5这四个数中,最大的数是()A.0B.2C.D.-55 . 下列计算正确的是()A.a+2a=3B.C.D.6 . 2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为()A.B.C.D.7 . -的相反数是()A.2016B.﹣2016C.D.-8 . 若△ABC三条边的长度分别为m,n,p,且,则这个三角形为A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9 . 下列各组运算中,结果为负数的是()A.-(-3)B.(-3)×(-2)C.-|-3|D.10 . 下列各式符合代数式书写格式的为()A.B.C.D.二、填空题11 . 若数轴上点A与点B的距离是2018,点B表示的数为7,则点A表示的数是_______.12 . 单项式﹣x3y的系数是_____.13 . 张老师在黑板上写出以下四个结论:①−3的绝对值为;②一个负数的绝对值一定是正数;③若=−a,则a一定是负数;④一个五棱柱的截面最多是七边形. 认为张老师写的结论正确的有_______.(填序号)14 . 如果,那么代数式的值为______.15 . 金砖五国成员国巴西的首都巴西利亚、新西兰的首都惠灵顿与北京的时差如下表:城市惠灵顿巴西利亚时差/h+4﹣11若现在的北京时间是11月16日8:00,请从A,B两题中任选一题作答.A.那么,现在的惠灵顿时间是11月_____日_____B.那么,现在的巴西利亚时间是11月_____日_____.16 . 单项式x2y的系数是_____;次数是______.17 . 李先生要用按揭贷款的方式购买一套商品房,由于银行提高了贷款利率,他想尽量减少贷款额,就将自己的全部积蓄a元交付了所需购房款的60%,其余部分向银行贷款,则李先生应向银行贷款________元.18 . 若a、b为实数,且满足|a-2|+=0,则a=______ ,b=______.三、解答题19 . 计算下列各题:(1)(-9)-(-7)+(-6)-(+4)-(-5);(2)(+4.3)-(-4)+(-2.3)-(+4).20 . 已知:,且。
2019-2020学年广东省深圳市南山区七年级下学期期中数学试卷 (解析版)
2019-2020学年七年级第二学期期中数学试卷一、选择题(共12小题).1.下列计算正确的是()A.(﹣x3)2=x5B.(﹣x)2÷x=xC.x5•x2=x10D.(﹣2x2y)3=﹣6x6y32.下列图形中的两个角互为补角的是()A.①和②B.①和③C.①和④D.②和④3.生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm4.如图,直线AB与CD相交于点O,OE为∠DOB的角平分线,若∠AOC=54°,则∠DOE的度数为()A.25°B.26°C.27°D.28°5.如图,点P是直线a外一点,过点P作PA⊥a于点A,在直线a上取一点B,连结PB,使PB=PA,C在线段AB上,连结PC.若PA=4,则线段PC的长不可能是()A.3.8B.4.9C.5.6D.5.96.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为45000纳米,那么科学记数法表示这种花粉的直径为()A.4.5×10﹣6米B.4.5×10﹣5米C.45×1013米D.4.5×1013米7.不等式2x﹣4<0的解集是()A.x<2B.x>2C.x≤2D.x≥28.如果a<b,那么下列不等式成立的是()A.a﹣b>0B.a﹣3>b﹣3C.2a>2b D.﹣3a>﹣3b 9.下列语句中,假命题的是()A.对顶角相等B.若直线a、b、c满足b∥a,c∥a,那么b∥cC.两直线平行,同旁内角互补D.互补的角是邻补角10.AF是∠BAC的平分线,DF∥AC,若∠BAC=70°,则∠1的度数为()A.175°B.35°C.55°D.70°11.如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点A'处,点B落在点B'处,若∠1=115°,则图中∠2的度数为()A.40°B.45°C.50°D.60°12.如图1,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图2:在射线AD上取点F连接BF,CF,如图3,依此规律,第n个图形中全等三角形的对数是()A.n B.2n﹣1C.D.3(n+1)二、填空题:(每题3分,共18分)13.若x2﹣kx+1是完全平方式,则k=.14.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是.15.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=.16.初2021级某班班树现在高60厘米,以后每个月长高2厘米,x月后这棵树的高度为h 厘米,则h与x的函数关系式为.17.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为小时.18.如图,若直线l1∥l2,∠α=∠β,∠1=30°,则∠2的度数为.三、解答题(共46分)19.(16分)计算下列各题:(1);(2)2018×2020﹣20192;(3)(x+2)(x﹣2)﹣(x﹣2)2;(4)(a﹣b)2(a+b)2.20.先化简,再求值:[4(x﹣y)2﹣2(x﹣2y)(y+2x)]÷(﹣2y),其中x=2,y=﹣1.21.如图,已知点D为△ABC的边AB上一点,请在边AC上确定一点E,使得S△BCD=S(要求:尺规作图、保留作图痕迹、不写作法).△BCE22.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店.买到彩笔后继续往家走如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是米;(2)AB表示的实际意义是;(3)小颖本次从学校回家的整个过程中,走的路程是多少米?(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?23.在学习“乘法公式”时,育红中学七(1)班数学兴趣小组在活动课上进行了这样的操作:作两条互相垂直的线段AB和CD.把大正方形分成四部分(如图1所示).观察发现(1)请用两种不同的方法表示图形的面积,得到一个等量关系:.类比操作(2)请你作一个图形验证:(x+y)(2x+y)=2x2+3xy+y2.延伸运用(3)若AB+CD=14,图中阴影部分的面积和为13,求xy的值.24.已知,如图,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若∠MOC=28°,求∠BON的度数.(2)若∠MOC=m°,则∠BON的度数为.(3)由(1)和(2),我们发现∠MOC和∠BON之间有什么样的数量关系?(4)若将三角形MON绕点O旋转到如图2所示的位置,试问∠MOC和∠BON之间的数量关系是否发生变化?请说明理由.参考答案一、选择题(共12小题)1.下列计算正确的是()A.(﹣x3)2=x5B.(﹣x)2÷x=xC.x5•x2=x10D.(﹣2x2y)3=﹣6x6y3【分析】分别进行同底数幂的乘除法则及幂的乘方法则,进行各选项的判断,即可得出答案.解:A、,计算错误,故本选项错误;B、(﹣x)2÷x=x,计算正确,故本选项正确;C、x5•x2=x7,计算错误,故本选项错误;D、(﹣2x2y)3=﹣8x6y3,计算错误,故本选项错误;故选:B.2.下列图形中的两个角互为补角的是()A.①和②B.①和③C.①和④D.②和④【分析】根据互补两角之和为180°求解即可.解:∵①④两个角相加为180°,∴①④互为补角.故选:C.3.生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子直径约为0.0000002cm,这个数量用科学记数法可表示为()A.0.2×10﹣6cm B.2×10﹣6cm C.0.2×10﹣7cm D.2×10﹣7cm【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 000 2=2×10﹣7cm.故选:D.4.如图,直线AB与CD相交于点O,OE为∠DOB的角平分线,若∠AOC=54°,则∠DOE的度数为()A.25°B.26°C.27°D.28°【分析】根据对顶角相等和角平分线的性质计算即可.解:∵∠AOC=54°,∴∠BOD=54°,∵OE为∠DOB的角平分线,∴∠DOE=×54°=27°,故选:C.5.如图,点P是直线a外一点,过点P作PA⊥a于点A,在直线a上取一点B,连结PB,使PB=PA,C在线段AB上,连结PC.若PA=4,则线段PC的长不可能是()A.3.8B.4.9C.5.6D.5.9【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.解:∵过点P作PA⊥a于点A,在直线a上取一点B,连结PB,使PB=PA,C在线段AB上,连结PC.若PA=4,∴PB=6,∴4≤AP≤6,故AP不可能是3.8,故选:A.6.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为45000纳米,那么科学记数法表示这种花粉的直径为()A.4.5×10﹣6米B.4.5×10﹣5米C.45×1013米D.4.5×1013米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:45000纳米=45000×10﹣9米=4.5×10﹣5米.故选:B.7.不等式2x﹣4<0的解集是()A.x<2B.x>2C.x≤2D.x≥2【分析】先移项,然后把x的相似化为1即可.解:2x<4,所以x<2.故选:A.8.如果a<b,那么下列不等式成立的是()A.a﹣b>0B.a﹣3>b﹣3C.2a>2b D.﹣3a>﹣3b 【分析】根据不等式的性质逐个判断即可.解:A、∵a<b,∴按照不等式的性质1,两边同时减去b,可得a﹣b<0,故选项A不符合题意;B、∵a<b,∴按照不等式的性质1,两边同时减去3可得a﹣3<b﹣3,故选项B不符合题意;C、∵a<b,∴按照不等式的性质2,两边同时乘以2可得2a<2b,故选项C不符合题意;D、∵a<b,∴按照不等式的性质3,两边同时乘以﹣3可得﹣3a>﹣3b,故选项D符合题意;故选:D.9.下列语句中,假命题的是()A.对顶角相等B.若直线a、b、c满足b∥a,c∥a,那么b∥cC.两直线平行,同旁内角互补D.互补的角是邻补角【分析】真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.一个命题都可以写成这样的格式:如果+条件,那么+结论.条件和结果相矛盾的命题是假命题.解:(D)两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.故互补的角,不一定是有一条公共边,它们的另一条边互为反向延长线,故D是假命题;故选:D.10.AF是∠BAC的平分线,DF∥AC,若∠BAC=70°,则∠1的度数为()A.175°B.35°C.55°D.70°【分析】根据角平分线的性质得出∠FAC度数,再利用平行线的性质可得答案.解:∵∠BAC=70°,AF平分∠BAC,∴∠FAC=∠BAC=35°,∵DF∥AC,∴∠1=∠FAC=35°,故选:B.11.如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点A'处,点B落在点B'处,若∠1=115°,则图中∠2的度数为()A.40°B.45°C.50°D.60°【分析】由邻补角概念和翻折变换性质得出∠EFB′=∠1=115°,∠EFC=65°,据此知∠CFB′=50°,结合∠B=∠B′=90°知∠2=90°﹣∠CFB′,从而得出答案.解:∵∠1=115°,∴∠EFB′=∠1=115°,∠EFC=65°,∴∠CFB′=50°,又∵∠B=∠B′=90°,∴∠2=90°﹣∠CFB′=40°,故选:A.12.如图1,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图2:在射线AD上取点F连接BF,CF,如图3,依此规律,第n个图形中全等三角形的对数是()A.n B.2n﹣1C.D.3(n+1)【分析】根据条件可得图1中△ABD≌△ACD有1对三角形全等;图2中可证出△ABD ≌△ACD,△BDE≌△CDE,△ABE≌△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n个图形中全等三角形的对数.解:∵△ABD和△ACD关于直线AD对称,∴∠BAD=∠CAD.在△ABD与△ACD中,∴△ABD≌△ACD(SAS).∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE(SAS),∴BE=EC,∵△ABD≌△ACD.∴BD=CD,在△BDE和△CDE中,∴△BDE≌△CDE(SSS),∴图2中有1+2=3对三角形全等;同理:图3中有1+2+3=6对三角形全等;由此发现:第n个图形中全等三角形的对数是.故选:C.二、填空题:(每题3分,共18分)13.若x2﹣kx+1是完全平方式,则k=2或﹣2.【分析】将原式化为x2﹣kx+12,再根据完全平方公式解答.解:原式可化为知x2﹣kx+12,可见当k=2或k=﹣2时,原式可化为(x+1)2或(x﹣1)2,故答案为2或﹣2.14.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是65°.【分析】利用三角形的内角和定理求出∠1,再利用平行线的性质求出∠EFD即可.解:如图,∵BE⊥EF,∴∠E=90°,∵∠B=25°,∴∠1=65°,∵AB∥CD,∴∠EFD=∠1=65°.故答案为:65°.15.现定义运算“△”,对于任意有理数a,b,都有a△b=a2﹣ab+b,例如:3△5=32﹣3×5+5=﹣1,由此算出(x﹣1)△(2+x)=﹣2x+5.【分析】原式利用题中的新定义化简,计算即可得到结果.解:根据题中的新定义得:(x﹣1)△(2+x)=(x﹣1)2﹣(x﹣1)(2+x)+2+x=x2﹣2x+1﹣x2﹣x+2+2+x=﹣2x+5,故答案为:﹣2x+516.初2021级某班班树现在高60厘米,以后每个月长高2厘米,x月后这棵树的高度为h 厘米,则h与x的函数关系式为h=60+2x.【分析】根据树高=现在的高度+x个月长的高度即可得出关系式.解:依题意有:h=60+2x,故答案为:h=60+2x.17.如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为小时.【分析】根据图象可得沙漏漏沙的速度,从而得出从开始计时到沙子漏光所需的时间.解:沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=(小时).故答案为:18.如图,若直线l1∥l2,∠α=∠β,∠1=30°,则∠2的度数为150°.【分析】延长AB交l2于E,根据平行线的判定可得AB∥CD,根据平行线的性质先求得∠3的度数,再根据平行线的性质求得∠2的度数.解:延长AB交l2于E,∵∠α=∠β,∴AB∥CD,∵l1∥l2,∴∠3=∠1=30°,∴∠2=180°﹣∠3=150°.故答案为:150°.三、解答题(共46分)19.(16分)计算下列各题:(1);(2)2018×2020﹣20192;(3)(x+2)(x﹣2)﹣(x﹣2)2;(4)(a﹣b)2(a+b)2.【分析】(1)分别根据有理数的乘方的定义,负整数指数幂的定义以及任何非0数的0次幂等于1计算即可;(2)根据平方差公式计算即可;(3)根据平方差公式以及完全平方公式计算即可;(4)根据积的乘方运算法则以及平方差公式计算即可.解:(1)原式=﹣1+4﹣1=2;(2)原式=(2019﹣1)×(2019+1)﹣20192=20192﹣1﹣20192=﹣1;(3)原式=x2﹣4﹣(x2﹣4x+1)=x2﹣4﹣x2+4x﹣1=4x﹣5;(4)原式=[(a﹣b)(a+b)]2=(a2﹣b2)2.20.先化简,再求值:[4(x﹣y)2﹣2(x﹣2y)(y+2x)]÷(﹣2y),其中x=2,y=﹣1.【分析】根据完全平方公式、多项式乘多项式和多项式除以单项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.解:[4(x﹣y)2﹣2(x﹣2y)(y+2x)]÷(﹣2y)=(4x2﹣8xy+4y2+6xy﹣4x2+4y2)÷(﹣2y)=(﹣2xy+8y2)÷(﹣2y)=x﹣4y,当x=2,y=﹣1时,原式=2﹣4×(﹣1)=2+4=6.21.如图,已知点D为△ABC的边AB上一点,请在边AC上确定一点E,使得S△BCD=S(要求:尺规作图、保留作图痕迹、不写作法).△BCE【分析】过点D作DE∥BC交AC于E,点E即为所求.解:如图,点E即为所求.22.星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店.买到彩笔后继续往家走如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是2600米;(2)AB表示的实际意义是小颖在文具用品店买彩笔所花时间;(3)小颖本次从学校回家的整个过程中,走的路程是多少米?(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?【分析】(1)根据函数图象,小颖家与学校的距离是2600米;(2)AB表示的实际意义是小颖在文具用品店买彩笔所花时间;(3)小颖本次从学校回家的整个过程中,走的路程是2600+2×(1800﹣1400);(4)根据速度=路程÷时间,即可解答.解:(1)小颖家与学校的距离是2600米;故答案为:2600;(2)AB表示的实际意义是小颖在文具用品店买彩笔所花时间;故答案为:小颖在文具用品店买彩笔所花时间;(3)2600+2×(1800﹣1400)=3400(米),答:小颖本次从学校回家的整个过程中,走的路程是3400米;(4)1800÷(50﹣30)=90(米/分),买到彩笔后,小颖从文具用品店回到家步行的速度是90米/分.23.在学习“乘法公式”时,育红中学七(1)班数学兴趣小组在活动课上进行了这样的操作:作两条互相垂直的线段AB和CD.把大正方形分成四部分(如图1所示).观察发现(1)请用两种不同的方法表示图形的面积,得到一个等量关系:(x+y)2=x2+2xy+y2.类比操作(2)请你作一个图形验证:(x+y)(2x+y)=2x2+3xy+y2.延伸运用(3)若AB+CD=14,图中阴影部分的面积和为13,求xy的值.【分析】(1)依据正方形的面积计算公式即可得到结论;(2)画出长为2x+y,宽为x+y的长方形,即可验证:(x+y)(2x+y)=2x2+3xy+y2;(3)根据AB+CD=14得x+y,由阴影部分的面积和为13得x2+y2,再利用(1)中的关系进行解答.解:(1)由图知,大正方形的边长为x+y,则大正方形的面积为(x+y)2,∵大正方形的面积为各部分面积和:x2+2xy+y2,∴(x+y)2=x2+2xy+y2,故答案为(x+y)2=x2+2xy+y2;(2)如图所示,(3)∵AB+CD=14,∴x+y=7,∵阴影部分的面积和为13,∴x2+y2=13,∵(x+y)2=x2+2xy+y2,∴72=13+2xy,∴xy=18.24.已知,如图,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若∠MOC=28°,求∠BON的度数.(2)若∠MOC=m°,则∠BON的度数为2m°.(3)由(1)和(2),我们发现∠MOC和∠BON之间有什么样的数量关系?(4)若将三角形MON绕点O旋转到如图2所示的位置,试问∠MOC和∠BON之间的数量关系是否发生变化?请说明理由.【分析】(1)根据角平分线和互为余角的意义,可求出∠NOC、∠AOC,再根据互为补角求出∠BON即可;(2)由(1)的计算过程,将∠MOC=m°进行计算即可得出答案;(3)根据(1)(2)的解题过程得出∠BON=2∠MOC;(4)根据角平分线和互为余角的意义可得∠AOC=∠NOC=90°﹣∠MOC,再根据互为补角的意义得到∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC.解:(1)如图1,∵∠MOC=28°,∠MON=90°,∴∠NOC=90°﹣28°=62°,又∵OC平分∠AON,∴∠AOC=∠NOC=62°,∴∠BON=180°﹣2∠NOC=180°﹣62°×2=56°,(2)如图1,∵∠MOC=m°,∠MON=90°,∴∠NOC=90°﹣m°=(90﹣m)°,又∵OC平分∠AON,∴∠AOC=∠NOC=(90﹣m)°,∴∠BON=180°﹣2∠NOC=180°﹣(90﹣m)°×2=2m°,故答案为:2m°;(3)由(1)和(2)可得:∠BON=2∠MOC;(4)∠MOC和∠BON之间的数量关系不发生变化,如图2,∵OC平分∠AON,∴∠AOC=∠NOC,∵∠MON=90°,∴∠AOC=∠NOC=90°﹣∠MOC,∴∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC,即:∴∠BON=2∠MOC.。
2020--2021学年人教版七年级数学上册期中考试数学试题有答案
2020--2021学年人教版七年级数学上册期中考试数学试题有答案2020-2021学年第一学期期中教学质量检测七年级数学(人教版)第Ⅰ卷(共60分)一、选择题(每小题3分,共30分)1.XXX手机上显示某地“海拔-45米”,这表示此地的海拔高度是()A.高于海平面45米B.低于海平面-45米C.低于海平面-45米D.低于海平面45米2.在数轴上,点A表示的数是-4,点B表示的数是2,线段AB的中点表示的数为()A.1B.-1C.3D.-33.在下列气温的变化中,能够反映温度上升5℃的是()A.气温由-3℃到2℃B.气温由-1℃到-6℃C.气温由-1℃到5℃D.气温由4℃到-1℃4.在下列变形中,错误的是()A.(-2)-3+(-5)=-2-3-5B.(-3)-(-5)=-3+5C.a+(b-c)=a+b-cD.a-(b+c)=a-b-c5.2019年4月10日21时,人类首张黑洞照片面世。
该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球xxxxxxxx光年,质量约为太阳的65亿倍。
则xxxxxxxx用科学记数法表示为()A.5.5×105B.5.5×106C.5.5×107D.55×1066.在代数式①51b;②-2x3+y4;③0.2x2y3;④3;⑤1-;⑥中,整式的个数有()A.4个B.3个C.2个D.1个7.下列说法正确的是()A.-2xy的系数是-2B.x2+x-1的常数项为1C.22ab3的次数是6次D.2x-5x2+7是二次三项式8.下列运算正确的是()A.x3+x2=x5B.x4+x4=2x4C.x3+x3=2x6D.x5+x5=x109.已知m-n=99,x+y=-1,则代数式(n+x)-(m-y)的值是()A.100B.98C.-100D.-9810.如图,把六张形状大小完全相同的小长方形纸卡片(如图①)不重叠地放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A。
广东省深圳市深圳外国语学校2019-2020学年七年级上学期期中考试数学试题
广东省深圳市深圳外国语学校2019-2020学年七年级上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,属于棱柱的是()A .B .C .D .2.一个几何体的表面展开图如图所示,则这个几何体是()A .四棱锥B .四棱柱C .三棱锥D .三棱柱3.有理数,m n 的数轴上的位置如图,则下列结论正确的是()A .0,0m n >>B .0,0m n ><C .0,0m n <>D .0,0m n <<4.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km .用科学记数法表示1.496亿是()A .71.49610⨯B .714.9610⨯C .80.149610⨯D .81.49610⨯5.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A .9999B .10000C .10001D .100026.下列各对数中,数值相等的是()A .﹣27与(﹣2)7B .﹣32与(﹣3)2C .﹣3×23与﹣32×2D .﹣(﹣3)2与﹣(﹣2)37.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为()A .180B .182C .184D .1868.规定,是一种新的运算符号,且a b ab a b =++#,例如:23232311=⨯++=#,那么()341=##()A .19B .29C .39D .499.在3a ,x+1,-2,3b-,0.72xy ,2π,314x -中单项式的个数有()A .2个B .8个C .4个D .5个10.对于每个正整数n ,设f (n )表示n (n +1)的末位数字.例如:f (1)=2(1×2的末位数字),f (2)=6(2×3的末位数字),f (3)=2(3×4的末位数字),……则f (1)+f (2)+f (3)+…+f (2012)的值为()A .6B .4022C .4028D .670811.已知数,,a b c 的大小关系如图所示,则下列各式中正确的个数是()个.①0ab ac +>②0a b c --+>③1a cca b b ++=④2a b c b a c b--++-=-A .1B .2C .3D .4二、填空题12.已知380a b -+-=,则a b +的值为______________________.13.设一列数中相邻的三个数依次为m 、n 、p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,﹣7,b…,则b=_______.14.如图是一个长方体的展开图,每个面上都标注了字母,如果F 面在前面,B 面在左面,(字母朝外),那么在上面的字母是________.15.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm ,宽为16cm )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是_________.三、解答题16.计算:211108225⎛⎫+⨯--÷⎪⎝⎭17.计算:()()()3241234212⎡⎤-+-⨯-⨯÷-⎢⎥⎣⎦18.22221553x y xy xy x y -+-+,其中11,23x y =-=19.()222233222a ab b a ab b -+--+,其中223,2a ab b ab +=+=20.已知A=3a 2﹣ab ﹣2a ,B=﹣a 2+ab ﹣2.(1)求4A ﹣3(A ﹣B )的值;(2)若A+3B 的值与a 的取值无关,求b 的值.21.(1)探索:如图1,在边长为x 的正方形纸片的4个角都剪去1个边长是a 的正方形.试用含,a x 的式子表示纸片剩余部分的面积为_______________________;(2)变式:如图2,在边长为x 的正方形纸片的4个角都剪去一个相同的扇形,扇形的半径为r ,用,r x 表示纸片剩余部分面积为______________________,剩余部分图形的周长为_____________________;(3)拓展:世博会中国国家馆模型的平面图如图3所示,其外框是一个大正方形,中间四个全等的小正方形(阴影部分)是支撑展馆的核心筒,标记字母的五个全等的正方形是展厅,展厅的边长为m ,已知核心筒的边长比展厅的边长的一半多1米,用含有m 的式子表示外框的边长22.已知:a是最大的负整数,b是最小的正整数,且c=a+b,请回答下列问题:(1)请直接写出a,b,c的值:a=;b=;c=;(2)a,b,c在数轴上所对应的点分别为A,B,C,请在如图的数轴上表示出A,B,C三点;(3)在(2)的情况下.点A,B,C开始在数轴上运动,若点A,点C以每秒1个单位的速度向左运动,同时,点B以每秒5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请问:AB ﹣BC的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出AB﹣BC的值.参考答案1.C【详解】解:根据棱柱的定义可知符合棱柱定义的只有C.故选C.2.A【详解】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.3.B【分析】数轴上的数是以原点作为分界点的,原点左边的小于0,原点右边大于0,且右边总大于左边.【详解】解:由图可知,n在原点左边,∴<,nm在原点右边,m∴>.故选B.【点睛】本题考查数轴上数的大小比较,原点左边的小于0,原点右边大于0.4.D【详解】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:数据1.496亿用科学记数法表示为1.496×108.故选D.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.A【分析】观察不难发现,奇数位置的数是序数的平方加1,偶数位置的数是序数的平方减1,据此规律得到正确答案即可.【详解】∵2=12+1,3=22﹣1,10=32+1,15=42﹣1,26=52+1,35=62﹣1,…,∴可得奇数位置的数是序数的平方加1,偶数位置的数是序数的平方减1,∴第100个数是1002﹣1=9999,故选A.【点睛】本题考查了规律题——数字的变化类,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.6.A【解析】试题分析:因为(-2)7=-27,所以A正确;因为-32=-9,(-3)2=9,所以B错误;因为-3×23=-3×8=-24,32×2=9×2=18,所以C错误;因为―(―3)2=-9,―(―2)3=8,所以D错误;故选A.考点:有理数的乘方.7.C【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,∵3×5﹣1=14,;5×7﹣3=32;7×9﹣5=58;∴m=13×15﹣11=184.故选C.8.C【分析】根据题中新定义去解答,参考题中例子.【详解】解:由题意得:#,=++a b ab a b#,34343419∴=⨯++=()###.∴==⨯++=34119119119139故选C.【点睛】本题考查新定义问题.9.C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式,x+1是多项式,不是单项式,-2是单项式,3b-是单项式,0.72xy 是单项式,2π是单项式,314x -=3144x -,是多项式,∴单项式有-2、3b-、0.72xy 、2π,共4个,故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.10.C 【解析】试题分析:根据题意得:f (1)=2,f (2)=6,f (3)=2,f (4)=0,f (5)=0,f (6)=2,f (7)=6、f (8)=2,f (9)=0,f (10)=0、f (11)=2,∴末位数字是以2、6、2、0、0这五个数字进行循环,则2012÷5=402……2,则原式=402×(2+6+2+0+0)+2+6=4020+8=4028.考点:规律题.11.D 【分析】根据题中的图可知:0,0,0b a c <>>且a c <,a b c <<根据题干信息进行一一比较.【详解】解:由题意得:0,0,0b a c <>>且a c <,a b c <<中()ab ac a b c +=+,且0b c +>,0ab ac ∴+>正确,故①对;②中0a b c c a b --+=-->,故②正确;③中1111ca b ca b ++=-+=,故③正确;④中()()=a b c b a c a b b c c a --++-=--++-2b -,故④正确;故选D.【点睛】本题主要考查有理数的大小比较法则以及绝对值的性质.12.11【分析】两个数的绝对值相加等于0,那么这两个数分别为0,所以根据题意可以解出正确答案.【详解】解: 一个数的绝对值总是大于等于0,则两个数的绝对值相加等于0,这两个数分别都为0,3080a b -=⎧∴⎨-=⎩进而得出:38a b =⎧⎨=⎩,3811a b ∴+=+=.故答案为11.【点睛】本题主要考查绝对值的非负性.13.128.【分析】根据题意求出a ,再代入关系式即可得出b 的值.【详解】根据题意得:a=3²−(−2)=11,则b=11²−(−7)=128.故答案为:128.14.C 【分析】根据展开图,可的几何体,F 、B 、C 是邻面,F 、B 、E 是邻面,根据F 面在前面,B 面在左面,可得答案.【详解】解:由组成几何体面之间的关系,得F 、B 、C 是邻面,F 、B 、E 是邻面.由F 面在前面,B 面在左面,得C 面在上,E 面在下,故答案为C .【点睛】本题考查几何体的展开图,利用了几何体展开图组成几何体时面与面之间的关系.15.64【解析】试题分析:设小长方形的长为xcm ,宽为ycm ,根据题意得:20=x+3y ,则图②中两块阴影部分周长和是:40+2(16-3y )+2(16-x )=40+64-6y-2x=40+64-2(x+3y )=40+64-40=64(cm )考点:代数式的应用.16.2【分析】除以一个数等于乘上这个数的倒数,有理数四则运算中要先算乘除后算加减.【详解】解:211108225⎛⎫+⨯--÷⎪⎝⎭1108254102102=+⨯-⨯=+-=故答案为:2.【点睛】本题主要考查有理数的四则混合运算.17.197-【分析】先乘方,在乘除,最后算加减,有括号先算括号里面的,同级运算从左到右依次进行计算.【详解】解:()()()3241234212⎡⎤-+-⨯-⨯÷-⎢⎥⎣⎦()8(3)1622183(641)8189197=-+-⨯⨯⨯-=--⨯-=--=-故答案为:197-.【点睛】本题主要考查有理数的乘除和乘方的结合的运算.18.119-【分析】先化简,把同类型进行合并求出最简的结果,再把x 和y 的值分别代入进行求值.【详解】解:22221553x y xy xy x y-+-+22222215351244(3)x y x y xy xy x y xy xy y x =-++-=-+=-把11,23x y =-=代入上式得:1113114(3)4()23329xy y x ⎛⎫-=⨯-⨯⨯+=- ⎪⎝⎭.故答案为:119-.【点睛】本题考查化简求值问题.19.1-【分析】先进行同类型的合并化简,然后对结果进行拆分把已知的223,2a ab b ab +=+=代入进行求值.【详解】解:()222233222a ab b a ab b -+--+2222223322242a ab b a ab b a ab b =-+-+-=--而222222()a ab b a ab b ab --=+-⨯+,∴把223,2a ab b ab +=+=代入上式得:3221-⨯=-.故答案为:1-.【点睛】本题考查化简求值问题.20.(1)2ab -2a -6;(2)b =1.【分析】(1)先化简,然后把A 和B 代入求解;(2)根据题意可得A+3B=(2b-2)a-6与a 的取值无关,即化简之后a 的系数为0,据此求b 值即可.【详解】解:(1)∵A =3a 2-ab -2a ,B =-a 2+ab -2,∴原式=4A -3A +3B =A +3B ,=(3a 2-ab -2a )+3(-a 2+ab -2),=3a 2-ab -2a -3a 2+3ab -6=2ab -2a -6.(2)∵A +3B =(2b -2)a -6与a 的取值无关,∴2b -2=0,解得b =1.【点睛】考查了整式的加减,解答本题的关键是掌握去括号法则以及合并同类项法则.21.(1)224x a -(2)22482x r x r r ππ--+,(3)42m +【分析】(1)剩余部分的面积=大正方形的面积-4个小正方形的面积;(2)利用分割法、周长的定义求解即可;(3)利用线段的和差定义计算即可;【详解】解:(1)由题意得:剩余部分的面积为224x a -,故答案为224x a -;(2)剩余部分的面积为22x r π-,剩余部分图形的周长为482x r r π-+;故答案为22x r π-,482x r r π-+;(3)外框的边长为132(1)422m m m +⨯+=+;【点睛】本题主要考查对代数式的理解和应用.22.(1)﹣1,1,0;(2)见解析;(3)AB ﹣BC 的值为1.【分析】(1)根据题意可得(2)在数轴上直接标出.(3)先求出AB ,BC 的值,再计算AB-BC 的值,可得AB-BC 的值是定值.【详解】(1)由题意可得a =﹣1,b =1,c =﹣1+1=0(2)(3)∵BC =(1+5t )﹣(0﹣t )=1+6t,AB =(1+5t )﹣(﹣1﹣t )=2+6t∴AB ﹣BC =2+6t ﹣(1+6t )=1,∴AB ﹣BC 的值不会随着时间的变化而改变,AB ﹣BC 的值为1.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,解决本题的关键是要数形结合.。
2020-2021学年广东省深圳市宝安区七年级(上)期中数学试卷 解析版
2020-2021学年广东省深圳市宝安区七年级(上)期中数学试卷一、选择题(共12小题,满分36分,每小题3分)1.﹣3的相反数是()A.﹣3B.3C.D.2.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.3.检测足球质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,如图,下列四个足球中最接近标准质量的是()A.B.C.D.4.下列计算正确的是()A.2a+b=2ab B.3x2﹣x2=2C.7mn﹣7nm=0D.a+a=a25.地球上的海洋面积约为361000000km2,这个数用科学记数法表示为()km2.A.361×106B.36.1×107C.3.61×108D.0.361×109 6.在﹣(﹣8),(﹣1)2020,﹣32,﹣|﹣1|,﹣中,负数共有()A.4个B.3个C.2个D.1个7.如图,数轴上点A,B分别对应有理数a,b,则下列结论正确的是()A.a>b B.|a|>|b|C.a+b>0D.﹣a>b8.当x﹣3y﹣5=0,则6y﹣2x﹣6的值为()A.﹣4B.16C.4D.﹣169.下列说法,正确的有()(1)整数和分数统称为有理数;(2)任何有理数都有倒数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.A.1个B.2个C.3个D.4个10.若多项式ax2+2x﹣y2﹣7与x2﹣bx﹣3y2+1的差与x的取值无关,则a﹣b的值为()A.1B.﹣1C.3D.﹣311.深圳某旅行社组织游客到广西桂林旅游,他们要乘船参观桂林山水,若旅行社租用8座的船x艘,则余下6人无座位;若租用12座的船则可少租用1艘,且最后一艘还没坐满,则乘坐最后一艘12座船的人数是()A.18﹣4x B.6﹣4x C.30﹣4x D.18﹣8x12.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=()A.14B.16C.17D.18二、填空题(共4小题,满分12分,每小题3分)13.已知单项式﹣3x3y n与5x m+4y3是同类项,则m﹣n的值为.14.若|a﹣1|+(b+2)2=0,则(a+b)2021的值是.15.如图是一块长为a,宽为b(a>b)的长方形空地,空白处是两个半圆,要将阴影部分绿化,则绿化面积是(答案保留π).16.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2020次输出的结果为.三.解答题(共7小题,满分52分)17.(16分)计算.(1)17+(﹣23)﹣(﹣2);(2)﹣2÷(﹣2)×(﹣4.5);(3)(﹣﹣)×(﹣48);(4)﹣22÷(﹣1)2020﹣|﹣7|×5.18.(5分)先化简,再求值:7x2y﹣2(2x2y﹣3xy2)﹣(﹣4x2y﹣xy2),其中x=﹣2,y=1.19.(6分)如图是由若干块小正方体积木堆成的几何体请分别画出从正面、左面、上面所看到的几何体的形状图.20.画出数轴,在数轴上表示下列各数,并用“<”将它们连接起来.﹣(﹣),﹣3.5,0,|﹣3|,﹣22,﹣1.21.(6分)某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过这6天,仓库里的粮食是增加了还是减少了?(2)经过这6天,仓库管理员结算时发现库里还存300吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨6元,那么这6天要付多少装卸费?22.(7分)某市出租车的计价标准为:行驶路程不超过3千米收费10元,超过3千米的部分按每千米2.4元收费.(1)若某人乘坐了x(x>3)千米,则他应支付车费元.(用含有x的代数式表示);(2)一出租车公司坐落于东西向的大道边,驾驶员王师傅从公司出发,在此大道上连续接送4批客人,行驶路程记录如下(规定向东为正,向西为负,单位:千米)第1批第2批第3批第4批+1.6﹣9+2.9﹣7①送完第4批客人后,王师傅在公司的边(填“东”或“西”),距离公司千米的位置;②在整个过程中,王师傅共收到车费元;③若王师傅的车平均每千米耗油0.1升,则送完第4批客人后,王师傅用了多少升油?23.(9分)如图,已知数轴上原点为O,点B表示的数为﹣2,A在B的右边,且A与B 的距离是5,动点P从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,动点Q从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,设运动时间为t(t>0)秒.(1)写出数轴上点A表示的数,与点A的距离为3的点表示的数是.(2)点P表示的数(用含t的代数式表示),点Q表示的数(用含t的代数式表示).(3)问点P与点Q何时到点O距离相等?2020-2021学年广东省深圳市宝安区七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,满分36分,每小题3分)1.﹣3的相反数是()A.﹣3B.3C.D.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.3.检测足球质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,如图,下列四个足球中最接近标准质量的是()A.B.C.D.【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵|+0.9|=0.9,|﹣3.6|=3.6,|﹣0.8|=0.8,|+2.5|=2.5,0.8<0.9<2.5<3.6,∴从轻重的角度看,最接近标准的是﹣0.8.故选:C.4.下列计算正确的是()A.2a+b=2ab B.3x2﹣x2=2C.7mn﹣7nm=0D.a+a=a2【分析】根据合并同类项的法则求解即可求得答案.【解答】解:A、2a+b,不是同类项不能相加,故A选项错误;B、3x2﹣x2=2x2,故B选项错误;C、7mn﹣7nm=0,故C选项正确;D、a+a=2a,故D选项错误.故选:C.5.地球上的海洋面积约为361000000km2,这个数用科学记数法表示为()km2.A.361×106B.36.1×107C.3.61×108D.0.361×109【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:361000000km2=3.61×108km2.故选:C.6.在﹣(﹣8),(﹣1)2020,﹣32,﹣|﹣1|,﹣中,负数共有()A.4个B.3个C.2个D.1个【分析】直接利用有理数的乘方的性质以及绝对值的性质分别化简得出答案.【解答】解:∵﹣(﹣8)=8,(﹣1)2020=1,﹣32=﹣9,﹣|﹣1|=﹣1,﹣=﹣,∴负数共有3个;故选:B.7.如图,数轴上点A,B分别对应有理数a,b,则下列结论正确的是()A.a>b B.|a|>|b|C.a+b>0D.﹣a>b【分析】根据数轴,可以得到a、b的关系,从而可以判断各个选项中的说法是否符合题意.【解答】解:由数轴可得,﹣1<a<0,1<b<2,∴a<b,故选项A不符合题意;|a|<|b|,故选项B不符合题意;a+b>0,正确,故选项C符合题意;﹣a<b,故选项D不符合题意.故选:C.8.当x﹣3y﹣5=0,则6y﹣2x﹣6的值为()A.﹣4B.16C.4D.﹣16【分析】观察所求代数式可知,可以将已知整体代入求代数式的值.【解答】解:由x﹣3y﹣5=0可得x﹣3y=5,∴6y﹣2x﹣6=﹣2(x﹣3y)﹣6=﹣2×5﹣6=﹣10﹣6=﹣16.故选:D.9.下列说法,正确的有()(1)整数和分数统称为有理数;(2)任何有理数都有倒数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.A.1个B.2个C.3个D.4个【分析】按照有理数的分类和绝对值的性质进行判断.【解答】解:(1)整数和分数统称为有理数;正确;(2)0没有倒数;错误;(3)0的绝对值为0;错误;(4)立方等于本身的数是0,1和﹣1.错误.故选:A.10.若多项式ax2+2x﹣y2﹣7与x2﹣bx﹣3y2+1的差与x的取值无关,则a﹣b的值为()A.1B.﹣1C.3D.﹣3【分析】首先列出两个整式差的算式,去括号、合并同类项化简,继而利用多项式与x 无关,得出关于x的同类项系数和为零,进而得出答案.【解答】解:(ax2+2x﹣y2﹣7)﹣(x2﹣bx﹣3y2+1)=ax2+2x﹣y2﹣7﹣x2+bx+3y2﹣1=(a﹣1)x2+(b+2)x+2y2﹣8,∵两个多项式的差与x的取值无关,∴a﹣1=0且b+2=0,解得:a=1,b=﹣2,则a﹣b=1﹣(﹣2)=1+2=3,故选:C.11.深圳某旅行社组织游客到广西桂林旅游,他们要乘船参观桂林山水,若旅行社租用8座的船x艘,则余下6人无座位;若租用12座的船则可少租用1艘,且最后一艘还没坐满,则乘坐最后一艘12座船的人数是()A.18﹣4x B.6﹣4x C.30﹣4x D.18﹣8x【分析】由租用的8座船可求有(8x+6)人,再由12座船的情况可求得:(8x+6)﹣12(x﹣2)=﹣4x+30.【解答】解:∵租用8座的船x艘,则余下6人无座位,∴一共有(8x+6)人,租用12座的船(x﹣1)艘,∵最后一艘还没坐满,最后一艘船坐:(8x+6)﹣12(x﹣2)=﹣4x+30,故选:C.12.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则m+n=()A.14B.16C.17D.18【分析】主视图、俯视图是分别从物体正面、上面看所得到的图形.【解答】解:易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,n=4+3+2=9,m=4+2+1=7,所以m+n=9+7=16.故选:B.二、填空题(共4小题,满分12分,每小题3分)13.已知单项式﹣3x3y n与5x m+4y3是同类项,则m﹣n的值为﹣4.【分析】根据同类项的定义,得出关于m,n的方程,求出m,n的值,然后即可求得m ﹣n的值.【解答】解:∵单项式﹣3x3y n与5x m+4y3是同类项,∴m+4=3,n=3,解得m=﹣1,n=3,∴m﹣n=﹣1﹣3=﹣4.故答案为:﹣4.14.若|a﹣1|+(b+2)2=0,则(a+b)2021的值是﹣1.【分析】直接利用非负数的性质得出a,b的值,进而得出答案.【解答】解:∵|a﹣1|+(b+2)2=0,∴a﹣1=0,b+2=0,解得:a=1,b=﹣2,则(a+b)2021=(1﹣2)2021=﹣1.故答案为:﹣1.15.如图是一块长为a,宽为b(a>b)的长方形空地,空白处是两个半圆,要将阴影部分绿化,则绿化面积是ab﹣πb2(答案保留π).【分析】直接利用矩形面积减去圆的面积进而得出答案.【解答】解:由题意可得,绿化面积是:ab﹣π(b)2=ab﹣πb2.故答案为:ab﹣πb2.16.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2020次输出的结果为3.【分析】根据题目所给的运算程序,计算输出的结果,可以发现输出结果的规律,再计算第2020次输出的结果.【解答】解:根据题意,第1次运算结果为,×48=24,第2次运算结果为,×24=12,第3次运算结果为,=6,第4次运算结果为,=3,第5次运算结果为,5+3=8,第6次运算结果为,=4,第7次运算结果为,=2,第8次运算结果为,=1,第9次运算结果为,5+1=6,第10运算结果为,=3,第11次运算结果为,5+3=8,第12次运算结果为,=4,第13次运算结果为,=2,第14次运算结果为,=1,…输出结果从第3次输出结果为6、3、8、4、2、1循环,因为(2020﹣2)÷6=336…2,所以2020次运算结果为:3.故答案为:3.三.解答题(共7小题,满分52分)17.(16分)计算.(1)17+(﹣23)﹣(﹣2);(2)﹣2÷(﹣2)×(﹣4.5);(3)(﹣﹣)×(﹣48);(4)﹣22÷(﹣1)2020﹣|﹣7|×5.【分析】(1)从左向右依次计算即可.(2)根据乘法交换律、乘法结合律计算即可.(3)根据乘法分配律计算即可.(4)首先计算乘方和绝对值,然后计算乘法、除法,最后计算减法,求出算式的值是多少即可.【解答】解:(1)17+(﹣23)﹣(﹣2)=﹣6+2=﹣4.(2)﹣2÷(﹣2)×(﹣4.5)=﹣2×(﹣4.5)×(﹣)=9×(﹣)=﹣4.(3)(﹣﹣)×(﹣48)=×(﹣48)﹣×(﹣48)﹣×(﹣48)=﹣44+40+14=10.(4)﹣22÷(﹣1)2020﹣|﹣7|×5=﹣4÷1﹣7×5=﹣4﹣35=﹣39.18.(5分)先化简,再求值:7x2y﹣2(2x2y﹣3xy2)﹣(﹣4x2y﹣xy2),其中x=﹣2,y=1.【分析】直接去括号,进而合并同类项,再把x,y的值代入得出答案.【解答】解:7x2y﹣2(2x2y﹣3xy2)﹣(﹣4x2y﹣xy2)=7x2y﹣4x2y+6xy2+4x2y+xy2=7x2y+7xy2,当x=﹣2,y=1时,原式=7×(﹣2)2×1+7×(﹣2)×12=28﹣14=14.19.(6分)如图是由若干块小正方体积木堆成的几何体请分别画出从正面、左面、上面所看到的几何体的形状图.【分析】根据三视图的定义及其分布情况作图可得.【解答】解:如图所示:.20.画出数轴,在数轴上表示下列各数,并用“<”将它们连接起来.﹣(﹣),﹣3.5,0,|﹣3|,﹣22,﹣1.【分析】在数轴上表示出各数,从左到右用“<”连接起来即可.【解答】解:,|﹣3|=3,﹣22=﹣4,如图所示:故:.21.(6分)某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+26,﹣32,﹣15,+34,﹣38,﹣20(1)经过这6天,仓库里的粮食是增加了还是减少了?(2)经过这6天,仓库管理员结算时发现库里还存300吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨6元,那么这6天要付多少装卸费?【分析】(1)根据有理数的加法进行计算即可;(2)根据剩余的加上减少的45吨,可得答案;(3)根据单位费用乘以数量,可得答案.【解答】解:(1)26+(﹣32)+(﹣15)+34+(﹣38)+(﹣20)=﹣45(吨),答:库里的粮食是减少了45吨;(2)300+45=345(吨),答:6天前库里有粮345吨;(3)(26+|﹣32|+|﹣15|+34+|﹣38|+|﹣20|)×6=165×6=990(元),答:这6天要付990元装卸费.22.(7分)某市出租车的计价标准为:行驶路程不超过3千米收费10元,超过3千米的部分按每千米2.4元收费.(1)若某人乘坐了x(x>3)千米,则他应支付车费(2.4x+2.8)元.(用含有x的代数式表示);(2)一出租车公司坐落于东西向的大道边,驾驶员王师傅从公司出发,在此大道上连续接送4批客人,行驶路程记录如下(规定向东为正,向西为负,单位:千米)第1批第2批第3批第4批+1.6﹣9+2.9﹣7①送完第4批客人后,王师傅在公司的西边(填“东”或“西”),距离公司11.5千米的位置;②在整个过程中,王师傅共收到车费64元;③若王师傅的车平均每千米耗油0.1升,则送完第4批客人后,王师傅用了多少升油?【分析】(1)根据题意,可以用含x的代数式表示出某人应支付的车费;(2)①将表格中的数据相加,即可解答本题;②根据题意,可以计算出在整个过程中,王师傅共收到的车费;③根据表格中的数据和题意,可以计算出送完第4批客人后,王师傅用了多少升油.【解答】解:(1)由题意可得,他应支付车费:10+(x﹣3)×2.4=10+2.4x﹣7.2=(2.4x+2.8)元,故答案为:(2.4x+2.8);(2)①(+1.6)+(﹣9)+(+2.9)+(﹣7)=﹣11.5,即送完第4批客人后,王师傅在公司的西边,距公司11.5千米,故答案为:西,11.5;②在整个过程中,王师傅共收到车费:10+[10+(9﹣3)×2.4]+10+[10+(7﹣3)×2.4]=64(元),故答案为:64;③(|+1.6|+|﹣9|+|+2.9|+|﹣7|)×0.1=(1.6+9+2.9+7)×0.1=20.5×0.1=2.05(升),答:送完第4批客人后,王师傅用了2.05升油.23.(9分)如图,已知数轴上原点为O,点B表示的数为﹣2,A在B的右边,且A与B 的距离是5,动点P从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,动点Q从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,设运动时间为t(t>0)秒.(1)写出数轴上点A表示的数3,与点A的距离为3的点表示的数是0或6.(2)点P表示的数(3t﹣2)(用含t的代数式表示),点Q表示的数(﹣4t+3)(用含t的代数式表示).(3)问点P与点Q何时到点O距离相等?【分析】(1)由点B表示的数、AB的长及点A在点B的右边,即可得出点A表示的数,再利用数轴上两点间的距离公式可求出与点A的距离为3的点表示的数;(2)由点P,Q的出发点、运动速度及运动方向,可找出当运动时间为t秒时,点P,Q 表示的数;(3)由点P与点Q到点O距离相等,即可得出关于t的一元一次方程,解之即可得出结论.【解答】解:(1)∵点B表示的数为﹣2,A在B的右边,且A与B的距离是5,∴点A表示的数为﹣2+5=3.∵3﹣3=0,3+3=6,∴与点A的距离为3的点表示的数是0或6.故答案为:3;0或6.(2)当运动时间为t秒时,点P表示的数为3t﹣2,点Q表示的数为﹣4t+3.故答案为:(3t﹣2);(﹣4t+3).(3)依题意,得:|3t﹣2|=|﹣4t+3|,即3t﹣2=﹣4t+3或3t﹣2=4t﹣3,解得:t=或t=1.答:当t=或1时,点P与点Q到点O距离相等.。
广东省深圳外国语学校2019-2020学年七年级上学期期中数学试卷 (含答案解析)
广东省深圳外国语学校2019-2020学年七年级上学期期中数学试卷一、选择题(本大题共11小题,共33.0分)1.一个棱柱有12个面,30条棱,则它的顶点个数为()A. 10B. 12C. 15D. 202.如图,是正方体表面展开图的是()A. B.C. D.3.如图,在数轴上有a、b两个有理数,则下列结论中,正确的是())3>0A. a+b>0B. a−b<0C. a⋅b>0D. (−ab4.太阳与地球之间的平均距离为1个天文单位,1个天文单位约为14960万千米.用科学记数法表示“1个天文单位”正确的是()A. 1.496×108千米B. 0.1496×109千米C. 14.96×107千米D. 1.5×108千米5.按规律排列的一列数:1,−2,4,−8,16…中,第7与第8个数分别为()A. 64,−128B. −64,128C. −128,256D. 128,−2566.下列各对数中,数值相等的是()A. +32与+22B. −23与(−2)3C. −32与(−3)2D. 3×22与(3×2)27.观察下列图形中各数之间的规律,根据观察到的规律得出n的值为()A. 241B. 113C. 143D. 2718.规定一种新运算“☆”,a☆b=a2−2b,则−3☆(−1)的值为()A. 11B. 8C. 7D. −79.在0,−1,−x,13a,3−x,1−x2,1x,−12πxy3,(a−b)2中,是单项式的有()A. 2个B. 3个C. 4个D. 5个10.对正整数n,记n!=1×2×…×n,则1!+2!+3!+⋯+10!的末位数字是().A. 0B. 1C. 3D. 511.已知a=−3,b=−4,c=1,则下列成立的是()A. |a|>|b|>|c|B. |c|>|b|>|a|C. |a|>|c|>|b|D. |b|>|a|>|c|二、填空题(本大题共4小题,共12.0分)12.已知|a|=3,则1−a=______ .13.按一定规律排列的一列数,依次为1,4,7,…,则第n个数是______.14.如图,一个长方体的表面展开图中四边形ABCD是正方形,则原长方体的体积是______ .15.某音像社对外出租的光盘的收费方法是:每张光盘出租后的头两天,每天收0.8元,以后每天收0.5元,那么一张光盘出租n天(n≥2)应收租金________元.三、计算题(本大题共2小题,共15.0分)16.计算:−23÷8−14×(−2)2.17.已知,A=2x2+3xy−2x−1,B=−x2−xy+1,且3A+6B的值与x的取值无关,求y的值.四、解答题(本大题共5小题,共37.0分)18.(1)(12−13−56)×(−24)(2)−10+6×2−1−(−2)3.19.化简求值:12(xy−13xy2)+5(xy2−x2y)−2x2y,其中x=15,y=−5.20.已知M=3a2−2ab+1,N=2a2+ab−2,求M−N.21.将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好被分割为两个长方形,面积分别为S1,S2,已知小长方形纸片的长为a,宽为b,且a>b.(1)当a=9,b=2,AD=30时,请求:①长方形ABCD的面积;②S1−S2的值;(2)当AD=30时,请用含a,b的式子表示S1−S2的值.(3)若AB长度不变,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S1−S2的值总保持不变,则a,b满足的关系是.22.如图,点A、B在数轴上分别表示有理数a、b,在数轴上A、B两点之间的距离AB=|a−b|.回答下列问题:(1)数轴上表示1和−3的两点之间的距离是______ ;(2)数轴上表示x和−3的两点之间的距离表示为______ ;(3)若x表示一个有理数,请你结合数轴求|x−1|+|x+3|的最小值.-------- 答案与解析 --------1.答案:D解析:一个直棱柱有12个面,30条棱,故为十棱柱.根据十棱柱的概念和特点求解即可.本题主要考查的是棱柱的概念,掌握棱柱的概念是解题的关键.解:∵棱柱有12个面,30条棱,∴它是十棱柱.∴十棱柱有20个顶点.故选D.2.答案:C解析:本题考查的是学生的立体思维能力.利用正方体及其表面展开图的特点解题.由平面图形的折叠及正方体的展开图解题.注意:只要有“田”字格的展开图都不是正方体的表面展开图.解:正方体共有11种表面展开图,A、出现了“田”字格,故不能;B、折叠后,不能围成正方体,故不能;C、折叠后,能围成正方体,故能;D、折叠后,不能围成正方体,故不能.故选C.3.答案:D解析:由题意可知b<0<a,故a、b异号,且|a|<|b|,根据有理数加减法法则、有理数的乘法和乘方法则作答.本题考查了利用数轴上的数,右边的数总是大于左边的数,从而确定a,b的大小关系,并且考查了有理数的运算法则.解:由数轴知b<0<a,且|a|<|b|,则A.a+b<0,此选项错误;B.a−b>0,此选项错误;C.ab<0,此选项错误;)3>0,此选项正确;D.(−ab故选:D.4.答案:A解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将14960万千米用科学记数法表示为1.496×108千米.故选A.5.答案:A解析:本题考查数字的变化规律,通过观察、分析、归纳,发现其中的规律,并应用发现的规律解决问题.这组数据的规律是:20,−21,22,−23,24,−25,…即第n个数就是(−1)n+12n−1.由此求得答案即可.解:这组数据的规律是:20,−21,22,−23,24,−25,…即第n个数就是(−1)n+12n−1,所以第7个数为26=64,第8个数为−27=−128.故选:A.6.答案:B解析:解:A、+32=9,+22=4,故A错误;B、−23=−8,(−2)3=−8,故B正确;C、−32=−9,(−3)2=9,故C错误;D、3×22=3×4=12,(3×2)2=62=36.故选:B.依据有理数的运算顺序和运算法则判断即可.本题主要考查的是有理数的乘方,掌握有理数的乘方运算的法则是解题的关键.7.答案:A解析:[分析]先从左到右将每个图形标上序号,再分别观察图形中每个数与序号的关系,以及每个图形中三个数字之间的关系,从而得出n的值.本题主要考查有理数中的数字规律问题,能对图形标序号,找出图形中的数字与序号的关系是解题的关键.[详解]解:①②③从左到右将每个图形标上序号,接下来,分别观察每个图形中的数字与序号的关系:上面的数字等于序号数的2倍减1,∵15=2×8−1,∴最后一个图形位于第⑧个,又∵每个图形中左边的数的规律为:①2=21,②4=22,③8=23,......∴最后一个图形中左边的数m为:28=256;又∵每个图形中右边的数刚好等于左边的数与上边的数的差,∴n=m−15=256−15=241.∴n的值为241.故选A.8.答案:A解析:解:根据题中的新定义得:原式=9+2=11,故选:A.原式利用题中的新定义计算即可把原式化为有理数的混合运算,求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.答案:D解析:解:单项式包括:0,−1,−x,13a,−12πxy3.故选:D.依据单项式的定义解答即可.本题主要考查的是单项式的定义,熟练掌握单项式的定义是解题的关键.10.答案:C解析:解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!⋯10!的数中都含有2×5的积,∴5!⋯10!的末尾数都是0,∴1!+2!+3!+⋯10!的末位数字是3.故选C.11.答案:D解析:本题考查了绝对值和比较有理数的大小的知识点,利用绝对值的定义求出|a|,|b|,|c|再比较大小即可,解:∵a=−3,b=−4,c=1∴|a|=3,|b|=4,|c|=1,∴|b|>|a|>|c|.故选D.12.答案:−2或4解析:本题主要考查了绝对值的定义.利用绝对值的定义可得a=±3,代入即可.解:∵|a|=3,∴a=±3,∴1−a=1−3=−2或1−a=1−(−3)=4,故答案为:−2或4.13.答案:3n−2解析:解:通过观察得出:依次为1,4,7,…,的一列数是首项为1,公差为3的等差数列,所以第n个数为:1+(n−1)×3=3n−2,故答案为:3n−2.观察依次为1,4,7,…,的一列数,分析找出规律,是首项为1,公差为3的等差数列,据此求出第n个数.此题考查的知识点是数字的变化类问题,解题的关键是分析一列数找出规律,按规律求解.14.答案:12cm3解析:解:∵四边形ABCD是正方形,∴AB=AD=AE=4cm,∴立方体的高为:(6−4)÷2=1(cm),∴EF=4−1=3(cm),∴原长方体的体积是:3×4×1=12(cm3).故答案为:12cm3.利用正方形的性质以及图形中标注的长度得出AB=AD=AE=4cm,进而得出长方体的长、宽、高进而得出答案.此题主要考查了几何体的展开图,利用已知图形得出各边长是解题关键.15.答案:(0.5n+0.6)解析:本题考查了列代数式,根据题意找到合适的等量关系是解题的关键.先求出出租后的头两天的租金,然后用“n−2”求出超出两天的天数,进而求出超出两天后的租金,然后用“头两天的租金+超出两天后的租金”解答即可.解:当租了n天(n≥2),则应收钱数:0.8×2+(n−2)×0.5,=1.6+0.5n−1,=0.5n+0.6答:共收租金(0.5n+0.6)元.故答案为(0.5n+0.6).×4=−1−1=−2.16.答案:解:原式=−8÷8−14解析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.答案:解:∵A=2x2+3xy−2x−1,B=−x2−xy+1,∴3A+6B=3(2x2+3xy−2x−1)+6(−x2−xy+1)=6x2+9xy−6x−3−6x2−6xy+6=3xy−6x+3=(3y−6)x+3,由结果与x取值无关,得到3y−6=0,解得:y=2.解析:将A与B代入3A+6B中,去括号合并得到最简结果,根据结果与x取值无关,即可确定出y 的值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.答案:解:(1)(12−13−56)×(−24)=12×(−24)−13×(−24)−56×(−24)=−12+8+20=16;(2)−10+6×2−1−(−2)3=−1+3+8=10解析:(1)根据有理数混合计算顺序计算即可,(2)根据有理数混合计算顺序计算即可.此题考查有理数混合计算,关键是根据有理数混合运算的顺序计算.19.答案:解:原式=12xy−4xy²+5xy²−5x²y−2x²y=12xy+xy²−7x²y,当x=15,y=−5时,原式=12×15×(−5)+15×(−5)²−7×(15)2×(−5)=−12+5+75=−535.解析:本题考查了整式的加减−化简求值的知识点,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.20.答案:解:依题意得:M−N=(3a2−2ab+1)−(2a2+ab−2)=3a2−2ab+1−2a2−ab+2=a2−3ab+3.解析:直接利用整式加减运算法则计算得出答案.此题主要考查了整式的加减,正确去括号合并同类项是解题关键.21.答案:解:(1)①由图可知:长方形ABCD的面积为30×(4×2+9)=510;②S1−S2=(30−9)×4×2−(30−3×2)×9=−48;(2)S1−S2=4b(30−a)−a(30−3b)=120b−4ab−30a+3ab=120b−ab−30a;(3)a=4b.解析:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.(1)①根据长方形的面积公式,直接计算即可;②求出S1和S2的面积,相减即可;(2)用含a、b的式子表示出S1和S2的面积,即可求得结论;(3)用含a、b、AD的式子表示出S1−S2,根据S1−S2的值总保持不变,即与AD的值无关,整理后,让AD的系数为0即可.解:(1)①见答案;②见答案;(2)见答案;(3)∵S1−S2=4b(AD−a)−a(AD−3b),整理,得:S1−S2=(4b−a)AD−ab,∵若AB长度不变,AD变长,而S1−S2的值总保持不变,∴4b−a=0,解得:a=4b.即a,b满足的关系是a=4b.故答案为a=4b.22.答案:(1)4;(2)|x+3|;(3)当x<−3时,|x−1|+|x+3|=1−x−x−3=−2x−2,当−3≤x≤1时,|x−1|+|x+3|=1−x+x+3=4,当x>1时,|x−1|+|x+3|=x−1+x+3=2x+2,在数轴上|x−1|+|x+3|的几何意义是:表示有理数x的点到−3及到1的距离之和,所以当−3≤x≤1时,它的最小值为4.解析:本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.注意分类思想的运用.(1)(2)在数轴上A、B两点之间的距离AB=|a−b|,依此即可求解;(3)根据绝对值的性质去掉绝对值号,然后计算即可得解.解:(1)|1−(−3)|=4;故答案为:4;(2)|x−(−3)|=|x+3|;故答案为:|x+3|;(3)当x<−3时,|x−1|+|x+3|=1−x−x−3=−2x−2,当−3≤x≤1时,|x−1|+|x+3|=1−x+x+3=4,当x>1时,|x−1|+|x+3|=x−1+x+3=2x+2,在数轴上|x−1|+|x+3|的几何意义是:表示有理数x的点到−3及到1的距离之和,所以当−3≤x≤1时,它的最小值为4.。
2018-2019学年北师大版广东省深圳市罗湖区七年级第二学期期中数学试卷 含解析
2018-2019学年七年级第二学期期中数学试卷一、选择题1.计算23x x g 结果是( ) A .52xB .5xC .6xD .8x2.下面的四个图形中,1∠与2∠是对顶角的是( )A .B .C .D .3.一本笔记本5元,买x 本共付y 元,则5和y 分别是( ) A .常量,常量B .变量,变量C .常量,变量D .变量,常量4.某种植物细胞的直径约为0.00012mm ,用科学记数法表示这个数为( )mm . A .41.210⨯B .31210-⨯C .31.210-⨯D .41.210-⨯5.下列运算正确的是( )A .22423m m m +=B .224()mn mn = C .22248m m m =g D .532m m m ÷= 6.下列运算中正确的是( ) A .222()a b a b +=+ B .22()()4a b a b ab +=-+C .(1)(2)2a b ab +-=-D .22()()a b b a a b +-=-7.下列说法中,正确的是( ) A .两条不相交的直线叫做平行线 B .一条直线的平行线有且只有一条C .在同一平面内,若直线//a b ,//a c ,则//b cD .若两条线段不相交,则它们互相平行8.如图,测量运动员跳远成绩选取的是AB 的长度,其依据是( )A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短9.小芳离开家不久,发现把作业忘在家里,于是返回家里找到了作业本再去学校;在如图所示的三个图象中,能近似地刻画小芳离开家的距离与时间的关系的图象是()A.①B.②C.③D.三个图象都不对10.小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早晨,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早晨用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1 B.2 C.3 D.411.已知直线//a b ,将一块含45︒角的直角三角板(90)C ∠=︒按如图所示的位置摆放,若160∠=︒,则2∠的度数是( )A .70︒B .75︒C .80︒D .85︒12.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图1可以得到222()2a b a ab b +=++,那么利用图2所得到的数学等式是( )A .2222()a b c a b c ++=++B .2222()222a b c a b c ab ac bc ++=+++++C .2222()a b c a b b ab ac bc ++=+++++D .2()222a b c a b c ++=++二、填空题(本题共4小题,每小题3分,共12分) 13.若226x x m ++是一个完全平方式,则m 的值是 .14.如果一个角的补角是150︒,那么这个角的余角的度数是 度.15.如果每盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是 . 16.若2(3)()15x x n x mx ++=+-,则m n 的值为 .三、解答题(本题共7小题,其中第17题8分,第18题6分,第19题6分,第20题8分,第21题8分,第22题7分,第23题9分) 17.计算:(1)01(2)2|2|--+--(2)2201820172019-⨯(要求用公式简便计算)18.先化简,再求值:22(2)(2)(2)8a b a b a b b -+--+,其中2a =-,12b =. 19.在方格纸上过C 作线段CE AB ⊥,过D 作线段//DF AB ,且E 、F 在格点上.20.如图1,直线//a b ,100P ∠=︒,155∠=︒,求2∠的度数.现提供下面的解法,请填空,括号里标注理由.解:如图2,过点P 作直线c 平行于直线a , //a c Q (已知)1∴∠=又//a b Q (已知) //c b ∴2∴∠=1234∴∠+∠=∠+∠而34100APB ∠+∠=∠=︒(已知) 12100∴∠+∠=︒(等量代换) 155∠=︒Q2∴∠= ︒- ︒= ︒21.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x (分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是分钟,清洗时洗衣机中的水量是升.(2)进水时y与x之间的关系式是.(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是升.22.将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.纸条的总长度()y cm与白纸的张数x(张)的关系可以用下表表示:白纸张数x(张)1 2 3 4 5 ⋯纸条长度()y cm20 a54 71 b⋯(1)表格中:a=,b=(2)直接写出y与x的关系式;(3)要使粘合后的长方形周长为2028cm,则需要用多少张这样的白纸?23.用四个完全相同的直角三角形(如图1)拼成一大一小两个正方形(如图2),直角三角形的两直角边分别是a、()b a b>,斜边长为7cm,请解答:(1)图2中间小正方形的周长,大正方形的边长为.(2)用两种方法表示图2正方形的面积.(用含a,b,)c S=.(3)利用(2)小题的结果写出a、b、c三者之间的一个等式.(4)根据第(3)小题的结果,解决下面的问题:已知直角三角形的两条腿直角边长分为是8a=,6b=,求斜边c的值、参考答案一、选择题1.计算23x x g结果是()A.52x B.5x C.6x D.8x【分析】直接利用同底数幂的乘法运算法则计算得出答案.解:235=g.x x x故选:B.2.下面的四个图形中,1∠是对顶角的是()∠与2A.B.C.D.【分析】根据对顶角的定义作出判断即可.解:根据对顶角的定义可知:只有C图中的1∠与2∠是对顶角,其它都不是.故选:C.3.一本笔记本5元,买x本共付y元,则5和y分别是()A.常量,常量B.变量,变量C.常量,变量D.变量,常量【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,所以5和y分别是常量,变量,据此判断即可.解:一本笔记本5元,买x本共付y元,则5和y分别是常量,变量.故选:C.4.某种植物细胞的直径约为0.00012mm,用科学记数法表示这个数为()mm.A.4⨯D.4⨯1.210-1.210-⨯C.31.210⨯B.31210-【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n⨯,与较大数a-的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:4=⨯,0.00012 1.210-故选:D .5.下列运算正确的是( )A .22423m m m +=B .224()mn mn = C .22248m m m =g D .532m m m ÷= 【分析】直接利用合并同类项法则以及积的乘方运算法则、 整式的乘除运算分别计算得出答案 .解:A 、22223m m m +=,故此选项错误;B 、2224()mn m n =,故此选项错误;C 、23248m m m =g ,故此选项错误;D 、532m m m ÷=,正确 .故选:D .6.下列运算中正确的是( ) A .222()a b a b +=+ B .22()()4a b a b ab +=-+C .(1)(2)2a b ab +-=-D .22()()a b b a a b +-=-【分析】根据整式的混合运算顺序和运算法则计算可得. 解:A .222()2a b a ab b +=++,此选项错误; B .22()()4a b a b ab +=-+,此选项正确; C .(1)(2)22a b ab a b +-=-+-,此选项错误;D .22()()a b b a a b +-=-+,此选项错误;故选:B .7.下列说法中,正确的是( ) A .两条不相交的直线叫做平行线 B .一条直线的平行线有且只有一条C .在同一平面内,若直线//a b ,//a c ,则//b cD .若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.解:A 、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.8.如图,测量运动员跳远成绩选取的是AB的长度,其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短【分析】利用垂线段最短求解.解:该运动员跳远成绩的依据是:垂线段最短;故选:D.9.小芳离开家不久,发现把作业忘在家里,于是返回家里找到了作业本再去学校;在如图所示的三个图象中,能近似地刻画小芳离开家的距离与时间的关系的图象是()A.①B.②C.③D.三个图象都不对【分析】根据题意可以写出各段中距离随时间的变化如何变化,从而可以解答本题.解:由题意可得,小芳从离开家到发现作业本忘在家里这段中,距离随着时间的增加而增大,小芳发现作业本忘在家里到回到家中这段中,距离随着时间的增大而减小,小芳回到家里到找到作业本这段中,距离随着时间的增加不变,小芳找到作业本到继续去学校这段中,距离随着时间的增加而增大,故选:C.10.小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早晨,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s (米)和小明所用时间t (分钟)的关系图.则下列说法中正确的个数是( ) ①小明吃早晨用时5分钟;②小华到学校的平均速度是240米/分; ③小明跑步的平均速度是100米/分; ④小华到学校的时间是7:05.A .1B .2C .3D .4【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.解:由图象可得,小明吃早晨用时1385-=分钟,故①正确,小华到学校的平均速度是:1200(138)240⨯-=米/分,故②正确, 小明跑步的平均速度是:(1200500)(2013)100-÷-=米/分,故③正确, 小华到学校的时间是7:13,故④错误, 故选:C .11.已知直线//a b ,将一块含45︒角的直角三角板(90)C ∠=︒按如图所示的位置摆放,若160∠=︒,则2∠的度数是( )A .70︒B .75︒C .80︒D .85︒【分析】给图中各角标上序号,由三角形外角的性质及对顶角相等可求出5∠的度数,由5∠的度数结合邻补角互补可求出3∠的度数,由直线//a b 利用“两直线平行,同位角相等”可得出2375∠=∠=︒,此题得解.解:给图中各角标上序号,如图所示.54B ∠=∠+∠Q ,4160∠=∠=︒,45B ∠=︒,54560105∴∠=︒+︒=︒.35180∠+∠=︒Q ,375∴∠=︒.Q 直线//a b ,2375∴∠=∠=︒,故选:B .12.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如利用图1可以得到222()2a b a ab b +=++,那么利用图2所得到的数学等式是( )A .2222()a b c a b c ++=++B .2222()222a b c a b c ab ac bc ++=+++++C .2222()a b c a b b ab ac bc ++=+++++D .2()222a b c a b c ++=++【分析】依据正方形的面积2()a b c =++;正方形的面积222222a b c ab ac bc =+++++,可得等式.解:Q 正方形的面积2()a b c =++;正方形的面积222222a b c ab ac bc =+++++. 2222()222a b c a b c ab ac bc ∴++=+++++.故选:B .二、填空题(本题共4小题,每小题3分,共12分)13.若226x x m ++是一个完全平方式,则m 的值是 3± .【分析】利用完全平方公式的结构特征判断即可m 的值即可.解:226x x m ++Q 是一个完全平方式,29m ∴=,解得:3m =±,则m 的值是3±,故答案为:3±14.如果一个角的补角是150︒,那么这个角的余角的度数是 60 度.【分析】首先求得这个角的度数,然后再求这个角的余角.解:18015030︒-︒=︒,903060︒-︒=︒.故答案为:60︒.15.如果每盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是 32y x = . 【分析】首先求出每支平均售价,即可得出y 与x 之间的关系.解:Q 每盒圆珠笔有12支,售价18元,∴每只平均售价为:18 1.512=(元), y ∴与x 之间的关系是:32y x =. 故答案为:32y x =. 16.若2(3)()15x x n x mx ++=+-,则m n 的值为25 . 【分析】先计算2(3)()(3)3x x n x n x n ++=+++,然后根据22(3)3)15x n x n x mx +++=+-,利用待定系数法求出m 、n 的值.解:2(3)()(3)3x x n x n x n ++=+++Q ,22(3)3)15x n x n x mx ∴+++=+-,3n m ∴+=,315n =-,2m ∴=-,5n =-,21(5)25m n -∴=-=, 故答案为125. 三、解答题(本题共7小题,其中第17题8分,第18题6分,第19题6分,第20题8分,第21题8分,第22题7分,第23题9分)17.计算:(1)01(2)2|2|--+--(2)2201820172019-⨯(要求用公式简便计算)【分析】(1)先根据零指数幂、负整数指数幂、绝对值分别计算求出即可;(2)根据平方差公式即可求出答案.解:(1)原式111222=+-=-; (2)2201820172019-⨯22018(20181)(20181)=--+222201820181=-+1=.18.先化简,再求值:22(2)(2)(2)8a b a b a b b -+--+,其中2a =-,12b =. 【分析】原式利用平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.解:原式2222244484a b a ab b b ab =--+-+=,当2a =-,12b =时,原式4=-. 19.在方格纸上过C 作线段CE AB ⊥,过D 作线段//DF AB ,且E 、F 在格点上.【分析】直接利用网格结合垂线的定义以及平行线的关系得出答案.解:如图所示:CE,DF即为所求.20.如图1,直线//∠的度数.现提供下面的解法,请填P∠=︒,求2a b,100∠=︒,155空,括号里标注理由.解:如图2,过点P作直线c平行于直线a,Q(已知)//a c∴∠=31∠又//Q(已知)a b∴c b//∴∠=21234∴∠+∠=∠+∠而34100∠+∠=∠=︒(已知)APB∴∠+∠=︒(等量代换)12100∠=︒Q155∴∠=︒-︒=︒2【分析】利用平行线的判定和性质解决问题即可.解:如图2,过点P作直线c平行于直线a,Q(已知)a c//∴∠=∠13又//Q(已知)a bc b∴(平行于同一条直线的两条直线平行)//∴∠=∠,24∴∠+∠=∠+∠(等式性质)1234而34100APB∠+∠=∠=︒(已知)∴∠+∠=︒(等量代换)12100Q∠=︒155∴∠=︒-︒=︒21005545故答案为:3∠,平行于同一条直线的两条直线平行,等式性质,100,55,45.21.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是 4 分钟,清洗时洗衣机中的水量是升.(2)进水时y与x之间的关系式是.(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是升.【分析】(1)根据函数图象可以得到洗衣机的进水时间和清洗时洗衣机中的水量;(2)根据函数图象中的数据可以得到进水时y与x之间的关系式;(3)根据题意,可以得到排水结束时洗衣机中的水量.解:(1)由图象可得,洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升,故答案为:4,40;(2)设进水时y与x之间的关系式是y kx=,440k=,得10k=,即进水时y与x之间的关系式是10y x=,故答案为:10y x=;(3)排水结束时洗衣机中剩下的水量是:4018240364-⨯=-=(升),故答案为:4.22.将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.纸条的总长度()y cm与白纸的张数x(张)的关系可以用下表表示:白纸张数x(张)1 2 3 4 5 ⋯纸条长度()y cm20 a54 71 b⋯(1)表格中:a=37 ,b=(2)直接写出y与x的关系式;(3)要使粘合后的长方形周长为2028cm,则需要用多少张这样的白纸?【分析】(1)根据图形可知每增加一张白纸,长度就增加17cm可求a、b的值;(2)x张白纸粘合起来时,纸条长度()y cm在20cm的基础上增加了(1)x-个17cm的长度,依此可得y与x的关系式;(3)依据长方形的周长公式,可得粘合起来总长度为2028(8)2cm-,将1006y=代入(2)中所求的关系式,列方程求得x的值即可.解:(1)白纸张数为2时,纸条长度201737a=+=;白纸张数为5时,纸条长度2041788b=+⨯=;故答案为:37;88.(2)由题意知y与x的关系式为:2017(1)y x=+-,化简,得173y x=+;(3)粘合后的长方形周长为2028cm 时,2028810062y =-=, 当1006y =时,1731006x +=,解得:59x =,所以,需要用59张这样的白纸. 23.用四个完全相同的直角三角形(如图1)拼成一大一小两个正方形(如图2),直角三角形的两直角边分别是a 、()b a b >,斜边长为7cm ,请解答:(1)图2中间小正方形的周长 4c ,大正方形的边长为 .(2)用两种方法表示图2正方形的面积.(用含a ,b ,)c S = .(3)利用(2)小题的结果写出a 、b 、c 三者之间的一个等式 .(4)根据第(3)小题的结果,解决下面的问题:已知直角三角形的两条腿直角边长分为是8a =,6b =,求斜边c 的值、【分析】(1)根据正方形周长公式即可解答;(2)根据正方形的面积公式以及三角形的面积公式即可解答;(3)根据完全平方公式可得222a b c +=;(4)根据(3)的结论计算即可.解:(1)图2中间小正方形的周长4c ,大正方形的边长为44a b +, 故答案为:4c ;44a b +;(2)图2正方形的面积2()S a b =+或22S ab c =+, 故答案为:2()a b +或22ab c +;(3)222()2a b a ab b +=++Q ,222∴+=.a b c故答案为:222+=a b c(4)2222286100=+=+=Q,c a b∴=(负值不合题意,舍去).10c。
2019-2020学年度七下数学期中考试试题(含答案解析)
2019-2020学年度七下数学期中考试试题一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等2.(3分)在下列所给出坐标的点中,在第二象限的是()A.(2,6)B.(﹣2,5)C.(﹣5,﹣3)D.(2,﹣1)3.(3分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.4.(3分)在﹣1,14,0.101001000100001L,3,3.14159,,2,这7个数中,无理数共有()A.4个B.3个C.2个D.1个5.(3分)1.下列选项中能由左图平移得到的是()A. B. C. D.6.(3分)若点P在x轴的下方,y轴的右方,到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)7.(3+1的值在哪两个整数之间()A.5和6B.6和7C.7和8D.8和98.(3分)7. 小明同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元,设1元和2元的贺卡张数分别为x 张和y 张,则下列方程组正确的是()A.1028yxx y⎧+=⎪⎨⎪+=⎩B.822210x yx y⎧+=⎪⎨⎪+=⎩C.1028x yx y+=⎧⎨+=⎩D.8210x yx y+=⎧⎨+=⎩9.(3分)如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42B.96C.84D.4810.(3分)如图,一个质点在第一象限及x轴、y轴上运动,在第一秒时,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)•••,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9)B.(9,0)C.(0,8)D.(8,0)二.填空题(3×6=18分)11.(3的平方根是.12.(3分)已知3x+2y=1,用含x的代数式表示y:.13.(3b=,则ab=.14.(3分)∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.15.(3分).已知x3x-2111y y==⎧⎧⎨⎨==⎩⎩或都是ax+by=7的解,则a=_______,b=______.16.(3分)如图,一个面积为40cm2的正方形与另一个小正方形并排放在一起,则△ABC 的面积是cm2.三.解答题(共72分)17.(8分)计算:(1)21(2)--;(2218.(10分)解方程(组):(1)9x2=16(2){2m+3n=1①7m+6n=8②.19.(8分)将△ABC向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A′B′C′.(2)求出△A′B′C′的面积.20.(8分)阅读下列解题过程,然后解答后面的问题.如图①,已知AB∥CD,∠B=35°,∠D=32°,求∠BED的度数.解:过E作EF∥AB.∵AB∥CD,∴CD∥EF.∵AB∥EF,∴∠1=∠B=35°.又∵CD∥EF,∴∠2=∠D=32°,∴∠BED=∠1+∠2=35°+32°=67°.如图②、图③,是明明设计的智力拼图玩具的一部分,现在明明遇到两个问题,请你帮他解决.(1)如图②,已知∠D=30°,∠ACD=65°,为了保证AB∥DE,∠A应多大?(2)如图③,要使GP∥HQ,则∠G,∠GFH,∠H之间有什么关系?21.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF又∵∠AGB=(对顶角相等)∴∠EHF=∠DGF∴DB∥EC(____________)∴∠C=∠DBA(____________)又∵∠C=∠D∴∠DBA=∠D(___________)∴DF∥(_______________)∴∠A=∠F(_____________).22.(10分)如图,CD⊥AB于D,且CD平分∠BCA,点F是BC上任意一点,FE⊥AB 于E,且∠1=∠2,∠3=80°,CD平分∠BCA(1)证明:∠B=∠ADG;(2)求∠2的度数.23.(10分)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如注:获利24.(12分)如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点建立一个平面直角坐标系,并用t表示出在处在不同线段上P点的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在请求出P点坐标.若不存在请说明理由.2019-2020学年度七下数学期中考试试题(答案解析)一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等【分析】根据命题的定义即可求解.【解答】解:根据命题的定义可以判断A、B、C不是命题,故选:D.【点评】本题考查了命题的定义。
广东省深圳市福田区红岭中学石厦分校2019-2020学年第二学期七年级期中考试数学试卷 (解析版)
2019-2020学年广东省深圳市福田区红岭中学石厦分校七年级第二学期期中数学试卷一、选择题1.下列各式计算正确的是()A.2a3﹣a3=2B.a3•a2=a6C.a6÷a3=a3D.(a3)2=a9 2.若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6B.m=1,n=﹣6C.m=1,n=6D.m=5,n=﹣6 3.下列各式中能用平方差公式计算的是()A.(3x﹣5y)(﹣3x﹣5y)B.(1﹣5m)(5m﹣1)C.(﹣x+2y)(x﹣2y)D.(﹣a﹣b)(b+a)4.最薄的金箔的厚度为0.000000091m,将0.000000091用科学记数法表示为()A.9.1×108B.9.1×109C.9.1×10﹣8D.9.1×10﹣95.如果x2+8x+m2是一个完全平方式,那么m的值是()A.4B.﹣4C.±4D.±86.长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=12﹣x2C.y=(12﹣x)•x D.y=2(12﹣x)7.如图,下列条件中不能判定AB∥CD的是()A.∠1+∠4=180°B.∠2=∠6C.∠5+∠6=180°D.∠3=∠58.如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°9.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.411.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm3,则R=()A.4cm B.5cm C.6cm D.7cm12.某星期天小李步行去图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.二、填空题(每小题3分,共12分)13.已知变量x、y满足下面的关系x…﹣2﹣1012…y…﹣6﹣3036…则x、y之间用关系式表示为y=.14.若2m=3,4n=8,则23m﹣2n+3的值是.15.若(7x﹣a)2=49x2﹣bx+9,则|a+b|=.16.如图,AB∥ED,∠CAB=135°,∠ACD=75°,则∠CDE=度.三、解答题(共7题,共52分)17.(16分)计算(1)﹣23+×(2005+3)0﹣(﹣)﹣2(2)(﹣2x2y)2•3xy÷(﹣6x2y)(3)(2x+3y)(3y﹣2x)+(x﹣3y)(x+3y)(4)(2x+y+1)(1﹣2x﹣y)18.先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣1,y=3.19.已知|5﹣xy|+(x+y﹣7)2=0,求x2+y2﹣xy的值.20.在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(),∴AB∥CD()∴∠B=∠DCE()又∵∠B=∠D(),∴∠DCE=∠D()∴AD∥BE()∴∠E=∠DFE()21.如图,图象L1反映了某公司产品的销售收入与销售量之间的关系,图象L2反映了某公司产品的销售成本与销售量之间的关系,则:(1)当销售量为2吨时,销售收入为多少元?销售成本呢?此时公司是赢利还是亏损?(2)当销售量等于多少时该公司收入等于销售成本?(3)当销售量在什么范围内时,该公司亏损?(4)要使公司赢利,你对公司有何建议?22.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB 与CD有怎样的位置关系?23.如图,长方形ABCD,AB=CD=4,BC=AD=8,∠A=∠B=∠C=∠D=90°,E 为CD边的中点,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E 运动到E点停止,设点P经过的路程为x,△APE的面积为y.(1)当x=5时,在图1中画出草图,并求出对应y的值;(2)利用备用图画出草图,写出y与x之间的关系式.参考答案一、选择题(每小题3分,共36分)1.下列各式计算正确的是()A.2a3﹣a3=2B.a3•a2=a6C.a6÷a3=a3D.(a3)2=a9【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.解:A、2a3﹣a3=a3,故本选项错误;B、a3•a2=a3+2=a5,故本选项错误;C、a6÷a3=a6﹣3=a3,故本选项正确;D、(a3)2=a3×2=a6,故本选项错误.故选:C.2.若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6B.m=1,n=﹣6C.m=1,n=6D.m=5,n=﹣6【分析】先根据多项式乘以多项式的法则计算(y+3)(y﹣2),再根据多项式相等的条件即可求出m、n的值.解:∵(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴y2+my+n=y2+y﹣6,∴m=1,n=﹣6.故选:B.3.下列各式中能用平方差公式计算的是()A.(3x﹣5y)(﹣3x﹣5y)B.(1﹣5m)(5m﹣1)C.(﹣x+2y)(x﹣2y)D.(﹣a﹣b)(b+a)【分析】由能由平方差公式运算的多项式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,即可求得答案.注意排除法在解选择题中的应用.解:A、(3x﹣5y)(﹣3x﹣5y)=﹣(3x﹣5y)(3x+5y)存在相同的项与互为相反数的项,故能用平方差公式计算.故本选项正确;B、(1﹣5m)(5m﹣1)=﹣(1﹣5m)(1﹣5m)两项都是相同,故不能用平方差公式计算.故本选项错误;C、(﹣x+2y)(x﹣2y)=﹣(x﹣2y)(x﹣2y)两项都是相同,故不能用平方差公式计算.故本选项错误;D、(﹣a﹣b)(b+a)=﹣(a+b)(b+a)两项都是相同,故不能用平方差公式计算.故本选项错误;故选:A.4.最薄的金箔的厚度为0.000000091m,将0.000000091用科学记数法表示为()A.9.1×108B.9.1×109C.9.1×10﹣8D.9.1×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 0000 91=9.1×10﹣8,故选:C.5.如果x2+8x+m2是一个完全平方式,那么m的值是()A.4B.﹣4C.±4D.±8【分析】利用完全平方公式的结构特征判断即可求出m的值.解:∵x2+8x+m2是一个完全平方式,∴m2=16,解得:m=±4.故选:C.6.长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=12﹣x2C.y=(12﹣x)•x D.y=2(12﹣x)【分析】先得到长方形的另一边长,那么面积=一边长×另一边长.解:∵长方形的周长为24cm,其中一边为x(其中x>0),∴长方形的另一边长为12﹣x,∴y=(12﹣x)•x.故选:C.7.如图,下列条件中不能判定AB∥CD的是()A.∠1+∠4=180°B.∠2=∠6C.∠5+∠6=180°D.∠3=∠5【分析】选项A中可得出∠1=∠5,从而判定AB∥CD;选项B中可得出∠4=∠6,从而判定AB∥CD;选项C中可得出∠4=∠6,从而判定AB∥CD;选项D中对顶角相等,不能判定AB∥CD.解:A、∵∠1+∠4=180°,∠5+∠4=180°,∴∠1=∠5,∴AB∥CD,不符合题意;B、∵∠2=∠4,∠2=∠6,∴∠4=∠6,∴AB∥CD,不符合题意C、∵∠5+∠4=180°,∠5+∠6=180°,∴∠4=∠6,∴AB∥CD,不符合题意D、对顶角相等,不能判定AB∥CD,符合题意.故选:D.8.如图,AB∥DE,∠E=65°,则∠B+∠C=()A.135°B.115°C.36°D.65°【分析】先根据平行线的性质先求出∠BFE,再根据外角性质求出∠B+∠C.解:∵AB∥DE,∠E=65°,∴∠BFE=∠E=65°.∵∠BFE是△CBF的一个外角,∴∠B+∠C=∠BFE=∠E=65°.故选:D.9.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°【分析】根据平行线的性质分别判断得出即可.解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同位角,故选:B.10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.4【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.11.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm3,则R=()A.4cm B.5cm C.6cm D.7cm【分析】表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.解:依题意得:8π(R+2)2﹣8πR2=192,解得r=5.故选:B.12.某星期天小李步行去图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.【分析】依题意可得小李步行速度匀速前进,然后中途因为遇到一个红灯停下来耽误了几分钟,然后加快速度但还是保持匀速前进,可把图象分为3个阶段.解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.二、填空题(每小题3分,共12分)13.已知变量x、y满足下面的关系x…﹣2﹣1012…y…﹣6﹣3036…则x、y之间用关系式表示为y=3x.【分析】观察这几组数据,找到其中的规律,然后再答案中找出符合要求的关系式.解:观察图表可知,每对x,y的对应值,y是x的3倍,故y与x之间的函数关系式:y=3x.故答案为:3x.14.若2m=3,4n=8,则23m﹣2n+3的值是27.【分析】根据同底数幂的除法,幂的乘方的性质的逆运用先表示成已知条件的形式,然后代入数据计算即可.解:∵2m=3,4n=8,∴23m﹣2n+3=(2m)3÷(2n)2×23,=(2m)3÷4n×23,=33÷8×8,=27.故答案为:27.15.若(7x﹣a)2=49x2﹣bx+9,则|a+b|=45.【分析】先将原式化为49x2﹣14ax+a2=49x2﹣bx+9,再根据各未知数的系数对应相等列出关于a、b的方程组,求出a、b的值代入即可.解:∵(7x﹣a)2=49x2﹣bx+9,∴49x2﹣14ax+a2=49x2﹣bx+9,∴﹣14a=﹣b,a2=9,解得a=3,b=42或a=﹣3,b=﹣42.当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45.故答案为45.16.如图,AB∥ED,∠CAB=135°,∠ACD=75°,则∠CDE=30度.【分析】过C作CF∥AB,根据平行线性质得出∠ACF+∠CAB=180°,∠CDE=∠FCD,求出∠ACF,求出∠DCF即可.解:过C作CF∥AB,∵DE∥AB,∴AB∥CF∥DE,∴∠ACF+∠CAB=180°,∠CDE=∠FCD,∵∠CAB=135°,∴∠ACF=45°,∵∠ACD=75°,∴∠FCD=30°,∴∠EDC=30°,故答案为:30.三、解答题(共7题,共52分)17.(16分)计算(1)﹣23+×(2005+3)0﹣(﹣)﹣2(2)(﹣2x2y)2•3xy÷(﹣6x2y)(3)(2x+3y)(3y﹣2x)+(x﹣3y)(x+3y)(4)(2x+y+1)(1﹣2x﹣y)【分析】(1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式先利用积的乘方与幂的乘方运算法则计算,再计算单项式乘除单项式法则计算即可求出值;(3)原式利用平方差公式计算,去括号合并即可得到结果;(4)原式利用平方差公式,以及完全平方公式计算即可求出值.解:(1)原式=﹣8+×1﹣9=﹣8+﹣9=﹣16;(2)原式=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(3)原式=9y2﹣4x2+x2﹣9y2=﹣3x2;(4)原式=1﹣(2x+y)2=1﹣(4x2+4xy+y2)=1﹣4x2﹣4xy﹣y2.18.先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣1,y=3.【分析】原式括号中利用完全平方公式,平方差公式计算,合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.解:原式=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3,当x=﹣1,y=3时,原式=﹣2+3﹣3=﹣2.19.已知|5﹣xy|+(x+y﹣7)2=0,求x2+y2﹣xy的值.【分析】根据非负数的性质列出方程得出x、y的关系式,代入所求代数式计算即可.解:根据题意,得∴5﹣xy=0,x+y﹣7=0,∴xy=5,x+y=7,∴x2+y2﹣xy=(x+y)2﹣3xy=49﹣15=34,即x2+y2﹣xy的值是34.20.在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)又∵∠B=∠D(已知),∴∠DCE=∠D(等量代换)∴AD∥BE(内错角相等,两直线平行)∴∠E=∠DFE(两直线平行,内错角相等)【分析】根据平行线的判定和平行线的性质填空.【解答】证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)又∵∠B=∠D(已知),∴∠DCE=∠D(等量代换)∴AD∥BE(内错角相等,两直线平行)∴∠E=∠DFE(两直线平行,内错角相等).21.如图,图象L1反映了某公司产品的销售收入与销售量之间的关系,图象L2反映了某公司产品的销售成本与销售量之间的关系,则:(1)当销售量为2吨时,销售收入为多少元?销售成本呢?此时公司是赢利还是亏损?(2)当销售量等于多少时该公司收入等于销售成本?(3)当销售量在什么范围内时,该公司亏损?(4)要使公司赢利,你对公司有何建议?【分析】横轴代表销售量,纵轴代表收入,销售收入应看L1,销售成本应看L2.(1)当x=2时,所对应L1的纵坐标为2000,所对应L2的纵坐标为3000,所以亏损.(2)销售收入等于销售成本应该看两个函数图象的交点所对应的x的值;(3)该店亏本.应该是销售收入小于销售成本,即L1低于L2高度.(4)降低成本.解:(1)当销售量为2吨时,销售收入为2000元,销售成本为3000元,2000<3000,所以亏损.(2)当销售量为4吨时,该公司收入等于销售成本.(3)当销售量小于4吨时,该公司亏损.(4)要使公司赢利,就得降低成本或加大销售量.22.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB 与CD有怎样的位置关系?【分析】(1)先根据CD∥EF得出∠2=∠BCD,再由∠1=∠2得出∠1=∠BCD,进而可得出结论;(2)根据DG∥BC,∠3=85°得出∠BCG的度数,再由∠DCE:∠DCG=9:10得出∠DCE的度数,由DG是∠ADC的平分线可得出∠ADC的度数,由此得出结论.解:(1)DG∥BC.理由:∵CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)CD⊥AB.理由:∵由(1)知DG∥BC,∠3=85°,∴∠BCG=180°﹣85°=95°.∵∠DCE:∠DCG=9:10,∴∠DCE=95°×=45°.∵DG是∠ADC的平分线,∴∠ADC=2∠CDG=90°,∴CD⊥AB.23.如图,长方形ABCD,AB=CD=4,BC=AD=8,∠A=∠B=∠C=∠D=90°,E为CD边的中点,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→E 运动到E点停止,设点P经过的路程为x,△APE的面积为y.(1)当x=5时,在图1中画出草图,并求出对应y的值;(2)利用备用图画出草图,写出y与x之间的关系式.【分析】(1)画出当x=5时,相应图形,根据图形中各个图形的面积之间的关系求解即可;(2)分三种情况进行解答,即①0<x≤4时,即点P在AB上,②4<x≤12时,即点P 在BC上,③12<x≤14时,即点P在AB上,分别画出相应的图形,根据面积之间的关系,得出y与x之间的关系.解:(1)当x=5时,如图1,则BP=1,∴S△APE=S梯形ABCE﹣S△ABP﹣S△PCE,=(2+4)×8﹣×4×1﹣(8﹣1)×2=24﹣2﹣7=15;答:当x=5时,相应y的值为15(2)分三种情况进行解答,①点P在AB上,即0<x≤4时,如图2,此时AP=x,∴y=S△APE=x×8=4x,②点P在BC上,即4<x≤12时,如图3,此时,BP=x﹣4,PC=12﹣x,∴y=S△APE=S梯形ABCE﹣S△ABP﹣S△PCE,=(2+4)×8﹣×4×(x﹣4)﹣(12﹣x)×2=﹣x+20;③点P在AB上,即12<x≤14时,如图4,此时PE=14﹣x,∴y=S△APE=(14﹣x)×8=﹣4x+56,综上所述,y与x之间的关系式为,y=.。
2019~2020学年第一学期深圳市罗湖外语初中学校七年级期中考试数学试卷及答案
罗湖外语初中学校2019—2020学年第一学期期中考试七年级数学试卷一.选择题(共20小题,每小题1.5分,共30分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,-的相反数是( ) A .-B .C .-D .2.32可表示为( ) A .3×3B .2×2×2C .3×2D .3+33.如图,数轴上蝴蝶所在点表示的数可能为( )A .3B .2C .1D .-14.下列哪个图形经过折叠可以得到正方体( ) A .B .C .D .5.单项式-3x 2y 的系数和次数分别是( ) A .-3和3B .3和-3C .-3和2D .3和26.下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是( )景区 潜山公园 陆水湖 隐水洞 三湖连江 气温 -1℃ 0℃-2℃2℃A .潜山公园B .陆水湖C .隐水洞D .三湖连江7.若等式-2□(-2)=4成立,则“□”内的运算符号是( ) A .×B .-C .+D .÷8.用一平面去截下列几何体,其截面可能是长方形的有( )A .1个B .2个C .3个D .4个9.下列各式中,错误的是( ) A .-|-3|=3B.-|3|=-3C.|-3|=|3|D .|-3|=310.下列各式从左到右正确的是( ) A .-(3x +2)=-3x +2 B .-(-2x -7)=-2x +7 C .-(3x -2)=3x +2D .-(-2x -7)=2x +7252525525211.下列运算正确的是( ) A .a +b =ab B .6a 3-2a 3=4 C .2b 2+3b 3=5b 5D .4a 2b -3ba 2=a 2b12.大米包装袋上(10±0.1)kg 的标识表示此袋大米的重量是合格的,则下列重量合格的是( ) A .9.2kgB .10.1kgC .9.9kgD .10kg13.下列不等式错误的是( ) A .-π<-3.14B .0<|-8|C .<D .-0.618<-14.下列代数式中符号代数式书写要求的有( )①1x 2y ②ab ÷c 2 ③ ④mb 4 ⑤2(m +n )A .1个B .2个C .3个D .4个15.某品牌汽车去年销售a 辆,预计今年销售量增长15%,那么今年可销售( )辆. A .15%a B .a +15%C .1.15aD .1.5a16.在2019年10月份的月历表中,任意框出表中竖列上三个相邻的数(如图,如框出了10,17,24),则这三个数的和不可能的是( )A .30B .40C .45D .5117.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( ) A .a >0,b >0 B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大18.如图,有理数a ,b ,c ,d 在数轴上的对应点分别是A ,B ,C ,D ,若a +c =0,则b +d ( )A .大于0B .小于0C .等于0D .不确定19.已知(2x -3)7=a 0x 7+a 1x 6+a 2x 5+……+a 6x +a 7,则a 0+a 1+a 2+……+a 7=( ) A .1B .-1C .2D .0−127−11335132m ni20.如图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有5个正方形;按这样的规律下去,则第⑥幅图中含有正方形的个数为( )A .61个B .72个C .85个D .91个二.填空题(共10小题,共20分)21.如果向东走3米记作+3米,那么向西邹5米记作______米22.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米.数字55000用科学记数法表示为______ 23.若|a -3|+(b +1)2=0,则a +b 的值是______ 24.已知x -2y +3=8,则整式2x -4y 的值为______ 25.已知2a m b +4a 2b n =6a 2b ,则m +n 为______26.多项式x 2-3kxy -3y 2+xy -8化简后不含xy 项,则k 为______ 27.2+|x +1|有最小值______.28.某公司在销售一种智能机器人时发现,每月可售出300个,当每个降价1元时,可多售出5个,如果每个降价x 元,那么每月可售出机器人的个数是_________29.如图,根据图中的运算程序进行计算,当输入x =4时,输出的结果y 值为_________30.一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位… 则第n 次移动结果这个点在数轴上表示的数为 三.解答题(共6题,共50分)31.有理数的运算(本题共5小题,共15分) (1)6-(-8)+(-9) (2)-(-)+(-)-(+)(3)(-+-)×24 (4)(-3)÷×2×(-5)(5)-22-(-8)÷(-1)3+|(-3)2-10|514223314423167123834。
2019-2020学年广东省深圳市南山区第二外国语学校七年级(上)期中数学试卷
2019-2020学年广东省深圳市南山区第二外国语学校七年级(上)期中数学试卷一、选择题(共12小题)1.(3分)在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.12.(3分)温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为()A.13×108B.1.3×108C.1.3×109D.1.393.(3分)下列计算正确的是()A.﹣2a+5b=3ab B.﹣22+|﹣3|=7C.3ab2﹣5b2a=﹣2ab2D.+()﹣1=﹣14.(3分)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是()A.冷B.静C.应D.考5.(3分)已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6B.6C.﹣9D.96.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2的和是单项式,那么m和n的取值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣27.(3分)若a,b互为相反数,c,d互为倒数,则代数式(a+b﹣1)(cd+1)的值是()A.1B.0C.﹣1D.﹣28.(3分)如图所示,有几滴墨水滴在数轴上,则被墨迹遮住的所有整数的和为()A.﹣11B.1C.﹣15D.﹣69.(3分)已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣510.(3分)下列说法,正确的有()(1)整数和分数统称为有理数;(2)任何有理数都有倒数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.A.1个B.2个C.3个D.4个11.(3分)若多项式ax2+2x﹣y2﹣7与x2﹣bx﹣3y2+1的差与x的取值无关,则a﹣b的值为()A.1B.﹣1C.3D.﹣312.(3分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10B.25=9+16C.36=15+21D.49=18+31二、填空题(共4小题)13.(3分)如果风车顺时针旋转60°记作+60°,那么逆时针旋转25°记作.14.(3分)如果对于任何非零有理数a,b定义一种新的运算“★”如下:a★b=,则﹣4★2的值为.15.(3分)若代数式4x2﹣2x+5的值是7,则代数式2x2﹣x+1的值是.16.(3分)如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是.﹣4a b c6b﹣2…三、解答题(共7小题)17.计算与化简:(1)(2)(3)(4).18.化简(1)(﹣2ab+3a)﹣2(2a﹣b)+2ab;(2)先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2﹣3b2),其中a=﹣1,b=.19.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位)(2)画出该几何体的主视图和左视图.20.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km2km﹣4km﹣3km10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?21.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面长为8,宽为7的长方形盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示设图中小长方形的宽为m.(1)小长方形的长为(用含m的代数式表示);(2)求图②中两块阴影部分周长的和.22.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.23.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=;(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.。
2019-2020学年深圳市七年级上册期末数学试卷与答案
2019-2020学年深圳市七年级上册期末数学试卷一、选择题(共12小题,每小题3分)1.(3分)﹣的相反数是()A.3B.﹣3C .D .﹣2.(3分)PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣6D.2.5×10﹣53.(3分)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为()①正方体;②圆柱;③圆锥;④正三棱柱.A.①②③④B.①③④C.①④D.①②4.(3分)下列方程:①y=x﹣7;②2x2﹣x=6;③m﹣5=m;④=1;⑤=1,其中是一元一次方程的有()A.2个B.3个C.4个D.以上答案都不对5.(3分)如果从甲船看乙船,乙船在甲船的南偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.北偏东30°B.北偏西30°C.北偏东60°D.北偏西60°6.(3分)下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点;⑤连接两点的线段叫做这两点之间的距离.其中正确的个数为()A.1个B.2个C.3个D.4个7.(3分)如果单项式﹣xy b+1与是同类项,那么关于x的方程ax+b=0的解为()A.x=1B.x=﹣1C.x=2D.x=﹣28.(3分)在同一平面上,若∠BOA=62.7°,∠BOC=21°30′,则∠AOC的度数是()A.84.2°B.41.2°C.84.2°或41.2°D.74.2°或39.8°9.(3分)如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于()A.15°B.25°C.35°D.45°10.(3分)两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm11.(3分)阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x =;(2)当a =0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程•a =﹣(x﹣6)无解,则a的值是()A.1B.﹣1C.±1D.a≠112.(3分)如图,正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上二、填空题(共4小题,每小题3分)13.(3分)一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示,这个几何体是由个小立方块搭成的.14.(3分)为了了解我市2018年10000名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体;②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本;④样本容量是200.其中说法正确的有(填序号).15.(3分)如图①,在长方形ABCD中,E点在AD上,并且∠ABE=30°,分别以BE、CE为折痕进行折叠并压平,如图②,若图②中∠AED=n°,则∠DEC的度数为度.16.(3分)一个长方体水箱从里面量得长、宽、高分别是50cm、40cm和30cm,此时箱中水面高8cm,放进一个棱长为20cm的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是cm3.三、解答题(共7小题,共52分)17.计算18.解方程:(1)4x﹣3(20﹣x)=3(2)﹣1=19.先化简,再求值4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1,其中|x+1|+(y﹣2)2=0.20.为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩进行统计,并按照成绩从低到高分成A,B,C,D,E五个小组,绘制统计图如下(未完成),解答下列问题:(1)样本容量为,频数分布直方图中a=;(2)扇形统计图中D小组所对应的扇形圆心角为n°,求n的值并补全频数分布直方图;(3)若成绩在80分以上(不含80分)为优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?21.制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m3木材可制作15个桌面或300个桌腿,公司现有18m3的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?22.如图1,∠AOB=120°,∠COE=60°,OF平分∠AOE(1)若∠COF=20°,则∠BOE=°(2)将∠COE绕点O旋转至如图2位置,求∠BOE和∠COF的数量关系(3)在(2)的条件下,在∠BOE内部是否存在射线OD,使∠DOF=3∠DOE,且∠BOD=70°?若存在,求的值,若不存在,请说明理由.23.已知,数轴上点A、C对应的数分别为a、c,且满足|a+7|+(c﹣1)2020=0,点B对应点的数为﹣3.(1)a=,c=;(2)若动点P、Q分别从A、B同时出发向右运动,点P的速度为3个单位长度/秒;点Q的速度为1个单位长度/秒,求经过多长时间P、Q两点的距离为;(3)在(2)的条件下,若点Q运动到点C立刻原速返回,到达点B后停止运动,点P运动至点C处又以原速返回,到达点A后又折返向C运动,当点Q停止运动点P随之停止运动.求在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数.2019-2020学年深圳市七年级上册期末数学试卷一、选择题(共12小题,每小题3分)1.解:﹣的相反数是,故选:C.2.解:0.0000025=2.5×10﹣6,故选:C.3.解:①立方体截去一个角,截面为三角形,符合题意;②圆柱体只能截出矩形或圆,不合题意;③圆锥沿着中轴线截开,截面就是三角形,符合题意;④正三棱柱从平行于底面的方向截取,截面即为三角形,符合题意;故选:B.4.解:①不符合一元一次方程的定义,①不是一元一次方程,②属于一元二次方程,不符合一元一次方程的定义,②不是一元一次方程,③符合一元一次方程的定义,③是一元一次方程,④属于分式方程,不符合一元一次方程的定义,④不是一元一次方程,⑤符合一元一次方程的定义,⑤是一元一次方程,即是一元一次方程的是③⑤,共2个,故选:A.5.解:∵从甲船看乙船,乙船在甲船的南偏东30°方向,∴从乙船看甲船,甲船在乙船的北偏西30°方向.故选:B.6.解:①经过一点有无数条直线,这个说法正确;②两点之间线段最短,这个说法正确;③经过两点,有且只有一条直线,这个说法正确;④若线段AM等于线段BM,则点M不一定是线段AB的中点,因为A、M、B三点不一定在一条直线上,所以这个说法错误;⑤连接两点的线段的长度叫做这两点之间的距离,所以这个说法错误.所以正确的说法有三个.故选:C.7.解:根据题意得:a+2=1,解得:a=﹣1,b+1=3,解得:b=2,把a=﹣1,b=2代入方程ax+b=0得:﹣x+2=0,解得:x=2,故选:C.8.解:∠AOC=∠BOA+∠BOC=62.7°+21°30′=84.2°,∠AOC=∠BOA﹣∠BOC=62.7°﹣21°30′=41.2°.∴∠AOC的度数是84.2°或41.2°.故选:C.9.解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选:B.10.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.11.解:去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6移项,合并得,x =,因为无解;所以a﹣1=0,即a=1.故选:A.12.解:设乙走x秒第一次追上甲.根据题意,得5x﹣x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y﹣y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505,∴乙在第2020次追上甲时的位置是AD上.故选:D.二、填空题(共4小题,每小题3分)13.解:由俯视图易得最底层小立方块的个数为4,由其他视图可知第二层有一个小立方块,那么共有4+1=5个小立方块.故答案为:5.14.解:①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.15.解:折叠后的图形如下:∵∠ABE=30°,∴∠BEA'=∠BAE=60°,又∵∠CED'=∠CED,∴∠DEC =∠DED',∴∠DEC =(180°﹣∠A'EA+∠AED)=(180°﹣120°+n°)=(30+n)°故答案为:(30+n).16.解:设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10.则水箱中露在水面外的铁块的高度为:20﹣10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案是:4000.三、解答题(共7小题,共52分)17.解:原式=﹣1+16×﹣0.28+0.01=﹣1+2﹣0.28+0.01=﹣1﹣0.28+2+0.01=﹣1.28+2.01=0.7318.解:(1)4x﹣60+3x=37x=63x=9;(2)去分母,得3(3x﹣1)﹣1×12=2(5x﹣7)去括号,得9x﹣3﹣12=10x﹣14移项,得9x﹣10x=3+12﹣14合并同类项,得﹣x=1系数化为1,得x=﹣1.19.解:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y]+1=4x2y﹣6xy+12xy﹣6+x2y+1=5x2y+6xy﹣5∵|x+1|+(y﹣2)2=0,∴x+1=0,y﹣2=0,解得x=﹣1,y=2,∴原式=5×(﹣1)2×2+6×(﹣1)×2﹣5=﹣7.20.解:(1)学生总数是40÷20%=200(人),则a=200×8%=16;故答案为:200;16;(2)n=360×=126°.C组的人数是:200×25%=50.如图所示:;(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.21.解:(1)设用x立方米做桌面,则用(18﹣x)立方米做桌腿.根据题意得:4×15x=300(18﹣x),解得:x=15,则18﹣x=18﹣15=3.答:用15立方米做桌面,用3立方米做桌腿才能使制作的桌面和桌腿配套.(2)15×15=225(张),设每张餐桌的标价是y元,根据题意得:225[0.8y﹣0.8y÷(1+28%)]=31500,解得:y=800.故每张餐桌的标价是800元.22.解:(1)∵∠COE=60°,∠COF=20°,∴∠EOF=60°﹣20°=40°,∵OF平分∠AOE,∴∠AOF=∠EOF=40°,∴∠AOE=80°,∴∠BOE=∠AOB﹣∠AOE=120°﹣80°=40°,故答案为40;(2)∵∠AOE=2∠EOF,∴120°﹣∠BOE=2(60°﹣∠COF)∴∠BOE=2∠COF;(3)存在.理由如下:∵∠DOF=3∠DOE,设∠DOE=α,∠DOF=3α,∴∠EOF=∠AOF=2α,∠AOD=5α,∵∠AOD+∠BOD=120°,∴5α+70°=120°,∴α=10°,∴∠DOF=30°,∠AOE=40°,∠AOC=60°﹣40°=20°,∴∠COF=40°,∴=.23.解:(1)由非负数的性质可得:,∴a=﹣7,c=1,故答案为:﹣7,1.(2)设经过t 秒两点的距离为由题意得:,解得或,答:经过秒或秒P,Q 两点的距离为.(3)点P未运动到点C时,设经过x秒P,Q相遇,由题意得:3x=x+4,∴x=2,表示的数为:﹣7+3×2=﹣1,点P运动到点C返回时,设经过y秒P,Q相遇,由题意得:3y+y+4=2[1﹣(﹣7)],∴y=3,表示的数是:﹣3+3=0,当点P返回到点A时,用时秒,此时点Q所在位置表示的数是,设再经过z秒相遇,由题意得:,∴,∵+=<4+4,∴此时点P、Q均未停止运动,故z=还是符合题意.此时表示的数是:,答:在整个运动过程中,两点P,Q同时到达的点在数轴上表示的数分别是﹣1,0,﹣2.。
人教版2020-2021学年第二学期期中考试试卷七年级数学试题及答案
2020-2021学年第二学期期中考试试卷七年级 数学满分120分,考试时间120分一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中,不正确的是( )A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.过直线外一点,有且只有一条直线和已知直线相交C.同一平面内的两条不相交直线平行D.过直线外一点,有且只有一条直线与已知直线平行 2.某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个 3.下列图形中,由AB CD ∥,能得到12∠=∠的是( )ABCD 4.一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间5.数学课上, 老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30角的三角尺的最短边紧贴;②将含30角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则//.b a 小明这样画图的依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等DCBA DCBA ABCDDC BA21122112A B C D6.下列实数317,π-,3.14159,8,327-,21中无理数有( ). A .个 B .个 C .个 D .个7.方程310x y +=的正整数解有( )A.1组B.3组C.4组D.无数组 8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( )A. (3,4)B. (4,3)C. (3,4)--D. (4,3)-9.《孙子算经》有一道题.大概意思是:用一根绳子去量一根木头的长,绳子还余 4.5 尺, 将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头为 x 尺,绳长为y 尺,则所列方程组正确的是( )A. 4.521y x y x =-⎧⎨=-⎩B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.5+1y x y x =-⎧⎨=⎩D. 4.50.51y x y x =+⎧⎨=-⎩10如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A.(1313),B.(1313)--,C.(1414),D.(1414)--,二.填空题(本大题共8小题,每小题3分,共24分)11.√81的算术平方根是 .12.若(m −2)x n +y |m−1|=0是二元一次方程,则m −n 的值为 .13.如图所示,直线AB 与CD 相交于点O ,:2:3AOC AOD ∠∠= ,则BOD ∠的度数为 .第13题图 第14题图 第15题图14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.如图,已知90ACB ∠=°.CD AB ⊥,垂足为D ,则点A 到直线CB 的距离为线段 的长.2345ODC B A图1DCBAA 11A 12A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1yx16.52-+的绝对值是 .17.如图,AB ∥CD ,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分BEF ∠交直线CD 于点G ,若112GFE ∠=︒,则EGF ∠的度数为第17题图 第18题图18.如图是某种电子产品的主板示意图,每一个转角处都是直角.已知AB=75mm ,BC=90mm ,则该主板的周长是_____mm .三.解答题(本大题共9小题,共66分)19.(8分)(1)计算:(﹣2)2×14+38-+2×(﹣1)2019 (2)解方程:3(x ﹣2)2=27 20.(8分)解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩ ⑵2-3-3-3+42x y x y =⎧⎨=⎩21.(5分) 完成下面的证明.(在序号后面横线上填写合适的内容) 已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF 平分∠BED. 证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EF D =90°(① ) ∴∠ACB +∠EF D=180°∴② (③ ) ∴∠A=∠2.∠3=∠1.(④ ) 又∵∠A=∠1,∴∠2=∠3(⑤ ) ∴EF 平分∠BED.22. (6分)已知一个正数x 的两个不同的平方根为23a -和5a -.求a 和x 的值.23.(6分)方程组3522710x y ax y -=⎧⎨+=-⎩的解x 、y 的值互为相反数,求a 的值.24.(6分)如图1是由8个同样大小的小正方体组成的正方体魔方,体积为8. (1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得点A 与1-重合,那么点D 在数轴上表示的数为多少.25.(7分)七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,200)-,王励说他的坐标是(200,100)--,李华说他的坐标是(300,200)-.(1)请你根据题目条件,在图中画出平面直角坐标系; (2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.26.(8分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与3辆小货车可以一次运货多少吨?27 (12分)在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a )、B(b ,0)满足:21280a b a b --++-=(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-2,t), 如图所示.若三角形ABC 的面积为9,求点D 的坐标.2020-2021学年第二学期期中考试试卷七年级 数学满分120分,考试时间120分一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中,不正确的是( )A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.过直线外一点,有且只有一条直线和已知直线相交C.同一平面内的两条不相交直线平行D.过直线外一点,有且只有一条直线与已知直线平行 【答案】B2.某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个 【答案】C ;3.下列图形中,由AB CD ∥,能得到12∠=∠的是( )ABCD 【答案】B ;4.一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间【答案】A5.数学课上, 老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30角的三角尺的最短边紧贴;②将含30角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则//.b a 小明这样画图的依据是( )DCBA DCBA ABCDDC BA21122112A B C DA .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等 【答案】A 6.下列实数317,π-,3.14159,8,327-,21中无理数有( ). A .个 B .个 C .个 D .个【答案】A7.方程310x y +=的正整数解有( )A.1组B.3组C.4组D.无数组 【答案】B8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( )A. (3,4)B. (4,3)C. (3,4)--D. (4,3)-【答案】C9.《孙子算经》有一道题.大概意思是:用一根绳子去量一根木头的长,绳子还余 4.5 尺, 将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头为 x 尺,绳长为y 尺,则所列方程组正确的是( )A. 4.521y x y x =-⎧⎨=-⎩B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.5+1y x y x =-⎧⎨=⎩D. 4.50.51y x y x =+⎧⎨=-⎩【答案】D10如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A.(1313),B.(1313)--,C.(1414),D.(1414)--,【答案】C2345A 11A 12A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1yx二.填空题(本大题共8小题,每小题3分,共24分)11.√81的算术平方根是 . 【答案】312.若(m −2)x n +y |m−1|=0是二元一次方程,则m −n 的值为 . 【答案】-113.如图所示,直线AB 与CD 相交于点O ,:2:3AOC AOD ∠∠= ,则BOD ∠的度数为 .第13题图 第14题图 第15题图【答案】72︒14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____. 【答案】(-2,-2)15.如图,已知.,垂足为,则点到直线的距离为线段 的长;【答案】AC16.52-+的绝对值是 . 【答案】5-217.如图,AB ∥CD ,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分BEF ∠交直线CD 于点G ,若112GFE ∠=︒,则EGF ∠的度数为第17题图 第18题图 【答案】34°18.如图是某种电子产品的主板示意图,每一个转角处都是直角.已知AB=75mm ,BC=90mm ,90ACB ∠=°CD AB ⊥D A CB ODC B A图1DCBA则该主板的周长是_____mm . 【答案】330三.解答题(本大题共9小题,共66分)19.(8分)(1)计算:(﹣2)2×14+38-+2×(﹣1)2019 (2)解方程:3(x ﹣2)2=27 =4×12+(−2)+(−√2) (x-2)2=9=2−2−√2 x-2=3或x-2=-3 =−√2 x=5或x=-1 20.(8分)解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩ ⑵2-3-3-3+42x y x y =⎧⎨=⎩ 【答案】(1){x =2y =−1 (2){x =6y =521.(5分) 完成下面的证明.已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF 平分∠BED. 证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EF D =90°(①垂直的定义) ∴∠ACB +∠EF D=180°∴②EF ∥AC .(③同旁内角互补,两直线平行) ∴∠A=∠2.∠3=∠1.(④两直线平行,内错角相等) 又∵∠A=∠1, ∴∠2=∠3(⑤等量代换) ∴EF 平分∠BED.22. (6分)已知一个正数x 的两个不同的平方根为23a -和5a -.求a 和x 的值. 解:由题意得:(2a-3)+(5-a)=0,解得:a=-2;x=49. 所以 x=(2a-3)2=(-7)2=49 23.(6分)方程组3522710x y ax y -=⎧⎨+=-⎩的解x 、y 的值互为相反数,求a 的值.解:由题意得:x+y=0,联立方程组{2x +7y =−10x +y =0,解得:{x =2y =−2, 把{x =2y =−2代入3x-5y=2a, 得:2a=16,解得:a=8 24.(6分)如图1是由8个同样大小的小正方体组成的正方体魔方,体积为8.(1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得点A 与1-重合,那么点D 在数轴上表示的数为________. 【答案】(1)设魔方的棱长为x,由x 3=8,解得x=2, 所以魔方的棱长为2;(2)因为魔方的棱长为2,所以魔方每个面的面积为4,正方形ABCD 的面积为魔方每个面的面积的一半,所以阴影部分的面积为2,正方形ABCD 的边长为√2;(3)正方形ABCD 的边长为√2,点A 与1-重合,所以点D 在数轴上表示的数为−1−√2 25.(7分)七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,200)-,王励说他的坐标是(200,100)--,李华说他的坐标是(300,200)-.(1)请你根据题目条件,在图中画出平面直角坐标系; (2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.【答案】(1)根据题意,他们以中心广场为坐标原点,100m 为单位长度建立直角坐标系: y y(2) 张明在游乐园,王励在望春亭,李华在湖心亭; (3)中心广场(0,0),牡丹亭(300,300)26.(8分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与3辆小货车可以一次运货多少吨? 【答案】解:设1辆大货车可以一次运货x 吨, 1辆小货车可以一次运货y 吨. {3x +2y =175x +4y =29 解得:{x =5y =1 2x +y =2×5+1×3=13(吨)所以2辆大货车与3辆小货车可以一次运货13吨.27 (12分)在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a )、B(b ,0)满足:21280a b a b --++-=(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-2,t),如图所示.若三角形ABC 的面积为9,求点D 的坐标.xy【答案】(1)根据题意{2a −b −1=0a +2b −8=0解得:{a =2b =3 所以A 、B 两点的坐标分别为(0,2),(3,0);(2)如图所示,过A 点作x 轴平行线,过B 点作y 轴平行线,过C 点作x 轴,y 轴平行线,交点为P ,Q,R ,根据题意,点C 在第三象限,所以t<0, P(3,t),R(3,2),Q(-2,2),CP=5,CQ=2-t,AQ=2,AR=3,BR=2,BP=- tS ∆ABC =5(2−t )−12×2(2−t )−12×2×3−12×5×(−t )=9, 解得:t =−83所以线段CD 是由线段AB 向左平移2个单位,向下平移143个单位得到的; 所以D 点坐标为(1,-143)PQ1、三人行,必有我师。
2019-2020学年广东省广州市七年级下期中数学试卷及答案解析
2019-2020学年广东省广州市七年级下期中数学试卷
一.选择题(共10小题,满分30分)
1.下列关于0的说法正确的是()
A.0是正数B.0是负数C.0是有理数D.0是无理数
2.7的算术平方根是()
A .
B .±
C .D.49
3.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()
A.20°B.25°C.30°D.35°
4.已知点P(0,a)在y轴的负半轴上,则点Q(﹣a2﹣1,﹣a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限
5.下列各式中,属于二元一次方程的个数是()①xy+2x﹣y=7;②4x+1=x﹣y;③+y =5;④x=y;⑤x2﹣y2=2;⑥6x﹣2y;⑦x+y+z=1;⑧y(y﹣1)=2y2﹣y2+x.
A.1 个B.2 个C.3 个D.4个
6.点A(﹣3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣6,﹣1)D.(0,﹣1)
7.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()
A.∠1=∠3B.如果∠2=30°,则有AC∥DE
C.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C
8.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45
第1 页共19 页。
【3套打包】深圳宝安区崛起双语实验学校初中部七年级下册数学期中考试题
七年级(下)数学期中考试试题(答案)一、选择题(每小题3分,共计30分) 1.下列四个方程是二元次方程的是( )A.x+9=0B.2x-a=7C.3ab=9D.11y x3+=2.以下各组长度的线段为边,能构成三角形的是( )A.1,2,3B.3,4,5C.4,5,11D.8,4,4 3.在数轴上表示不等式x ≥-2的解集 正确的是( ) A.B. C.D.4.下列设备,有利用角形的稳定性的是( )A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架 5.如果a >b ,那么下列不等式国立的是( )A.a-3>b-3B.-3b <-3aC.2a >2bD.-a <-b 6.关于x 、y 的方程组x 2y 3mx y 9m+=⎧⎨-=⎩的解是方程3x+2y=34的一组解,那么m 的值是( )A.1B.-1C.1D.-2 7.边长是整数,周长不大于12的等边三角形的个数是( ) A.1个 B.2个 C.3个 D.4个8.某种植物适宜生长的温度为18C-20C.已知山区海拔每升高100米,气器下降0.55ºC ,现测得山脚下的气温为22ºC ,问该植物种在山上的哪部分为宜? 如果该植物种植在海拔高度为x 米的山区较适宜,则由题意可列出的不等式组为( ) A..x 182205520100≤-⨯≤ B..x 182205520100≤-⨯<C..1822055x 20≤-≤D.x 182220100≤-≤9.如右图,△ABC 中,BD 是∠ABC 的角平分线,DE ∥BD ,交AB 于E ,∠A=60º,∠BDC=95º,则∠BED 的度数是( )A.35ºB.70ºC.110ºD.130º10.下列说法正确的有( )①同平面内,三条线段首尾顺次相接组成的图形三角形;②三角形的外角大于它的内角;③各边都相等的多边形是正多边形;④三角形的中线把三角形分成面积相等的两部分;⑤三角形的三条高交于一点;⑥果个三角形只有一条高在三角形的内部,那么这个三角用一定是钝角三角形A.1个B.2个C.3个D.4个 二、填空题(每小题3分,共计30分)11.已知方程x-2y=8,用含的式子表示y ,则y=____________. 12.不等式4x-3<4的解集中,最大的整数x=____________. 13.若个多边形内角和等于1260º,则该多边形边数是____________. 14.若方程m n 3m 4n x 2y 60+-++=是二元一次方程,则____________.15.已知三形的两边分别为3和5,当周长为,5的倍数时,第三边长为____________. 16.如图△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是___________. 17.关于x 的不等式组3x 515x a 12->⎧⎨+≤⎩有2个整数解,则a 的取值范围是____________.18.如图所示,∠A=100º,作BC 的延长线CD ,∠ABC 与∠ACD 的角平分线相交于A 1,∠A 1BC 与∠A 1CD 的角平分线相交于A 2...以此类推,∠A 5BC 与∠A 5CD 的角平分线相交于A 6,则∠A 6=__________.2A16题18题20题19.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________. 20.如图,AC ⊥BD ,AF 平分∠BAC ,DF 平∠EDB ,∠BED=100º,则∠F 的度数是___________. 21.(本题8分) 解二元一次方程组:()2x y 313x 2y 8-=⎧⎨+=⎩ ()()x y 32433x 2y 120⎧+=⎪⎨⎪--=⎩(1)解一元一次不等式52x x 247x 15210-+--<-(2)解不等式组并把它的解集在数轴上表示出来 (2x 1x 53x 22x 3+<⎧⎨+≥-⎩)+23.(本题6分)如图,在10×10的网格中的每个小正方形边长都是1,线段交点称作格点。
广东省深圳市实验学校坂田校区2023-2024学年七年级下学期期中数学试题
广东省深圳市实验学校坂田校区2023-2024学年七年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式中,计算结果为10m 的是( )A .25•m mB .55m m +C .202m m ÷D .()52m 2.“碧玉妆成一树高,万条垂下绿丝绦”.每到春天,人们流连于柳绿桃红之间的同时也被漫天飞舞的柳絮所烦扰.据测定,柳絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( )A .51.0510⨯B .51.0510-⨯C .51.0510-⨯D .710510-⨯ 3.1∠与2∠互为余角.若130∠=︒,则2∠=( )A .30︒B .60︒C .70︒D .150︒4.下列生活实例中,数学原理解释错误..的是( ) A .测量两棵树之间的距离,要拉直皮尺,应用的数学原理是:两点之间,线段最短 B .用两颗钉子就可以把一根木条固定在墙上,应用的数学原理是:两点确定一条直线 C .测量跳远成绩,应用的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短D .从一条河向一个村庄引一条最短的水渠,应用的数学原理是:在同一平面内,过一点有且只有一条直线与已知直线垂直5.如图,折线A B C D ---是一条灌溉水渠,水渠从A 村沿北偏东65︒方向到B 村,从B 村沿北偏西35︒方向到C 村,若从C 村修建的水渠CD 与AB 方向一致,则DCB ∠的大小为( )A .30︒B .65︒C .80︒D .100︒6.若2x -与x m -乘积中不含x 的一次项,则m 的值为( )A .0B .1C .2-D .27.如图,图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法,其中正确的说法是( )A .汽车共行驶了120千米B .汽车在整个行驶过程中平均速度为40千米C .汽车返回时的速度为80千米/时D .汽车自出发后1.5小时至2小时之间速度不变 8.如果2230m m --=,那么代数式()()()2332m m m +-+-的值为( )A .0B .1-C .1D .3 9.如图,已知AB CD PN ∥∥,50,150ABC CPN ∠=︒∠=︒,则BCP ∠的度数为( )A .50︒B .40︒C .30︒D .20︒10.为了亮化某景点,石家庄市在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转,B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°,B 灯先转动2秒,A 灯才开始转动,当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是( )A .1或6秒B .8.5秒C .1或8.5秒D .2或6秒二、填空题11.计算:101(2023)2π-⎛⎫-+-= ⎪⎝⎭. 12.一个角比它的补角小12︒,则这个角的度数为︒.13.已知48,16m n m a a +==,则2n a =.14.如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s 时注满水槽,水槽内水面的高度()y cm 与注水时间()x s 之间的函数图像如图2所示.如果将正方体铁块取出,又经过秒恰好将水槽注满.15.如图,将长方形ABCD 沿EF 翻折,再沿ED 翻折,若105FEA ''∠=︒,则∠=CFE 度.三、解答题16.计算:(1)()()()22245369xy x y x y -⋅-÷;(2)()()()2323x y x y x y x -+-+.17.若2(2)20x y y -+-=,求代数式()()()()2242x y y x y x y x ⎡⎤+---+÷-⎣⎦的值.18.如图,某体育训练基地,有一块长()35a b -米,宽()a b -米的长方形空地,现准备在这块长方形空地上建一个长a 米,宽()2a b -米的长方形游泳池,剩余四周全部修建成休息区.(结果需要化简)(1)求长方形游泳池面积;(2)求休息区面积;(3)比较休息区与游泳池面积的大小关系.19.某学校自主研制了一种椅子(实物如图所示),可适应上课、课间休息、午睡三种状态,该椅子的凳面始终与地面保持平行,小明作出了椅子在不同状态下的主视图.上课时椅背与凳面垂直,腿托AD 与凳面成70︒夹角(如图1),有利于学生坐直听课.按下开关1,轴1(安装在点B 处)可以控制椅背以9/s ︒顺时针旋转,按下开关2,轴2(安装在点A 处)可以控制腿托以10/s ︒顺时针旋转.(1)课间可将椅背稍微调整一定的角度(如图2)作短时休息,此时腿托与椅背平行舒适度更佳,请作出此时腿托AD 所在的直线;(要求:尺规作图,保留作图痕迹)(2)如图3,按下开关1,使椅背从与発面垂直时的状态顺时针旋转54︒,此时测得27BCN ∠=︒,求CNM ∠的度数;20.知识生成:我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到222()2a b a ab b +=++,基于此,请解答下列问题:(1)直接应用:若7,5xy x y =+=,直接写出22x y +的值______;(2)类比应用:填空:①若()34x x -=,则22(3)x x +-=______;②若()()201920232x x --=,则22(2019)(2023)x x -+-=_______;(3)知识迁移,两块完全相同的特制直角三角板(90AOB COD ∠=∠=︒)如图2所示放置,其中A ,O ,D 在一直线上,连接AC ,BD ,若16,60AOC BOD AD S S =+=△△,求一块三角板的面积.21.已知动点P 从点A 出发沿图1的边框(边框拐角处都互相垂直)按A B C D E F →→→→→的路径移动,相应的AHP △的面积()2cm y 与移动路程()cm x 的关系图象如图2,若2cm AH =,根据图象信息回答下列问题:(1)图1中AB =____________cm ;(2)图2中m =____________;n = ____________.(3)当AHP △的面积y 为1时,请直接写出x 的值____________.22.【感知】(1)如图1,,AB CD E ∥为,AB CD 之间的一点,连接,BE DE ,得到BED ∠.求证:BED ABE EDC ∠=∠+∠.小明想到以下的方法,请你帮忙完成推理过程.证明:如图①,过点E 作EF AB ∥.,AB CD EF AB ∥∥(已知),CD ∴∥______(______),BEF B FED D ∴∠=∠∠=∠(______)BEF FED B D ∴∠+∠=∠+∠(等式性质),BED B D ∴∠=∠+∠(2)【类比探究】请你利用上述【感知】中的结论进行,证明下面的问题: 如图2,已知,MN PQ CD AB ∥∥,点E 在PQ 上,ECN CAB ∠=∠, 请你说明ABP DCE CAB ∠∠∠+=;(3)【拓展延伸】如图3,BF 平分,ABP CG ∠平分,ACN AF CG ∠∥.若68CAB ∠=︒,请直接写出AFB ∠的度数为______.。
【3套打包】深圳宝安区龙丰学校七年级下册数学期中考试题
人教版七年级数学下册期中考试试题及答案一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.(3分)如图,与∠4是同旁内角的是()A.∠1B.∠2C.∠3D.∠52.(3分)如列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.3.(3分)下列说法正确的是()A.﹣5是25的平方根B.25的平方根是﹣5C.﹣5是(﹣5)2的算术平方根D.±5是(﹣5)2的算术平方根4.(3分)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)5.(3分)估算的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间6.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°7.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°8.(3分)一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐130°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次左拐50°9.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2B.3C.4D.510.(3分)如图,在平面直角坐标系中,有若干个整数点(横、纵坐标均为整数),其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0)……根据这个规律探索可得,第50个点的坐标为()A.(10,﹣5)B.(10,﹣1)C.(10,0)D.(10,1)二、仔细填一填,你一定很棒!(每小题3分,共18分)11.(3分)的平方根是,的算术平方根是.12.(3分)如图,不添加辅助线,请写出一个能判定AB∥CD的条件.13.(3分)=10.1,则±=.14.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为.15.(3分)把命题“等角的补角相等”改写成“如果…那么…”的形式是.16.(3分)在平面直角坐标系中,y轴的左侧有一点P(x,y),且满足|x|=2,y2=9,则点P的坐标是.17.(3分)如图,将一个长方形条折成如图所示的形状,若已知∠1=100°,则∠2=°.18.(3分)如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,GH=30cm,OG=10cm,OC=6cm,求阴影部分面积为cm2.三、精心答一答,你一定能超越!19.计算:(1)﹣﹣﹣|﹣3|(2)求27x3+125=0中x的值.20.已知3既是x﹣1的平方根,也是x﹣2y+1的立方根,求x2﹣y2的平方根.21.完成下面的证明(1)如图,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度数.解:∵FG∥CD(已知)∴∠2=又∵∠1=∠3,∴∠3=∠2(等量代换)∴BC∥∴∠B+=180°又∵∠B=50°∴∠BDE=.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;(3)求△ABC的面积.23.(12分)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB =∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.2018-2019学年安徽省淮南市大通区七年级(下)期中数学试卷参考答案与试题解析一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.(3分)如图,与∠4是同旁内角的是()A.∠1B.∠2C.∠3D.∠5【分析】根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.【解答】解:A、∠1和∠4是内错角,不是同旁内角,故本选项错误;B、∠2和∠4是同位角,不是同旁内角,故本选项错误;C、∠3和∠4是同旁内角,故本选项正确;D、∠4和∠5是邻补角,不是同旁内角,故本选项错误;故选:C.【点评】本题考查了同位角、内错角、同旁内角、对顶角的定义的应用,能熟记同位角、内错角、同旁内角、对顶角的定义是解此题的关键,注意:数形结合思想的应用.2.(3分)如列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选A、C、D.3.(3分)下列说法正确的是()A.﹣5是25的平方根B.25的平方根是﹣5C.﹣5是(﹣5)2的算术平方根D.±5是(﹣5)2的算术平方根【分析】根据正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,数a的正的平方根,叫做a的算术平方根进行分析即可.【解答】解:A、﹣5是25的平方根,说法正确;B、25的平方根是﹣5,说法错误;C、﹣5是(﹣5)2的算术平方根,说法错误;D、±5是(﹣5)2的算术平方根,说法错误;故选:A.【点评】此题主要考查了算术平方根和平方根,关键是掌握平方根的性质.4.(3分)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选:D.【点评】解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)估算的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【分析】估算确定出范围即可.【解答】解:∵4<5<9,∴2<<3,则<<1,故选:A.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.6.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°【分析】依据平行线的三条判定定理,进行判断.【解答】解:A、B、∠1与∠2,∠3与∠4都不是直线AB与CD形成的同位角,所以不能判断直线AB∥CD,故错误;C、根据对顶角相等,可得∠1=∠5,∠4=∠6,又∠1+∠4=180°,∴∠5+∠6=180°,根据同旁内角互补,两直线平行可得AB∥CD,故正确;D、∠3+∠4=90°,不符合平行线的判断条件,所以不能判断直线AB∥CD,故错误;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°【分析】根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG,求出∠EFG,即可求出答案.【解答】解:过F作FN∥AD,∵BC∥AD,∴BC∥AD∥FN,∴∠1=∠NFE=35°,∠2=∠NFG,∵∠G=90°,∠E=30°,∴∠EFG=60°,∴∠2=60°﹣25°=35°,故选:B.【点评】本题考查了平行线性质,三角形内角和定理的应用,关键是根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG.8.(3分)一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐130°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次左拐50°【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【解答】解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,也可以得到∠1=∠2.故选:D.【点评】注意要想两次拐弯后,仍在原来的方向上平行前进,则拐的方向应相反,角度应相等.9.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2B.3C.4D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.(3分)如图,在平面直角坐标系中,有若干个整数点(横、纵坐标均为整数),其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0)……根据这个规律探索可得,第50个点的坐标为()A.(10,﹣5)B.(10,﹣1)C.(10,0)D.(10,1)【分析】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第50个点的坐标,我们可以通过加法计算算出第50个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【解答】解:在横坐标上,第一列有一个点,第二列有2个点…第n个有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,所以奇数列的坐标为(n,)(n,﹣1)…(n,);偶数列的坐标为(n,)(n,﹣1)…(n,1﹣),由加法推算可得到第50个点位于第10列自上而下第五行.代入上式得(10,﹣4),即(10,1),故选:D.【点评】此题主要考查了点的变化规律,此题的考点在于对坐平面直角坐标系的熟练运用能力,学生也可从其它方面入手寻找规律.二、仔细填一填,你一定很棒!(每小题3分,共18分)11.(3分)的平方根是±3,的算术平方根是2.【分析】根据平方根、算术平方根和立方根的概念直接计算即可求解.注意:=9,=4.【解答】解:∵=9,9的平方根是±=±3,∴的平方根是±3;∵=4,4的算术平方根是2,∴的算术平方根是2.∴应填±3,2.【点评】本题考查了平方根、算术平方根和立方根的概念及其运算.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.12.(3分)如图,不添加辅助线,请写出一个能判定AB∥CD的条件∠1=∠4或∠B=∠5或∠B+∠BCD=180°.【分析】根据平行线的判定定理进行填空.【解答】解:由“内错角相等,两直线平行”可以添加条件∠1=∠4.由“同位角相等,两直线平行”可以添加条件∠B=∠5.由“同旁内角互补,两直线平行”可以添加条件∠B+∠BCD=180°.综上所述,满足条件的有:∠1=∠4或∠B=∠5或∠B+∠BCD=180°故答案是:∠1=∠4或∠B=∠5或∠B+∠BCD=180°.【点评】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.13.(3分)=10.1,则±=±1.01.【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【解答】解:∵=10.1,∴±═±1.01,故答案为:±1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.14.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为55°.【分析】由邻补角的定义可求得∠ADB,再利用平行线的性质可得∠DBC=∠ADB,可求得答案.【解答】解:∵∠ADE=125°,∴∠ADB=180°﹣125°=55°,∵AD∥BC,∴∠DBC=∠ADB=55°,故答案为:55°.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.15.(3分)把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:两个角是等角的补角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.16.(3分)在平面直角坐标系中,y轴的左侧有一点P(x,y),且满足|x|=2,y2=9,则点P的坐标是(﹣2,3)或(﹣2,﹣3).【分析】根据象限的特点,判断出所求的点的横纵坐标的符号,进而得出答案.【解答】解:∵y轴的左侧有一点P(x,y),∴x<0,y无法确定,∵|x|=2,y2=9,∴x=﹣2,y=±3,∴则点P的坐标是:(﹣2,3)或(﹣2,﹣3).故答案为:(﹣2,3)或(﹣2,﹣3).【点评】本题主要考查了点的坐标,正确把握平面直角坐标系中各个象限的点的坐标的符号特点是解题关键.17.(3分)如图,将一个长方形条折成如图所示的形状,若已知∠1=100°,则∠2=50°.【分析】根据平行线的性质,即可得到∠3的度数,再根据平角的定义以及折叠的性质,即可得到∠2的度数.【解答】解:根据长方形的对边平行,可得∠1+∠3=180°,∵∠1=100°,∴∠3=80°,由折叠可得,∠2=∠4=(180°﹣80°)=50°,故答案为:50【点评】本题主要考查了平行线的性质以及折叠的性质,解题时注意:两直线平行,同旁内角互补.18.(3分)如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,GH=30cm,OG=10cm,OC=6cm,求阴影部分面积为270cm2.【分析】根据平移的变换只改变图形的位置不改变图形的形状与大小可得梯形ABCD的面积等于梯形EFGH的面积,CD=HG,从而得到阴影部分的面积等于梯形DOGH的面积,再求出DO的长,然后利用梯形的面积公式列式计算即可得解.【解答】解:由平移的性质,梯形ABCD的面积=梯形EFGH的面积,CD=HG=30cm,∴阴影部分的面积=梯形DOGH的面积,∵CO=6cm,∴DO=CD﹣CO=30﹣6=24cm,∴阴影部分的面积=(DO+HG)•OG=(24+30)×10=270cm2.答:阴影部分面积是270cm2.故答案为:270【点评】本题考查了平移的性质,根据图形判断出阴影部分的面积等于梯形DOGH的面积是解题的关键,也是本题的难点.三、精心答一答,你一定能超越!19.计算:(1)﹣﹣﹣|﹣3|(2)求27x3+125=0中x的值.【分析】(1)直接利用算术平方根的性质以及绝对值的性质分别化简得出答案;(2)直接利用立方根的性质化简得出答案.【解答】解:(1)﹣﹣﹣|﹣3|=﹣6﹣﹣(3﹣)=﹣6﹣﹣3+=﹣9;(2)∵27x3+125=0,∴x3=﹣,解得:x=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.已知3既是x﹣1的平方根,也是x﹣2y+1的立方根,求x2﹣y2的平方根.【分析】根据题意得x﹣1=9,x﹣2y+1=27,再解方程组求得xy的值,代入即可得出答案.【解答】解:根据题意得,由①得:x=10,把x=10代入②得:y=﹣8,∴,∴x2﹣y2=102﹣(﹣8)2=36,∵36的平方根是±6,∴x2﹣y2的平方根是±6.【点评】本题考查了平方根和立方根,是基础知识比较简单.21.完成下面的证明(1)如图,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度数.解:∵FG∥CD(已知)∴∠2=∠1又∵∠1=∠3,∴∠3=∠2(等量代换)∴BC∥DE∴∠B+∠BDE=180°(两直线平行,同旁内角互补)又∵∠B=50°∴∠BDE=130°.【分析】由FG∥CD可得出∠2=∠1,结合∠1=∠3可得出∠3=∠2,利用“内错角相等,两直线平行”可得出BC∥DE,再利用“两直线平行,同旁内角互补”结合∠B=50°即可求出∠BDE的度数.【解答】解:∵FG∥CD(已知),∴∠2=∠1.又∵∠1=∠3,∴∠3=∠2(等量代换),∴BC∥DE,∴∠B+∠BDE=180°(两直线平行,同旁内角互补).又∵∠B=50°,∴∠BDE=130°.故答案为:∠1;DE;∠BDE;两直线平行,同旁内角互补;130°.【点评】本题考查了平行线的判定与性质,利用“两直线平行,同旁内角互补”,找出∠B+∠BDE=180°是解题的关键.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;(3)求△ABC的面积.【分析】(1)根据A点坐标,将坐标轴在A点平移到原点即可;(2)利用点的坐标平移性质得出A,′B′,C′坐标即可得出答案;(3)利用矩形面积减去周围三角形面积得出即可.【解答】解:(1)∵点A的坐标为(﹣4,5),∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×4﹣×3×2﹣×1×2﹣×2×4=4.【点评】此题主要考查了平移变换以及三角形面积求法和坐标轴确定方法,正确平移顶点是解题关键.23.(12分)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB =∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=∠AOC,计算即可得解;(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC 的四等分线,再利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;(2)∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.人教版七年级数学下册期中考试试题及答案一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.(3分)如图,与∠4是同旁内角的是()A.∠1B.∠2C.∠3D.∠52.(3分)如列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.3.(3分)下列说法正确的是()A.﹣5是25的平方根B.25的平方根是﹣5C.﹣5是(﹣5)2的算术平方根D.±5是(﹣5)2的算术平方根4.(3分)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)5.(3分)估算的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间6.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°7.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°8.(3分)一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐130°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次左拐50°9.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2B.3C.4D.510.(3分)如图,在平面直角坐标系中,有若干个整数点(横、纵坐标均为整数),其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0)……根据这个规律探索可得,第50个点的坐标为()A.(10,﹣5)B.(10,﹣1)C.(10,0)D.(10,1)二、仔细填一填,你一定很棒!(每小题3分,共18分)11.(3分)的平方根是,的算术平方根是.12.(3分)如图,不添加辅助线,请写出一个能判定AB∥CD的条件.13.(3分)=10.1,则±=.14.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为.15.(3分)把命题“等角的补角相等”改写成“如果…那么…”的形式是.16.(3分)在平面直角坐标系中,y轴的左侧有一点P(x,y),且满足|x|=2,y2=9,则点P的坐标是.17.(3分)如图,将一个长方形条折成如图所示的形状,若已知∠1=100°,则∠2=°.18.(3分)如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,GH=30cm,OG=10cm,OC=6cm,求阴影部分面积为cm2.三、精心答一答,你一定能超越!19.计算:(1)﹣﹣﹣|﹣3|(2)求27x3+125=0中x的值.20.已知3既是x﹣1的平方根,也是x﹣2y+1的立方根,求x2﹣y2的平方根.21.完成下面的证明(1)如图,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度数.解:∵FG∥CD(已知)∴∠2=又∵∠1=∠3,∴∠3=∠2(等量代换)∴BC∥∴∠B+=180°又∵∠B=50°∴∠BDE=.22.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;(3)求△ABC的面积.23.(12分)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB =∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.2018-2019学年安徽省淮南市大通区七年级(下)期中数学试卷参考答案与试题解析一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.(3分)如图,与∠4是同旁内角的是()A.∠1B.∠2C.∠3D.∠5【分析】根据同位角、内错角、同旁内角、对顶角的定义逐个判断即可.【解答】解:A、∠1和∠4是内错角,不是同旁内角,故本选项错误;B、∠2和∠4是同位角,不是同旁内角,故本选项错误;C、∠3和∠4是同旁内角,故本选项正确;D、∠4和∠5是邻补角,不是同旁内角,故本选项错误;故选:C.【点评】本题考查了同位角、内错角、同旁内角、对顶角的定义的应用,能熟记同位角、内错角、同旁内角、对顶角的定义是解此题的关键,注意:数形结合思想的应用.2.(3分)如列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选A、C、D.3.(3分)下列说法正确的是()A.﹣5是25的平方根B.25的平方根是﹣5C.﹣5是(﹣5)2的算术平方根D.±5是(﹣5)2的算术平方根【分析】根据正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,数a的正的平方根,叫做a的算术平方根进行分析即可.【解答】解:A、﹣5是25的平方根,说法正确;B、25的平方根是﹣5,说法错误;C、﹣5是(﹣5)2的算术平方根,说法错误;D、±5是(﹣5)2的算术平方根,说法错误;故选:A.【点评】此题主要考查了算术平方根和平方根,关键是掌握平方根的性质.4.(3分)如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选:D.【点评】解决本题解决的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)估算的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【分析】估算确定出范围即可.【解答】解:∵4<5<9,∴2<<3,则<<1,故选:A.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.6.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°【分析】依据平行线的三条判定定理,进行判断.【解答】解:A、B、∠1与∠2,∠3与∠4都不是直线AB与CD形成的同位角,所以不能判断直线AB∥CD,故错误;C、根据对顶角相等,可得∠1=∠5,∠4=∠6,又∠1+∠4=180°,∴∠5+∠6=180°,根据同旁内角互补,两直线平行可得AB∥CD,故正确;D、∠3+∠4=90°,不符合平行线的判断条件,所以不能判断直线AB∥CD,故错误;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°【分析】根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG,求出∠EFG,即可求出答案.【解答】解:过F作FN∥AD,∵BC∥AD,∴BC∥AD∥FN,∴∠1=∠NFE=35°,∠2=∠NFG,∵∠G=90°,∠E=30°,∴∠EFG=60°,∴∠2=60°﹣25°=35°,故选:B.【点评】本题考查了平行线性质,三角形内角和定理的应用,关键是根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG.8.(3分)一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐130°C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次左拐50°【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【解答】解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,也可以得到∠1=∠2.故选:D.【点评】注意要想两次拐弯后,仍在原来的方向上平行前进,则拐的方向应相反,角度应相等.9.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2B.3C.4D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.(3分)如图,在平面直角坐标系中,有若干个整数点(横、纵坐标均为整数),其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0)……根据这个规律探索可得,第50个点的坐标为()。