2013年全国高考文科数学试题及答案-北京卷
2013年高考文科数学真题及答案全国卷
2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。
【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A.B .11+i 2- C . D .【答案】B【考点】本题主要考查复数的基本运算。
【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-.3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .B .C .12y x =±D .【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。
【解析】∵5e =5c a =2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。
2013年高考试题:文科数学(北京卷)
绝密★启用并使用完毕2013年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上答无效。
考试结束后,将本卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=(A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}【答案】B【解析】【难度】容易【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解.(2)设a,b,c∈R,且a<b,则(A)ac>bc (B)<(C)a2>b2(D)a3>b3【答案】D【解析】【难度】容易【点评】本题考察不等式,.在高一数学强化提高班下学期中有详细讲解,有完全相同类型题目的计算.在高考精品班数学(文)强化提高班中有对不等式相关知识的总结讲解.(3)下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是(A)y= (B)y=e-3(C)y=x2+1 (D)y=lg∣x∣【答案】C【解析】【考点】函数的奇偶性【难度】容易【点评】【点评】本题考查利用导数判断函数单调性,进而判断函数与坐标轴交点.在高二数学(文)强化提高班上学期,第一章《导数》有详细讲解,在高考精品班数学(文)强化提高班中有对导数相关知识的总结讲解,同时还包含很多导数与数列、与圆锥曲线相结合的题目.(4)在复平面内,复数i(2-i)对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限【答案】A【解析】【难度】容易【点评】本题考查复数的计算。
2013年高考文科数学北京卷word解析版
2013年高考文科数学北京卷word解析版2013年普通高等学校夏季招生全国统一考试数学文史类(北京卷)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(2013北京,文1)已知集合A={-1,0,1},B={x|-1≤x <1},则A∩B=().A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}答案:B解析:集合A中的元素仅有-1,0,1三个数,集合B 中元素为大于等于-1且小于1的数,故集合A,B 的公共元素为-1,0,故选B.2.(2013北京,文2)设a,b,c∈R,且a>b,则().A.ac>bc B.11<a bC.a2>b2D.a3>b3答案:D解析:A选项中若c小于等于0则不成立,B选项中若a为正数b为负数则不成立,C选项中若a,b 均为负数则不成立,故选D.3.(2013北京,文3)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是().A.1yB.y=e-xxC.y=-x2+1 D.y=lg |x|答案:C解析:A选项为奇函数,B选项为非奇非偶函数,D 选项虽为偶函数但在(0,+∞)上是增函数,故选C. 4.(2013北京,文4)在复平面内,复数i(2-i)对应的点加1变成1,经判断执行否,然后将21132121SS+=+赋值给S,i增加1变成2,经判断执行是,然后输出1321S=,故选C.7.(2013北京,文7)双曲线x2-2ym=1的充分必要条件是().A.m>12B.m≥1C.m>1 D.m>2答案:C解析:该双曲线离心率1e=,故m>1,故选C.8.(2013北京,文8)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有().A.3个B.4个C.5个D.6个答案:B解析:设正方体的棱长为a.建立空间直角坐标系,如图所示.则D (0,0,0),D 1(0,0,a ),C 1(0,a ,a ),C (0,a,0),B (a ,a,0),B 1(a ,a ,a ),A (a,0,0),A 1(a,0,a ),P 221,,333a a a ⎛⎫⎪⎝⎭,则|PB |=3a =,|PD |a =,|1PD |=993a =,|1PC |=|1PA |a =,|PC |=|PA |3a =,|1PB |=,故共有4个不同取值,故选B.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.(2013北京,文9)若抛物线y 2=2px 的焦点坐标为(1,0),则p =__________;准线方程为__________.答案:2 x =-1解析:根据抛物线定义12p=,∴p =2,又准线方程为x =2p-=-1,故填2,x =-1.10.(2013北京,文10)某四棱锥的三视图如图所示,该四棱锥的体积为__________.答案:3解析:由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式V=13×3×3×1=3,故该棱锥的体积为3.11.(2013北京,文11)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项和S n=__________.答案:22n+1-2解析:根据等比数列的性质知a3+a5=q(a2+a4),∴q=2,又a2+a4=a1q+a1q3,故求得a1=2,∴S n=21212n(-)-=2n+1-2.12.(2013北京,文12)设D为不等式组0,20,30xx yx y≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为__________.答案:5解析:区域D表示的平面部分如图阴影所示:根据数形结合知(1,0)到D 的距离最小值为(1,0)到直线2x -y =05=13.(2013北京,文13)函数f (x )=12log ,1,2,1,x x x x ≥⎧⎪⎨⎪<⎩的值域为__________.答案:(-∞,2) 解析:当x ≥1时,1122loglog 1x ≤,即12logx ≤,当x <1时,0<2x <21,即0<2x <2;故f (x )的值域为(-∞,2). 14.(2013北京,文14)已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP =λAB +μAC (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为__________.答案:3解析:AP =λAB +μAC ,AB =(2,1),AC =(1,2). 设P (x ,y ),则AP =(x -1,y +1).∴12,12,x y λμλμ-=+⎧⎨-=+⎩得23,323,3x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩∵1≤λ≤2,0≤μ≤1,可得629,023,x y x y ≤-≤⎧⎨≤-≤⎩如图.可得A 1(3,0),B 1(4,2),C 1(6,3), |A1B 1|==, 两直线距离d ==,∴S =|A 1B 1|·d =3.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(2013北京,文15)(本小题共13分)已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x . (1)求f (x )的最小正周期及最大值;(2)若α∈π,π2⎛⎫⎪⎝⎭,且f (α)=2,求α的值. 解:(1)因为f (x )=(2cos 2x -1)sin 2x +12cos 4x =cos 2x sin 2x +12cos 4x =12(sin 4x +cos 4x )π44x ⎛⎫+ ⎪⎝⎭,所以f (x )的最小正周期为π2,最大值为2.(2)因为f (α)=2,所以πsin 414α⎛⎫+= ⎪⎝⎭.因为α∈π,π2⎛⎫ ⎪⎝⎭,所以4α+π4∈9π17π,44⎛⎫ ⎪⎝⎭. 所以π5π442α+=.故9π16α=. 16.(2013北京,文16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留时间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结果不要求证明)解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613. (2)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.(3)从3月5日开始连续三天的空气质量指数方差最大.17.(2013北京,文17)(本小题共14分)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD ⊥平面ABCD,PA⊥AD.E和F分别是CD和PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.证明:(1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以ABED为平行四边形.所以BE∥AD.又因为BE⊄平面PAD,AD⊂平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.所以CD⊥平面PAD.所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF.所以CD⊥EF.所以CD⊥平面BEF.所以平面BEF⊥平面PCD.18.(2013北京,文18)(本小题共13分)已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解:由f(x)=x2+x sin x+cos x,得f′(x)=x(2+cos x).(1)因为曲线y=f(x)在点(a,f(a))处与直线y=b相切,所以f′(a)=a(2+cos a)=0,b=f(a).解得a=0,b =f(0)=1.(2)令f′(x)=0,得x=0.f(x)与f′(所以函数f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f (0)=1是f (x )的最小值.当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点;当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b ,所以存在x 1∈(-2b,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时曲线y =f(x)与直线y =b 有且仅有两个不同交点.综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).19.(2013北京,文19)(本小题共14分)直线y =kx +m (m ≠0)与椭圆W :24x+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A 1,2t ⎛⎫ ⎪⎝⎭,代入椭圆方程得21144t +=,即t =. 所以|AC |=(2)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由2244,x y y kx m ⎧+=⎨=+⎩消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2), 则1224214x x km k +=-+,121222214y y x x m k m k ++=⋅+=+. 所以AC 的中点为M 224,1414km m k k ⎛⎫- ⎪++⎝⎭.因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为14k -.因为k ·14k ⎛⎫- ⎪⎝⎭≠-1,所以AC 与OB 不垂直. 所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.20.(2013北京,文20)(本小题共13分)给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列的前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0.证明:a 1,a 2,…,a n -1是等差数列.解:(1)d 1=2,d 2=3,d 3=6.(2)因为a 1>0,公比q >1,所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1.于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q )q i -1.因此d i ≠0且1iidq d +=(i =1,2,…,n -2), 即d 1,d 2,…,d n -1是等比数列.(3)设d 为d 1,d 2,…,d n -1的公差. 对1≤i ≤n -2,因为B i ≤B i +1,d >0, 所以A i +1=B i +1+d i +1≥B i +d i +d >B i +d i =A i . 又因为A i +1=max{A i ,a i +1}, 所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列. 因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1, 所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i . 因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d ,即a 1,a 2,…,a n -1是等差数列.。
2013年高考数学试题及答案(全国卷文数3套)
2013年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}2.(5分)(2013•新课标Ⅱ)=()A.2B.2C.D.13.(5分)(2013•新课标Ⅱ)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7B.﹣6C.﹣5D.﹣34.(5分)(2013•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B =,C=,则△ABC的面积为()A.2+2B.C.2﹣2D.﹣15.(5分)(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.6.(5分)(2013•新课标Ⅱ)已知sin2α=,则cos2(α+)=()A.B.C.D.7.(5分)(2013•新课标Ⅱ)执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++8.(5分)(2013•新课标Ⅱ)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a 9.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.10.(5分)(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)11.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=012.(5分)(2013•新课标Ⅱ)若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞)B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)二、填空题:本大题共4小题,每小题4分.13.(4分)(2013•新课标Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.14.(4分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则•=.15.(4分)(2013•新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为.16.(4分)(2013•新课标Ⅱ)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.18.(12分)(2013•新课标Ⅱ)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率.20.(12分)(2013•新课标Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.21.(12分)(2013•新课标Ⅱ)已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.选做题.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.22.(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(14分)(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).2013年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}【分析】找出集合M与N的公共元素,即可求出两集合的交集.【解答】解:∵集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},∴M∩N={﹣2,﹣1,0}.故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•新课标Ⅱ)=()A.2B.2C.D.1【分析】通过复数的分子与分母同时求模即可得到结果.【解答】解:===.故选:C.【点评】本题考查复数的模的求法,考查计算能力.3.(5分)(2013•新课标Ⅱ)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7B.﹣6C.﹣5D.﹣3【分析】先画出满足约束条件:,的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=2x﹣3y的最小值.【解答】解:根据题意,画出可行域与目标函数线如下图所示,由得,由图可知目标函数在点A(3,4)取最小值z=2×3﹣3×4=﹣6.故选:B.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.4.(5分)(2013•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B =,C=,则△ABC的面积为()A.2+2B.C.2﹣2D.﹣1【分析】由sin B,sin C及b的值,利用正弦定理求出c的值,再求出A的度数,由b,c 及sin A的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:∵b=2,B=,C=,∴由正弦定理=得:c===2,A=,∴sin A=sin(+)=cos=,=bc sin A=×2×2×=+1.则S△ABC故选:B.【点评】此题考查了正弦定理,三角形的面积公式,以及两角和与差的余弦函数公式,熟练掌握正弦定理是解本题的关键.5.(5分)(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.【分析】设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选:D.【点评】本题考查椭圆的简单性质,求得|PF1|与|PF2|及|F1F2|是关键,考查理解与应用能力,属于中档题.6.(5分)(2013•新课标Ⅱ)已知sin2α=,则cos2(α+)=()A.B.C.D.【分析】所求式子利用二倍角的余弦函数公式化简,再利用诱导公式变形,将已知等式代入计算即可求出值.【解答】解:∵sin2α=,∴cos2(α+)=[1+cos(2α+)]=(1﹣sin2α)=×(1﹣)=.故选:A.【点评】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.7.(5分)(2013•新课标Ⅱ)执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++【分析】由程序中的变量、各语句的作用,结合流程图所给的顺序可知当条件满足时,用S+的值代替S得到新的S,并用k+1代替k,直到条件不能满足时输出最后算出的S 值,由此即可得到本题答案.【解答】解:根据题意,可知该按以下步骤运行第一次:S=1,第二次:S=1+,第三次:S=1++,第四次:S=1+++.此时k=5时,符合k>N=4,输出S的值.∴S=1+++故选:B.【点评】本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,以及表格法的运用,属于基础题.8.(5分)(2013•新课标Ⅱ)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a【分析】判断对数值的范围,然后利用换底公式比较对数式的大小即可.【解答】解:由题意可知:a=log32∈(0,1),b=log52∈(0,1),c=log23>1,所以a=log32,b=log52=,所以c>a>b,故选:C.【点评】本题考查对数值的大小比较,换底公式的应用,基本知识的考查.9.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可.【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选:A.【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.10.(5分)(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)【分析】根据题意,可得抛物线焦点为F(1,0),由此设直线l方程为y=k(x﹣1),与抛物线方程联解消去x,得﹣y﹣k=0.再设A(x1,y1),B(x2,y2),由根与系数的关系和|AF|=3|BF|,建立关于y1、y2和k的方程组,解之可得k值,从而得到直线l的方程.【解答】解:法一:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1)由消去x,得﹣y﹣k=0设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=﹣4…(*)∵|AF|=3|BF|,∴y1+3y2=0,可得y1=﹣3y2,代入(*)得﹣2y2=且﹣3y22=﹣4,消去y2得k2=3,解之得k=∴直线l方程为y=(x﹣1)或y=﹣(x﹣1)法二:做出抛物线的准线,以及A、B到准线的垂线段AA'、BB',并设直线l交准线与M,设|BF|=m,由抛物线的定义可知|BB'|=m,|AA'|=|AF|=3m,由BB'∥AA'可知,,即,所以|MB|=2m,则|MA|=6m,故∠AMA'=30°,根据斜率与角度的关系可得选C选项.故选:C.【点评】本题给出抛物线的焦点弦AB被焦点F分成1:3的两部分,求直线AB的方程,着重考查了抛物线的标准方程、简单几何性质和直线与圆锥曲线的位置关系等知识,属于中档题.11.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=0【分析】对于A,对于三次函数f(x)=x3+ax2+bx+c,由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故在区间(﹣∞,+∞)肯定存在零点;对于B,根据对称变换法则,求出对应中心坐标,可以判断;对于C:采用取特殊函数的方法,若取a=﹣1,b=﹣1,c=0,则f(x)=x3﹣x2﹣x,利用导数研究其极值和单调性进行判断;D:若x0是f(x)的极值点,根据导数的意义,则f′(x0)=0,正确.【解答】解:A、对于三次函数f(x)=x3+ax2+bx+c,A:由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故∃x0∈R,f(x0)=0,故A正确;B、∵f(﹣﹣x)+f(x)=(﹣﹣x)3+a(﹣﹣x)2+b(﹣﹣x)+c+x3+ax2+bx+c=﹣+2c,f (﹣)=(﹣)3+a (﹣)2+b (﹣)+c =﹣+c ,∵f (﹣﹣x )+f (x )=2f (﹣),∴点P (﹣,f (﹣))为对称中心,故B 正确.C 、若取a =﹣1,b =﹣1,c =0,则f (x )=x 3﹣x 2﹣x ,对于f (x )=x 3﹣x 2﹣x ,∵f ′(x )=3x 2﹣2x ﹣1∴由f ′(x )=3x 2﹣2x ﹣1>0得x ∈(﹣∞,﹣)∪(1,+∞)由f ′(x )=3x 2﹣2x ﹣1<0得x ∈(﹣,1)∴函数f (x )的单调增区间为:(﹣∞,﹣),(1,+∞),减区间为:(﹣,1),故1是f (x )的极小值点,但f (x )在区间(﹣∞,1)不是单调递减,故C 错误;D :若x 0是f (x )的极值点,根据导数的意义,则f ′(x 0)=0,故D 正确.由于该题选择错误的,故选:C .【点评】本题考查了导数在求函数极值中的应用,利用导数求函数的单调区间,及导数的运算.12.(5分)(2013•新课标Ⅱ)若存在正数x 使2x (x ﹣a )<1成立,则a 的取值范围是()A .(﹣∞,+∞)B .(﹣2,+∞)C .(0,+∞)D .(﹣1,+∞)【分析】转化不等式为,利用x 是正数,通过函数的单调性,求出a 的范围即可.【解答】解:因为2x (x ﹣a )<1,所以,函数y=是增函数,x>0,所以y>﹣1,即a>﹣1,所以a的取值范围是(﹣1,+∞).故选:D.【点评】本题考查不等式的解法,函数单调性的应用,考查分析问题解决问题的能力.二、填空题:本大题共4小题,每小题4分.13.(4分)(2013•新课标Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是0.2.【分析】由题意结合组合数公式可得总的基本事件数,再找出和为5的情形,由古典概型的概率公式可得答案.【解答】解:从1,2,3,4,5中任意取出两个不同的数共有=10种情况,和为5的有(1,4)(2,3)两种情况,故所求的概率为:=0.2故答案为:0.2【点评】本题考查古典概型及其概率公式,属基础题.14.(4分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则•=2.【分析】根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.【解答】解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为2.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.15.(4分)(2013•新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为24π.【分析】先直接利用锥体的体积公式即可求得正四棱锥O﹣ABCD的高,再利用直角三角形求出正四棱锥O﹣ABCD的侧棱长OA,最后根据球的表面积公式计算即得.【解答】解:如图,正四棱锥O﹣ABCD的体积V=sh=(×)×OH=,∴OH=,在直角三角形OAH中,OA===所以表面积为4πr2=24π;故答案为:24π.【点评】本题考查锥体的体积、球的表面积计算,考查学生的运算能力,属基础题.16.(4分)(2013•新课标Ⅱ)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.【分析】根据函数图象平移的公式,可得平移后的图象为y=cos[2(x﹣)+φ]的图象,即y=cos(2x+φ﹣π)的图象.结合题意得函数y=sin(2x+)=的图象与y=cos(2x+φ﹣π)图象重合,由此结合三角函数的诱导公式即可算出φ的值.【解答】解:函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,得平移后的图象的函数解析式为y=cos[2(x﹣)+φ]=cos(2x+φ﹣π),而函数y=sin(2x+)=,由函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin (2x+)的图象重合,得2x+φ﹣π=,解得:φ=.符合﹣π≤φ<π.故答案为.【点评】本题给出函数y=cos(2x+φ)的图象平移,求参数φ的值.着重考查了函数图象平移的公式、三角函数的诱导公式和函数y=A sin(ωx+φ)的图象变换等知识,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.【分析】(I)设等差数列{a n}的公差为d≠0,利用成等比数列的定义可得,,再利用等差数列的通项公式可得,化为d(2a1+25d)=0,解出d即可得到通项公式a n;=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6(II)由(I)可得a3n﹣2为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n﹣2.【解答】解:(I)设等差数列{a n}的公差为d≠0,由题意a1,a11,a13成等比数列,∴,∴,化为d(2a1+25d)=0,∵d≠0,∴2×25+25d=0,解得d=﹣2.∴a n=25+(n﹣1)×(﹣2)=﹣2n+27.=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6(II)由(I)可得a3n﹣2为公差的等差数列.∴S n=a1+a4+a7+…+a3n﹣2===﹣3n2+28n.【点评】熟练掌握等差数列与等比数列的通项公式及其前n项和公式是解题的关键.18.(12分)(2013•新课标Ⅱ)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.【分析】(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD ⊥平面ABB1A1.求得CD的值,利用勾股定理求得A 1D、DE和A1E的值,可得A1D⊥DE.进而求得的值,再根据三棱锥C﹣A1DE的体积为••CD,运算求得结果.【解答】解:(Ⅰ)证明:连接AC1交A1C于点F,则F为AC1的中点.∵直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,故DF为三角形ABC1的中位线,故DF∥BC1.由于DF⊂平面A1CD,而BC1不在平面A1CD中,故有BC1∥平面A1CD.(Ⅱ)∵AA1=AC=CB=2,AB=2,故此直三棱柱的底面ABC为等腰直角三角形.由D为AB的中点可得CD⊥平面ABB1A1,∴CD==.∵A1D==,同理,利用勾股定理求得DE=,A1E=3.再由勾股定理可得+DE2=,∴A1D⊥DE.∴==,∴=••CD=1.【点评】本题主要考查直线和平面平行的判定定理的应用,求三棱锥的体积,体现了数形结合的数学思想,属于中档题.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率.【分析】(I)由题意先分段写出,当X∈[100,130)时,当X∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T 不少于57000元的概率的估计值.【解答】解:(I)由题意得,当X∈[100,130)时,T=500X﹣300(130﹣X)=800X﹣39000,当X∈[130,150]时,T=500×130=65000,∴T=.(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义.20.(12分)(2013•新课标Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.【分析】(Ⅰ)由题意,可直接在弦心距、弦的一半及半径三者组成的直角三角形中利用勾股定理建立关于点P的横纵坐标的方程,整理即可得到所求的轨迹方程;(Ⅱ)由题,可先由点到直线的距离公式建立关于点P的横纵坐标的方程,将此方程与(I)所求的轨迹方程联立,解出点P的坐标,进而解出圆的半径即可写出圆P的方程.【解答】解:(Ⅰ)设圆心P(x,y),由题意得圆心到x轴的距离与半径之间的关系为2=﹣y2+r2,同理圆心到y轴的距离与半径之间的关系为3=﹣x2+r2,由两式整理得x2+3=y2+2,整理得y2﹣x2=1即为圆心P的轨迹方程,此轨迹是等轴双曲线(Ⅱ)由P点到直线y=x的距离为得,=,即|x﹣y|=1,即x=y+1或y =x+1,分别代入y2﹣x2=1解得P(0,﹣1)或P(0,1)若P(0,﹣1),此时点P在y轴上,故半径为,所以圆P的方程为(y+1)2+x2=3;若P(0,1),此时点P在y轴上,故半径为,所以圆P的方程为(y﹣1)2+x2=3;综上,圆P的方程为(y+1)2+x2=3或(y﹣1)2+x2=3【点评】本题考查求轨迹方程的方法解析法及点的直线的距离公式、圆的标准方程与圆的性质,解题的关键是理解圆的几何特征,将几何特征转化为方程21.(12分)(2013•新课标Ⅱ)已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.【分析】(Ⅰ)利用导数的运算法则即可得出f′(x),利用导数与函数单调性的关系及函数的极值点的定义,即可求出函数的极值;(Ⅱ)利用导数的几何意义即可得到切线的斜率,得出切线的方程,利用方程求出与x 轴交点的横坐标,再利用导数研究函数的单调性、极值、最值即可.【解答】解:(Ⅰ)∵f(x)=x2e﹣x,∴f′(x)=2xe﹣x﹣x2e﹣x=e﹣x(2x﹣x2),令f′(x)=0,解得x=0或x=2,令f′(x)>0,可解得0<x<2;令f′(x)<0,可解得x<0或x>2,故函数在区间(﹣∞,0)与(2,+∞)上是减函数,在区间(0,2)上是增函数.∴x=0是极小值点,x=2极大值点,又f(0)=0,f(2)=.故f(x)的极小值和极大值分别为0,.(Ⅱ)设切点为(),则切线方程为y﹣=(x﹣x0),令y=0,解得x==,∵曲线y=f(x)的切线l的斜率为负数,∴(<0,∴x0<0或x0>2,令,则=.①当x0<0时,0,即f′(x0)>0,∴f(x0)在(﹣∞,0)上单调递增,∴f(x0)<f(0)=0;②当x 0>2时,令f′(x0)=0,解得.当时,f′(x0)>0,函数f(x0)单调递增;当时,f′(x0)<0,函数f(x0)单调递减.故当时,函数f(x 0)取得极小值,也即最小值,且=.综上可知:切线l在x轴上截距的取值范围是(﹣∞,0)∪.【点评】本题考查利用导数求函数的极值与利用导数研究函数的单调性、切线、函数的值域,综合性强,考查了推理能力和计算能力.选做题.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.22.(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.【分析】(1)已知CD为△ABC外接圆的切线,利用弦切角定理可得∠DCB=∠A,及BC•AE=DC•AF,可知△CDB∽△AEF,于是∠CBD=∠AFE.利用B、E、F、C四点共圆,可得∠CFE=∠DBC,进而得到∠CFE=∠AFE=90°即可证明CA是△ABC外接圆的直径;(2)要求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B、E、F、C四点的圆的直径为CE,及DB=BE,可得CE=DC,利用切割线定理可得DC2=DB•DA,CA2=CB2+BA2,都用DB表示即可.【解答】(1)证明:∵CD为△ABC外接圆的切线,∴∠DCB=∠A,∵BC•AE=DC•AF,∴.∴△CDB∽△AEF,∴∠CBD=∠AFE.∵B、E、F、C四点共圆,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.∴∠CBA=90°,∴CA是△ABC外接圆的直径;(2)连接CE,∵∠CBE=90°,∴过B、E、F、C四点的圆的直径为CE,由DB=BE,得CE=DC,又BC2=DB•BA=2DB2,∴CA2=4DB2+BC2=6DB2.而DC2=DB•DA=3DB2,故过B、E、F、C四点的圆的面积与△ABC面积的外接圆的面积比值==.【点评】熟练掌握弦切角定理、相似三角形的判定与性质、四点共圆的性质、直径的判定、切割线定理、勾股定理等腰三角形的性质是解题的关键.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(1)利用参数方程与中点坐标公式即可得出;(2)利用两点之间的距离公式、三角函数的单调性即可得出.【解答】解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为为参数,0<α<2π).(2)M点到坐标原点的距离d=(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【点评】本题考查了参数方程与中点坐标公式、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.(14分)(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【分析】(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;(Ⅱ)利用基本不等式可证得:+b ≥2a ,+c ≥2b ,+a ≥2c ,三式累加即可证得结论.【解答】证明:(Ⅰ)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得:a 2+b 2+c 2≥ab +bc +ca ,由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤.(Ⅱ)因为+b ≥2a ,+c ≥2b ,+a ≥2c ,故+++(a +b +c )≥2(a +b +c ),即++≥a +b +c .所以++≥1.【点评】本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.2013年全国统一高考数学试卷(文科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•大纲版)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.(5分)(2013•大纲版)若α为第二象限角,sinα=,则cosα=()A.B.C.D.3.(5分)(2013•大纲版)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)(2013•大纲版)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)5.(5分)(2013•大纲版)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.2246.(5分)(2013•大纲版)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)7.(5分)(2013•大纲版)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)8.(5分)(2013•大纲版)已知F1(﹣1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为()A.B.C.D.9.(5分)(2013•大纲版)若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A.5B.4C.3D.210.(5分)(2013•大纲版)已知曲线y=x4+ax2+1在点(﹣1,a+2)处切线的斜率为8,a =()A.9B.6C.﹣9D.﹣611.(5分)(2013•大纲版)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.12.(5分)(2013•大纲版)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.2二、填空题:本大题共4小题,每小题5分.13.(5分)(2013•大纲版)设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x ﹣2,则f(﹣1)=.14.(5分)(2013•大纲版)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有种.(用数字作答)15.(5分)(2013•大纲版)若x、y满足约束条件,则z=﹣x+y的最小值为.16.(5分)(2013•大纲版)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)(2013•大纲版)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.18.(12分)(2013•大纲版)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sin A sin C=,求C.19.(12分)(2013•大纲版)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.20.(12分)(2013•大纲版)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)求前4局中乙恰好当1次裁判概率.21.(12分)(2013•大纲版)已知函数f(x)=x3+3ax2+3x+1.(Ⅰ)求a=时,讨论f(x)的单调性;(Ⅱ)若x∈[2,+∞)时,f(x)≥0,求a的取值范围.22.(12分)(2013•大纲版)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.2013年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•大纲版)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【分析】由题意,直接根据补集的定义求出∁U A,即可选出正确选项【解答】解:因为U={1,2,3,4,5,},集合A={1,2}所以∁U A={3,4,5}故选:B.【点评】本题考查补集的运算,理解补集的定义是解题的关键2.(5分)(2013•大纲版)若α为第二象限角,sinα=,则cosα=()A.B.C.D.【分析】由α为第二象限角,得到cosα小于0,根据sinα的值,利用同角三角函数间的基本关系即可求出cosα的值.【解答】解:∵α为第二象限角,且sinα=,∴cosα=﹣=﹣.故选:A.【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.3.(5分)(2013•大纲版)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣1【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)(2013•大纲版)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)【分析】直接利用绝对值不等式的解法,去掉绝对值后,解二次不等式即可.【解答】解:不等式|x2﹣2|<2的解集等价于,不等式﹣2<x2﹣2<2的解集,即0<x2<4,解得x∈(﹣2,0)∪(0,2).故选:D.【点评】本题考查绝对值不等式的解法,考查转化思想与计算能力.5.(5分)(2013•大纲版)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.224【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为6求出x6的系数.【解答】解:(x+2)8展开式的通项为T r+1=x8﹣r2r令8﹣r=6得r=2,∴展开式中x6的系数是22C82=112.故选:C.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(5分)(2013•大纲版)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:。
2013年高考北京文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(北京卷)数学(文科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2013年北京,文1,5分】已知集合{}101A =-,,,{}|11B x x =-≤<,则A B =I ( ) (A ){0} (B ){}10-,(C ){}01, (D ){}101-,, 【答案】B【解析】1,0,11{11,}{|}{}0x x --≤<-I =,故选B . (2)【2013年北京,文2,5分】设a ,b ,c R ∈,且a b >,则( )(A )ac bc > (B )11a b< (C )22a b > (D )33a b >【答案】D 【解析】:A 选项中若c 小于等于0则不成立,B 选项中若a 为正数b 为负数则不成立,C 选项中若a ,b 均为负数则不成立,故选D .(3)【2013年北京,文3,5分】下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )(A )1y x = (B )x y e -= (C )21y x =-+(D )lg y x =【答案】C【解析】A 选项为奇函数,B 选项为非奇非偶函数,D 选项虽为偶函数但在(0)+∞,上是增函数,故选C . (4)【2013年北京,文4,5分】在复平面内,复数i(2i)-对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】A【解析】()i 2i 12i -=+,其在复平面上的对应点为()1,2,该点位于第一象限,故选A .(5)【2013年北京,文5,5分】在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )(A )15 (B )59(C )5 (D )1【答案】B【解析】根据正弦定理,sin sin a b A B =,则515sin sin 339b B A a ==⋅=,故选B . (6)【2013年北京,文6,5分】执行如图所示的程序框图,输出的S 值为( )(A )1 (B )23 (C )1321(D )610987【答案】C【解析】依次执行的循环为1S =,i 0=;23S =,i 1=;1321S =,i 2=,故选C .(7)【2013年北京,文7,5分】双曲线221yx m-=的离心率大于2的充分必要条件是( )(A )12m > (B )1m ≥ (C )1m > (D )2m >【答案】C【解析】该双曲线离心率1me +=,由已知1>2m +,故1m >,故选C .(8)【2013年北京,文8,5分】如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )(A )3个 (B )4个 (C )5个 (D )6个【答案】B【解析】设正方体的棱长为a .建立空间直角坐标系,如图所示.则()0,0,0D ,10,()0D a ,,1()0C a a ,,,,(0)0C a ,,0(,)B a a ,,1()B a a a ,,,(),0,0A a ,1,()0A a a ,,221,,333P a a a ⎛⎫⎪⎝⎭,则PB =u u u r,PD a =u u u r ,1PD ==u u u u r,11PC PA a ==,PC PA ==,1PB u u u r ,故共有4个不同取值,故选B . 第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2013年北京,文9,5分】若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 . 【答案】2;1-【解析】根据抛物线定义12p =,∴2p =,又准线方程为12px =-=-.(10)【2013年北京,文10,5分】某四棱锥的三视图如图所示,则该四棱锥的体积为 . 【答案】3【解析】由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式133133V =⨯⨯⨯=,故该棱锥的体积为3.(11)【2013年北京,文11,5分】若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = . 【答案】2;122n +-【解析】由题意知352440220a a q a a +===+.由222421())10(12a a a q a q q +=+=+=,∴12a =.∴12122212n n n S +(-)==--.(12)【2013年北京,文12,5分】设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .【解析】区域D 表示的平面部分如图阴影所示:根据数形结合知()1,0到D 的距离最小值为()1,0到直线2x -y =0(13)【2013年北京,文13,5分】函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为_______.【答案】()2-∞,【解析】当1x ≥时,1122log log 1x ≤,即12log 0x ≤,当1x <时,1022x <<,即022x <<;故()f x 的值域为()2-∞,. (14)【2013年北京,文14,5分】向量(1,1)A -,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB ACλμ=+u u u r u u u r u u u r (12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为 . 【答案】3【解析】AP AB AC λμ=+u u u r u u u r u u u r ,()2,1AB =u u u r ,()1,2AC =u u u r .设()P x y ,,则()1,1AP x y =-+u u u r.∴1212x y λμλμ-=+⎧⎨-=+⎩得233233x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩,∵12λ≤≤,01μ≤≤,可得629023x y x y ≤-≤⎧⎨≤-≤⎩,如图.可得()13,0A ,()14,2B ,()16,3C ,21214325A B (-)+==,两直线距离2521d ==+,∴11·3S A B d ==. 三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)【2013年北京,文15,13分】已知函数21()(2cos 1)sin 2cos42f x x x x =-+.(1)求()f x 的最小正周期及最大值;(2)若(,)2παπ∈,且2()f α=,求α的值.解:(1)21()(2cos 1)sin 2cos42f x x x x =-+1cos2sin 2cos42x x x =+11sin 4cos422x x =+2sin(4)4x π=+所以,最小正周期242T ππ==,当()4242x k k Z πππ+=+∈,即()216k x k Z ππ=+∈时,max 2()2f x =. (2)因为22()sin(4)4f παα=+=,所以sin(4)14πα+=,因为2παπ<<,所以9174444πππα<+<, 所以5442ππα+=,即916πα=.(16)【2013年北京,文16,13分】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天. (1)求此人到达当日空气质量优良的概率;(2)求此在在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)解法一:根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.解法二:此人停留的两天共有13种选择,分别是:()1,2,()2,3,()3,4,()4,5,()5,6,()6,7,()7,8,()8,9,()9,10,()10,11,()11,12,()12,13,()13,14,其中只有一天重度污染的为()4,5,()5,6,()7,8,()8,9,共4种,所以概率为2413P =. (3)从3月5日开始连续三天的空气质量指数方差最大. (17)【2013年北京,文17,14分】如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ; (2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD . 解:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,PA ∴⊥底面ABCD .(2)因为//AB CD ,2CD AB =,E 为CD 的中点,所以//AB DE ,且AB DE =.所以ABED 为平行四边形.所以//BE AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以//BE 平面PAD .(3)因为AB AD ⊥,而且ABED 为平行四边形,所以BE CD ⊥,AD CD ⊥.由(1)知PA ⊥底面ABCD ,空气质量指数日期14日13日12日11日10日9日8日7日6日1日037798615812116021740160220143572586100150200250所以PA CD ⊥.所以CD ⊥平面PAD .所以CD PD ⊥.因为E 和F 分别是CD 和PC 的中点, 所以//PD EF .所以CD EF ⊥.所以CD ⊥平面BEF .所以平面BEF ⊥平面PCD .(18)【2013年北京,文18,13分】已知函数2()sin cos f x x x x x =++.(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值; (2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围. 解:(1)因为曲线()y f x =在点()()a f a ,处与直线y b =相切,所以()()2cos 0f a a a '=+=,()b f a =.解得0a =,()01b f ==.(2)解法一:令()0f x '=,得0x =.()f x 与()f x '的情况如下:所以函数()f x ()01=是()f x 的最小值. 当1b ≤时,曲线()y f x =与直线y b =最多只有一个交点;当1b >时,()()222421421f b f b b b b b b -=≥-->-->,()01f b =<,所以存在()12,0x b ∈-,()20,2x b ∈,使得()()12f x f x b ==.由于函数()f x 在区间()0-∞,和(0)+∞,上 均单调,所以当1b >时曲线()y f x =与直线y b =有且仅有两个不同交点.综上可知,如果曲线()y f x =与直线y b =有两个不同交点,那么b 的取值范围是(1)+∞,.解法二:因为2cos 0x +>,所以当0x >时'()0f x >,()f x 单调递增;当0x <时'()0f x <,()f x 单调递减. 所以当0x =时,()f x 取得最小值(0)1f =,所以b 的取值范围是(1,)+∞.(19)【2013年北京,文19,14分】直线()0y kx m m =+≠,W :2214x y +=相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设1,2A t ⎛⎫⎪⎝⎭,代入椭圆方程得21144t +=,即t =AC =(2)解法一:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC OB ⊥,所以0k ≠.由2244x y y kx m ⎧+=⎨=+⎩,消y 并整理得()222148440k x kmx m +++-=.设11()A x y ,,22()C x y ,,则1224214x x km k +=-+,121222214y y x x m k m k ++=⋅+=+.所以AC 的中点为224,1414kmm M k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,且0m ≠,0k ≠,所以直线OB 的斜率为14k-.因为114k k ⎛⎫⋅-≠- ⎪⎝⎭,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 解法二:因为四边形OABC 为菱形,所以OA OC =,设()1OA OC r r ==>,则A ,C 两点为圆222x y r +=与椭圆2214x y +=的交点,联立方程2222214x y r x y ⎧+=⎪⎨+=⎪⎩,得224(1)3r x -=,所以A ,C 两点的横坐标相等或 互为相反数.因为点B 在W 上,若A ,C 两点的横坐标相等,点B 应为椭圆的左顶点或右顶点.不合题意.若A ,C 两点的横坐标互为相反数,点B 应为椭圆的上顶点或下顶点.不合题意. 所以四边形OABC 不可能为菱形(20)【2013年北京,文20,13分】给定数列1a ,2a ,L L ,n a .对1,2,3,,1i n =-L ,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +,L L ,n a 的最小值记为i B ,i i i d A B =-. (1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(2)设1a ,2a ,L L ,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d ,L L ,1n d -是等比数列;(3)设1d ,2d ,L L ,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a ,L L ,1n a -是等差数列.解:(1)111312d A B =-=-=,222413d A B =-=-=,333716d A B =-=-=. (2)因为1a ,2a ,L L ,n a (4n ≥)是公比大于1的等比数列,且10a >,所以11n n a a q -=.所以当1,2,3,,1k n =-L 时,1k k k k k d A B a a +=-=-,所以当2,3,,1k n =-L 时,11111(1)(1)k k k k k k k k d a a a q q q d a a a q +------===--,所以1d ,2d ,L L ,1n d -是等比数列. (3)解法一:若1d ,2d ,L L ,1n d -是公差大于0的等差数列,则1210n d d d -<<<<L , 1a ,2a ,L L ,1n a -应是递增数列,证明如下:设k a 是第一个使得1k k a a -≤的项,则1k k A A -=,1k k B B -≤,所以111k k k k k k d A B A B d ---=-≥-=,与已知矛盾.所以,1a ,2a ,L L ,1n a -是递增数列.再证明n a 数列{}n a 中最小项,否则k n a a <(2,3,,1k n =-L ),则 显然1k ≠,否则11111110d A B a B a a =-=-≤-=,与10d >矛盾;因而2k ≥,此时考虑11110k k k k k d A B a a ----=-=-<,矛盾,因此n a 是数列{}n a 中最小项.综上,()2,3,,1k k k k n d A B a a k n =-=-=-L ,k k n a d a ∴=+,也即1a ,2a ,L L ,1n a -是等差数列. 解法二:设d 为121n d d d -⋯,,,公差.对12i n ≤≤-,1i i B B +≤Q ,0d >,111i i i i i i i i A B d B d d B d A +++=+≥++>+=.又因为11{}i i i A max A a ++=,,所以11i i i i a A A a ++=>≥.从而121n a a a -⋯,,,是递增数列. 因此1,2()1i i A a i n ==⋯-,,.又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<⋯<.因此1n a B =.所以121n n B B B a -==⋯==.所以i i i i n i a A B d a d ==+=+.因此对1,22i n =⋯-,,都有11i i i i a a d d d ++-=-=,即121n a a a -⋯,,,是等差数列.。
2013年北京高考文科数学试卷及解析
1 cos 4 x 2
(1)求 f ( x ) 的最小正周期及最大值。 (2)若 (
2
, ) ,且 f ( )
2 ,求 的值。 2
【考点】本题考查三角函数的诱导公式、二倍角公式、三角函数的周期、最小值等相关公式。
1 x
B. y e
x
C. y x 1
2
D. y lg x
【答案】C 【考点】本题主要考查一些常见函数的图像和性质,意在考查考生对幂函数、二次函数、指数函数、对数函数以及函数图 像之间的变换关系的掌握情况。 【解析】y = ������是奇函数,选项 A 错;y=e 指数函数,非奇非偶,选项 B 错;y = lg |������ |是偶函数,但在(0,∞)上单调 递增,选项 D 错,只有选项 C 是偶函数且在(0,∞)上单调递增。 4.在复平面内,复数 i (2 i ) 对应的点位于() A.第一象限 C.第三象限 【答案】A 【考点】本题主要考查复数的运算法则和几何意义。 【解析】因为 i(2—i)=1+2i,所以对应的点的坐标为(1.2)在第一象限,故选 A. 5.在 ABC 中, a 3 , b 5 , sin A B.第二象限 D.第四象限
6 13
(2)此人停留的两天共有 13 种选择,分别是:(1, 2) ,(2,3) ,(3, 4) ,(4,5) ,(5, 6) ,(6, 7) ,(7,8) ,(8,9) , (9,10) ,
(10,11) , (11,12) , (12,13) , (13,14)
其中只有一天重度污染的为 (4,5) , (5, 6) , (7,8) , (8,9) ,共 4 种, 所以概率为 P2
2013年高考文科数学北京卷
数学试卷 第1页(共6页)数学试卷 第2页(共6页) 数学试卷 第3页(共6页)绝密★启用前2013年普通高等学校招生全国统一考试(北京卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}A =-,{|11}B x x ≤<=-,则A B I = ( )A .{0}B .{1,0}-C .{0,1}D .{1,0,1}- 2.设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b >D .33a b >3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x=B .x y e -=C .21y x =-+D .lg||y x = 4.在复平面内,复数i(2i)-对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在ABC △中,3a =,5b =,1sin 3A =,则sin B =( )A .15B .59C .5D .16.执行如图所示的程序框图,输出的S 值为 ( )A .1B .23C .1321D .6109877.双曲线221y x m-=的离心率大于2的充分必要条件是( )A .12m > B .1m ≥ C .1m >D .2m >8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上.9.若抛物线22y px =的焦点坐标为(1,0),则p = ;准线方程为 . 10.某四棱锥的三视图如图所示,该四棱锥的体积为 .11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = .12.设D 为不等式组02030x x y x y ≥,≤,≤,⎧⎪-⎨⎪+-⎩表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .13.函数12log ,1()2,1x x x f x x ≥< ⎧⎪=⎨⎪ ⎩的值域为 .14.已知点(1,1)A -,(3,0)B ,(2,1)C .若平面区域D 由所有满足AP AB ACu u u r u u u r u u u rλμ=+(12≤≤λ,01≤≤μ)的点P 组成,则D 的面积为 .三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共6页) 数学试卷 第5页(共6页) 数学试卷 第6页(共6页)已知函数21()(2cos 1)sin 2cos42f x x x x =-+. (Ⅰ)求()f x 的最小正周期及最大值; (Ⅱ)若π(,π)2α∈,且2()2f α=,求α的值.16.(本小题满分13分)下图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(本小题满分14分)如图,在四棱锥P ABCD -中,AB CD ∥,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥.E 和F 分别是CD 和PC 的中点,求证:(Ⅰ)PA ⊥底面ABCD ; (Ⅱ)BE ∥平面PAD ; (Ⅲ)平面BEF ⊥平面PCD .18.(本小题满分13分)已知函数2()sin cos f x x x x x =++.(Ⅰ)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值;(Ⅱ)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围.19.(本小题满分14分)直线y kx m =+(0m ≠)与椭圆W :2214x y +=相交于A ,C 两点,O 是坐标原点.(Ⅰ)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (Ⅱ)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.20.(本小题满分13分)给定数列1a ,2a ,L ,n a .对1,2,,1i n L =-,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +,L ,n a 的最小值记为i B ,i i i d A B =-. (Ⅰ)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(Ⅱ)设1a ,2a ,L ,n a (4n ≥)是公比大于1的等比数列,且10a >.证明:1d ,2d ,L ,1n d -是等比数列;(Ⅲ)设1d ,2d ,L ,1n d -是公差大于0的等差数列,且10d >.证明:1a ,2a ,L ,1n a -是等差数列.。
2013年高考真题—文科数学(北京卷)精校精析
2013年高考真题精校精析2013·北京卷(文科数学)1. 已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ) A .{0} B .{-1,0} C .{0,1} D .{-1,0,1}1.B [解析] ∵-1∈B ,0∈B ,1∉B ,∴A ∩B ={-1,0},故选B. 2. 设a ,b ,c ∈,且a >b ,则( ) A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 32.D [解析] ∵函数y =x 3在上是增函数,a >b , ∴a 3>b 3. 3., 下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -xC .y =-x 2+1D .y =lg |x |3.C [解析] 对于A ,y =1x 是奇函数,排除.对于B ,y =e -x 既不是奇函数,也不是偶函数,排除.对于D ,y =lg |x |是偶函数,但在(0,+∞)上有y =lg x ,此时单调递增,排除.只有C 符合题意.4. 在复平面内,复数i(2-i)对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.A [解析] ∵i(2-i)=2i +1,∴i(2-i)对应的点为(1,2),因此在第一象限.5. 在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1 5.B [解析] 由正弦定理得a sin A =b sin B ,即313=5sin B ,解得sin B =59. 6. 执行如图1-1所示的程序框图,输出的S 值为( )图1-1A .1 B.23C.1321D.6109876.C [解析] 执行第一次循环时S =12+12×1+1=23,i =1;执行第二次循环时S =⎝⎛⎭⎫232+12×23+1=1321,i=2,此时退出循环,故选C.7., 双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( )A .m >12 B .m ≥1C .m >1D .m >27.C [解析] 双曲线的离心率e =ca=1+m >2,解得m >1.故选C.8., 如图1-2,在正方体ABCD -A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个8.B [解析] 设棱长为1,∵BD 1=3,∴BP =33,D 1P =2 33.联结AD 1,B 1D 1,CD 1,得△ABD 1≌△CBD 1≌△B 1BD 1,∴∠ABD 1=∠CBD 1=∠B 1BD 1,且cos ∠ABD 1=33, 联结AP ,PC ,PB 1,则有△ABP ≌△CBP ≌△B 1BP ,∴AP =CP =B 1P =63,同理DP =A 1P =C 1P =1, ∴P 到各顶点的距离的不同取值有4个.9. 若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________.9.2 x =-1 [解析] ∵抛物线y 2=2px 的焦点坐标为(1,0),∴p2=1,解得p =2,∴准线方程为x =-1.10., 某四棱锥的三视图如图1-________.10.3 [解析] 正视图的长为3,侧视图的长为3,因此,该四棱锥底面是边长为3的正方形,且高为1,因此V =13×(3×3)×1=3.11. 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.11.2 2n +1-2 [解析] ∵a 3+a 5=q (a 2+a 4),∴40=20q ,∴q =2,∴a 1(q +q 3)=20,∴a 1=2,∴S n =2(1-2n )1-2=2n +1-2.12. 设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.12.2 55[解析] 在平面直角坐标系中画出可行域,如图所示.根据可行域可知,区域D 内的点到点(1,0)的距离最小值为点(1,0)到直线2x -y =0的距离,即d =|2-0|5=2 55.13. 函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.13.(-∞,2) [解析] 函数y =log 12x 在(0,+∞)上为减函数,当x ≥1时,函数y =log 12x 的值域为(-∞,0];函数y =2x 在上是增函数,当x <1时,函数y =2x 的值域为(0,2),所以原函数的值域为(-∞,2).14. 已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________.14.3 [解析] 设P (x ,y ),∴AP →=(x -1,y +1),AB →=(2,1),AC →=(1,2).∵AP →=λAB →+μAC →,∴⎩⎪⎨⎪⎧x -1=2λ+μ,y +1=λ+2μ,解得⎩⎪⎨⎪⎧3λ=2x -y -3,-3μ=x -2y -3.又1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧6≤2x -y ≤9,0≤x -2y ≤3,此不等式组表示的可行域为平行四边形,如图所示,由于A (3,0),B (5,1),所以|AB |=(5-3)2+(1-0)2=5,点B (5,1)到直线x -2y =0的距离d =35,∴其面积S =5×35=3.15.,,, 已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x .(1)求f (x )的最小正周期及最大值; (2)若α∈⎝⎛⎭⎫π2,π,且f (α)=22,求α的值. 15.解:(1)因为f (x )=(2cos 2 x -1)sin 2x +12cos 4x=cos 2x ·sin 2x +12cos 4x=12(sin 4x +cos 4x ) =22sin ⎝⎛⎭⎫4x +π4, 所以f (x )的最小正周期为π2,最大值为22.(2)因为f (α)=22,所以sin ⎝⎛⎭⎫4α+π4=1. 因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4. 所以4α+π4=5π2.故α=9π16.16.,,图1-4是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.图1-4(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)16.解:(1)在3 月1日至3 月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为4 13.(3)从3月5日开始连续三天的空气质量指数方差最大.17.,,如图1-5,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD,E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.图1-517.证明:(1)因为平面P AD⊥底面ABCD,且P A垂直于这两个平面的交线AD,所以P A⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE,所以ABED为平行四边形,所以BE∥AD.又因为BE⊄平面P AD,AD⊂平面P AD,所以BE∥平面P AD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE ⊥CD ,AD ⊥CD . 由(1)知P A ⊥底面ABCD , 所以P A ⊥CD .又因为AD ∩P A =A ,所以CD ⊥平面P AD , 所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点, 所以PD ∥EF , 所以CD ⊥EF ,所以CD ⊥平面BEF , 所以平面BEF ⊥平面PCD . 18.,,, 已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 18.解:由f (x )=x 2+x sin x +cos x ,得 f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,所以f ′(a )=a (2+cos a )=0,b =f (a ). 解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0. f (x )与f ′(x )的情况如下:所以函数f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f (0)=1是f (x )的最小值.当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点;当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b , 所以存在x 1∈(-2b ,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时,曲线y =f (x )与直线y =b 有且仅有两个不同交点.综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).19.,, 直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.19.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分. 所以可设A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1,即t =±3. 所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝⎛⎭⎫-4km 1+4k 2,m 1+4k 2.因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·⎝⎛⎭⎫-14k ≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 20.,,, 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q >1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q )q i -1.因此d i ≠0且d i +1d i=q (i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i ≤n -2,因为B i ≤B i +1,d >0,所以A i +1=B i +1+d i +1≥B i +d i +d >B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d , 即a 1,a 2,…,a n -1是等差数列.。
2013年北京市高考数学试卷(文科)
2013 年北京市高考数学试卷(文科)一、选择题共 8 小题,每题 5 分,共 40 分.在每题列出的四个选项中,选出切合题目要求的一项.1.(5 分)已知会合 A={ ﹣1,0,1} ,B={ x| ﹣ 1≤ x<1} ,则 A∩ B=()A.{ 0} B.{ ﹣1,0}C.{ 0,1}D.{ ﹣1,0,1}2.(5 分)设 a,b,c∈R,且 a> b,则().>.2>b2.3>b3A ac bcB C.a D a3.( 5 分)以下函数中,既是偶函数又在区间( 0,+∞)上单一递减的是().﹣ xC.y=lg| x|2+1A B.y=e D.y=﹣ x4.(5 分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.(5 分)在△ ABC中, a=3, b=5,sinA= ,则 sinB=()A.B.C.D.16.(5 分)履行如下图的程序框图,输出的S值为()A.1B.C.D.7.(5 分)双曲线的离心率大于的充足必需条件是()A.B.m≥ 1 C.m>1 D.m>28.(5 分)如图,在正方体ABCD﹣ A1B1C1D1中, P 为对角线 BD1的三均分点, P 到各极点的距离的不一样取值有()A.3 个 B.4 个 C.5 个 D.6 个二、填空题共 6 小题,每题 5 分,共 30 分.9.(5 分)若抛物线 y2=2px的焦点坐标为(1,0),则 p=;准线方程为.10.( 5 分)某四棱锥的三视图如下图,该四棱锥的体积为..(分)若等比数列n}知足a2+a4, 3+a5,则公比q=;前n11 5{ a=20 a=40项和 S n=.12.(5 分)设 D 为不等式组表示的平面地区,地区D上的点与点(1,0)之间的距离的最小值为.13.( 5 分)函数 f (x) =的值域为.14.( 5 分)已知点 A(1,﹣ 1),B(3,0),C(2,1).若平面地区 D 由全部满足( 1≤λ≤2, 0≤μ≤ 1)的点 P 构成,则 D 的面积为.三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程.15.( 13 分)已知函数 f (x)=(2cos2x﹣ 1) sin 2x+cos 4x.( 1)求 f (x)的最小正周期及最大值;( 2)若α∈(,π),且f(α)=,求α的值.16.( 13 分)如图是某市 3 月 1 日至 14 日的空气质量指数趋向图.空气质量指数小于 100 表示空气质量优秀,空气质量指数大于 200 表示空气重度污染.某人随机选择 3 月 1 日至 3 月 13 日中的某一天抵达该市,并逗留 2 天.(Ⅰ)求这人抵达当天空气质量优秀的概率;(Ⅱ)求这人在该市逗留时期只有 1 天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.( 13 分)如图,在四棱锥P﹣ABCD 中, AB∥CD, AB⊥ AD,CD=2AB,平面PAD⊥底面 ABCD,PA⊥ AD.E 和 F 分别是 CD和 PC的中点,求证:(Ⅰ) PA⊥底面 ABCD;(Ⅱ) BE∥平面 PAD;(Ⅲ)平面 BEF⊥平面 PCD.第3页(共 20页)18.( 13 分)已知函数 f (x)=x2+xsinx+cosx.(Ⅰ)若曲 y=f(x)在点( a,f (a))与直 y=b 相切,求 a 与 b 的;(Ⅱ)若曲 y=f(x)与直 y=b 有两个不一样交点,求 b 的取范.19.( 14 分)直 y=kx+m(m≠0)与订交于A,C两点,O是坐原点.(Ⅰ)当点 B 的坐( 0, 1),且四形 OABC菱形,求 AC 的;(Ⅱ)当点 B 在 W 上且不是 W 的点,明:四形 OABC不行能菱形.20.( 14 分)定数列 a1,a2,⋯,a n. i=1,2,⋯, n 1,数列前 i 的最大 A i,后 n i a i+1,a i+2,⋯,a n的最小 B i,d i =A i B i.(Ⅰ)数列 { a n} 3,4,7,1,写出 d1, d2,d3的;(Ⅱ) a1,a2,⋯,a n﹣1(n≥4)是公比大于 1 的等比数列,且a1>0.明:d1, d2,⋯,d n﹣1是等比数列;(Ⅲ) d1,d2,⋯,d n﹣1是公差大于 0 的等差数列,且 d1>0.明:a1,a2,⋯,a n﹣1是等差数列.2013 年北京市高考数学试卷(文科)参照答案与试题分析一、选择题共 8 小题,每题 5 分,共 40 分.在每题列出的四个选项中,选出切合题目要求的一项.1.(5 分)已知会合 A={ ﹣1,0,1} ,B={ x| ﹣ 1≤ x<1} ,则 A∩ B=()A.{ 0} B.{ ﹣1,0}C.{ 0,1} D.{ ﹣1,0,1}【剖析】找出 A 与 B 的公共元素,即可确立出两会合的交集.【解答】解:∵ A={ ﹣1,0, 1} ,B={ x| ﹣1≤x<1} ,∴A∩B={ ﹣1,0} .应选: B.【评论】本题考察了交集及其运算,娴熟掌握交集的定义是解本题的重点.2.(5 分)设 a,b,c∈R,且 a> b,则()A.ac>bc B.2>b2.3>b3 C.a D a【剖析】对于 A、B、C 可举出反例,对于 D 利用不等式的基天性质即可判断出.【解答】解: A、3>2,可是 3×(﹣ 1)< 2×(﹣ 1),故 A 不正确;B、1>﹣ 2,可是,故B不正确;C、﹣ 1>﹣ 2,可是(﹣ 1)2<(﹣ 2)2,故 C 不正确;D、∵ a> b,∴ a3>b3,成立,故 D 正确.【评论】娴熟掌握不等式的基天性质以及反例的应用是解题的重点.3.( 5 分)以下函数中,既是偶函数又在区间( 0,+∞)上单一递减的是()A.B.y=e﹣x C.y=lg| x|D.y=﹣ x2+1【剖析】利用基本函数的奇偶性、单一性逐项判断即可.【解答】解: A 中, y= 为奇函数,故清除A;B 中, y=e﹣x为非奇非偶函数,故清除B;C 中, y=lg| x| 为偶函数,在x∈( 0, 1)时,单一递减,在x∈( 1, +∞)时,单一递加,所以 y=lg| x| 在( 0,+∞)上不但一,故清除C;D 中,y=﹣x2+1 的图象对于 y 轴对称,故为偶函数,且在(0,+∞)上单一递减,应选: D.【评论】本题考察函数的奇偶 i 性、单一性的判断证明,属基础题,定义是解决该类题目的基本方法,熟记基本函数的相关性质可简化问题的解决.4.(5 分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【剖析】第一进行复数的乘法运算,获得复数的代数形式的标准形式,依据复数的实部和虚部写出对应的点的坐标,看出所在的象限.2【解答】解:∵复数 z=i(2﹣i )=﹣ i +2i=1+2i这个点在第一象限,应选: A.【评论】本题考察复数的代数表示法及其几何意义,本题解题的重点是写成标准形式,才能看出实部和虚部的值.5.(5 分)在△ ABC中, a=3, b=5,sinA= ,则 sinB=()A.B.C.D.1【剖析】由正弦定理列出关系式,将a, b 及 sinA 的值代入即可求出sinB 的值.【解答】解:∵ a=3, b=5,sinA= ,∴由正弦定理得: sinB===.应选: B.【评论】本题考察了正弦定理,娴熟掌握正弦定理是解本题的重点.6.(5 分)履行如下图的程序框图,输出的S值为()A.1B.C.D.【剖析】从框图赋值下手,先履行一次运算,而后判断运算后的i 的值与 2 的大小,知足判断框中的条件,则跳出循环,不然持续履行循环,直到条件知足为止.【解答】解:框图第一给变量i 和 S 赋值 0 和 1.履行,i=0+1=1;判断 1≥2 不行立,履行,i=1+1=2;判断 2≥2 成立,算法结束,跳出循环,输出S 的值为.应选: C.【评论】本题考察了程序框图,考察了直到型构造,直到型循环是先履行后判断,不知足条件履行循环,直到条件知足结束循环,是基础题.7.(5 分)双曲线的离心率大于的充足必需条件是()A.B.m≥ 1 C.m>1 D.m>2【剖析】依据双曲线的标准形式,能够求出a=1,b=,c=.利用离心率e 大于成立不等式,解之可得m>1,最后利用充要条件的定义即可得出正确答案.【解答】解:双曲线,说明m>0,∴ a=1,b=,可得c=,∵离心率 e>等价于? m> 1,∴双曲线的离心率大于的充足必需条件是m >1.应选: C.【评论】本题固然小巧,用到的知识倒是丰富的,拥有综合性特色,波及了双曲线的标准方程、几何性质等几个方面的知识,是这些内容的有机交融,是一个极具考察力的小题.8.(5 分)如图,在正方体ABCD﹣ A1B1C1D1中, P 为对角线 BD1的三均分点, P 到各极点的距离的不一样取值有()A.3 个 B.4 个 C.5 个 D.6 个【剖析】成立如下图的空间直角坐标系,不如设正方体的棱长| AB| =3,即可获得各极点的坐标,利用两点间的距离公式即可得出.【解答】解:成立如下图的空间直角坐标系,不如设正方体的棱长 | AB| =3,则 A (3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴=(﹣ 3,﹣ 3, 3),设 P(x, y, z),∵=(﹣ 1,﹣ 1,1),∴=(2,2,1).∴| PA| =| PC| =| PB1| ==,| PD| =| PA1| =| PC1| =,|PB|=,| PD1| ==.故 P 到各极点的距离的不一样取值有,3,,共4个.应选: B.【评论】娴熟掌握经过成立空间直角坐标系及两点间的距离公式是解题的重点.二、填空题共 6 小题,每题 5 分,共 30 分.9.( 5 分)若抛物线 y2 =2px 的焦点坐标为( 1,0),则 p= 2;准线方程为x=﹣ 1.【剖析】由抛物线的性质可知,知=1,可知抛物线的标准方程和准线方程.【解答】解:∵抛物线 y2=2px 的焦点坐标为( 1, 0),∴=1,p=2,2抛物线的方程为y =4x,∴其标准方程为: x=﹣1,【评论】本题考察抛物线的简单性质,属于基础题.10.( 5 分)某四棱锥的三视图如下图,该四棱锥的体积为3.第9页(共 20页)【剖析】利用三视图判断几何体的形状,而后经过三视图的数据求解几何体的体积.【解答】解:几何体为底面边长为 3 的正方形,高为 1 的四棱锥,所以体积.故答案为: 3.【评论】本题考察几何体与三视图的对应关系,几何体体积的求法,考察空间想象能力与计算能力.11.( 5 分)若等比数列 { a n} 知足 a2+a4=20,a3+a5=40,则公比 q= 2;前n项和 S n= 2n+1﹣2 .【剖析】利用等比数列的通项公式和已知即可得出,解出即可获得 a1及 q,再利用等比数列的前n 项和公式即可得出.【解答】解:设等比数列 { a n} 的公比为 q,∵a2+a4=a2(1+q2) =20①a3+a5=a3(1+q2)=40②∴①②两个式子相除,可获得= =2即等比数列的公比q=2,将 q=2 带入①中可求出a2=4则 a1= = =2∴数列 { a n} 时首项为 2,公比为 2 的等比数列.∴数列 { a n} 的前 n 项和为: S n ===2n+1﹣2.故答案为: 2,2n+1﹣2.【评论】娴熟掌握等比数列的通项公式和等比数列的前n 项和公式是解题的重点.12.(5 分)设 D 为不等式组表示的平面地区,地区D上的点与点(1,0)之间的距离的最小值为.【剖析】第一依据题意作出可行域,欲求地区 D 上的点与点( 1,0)之间的距离的最小值,由其几何意义为点A(1,0)到直线 2x﹣ y=0 距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为暗影部分,由其几何意义为点A(1,0)到直线 2x﹣y=0 距离,即为所求,由点到直线的距离公式得:d==,则地区 D 上的点与点( 1, 0)之间的距离的最小值等于.故答案为:.【评论】本题主要考察了简单的线性规划,以及利用几何意义求最值,属于基础题.13.( 5 分)函数 f (x) =的值域为(﹣∞,2).【剖析】经过求解对数不等式和指数不等式分别求出分段函数的值域,而后取并集获得原函数的值域.【解答】解:当 x≥ 1 时, f (x)=;当 x<1 时, 0<f(x)=2x<21=2.所以函数的值域为(﹣∞, 2).故答案为(﹣∞, 2).【评论】本题考察了函数值域的求法,分段函数的值域要分段求,最后取并集.是基础题.14.( 5 分)已知点 A(1,﹣ 1),B(3,0),C(2,1).若平面地区 D 由全部满足( 1≤λ≤2, 0≤μ≤ 1)的点 P 构成,则 D 的面积为 3.【剖析】设 P 的坐标为( x,y),依据,联合向量的坐标运算解出,再由 1≤λ≤ 2、0≤μ≤1 获得对于 x、y 的不等式组,进而获得如图的平行四边形 CDEF及其内部,最后依据坐标系内两点间的距离公式即可算出平面地区 D 的面积.【解答】解:设 P 的坐标为( x,y),则=( 2, 1), =( 1, 2), =(x﹣ 1, y+1),∵,∴,解之得∵ 1≤λ≤2,0≤μ≤1,∴点 P 坐标知足不等式组作出不等式组对应的平面地区,获得如图的平行四边形CDEF及其内部此中 C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点 E(5,1)到直线 CF: 2x﹣y﹣6=0 的距离为 d==∴平行四边形CDEF的面积为 S=| CF| × d=×=3,即动点 P 构成的平面区域 D的面积为 3故答案为: 3【评论】本题在平面坐标系内给出向量等式,求知足条件的点 P 构成的平面地区D 的面积.侧重考察了平面向量的坐标运算、二元一次不等式组表示的平面地区和点到直线的距离公式等知识,属于中档题.三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程.15.( 13 分)已知函数 f (x)=(2cos2x﹣ 1) sin 2x+cos 4x.( 1)求 f (x)的最小正周期及最大值;( 2)若α∈(,π),且f(α)=,求α的值.【剖析】(Ⅰ)利用二倍角的正弦函数以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,经过周期公式求f( x)的最小正周期,利用三角函数的最值求出函数的最大值;(Ⅱ)经过,且,求出α的正弦值,而后求出角即可.【解答】解:(Ⅰ)因为==∴T==,函数的最大值为:.(Ⅱ)∵ f(x)=,,所以,∴,k∈Z,∴,又∵,∴.【评论】本题考察二倍角的余弦函数正弦函数的应用,两角和的正弦函数,三角函数的周期与最值的求法,以及角的求法,考察计算能力.16.( 13 分)如图是某市 3 月 1 日至 14 日的空气质量指数趋向图.空气质量指数小于 100 表示空气质量优秀,空气质量指数大于 200 表示空气重度污染.某人随机选择 3 月 1 日至 3 月 13 日中的某一天抵达该市,并逗留 2 天.(Ⅰ)求这人抵达当天空气质量优秀的概率;(Ⅱ)求这人在该市逗留时期只有 1 天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)第 14 页(共 20 页)【剖析】(Ⅰ)由图查出 13 天内空气质量指数小于 100 的天数,直接利用古典概型概率计算公式获得答案;(Ⅱ)用列举法写出这人在该市逗留两天的空气质量指数的全部状况,查出仅有一天是重度污染的状况,而后直接利用古典概型概率计算公式获得答案;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳固,由图直接看出答案.【解答】解:(Ⅰ)由图看出, 1 日至 13 日 13 天的时间内,空气质量优秀的是 1 日、 2 日、 3 日、7 日、12 日、 13 日共 6 天.由古典概型概率计算公式得,这人抵达当天空气质量优秀的概率P=;(Ⅱ)这人在该市逗留时期两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40, 217)、(217, 160)、(160,121)、(121,158)、(158,86)、(86, 79)、(79,37)共 13 种状况.此中只有 1 天空气重度污染的是( 143,220)、( 220,160)、(40,217)、(217,160)共 4 种状况,所以,这人在该市逗留时期只有 1 天空气重度污染的概率P=;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳固,由图看出从 5 日开始连续 5、6、7 三天的空气质量指数方差最大.【评论】本题考察了古典概型及其概率计算公式,考察了一组数据的方差和标准差,训练了学生的读图能力,是基础题.17.( 13 分)如图,在四棱锥P﹣ABCD 中, AB∥CD, AB⊥ AD,CD=2AB,平面PAD⊥底面 ABCD,PA⊥ AD.E 和 F 分别是 CD和 PC的中点,求证:(Ⅰ) PA⊥底面 ABCD;(Ⅱ) BE∥平面 PAD;(Ⅲ)平面 BEF⊥平面 PCD.【剖析】(Ⅰ)依据条件,利用平面和平面垂直的性质定理可得PA⊥平面 ABCD.(Ⅱ)依据已知条件判断ABED 为平行四边形,故有BE∥ AD,再利用直线和平面平行的判断定理证得BE∥平面 PAD.(Ⅲ)先证明ABED为矩形,可得BE⊥ CD ①.现证 CD⊥平面 PAD,可得 CD⊥PD,再由三角形中位线的性质可得EF∥PD,进而证得 CD⊥EF ②.联合①②利用直线和平面垂直的判断定理证得 CD⊥平面BEF,再由平面和平面垂直的判断定理证得平面 BEF⊥平面 PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面 PAD⊥平面 ABCD,平面 PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得 PA⊥平面 ABCD.(Ⅱ)∵ AB∥CD,AB⊥AD, CD=2AB,E 和 F 分别是 CD和 PC的中点,故四边形ABED为平行四边形,故有 BE∥AD.又 AD? 平面 PAD,BE不在平面 PAD内,故有 BE∥平面 PAD.(Ⅲ)平行四边形ABED中,由 AB⊥AD 可得, ABED为矩形,故有BE⊥CD ①.由 PA⊥平面 ABCD,可得 PA⊥AB,再由 AB⊥AD 可得 AB⊥平面 PAD,∴ CD⊥平面 PAD,故有 CD⊥ PD.再由E、F 分别为CD和PC的中点,可得EF∥PD,∴ CD⊥EF ②.而 EF和 BE是平面 BEF内的两条订交直线,故有 CD⊥平面BEF.因为 CD? 平面 PCD,∴平面 BEF⊥平面 PCD.【评论】本题主要考察直线和平面垂直的判断定理,直线和平面平行的判断定理,平面和平面垂直的判断定理、性质定理的应用,属于中档题.18.( 13 分)已知函数 f (x )=x 2+xsinx+cosx .(Ⅰ)若曲线 y=f (x )在点( a ,f (a ))处与直线 y=b 相切,求 a 与 b 的值;(Ⅱ)若曲线 y=f (x )与直线 y=b 有两个不一样交点,求 b 的取值范围.【剖析】(I )由题意可得 f ′( a ) =0,f (a )=b ,联立解出即可;( II )利用导数得出其单一性与极值即最值,获得值域即可.【解答】 解:(I )f ′(x )=2x+xcosx=x (2+cosx ),∵曲线 y=f ( x )在点( a ,f (a ))处与直线 y=b 相切, ∴ f (′ a ) =a (2+cosa )=0, f ( a )=b ,联立,解得,故 a=0,b=1.( II )∵ f ′(x ) =x (2+cosx ).令 f ′(x ) =0,得 x=0,x ,f (x ),f ′(x )的变化状况如表:x(﹣∞, 0) 0 f ( ) ﹣xf (′x )1(0,+∞)+所以函数 f (x )在区间(﹣∞, 0)上单一递减,在区间( 0,+∞)上单一递加,f (0)=1 是 f (x )的最小值.当 b ≤1 时,曲线 y=f (x )与直线 x=b 最多只有一个交点;当 b >1 时,f (﹣ 2b )=f (2b )≥4b 2﹣2b ﹣1>4b ﹣ 2b ﹣1>b ,f (0)=1<b ,所以存在 x 1∈(﹣ 2b ,0),x 2 ∈( 0,2b ),使得 f (x 1) =f (x 2)=b .因为函数 f ( x )在区间(﹣∞, 0)和( 0,+∞)上均单一,所以当 b > 1 时曲线y=f (x )与直线 y=b 有且只有两个不一样的交点.综上可知,假如曲线 y=f (x )与直线 y=b 有且只有两个不一样的交点,那么 b 的取值范围是( 1,+∞).【评论】娴熟掌握利用导数研究函数的单一性、 极值与最值及其几何意义是解题的重点.19.( 14 分)直线 y=kx+m(m≠0)与椭圆订交于A,C两点,O是坐标原点.(Ⅰ)当点 B 的坐标为( 0, 1),且四边形 OABC为菱形时,求 AC 的长;(Ⅱ)当点 B 在 W 上且不是 W 的极点时,证明:四边形OABC不行能为菱形.【剖析】(I)先依据条件得出线段OB 的垂直均分线方程为y=,进而A、C的坐标为(,),依据两点间的距离公式即可得出AC的长;(II)欲证明四边形 OABC不行能为菱形,只须证明若 OA=OC,则 A、C 两点的横坐标相等或互为相反数.设 OA=OC=r,则 A、C 为圆 x2+y2=r2与椭圆的交点,进而解得,则 A、C 两点的横坐标相等或互为相反数.于是结论得证.【解答】解:(I)∵点 B 的坐标为( 0,1),当四边形 OABC为菱形时, AC⊥ OB,而 B(0,1),O(0,0),∴线段 OB的垂直均分线为 y= ,将 y= 代入椭圆方程得 x=±,所以 A、C 的坐标为(,),如图,于是 AC=2.(II)欲证明四边形OABC不行能为菱形,利用反证法,假定四边形OABC为菱形,则有 OA=OC,设 OA=OC=r,则 A、C 为圆 x2+y2=r2与椭圆的交点,故,x2=(r2﹣1),则A、C两点的横坐标相等或互为相反数.进而获得点 B 是 W 的极点.这与题设矛盾.于是结论得证.【点】本主要考了的性,直与的地点关系,考等价化思想,属于基.20.( 14 分)定数列 a1,a2,⋯,a n. i=1,2,⋯, n 1,数列前 i 的最大 A i,后 n i a i+1,a i+2,⋯,a n的最小 B i,d i =A i B i.(Ⅰ)数列 { a n} 3,4,7,1,写出 d1, d2,d3的;(Ⅱ) a1,a2,⋯,a n﹣1(n≥4)是公比大于 1 的等比数列,且a1>0.明:d1, d2,⋯,d n﹣1是等比数列;(Ⅲ) d1,d2,⋯,d n﹣1是公差大于 0 的等差数列,且 d1>0.明:a1,a2,⋯,a n﹣1是等差数列.【剖析】(Ⅰ)当 i=1 ,A1=3,B1=1,进而可求得 d1,同理可求得 d2,d3的;(Ⅱ)依意,可知 a n=a1q n﹣1( a1>0,q>1),由 d k=a k a k+1? d k﹣1=a k﹣1 a k(k≥ 2),进而可(k≥ 2)定.(Ⅲ)依意, 0<d1< d2<⋯<d n﹣1,可用反法明 a1,a2,⋯,a n﹣1是增数列;再明a m数列 { a n} 中的最小,进而可求得是 a k=d k+a m,得.【解答】解:(Ⅰ)当 i=1 ,A1=3,B1=1,故 d1=A1 B1=2,同理可求 d2=3,d3=6;(Ⅱ)由a1,a2,⋯,a n﹣1(n≥4)是公比 q 大于 1 的等比数列,且 a1>0,{ a n}的通: a n=a1q n﹣1,且增的数列.于是当 k=1, 2,⋯n 1 , d k=A k B k=a k a k+1,而当 k=2, 3,⋯n 1 ,===q 定.∴ d1,d2,⋯, d n﹣1是等比数列;第 19 页(共 20 页)2013年北京市高考数学试卷(文科)(Ⅲ) d d1,d2,⋯, d n﹣1的公差,1≤i≤n 2,因 B i≤ B i+1, d> 0,所以 A i+1=B i+1+d i+1≥B i+d i+d>B i+d i =A i,又因 A i+1=max{ A i,a i+1 } ,所以 a i+1=A i+1>A i≥a i.进而 a1, a2,⋯,a n﹣1增数列.因 A i=a i(i=1,2,⋯n 1),又因 B1=A1d1=a1d1<a1,所以 B1< a1<a2<⋯< a n﹣1,所以 a n=B1.所以 B1=B2=⋯ =B n﹣1=a n.所以 a i=A i =B i+d i=a n+d i,所以 i=1,2,⋯, n 2 都有 a i+1a i=d i+1d i=d,即 a1,a2,⋯,a n﹣1是等差数列.【点】本考等差数列与等比数列的合,突出考考推理与抽象思的能力,考反法的用,属于.第 20 页(共 20 页)。
2013年高考真题解析——北京卷(数学文)纯word版
2013·北京卷(文科数学)1. 已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ) A .{0} B .{-1,0} C .{0,1} D .{-1,0,1}1.B [解析] ∵-1∈B ,0∈B ,1∉B ,∴A ∩B ={-1,0},故选B. 2. 设a ,b ,c ∈,且a >b ,则( ) A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 32.D [解析] ∵函数y =x 3在上是增函数,a >b , ∴a 3>b 3. 3., 下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -xC .y =-x 2+1D .y =lg |x |3.C [解析] 对于A ,y =1x 是奇函数,排除.对于B ,y =e -x 既不是奇函数,也不是偶函数,排除.对于D ,y =lg |x |是偶函数,但在(0,+∞)上有y =lg x ,此时单调递增,排除.只有C 符合题意.4. 在复平面内,复数i(2-i)对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.A [解析] ∵i(2-i)=2i +1,∴i(2-i)对应的点为(1,2),因此在第一象限.5. 在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1 5.B [解析] 由正弦定理得a sin A =b sin B ,即313=5sin B ,解得sin B =59. 6. 执行如图1-1所示的程序框图,输出的S 值为( )图1-1A .1 B.23C.1321D.6109876.C [解析] 执行第一次循环时S =12+12×1+1=23,i =1;执行第二次循环时S =⎝⎛⎭⎫232+12×23+1=1321,i =2,此时退出循环,故选C. 7., 双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( )A .m >12 B .m ≥1C .m >1D .m >27.C [解析] 双曲线的离心率e =ca=1+m >2,解得m >1.故选C.8., 如图1-2,在正方体ABCD -A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )图1-2A .3个B .4个C .5个D .6个8.B [解析] 设棱长为1,∵BD 1=3,∴BP =33,D 1P =2 33.联结AD 1,B 1D 1,CD 1,得△ABD 1≌△CBD 1≌△B 1BD 1,∴∠ABD 1=∠CBD 1=∠B 1BD 1,且cos ∠ABD 1=33,联结AP ,PC ,PB 1,则有△ABP ≌△CBP ≌△B 1BP , ∴AP =CP =B 1P =63,同理DP =A 1P =C 1P =1, ∴P 到各顶点的距离的不同取值有4个.9. 若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________. 9.2 x =-1 [解析] ∵抛物线y 2=2px 的焦点坐标为(1,0),∴p2=1,解得p =2,∴准线方程为x =-1.10., 某四棱锥的三视图如图1-3所示,该四棱锥的体积为________.图1-310.3 [解析] 正视图的长为3,侧视图的长为3,因此,该四棱锥底面是边长为3的正方形,且高为1,因此V =13×(3×3)×1=3.11. 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n=________.11.2 2n +1-2 [解析] ∵a 3+a 5=q (a 2+a 4),∴40=20q ,∴q =2,∴a 1(q +q 3)=20,∴a 1=2,∴S n =2(1-2n )1-2=2n +1-2.12. 设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.12.2 55[解析] 在平面直角坐标系中画出可行域,如图所示.根据可行域可知,区域D 内的点到点(1,0)的距离最小值为点(1,0)到直线2x -y =0的距离,即d =|2-0|5=2 55.13. 函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.13.(-∞,2) [解析] 函数y =log 12x 在(0,+∞)上为减函数,当x ≥1时,函数y =log12x 的值域为(-∞,0];函数y =2x 在上是增函数,当x <1时,函数y =2x 的值域为(0,2),所以原函数的值域为(-∞,2).14. 已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________.14.3 [解析] 设P (x ,y ),∴AP →=(x -1,y +1),AB →=(2,1),AC →=(1,2).∵AP →=λAB →+μAC →,∴⎩⎪⎨⎪⎧x -1=2λ+μ,y +1=λ+2μ,解得⎩⎪⎨⎪⎧3λ=2x -y -3,-3μ=x -2y -3. 又1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧6≤2x -y ≤9,0≤x -2y ≤3,此不等式组表示的可行域为平行四边形,如图所示,由于A (3,0),B (5,1),所以|AB |=(5-3)2+(1-0)2=5,点B (5,1)到直线x-2y =0的距离d =35,∴其面积S =5×35=3.15.,,, 已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x .(1)求f (x )的最小正周期及最大值; (2)若α∈⎝⎛⎭⎫π2,π,且f (α)=22,求α的值. 15.解:(1)因为f (x )=(2cos 2 x -1)sin 2x +12cos 4x=cos 2x ·sin 2x +12cos 4x=12(sin 4x +cos 4x ) =22sin ⎝⎛⎭⎫4x +π4, 所以f (x )的最小正周期为π2,最大值为22.(2)因为f (α)=22,所以sin ⎝⎛⎭⎫4α+π4=1. 因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4. 所以4α+π4=5π2.故α=9π16.16.,, 图1-4是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.图1-4(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)16.解:(1)在3 月1日至3 月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)根据题意,事件“此人在该市停留期间只有1天空气 重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.(3)从3月5日开始连续三天的空气质量指数方差最大. 17.,, 如图1-5,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E 和F 分别是CD 和PC 的中点.求证:(1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .图1-517.证明:(1)因为平面P AD ⊥底面ABCD ,且P A 垂直于这两个平面的交线AD ,所以P A ⊥底面ABCD .(2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点,所以AB ∥DE ,且AB =DE , 所以ABED 为平行四边形, 所以BE ∥AD .又因为BE ⊄平面P AD ,AD ⊂平面P AD , 所以BE ∥平面P AD .(3)因为AB ⊥AD ,而且ABED 为平行四边形, 所以BE ⊥CD ,AD ⊥CD . 由(1)知P A ⊥底面ABCD , 所以P A ⊥CD .又因为AD ∩P A =A ,所以CD ⊥平面P AD , 所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点, 所以PD ∥EF , 所以CD ⊥EF ,所以CD ⊥平面BEF , 所以平面BEF ⊥平面PCD . 18.,,, 已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 18.解:由f (x )=x 2+x sin x +cos x ,得 f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,所以f ′(a )=a (2+cos a )=0,b =f (a ). 解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0. f (x )与f ′(x )的情况如下:x (-∞,0)0 (0,+∞)f ′(x ) - 0 + f (x )1所以函数f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f (0)=1是f (x )的最小值.当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点;当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b , 所以存在x 1∈(-2b ,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时,曲线y =f (x )与直线y =b 有且仅有两个不同交点.综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).19.,, 直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.19.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1,即t =±3. 所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝⎛⎭⎫-4km 1+4k 2,m 1+4k 2.因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·⎝⎛⎭⎫-14k ≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 20.,,, 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q >1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q )q i -1.因此d i ≠0且d i +1d i=q (i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i ≤n -2,因为B i ≤B i +1,d >0,所以A i +1=B i +1+d i +1≥B i +d i +d >B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n .所以a i=A i=B i+d i=a n+d i.因此对i=1,2,…,n-2都有a i+1-a i=d i+1-d i=d,即a1,a2,…,a n-1是等差数列.。
2013年北京高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试(北京卷) 数学(文) 第一部分 (选择题 共40分)一、 选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合{}1,0,1A =-,{}|11B x x =-<…,则A B = ( )A.{}0B. {}1,0-C. {}0,1D. {}1,0,1-【测量目标】集合的含义与表示、集合的基本运算,数形结合思想.【考查方式】给出A ,B 的集合,求A ,B 的交集.【参考答案】B【试题解析】}{}{π1,0,1,11A B x x =-=-< …且1B ∉{}1,0A B ∴=-2.设,,a b c ∈R ,且a b >,则( ) A. ac bc > B. 11a b< C. 22a b > D. 33a b > 【测量目标】不等式比较大小.【考查方式】给出两实数的的大小,求出其他实数的大小.【参考答案】D【试题解析】A 项,c 0…时,由a b >不能得到ac bc >,故不正确;B 项0,0a b ><(如1,2a b ==-)时,由a b >不能得到11a b<,故不正确; C 项,由22()()a b a b a b -=+-及a b >可知当0a b +<时(如2,3a b =-=-或2,3a b ==-)均不能得到22a b >,故不正确;D 项,3322()()a b a b a ab b -=-++=223()24b a b a b ⎡⎤⎛⎫-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ,因为223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即 33a b >.3.下列函数中,既是偶函数又在区间(0,+)∞上单调递减的是( )A. 1y x= B. e x y -= C. 21y x =-+ D. lg y x = 【测量目标】偶函数、函数单调性的判断.【考查方式】给出各类函数,判断是否为偶函数及在(0,)∞上单调递减.【参考答案】C【试题解析】A 项,1y x=时奇函数,故不正确;B 项,e x y -=为非奇非偶函数,故不正确;C,D 两项中的两个函数都是偶函数,且21y x =-+在(0,+∞)上是减函数,lg y x =在(0,+∞)上是增函数,故选C .4.在复平面内,复数i(2i)-对应的点位于( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限【测量目标】复数的运算法则及复数的几何意义.【考查方式】给出复数,求出复数所对应的点在哪个象限.【参考答案】A【试题解析】2i(2i)2i i 12i z =-=-=+ ,∴复数z 在复平面内的对应点位(1,2),在第一象限.5.在△ABC 中,3,5a b ==,1sin 3A = ,则sinB =( ). A. 15 B. 59 C.3D. 1 【测量目标】正弦定理.【考查方式】给出三角形的两边长及其中一边所对应的角的正弦值,求出另一边的正弦值.【参考答案】B【试题解析】在ABC △中,由正弦定理sin sin a b A B =,得15sin 53sin 39b A B a ⨯===.6.执行如图所示的程序框图,输出的S 值为( ).A. 1B. 23C.1321D. 610987 【测量目标】循环结构的程序图框.【考查方式】给出程序图,由,S i 的循环关系求出最后输出S 的值.【参考答案】C【试题解析】当0,1i S ==时,执行2121S S S +=+后得23S =,11i i =+=;(步骤1) 当21,3i S ==时,执行2121S S S +=+后得13,1221S i i ==+=,(步骤2) 第6题图由于此时2i …是成立的,因此输出13.21S =(步骤3)7.双曲线221y x m -=的充分必要条件是( ). A. 12m > B. 1m … C. 1m > D. 2m > 【测量目标】双曲线离心率及充分必要条件的定义与理解..【参考答案】C【试题解析】用m m 的不等式求解.双曲线221y x m -=的离心率e = 1.e m > 8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( ).A.3个B. 4个C. 5个D. 6个【测量目标】空间几何定理及点到线段距离的计算.【考查方式】给出正方体图及点与直线的位置,求出点与各点的距离取值.【参考答案】B【试题解析】如图,取底面ABCD 的中心O ,连接,,.PA PC PO AC ⊥ 平面1D D B ,又PO ⊂平面1,.DD B AC PO ∴⊥又O 是BD 的中点,.PA PC ∴=(步骤1)同理,取1B C 与1BC 的交点H ,易证1B C ⊥平面111,.DC B B C PH ∴⊥又H 是1B C 的中点,1.PB PC ∴=11PA PB PC ∴==(步骤2) 第8题图同理可证11.PA PC PD ==又P 是1BD 的三等分点,11,PB PD PB PD ∴≠≠≠故点到正方体的顶点的不同距离有4个.(步骤3)第二部分(非选择题 共110分)二.填空题共6题,每小题5分,共30分.9.若抛物线22y px =的焦点坐标为(1,0)则p =____;准线方程为_____.【测量目标】抛物线标准方程的定义及其应用.【考查方式】给出抛物线的标准方程及焦点坐标,求p 与准线方程.【参考答案】2;1x =-.【试题解析】 抛物线的焦点坐标为(2p ,0),准线方程为.2p x =-又抛物线焦点坐标为(1,0),故2p =,准线方程为1x =-.10.某四棱锥的三视图如图所示,该四棱锥的体积为__________.【测量目标】空间几何体的三视图的理解和计算.【考查方式】给出四棱锥的三视图,求其体积.【参考答案】3.【试题解析】 将三视图还原为直观图,然后根据三视图特征数据,利用体积公式求解,由几何体的三视图可知该几何体时一个底面是正方形的四棱锥,其底面边长为3,且该四棱锥的高是1,故其体积为19133V =⨯⨯=.11.若等比数列{}n a 满足243520,40a a a a +=+=,则公比q =__________;前n 项和n S =_____. 第10题图【测量目标】等比数列的公式及前n 项和.【考查方式】给出等比数列中两组等比项关系,求等比数列的公比与前n 项和.【参考答案】2;122n +-【试题解析】设等比数列{}n a 的首项为1a ,公比为q ,则:由2420a a +=得()21(1)20.1a q q += 由3540a a +=得()221(1)40.2a q q += 由()()12解得12, 2.q a ==故11(1)2(12)2 2.112n n n a q S q +--===---12.设D 为不等式组0,2030x x y x y ⎧⎪-⎨⎪+-⎩………, 第12题图表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为___________.【测量目标】二元一次不等式的几何意义,,用基本不等式解决简单的最大(小)值问题.【考查方式】给出不等式组,求不等式组表示的区域到给定点的距离的最新小值.【试题解析】不等式组表示的区域D 如图阴影部分所示,由图知点P (1,0)与平面区域D 上的点的最短距离为点P (1,0)到直线2y x =的距离d ==13.函数()f x =12log ,12,1x x x x ⎧⎪⎨⎪<⎩…的值域为_________.【测量目标】对数与指数的概念及其运算性质,分段函数的值域.【考查方式】给出()f x 的分段函数,求值域.【参考答案】(,2)-∞【试题解析】当1x …时,1122log log 10,x =∴…1x …时,()0.f x …当1x <时,1022,x <<即0() 2.f x <<因此函数()f x 的值域为(,2)-∞.14.已知点(1,1)A -,(3,0)B ,(2,1)C .若平面区域D 由所有满足AP AB AC λμ=+ 10λμ(2,1)剟剟的点P 组成,则D 的面积为__________.【测量目标】向量的几何表示、向量线性运算的性质及其几何意义.【考查方式】给出平面区域上的三点,求满足关于点的向量关系的平面区域的面积.【参考答案】3【试题解析】设(),P x y <则(1,1).AP x y =-+由题意知(2,1),(1,2).AB AC ==由AP AB AC λμ=+ 知(1,1)(2,1),(1,2),x y λμ-+=+即 21,2 1.x y λμλμ+=-⎧⎨+=+⎩ 23,323,3x y y x λμ--⎧=⎪⎪∴⎨-+⎪=⎪⎩第14题图12,01,λυ⎧⎨⎩剟剟(步骤1) 3236,023 3.x y y x --⎧⎨-+⎩ 剟剟 作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出(4,2),(6,3)M N ,故MN = 又20x y -=与230x y --=之间的距离为d =故平面区域D的面积为3.S ==(步骤2)三.解答题共6小题,共80分。
2013年全国统一高考数学试卷(文科)(新课标ⅰ)(含答案及解析)
2013年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}2.(5分)=()A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i3.(5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q 6.(5分)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n﹣1B.S n=3a n﹣2C.S n=4﹣3a n D.S n=3﹣2a n 7.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 8.(5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2B.2C.2D.49.(5分)函数f(x)=(1﹣cosx)sinx在[﹣π,π]的图象大致为()A.B.C.D.10.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10B.9C.8D.511.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π12.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]二.填空题:本大题共四小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为.15.(5分)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.16.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.18.(12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.请考生在第22、23、24三题中任选一题作答。
2013年北京市高考数学试卷(文科)
2013年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}2.(5分)设a,b,c∈R,且a>b,则()A.ac>bc B. C.a2>b2D.a3>b33.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A. B.y=e﹣x C.y=lg|x|D.y=﹣x2+14.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A. B. C. D.16.(5分)执行如图所示的程序框图,输出的S值为()A.1 B. C. D.7.(5分)双曲线的离心率大于的充分必要条件是()A. B.m≥1 C.m>1 D.m>28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P 到各顶点的距离的不同取值有()A.3个 B.4个 C.5个 D.6个二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=;准线方程为.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为.11.(5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=;前n 项和S n=.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.13.(5分)函数f(x)=的值域为.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin 2x+cos 4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.20.(14分)给定数列a1,a2,…,a n.对i=1,2,…,n﹣1,该数列前i项的最大值记为A i,后n﹣i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i﹣B i.(Ⅰ)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,a n﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d1,d2,…,d n﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n﹣1是等差数列.2013年北京市高考数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设a,b,c∈R,且a>b,则()A.ac>bc B. C.a2>b2D.a3>b3【分析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A、3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B、1>﹣2,但是,故B不正确;C、﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D、∵a>b,∴a3>b3,成立,故D正确.故选:D.【点评】熟练掌握不等式的基本性质以及反例的应用是解题的关键.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A. B.y=e﹣x C.y=lg|x|D.y=﹣x2+1【分析】利用基本函数的奇偶性、单调性逐项判断即可.【解答】解:A中,y=为奇函数,故排除A;B中,y=e﹣x为非奇非偶函数,故排除B;C中,y=lg|x|为偶函数,在x∈(0,1)时,单调递减,在x∈(1,+∞)时,单调递增,所以y=lg|x|在(0,+∞)上不单调,故排除C;D中,y=﹣x2+1的图象关于y轴对称,故为偶函数,且在(0,+∞)上单调递减,故选:D.【点评】本题考查函数的奇偶i性、单调性的判断证明,属基础题,定义是解决该类题目的基本方法,熟记基本函数的有关性质可简化问题的解决.4.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选:A.【点评】本题考查复数的代数表示法及其几何意义,本题解题的关键是写成标准形式,才能看出实部和虚部的值.5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A. B. C. D.1【分析】由正弦定理列出关系式,将a,b及sinA的值代入即可求出sinB的值.【解答】解:∵a=3,b=5,sinA=,∴由正弦定理得:sinB===.故选:B.【点评】此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.6.(5分)执行如图所示的程序框图,输出的S值为()A.1 B. C. D.【分析】从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选:C.【点评】本题考查了程序框图,考查了直到型结构,直到型循环是先执行后判断,不满足条件执行循环,直到条件满足结束循环,是基础题.7.(5分)双曲线的离心率大于的充分必要条件是()A. B.m≥1 C.m>1 D.m>2【分析】根据双曲线的标准形式,可以求出a=1,b=,c=.利用离心率e大于建立不等式,解之可得m>1,最后利用充要条件的定义即可得出正确答案.【解答】解:双曲线,说明m>0,∴a=1,b=,可得c=,∵离心率e>等价于⇔m>1,∴双曲线的离心率大于的充分必要条件是m>1.故选:C.【点评】本题虽然小巧,用到的知识却是丰富的,具有综合性特点,涉及了双曲线的标准方程、几何性质等几个方面的知识,是这些内容的有机融合,是一个极具考查力的小题.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P 到各顶点的距离的不同取值有()A.3个 B.4个 C.5个 D.6个【分析】建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,即可得到各顶点的坐标,利用两点间的距离公式即可得出.【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴=(﹣3,﹣3,3),设P(x,y,z),∵=(﹣1,﹣1,1),∴=(2,2,1).∴|PA|=|PC|=|PB1|==,|PD|=|PA1|=|PC1|=,|PB|=,|PD1|==.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.【点评】熟练掌握通过建立空间直角坐标系及两点间的距离公式是解题的关键.二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=2;准线方程为x=﹣1.【分析】由抛物线的性质可知,知=1,可知抛物线的标准方程和准线方程.【解答】解:∵抛物线y2=2px的焦点坐标为(1,0),∴=1,p=2,抛物线的方程为y2=4x,∴其标准方程为:x=﹣1,故答案为:2,x=﹣1.【点评】本题考查抛物线的简单性质,属于基础题.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为3.【分析】利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积.故答案为:3.【点评】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.11.(5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=2;前n项和S n=2n+1﹣2.【分析】利用等比数列的通项公式和已知即可得出,解出即可得到a1及q,再利用等比数列的前n项和公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a2+a4=a2(1+q2)=20①a3+a5=a3(1+q2)=40②∴①②两个式子相除,可得到==2即等比数列的公比q=2,将q=2带入①中可求出a2=4则a1===2∴数列{a n}时首项为2,公比为2的等比数列.∴数列{a n}的前n项和为:S n===2n+1﹣2.故答案为:2,2n+1﹣2.【点评】熟练掌握等比数列的通项公式和等比数列的前n项和公式是解题的关键.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.【分析】首先根据题意作出可行域,欲求区域D上的点与点(1,0)之间的距离的最小值,由其几何意义为点A(1,0)到直线2x﹣y=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点A(1,0)到直线2x﹣y=0距离,即为所求,由点到直线的距离公式得:d==,则区域D上的点与点(1,0)之间的距离的最小值等于.故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.13.(5分)函数f(x)=的值域为(﹣∞,2).【分析】通过求解对数不等式和指数不等式分别求出分段函数的值域,然后取并集得到原函数的值域.【解答】解:当x≥1时,f(x)=;当x<1时,0<f(x)=2x<21=2.所以函数的值域为(﹣∞,2).故答案为(﹣∞,2).【点评】本题考查了函数值域的求法,分段函数的值域要分段求,最后取并集.是基础题.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.【分析】设P的坐标为(x,y),根据,结合向量的坐标运算解出,再由1≤λ≤2、0≤μ≤1得到关于x、y的不等式组,从而得到如图的平行四边形CDEF及其内部,最后根据坐标系内两点间的距离公式即可算出平面区域D的面积.【解答】解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:3【点评】本题在平面坐标系内给出向量等式,求满足条件的点P构成的平面区域D的面积.着重考查了平面向量的坐标运算、二元一次不等式组表示的平面区域和点到直线的距离公式等知识,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin 2x+cos 4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.【分析】(Ⅰ)利用二倍角的正弦函数以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,通过周期公式求f(x)的最小正周期,利用三角函数的最值求出函数的最大值;(Ⅱ)通过,且,求出α的正弦值,然后求出角即可.【解答】解:(Ⅰ)因为==∴T==,函数的最大值为:.(Ⅱ)∵f(x)=,,所以,∴,k∈Z,∴,又∵,∴.【点评】本题考查二倍角的余弦函数正弦函数的应用,两角和的正弦函数,三角函数的周期与最值的求法,以及角的求法,考查计算能力.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【分析】(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:(Ⅰ)由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率P=;(Ⅱ)此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P=;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大.【点评】本题考查了古典概型及其概率计算公式,考查了一组数据的方差和标准差,训练了学生的读图能力,是基础题.17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【分析】(Ⅰ)根据条件,利用平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)根据已知条件判断ABED为平行四边形,故有BE∥AD,再利用直线和平面平行的判定定理证得BE∥平面PAD.(Ⅲ)先证明ABED为矩形,可得BE⊥CD ①.现证CD⊥平面PAD,可得CD⊥PD,再由三角形中位线的性质可得EF∥PD,从而证得CD⊥EF ②.结合①②利用直线和平面垂直的判定定理证得CD⊥平面BEF,再由平面和平面垂直的判定定理证得平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.【点评】本题主要考查直线和平面垂直的判定定理,直线和平面平行的判定定理,平面和平面垂直的判定定理、性质定理的应用,属于中档题.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.【分析】(I)由题意可得f′(a)=0,f(a)=b,联立解出即可;(II)利用导数得出其单调性与极值即最值,得到值域即可.【解答】解:(I)f′(x)=2x+xcosx=x(2+cosx),∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,∴f′(a)=a(2+cosa)=0,f(a)=b,联立,解得,故a=0,b=1.(II)∵f′(x)=x(2+cosx).令f′(x)=0,得x=0,x,f(x),f′(x)的变化情况如表:x(﹣∞,0)0(0,+∞)f(x)﹣0+f′(x)1所以函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增,f(0)=1是f(x)的最小值.当b≤1时,曲线y=f(x)与直线x=b最多只有一个交点;当b>1时,f(﹣2b)=f(2b)≥4b2﹣2b﹣1>4b﹣2b﹣1>b,f(0)=1<b,所以存在x1∈(﹣2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.由于函数f(x)在区间(﹣∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f(x)与直线y=b有且只有两个不同的交点.综上可知,如果曲线y=f(x)与直线y=b有且只有两个不同的交点,那么b的取值范围是(1,+∞).【点评】熟练掌握利用导数研究函数的单调性、极值与最值及其几何意义是解题的关键.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.【分析】(I)先根据条件得出线段OB的垂直平分线方程为y=,从而A、C的坐标为(,),根据两点间的距离公式即可得出AC的长;(II)欲证明四边形OABC不可能为菱形,只须证明若OA=OC,则A、C两点的横坐标相等或互为相反数.设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,从而解得,则A、C两点的横坐标相等或互为相反数.于是结论得证.【解答】解:(I)∵点B的坐标为(0,1),当四边形OABC为菱形时,AC⊥OB,而B(0,1),O(0,0),∴线段OB的垂直平分线为y=,将y=代入椭圆方程得x=±,因此A、C的坐标为(,),如图,于是AC=2.(II)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,故,x2=(r2﹣1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.【点评】本题主要考查了椭圆的简单性质,直线与椭圆的位置关系,考查等价转化思想,属于基础题.20.(14分)给定数列a1,a2,…,a n.对i=1,2,…,n﹣1,该数列前i项的最大值记为A i,后n﹣i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i﹣B i.(Ⅰ)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,a n﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d1,d2,…,d n﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n﹣1是等差数列.【分析】(Ⅰ)当i=1时,A1=3,B1=1,从而可求得d1,同理可求得d2,d3的值;(Ⅱ)依题意,可知a n=a1q n﹣1(a1>0,q>1),由d k=a k﹣a k+1⇒d k﹣1=a k﹣1﹣a k(k ≥2),从而可证(k≥2)为定值.(Ⅲ)依题意,0<d1<d2<…<d n﹣1,可用反证法证明a1,a2,…,a n﹣1是单调递增数列;再证明a m为数列{a n}中的最小项,从而可求得是a k=d k+a m,问题得证.【解答】解:(Ⅰ)当i=1时,A1=3,B1=1,故d1=A1﹣B1=2,同理可求d2=3,d3=6;(Ⅱ)由a1,a2,…,a n﹣1(n≥4)是公比q大于1的等比数列,且a1>0,则{a n}的通项为:a n=a1q n﹣1,且为单调递增的数列.于是当k=1,2,…n﹣1时,d k=A k﹣B k=a k﹣a k+1,进而当k=2,3,…n﹣1时,===q为定值.∴d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d为d1,d2,…,d n﹣1的公差,对1≤i≤n﹣2,因为B i≤B i+1,d>0,=B i+1+d i+1≥B i+d i+d>B i+d i=A i,所以A i+1=max{A i,a i+1},所以a i+1=A i+1>A i≥a i.又因为A i+1从而a1,a2,…,a n﹣1为递增数列.因为A i=a i(i=1,2,…n﹣1),又因为B1=A1﹣d1=a1﹣d1<a1,所以B1<a1<a2<…<a n﹣1,因此a n=B1.所以B1=B2=…=B n﹣1=a n.所以a i=A i=B i+d i=a n+d i,﹣a i=d i+1﹣d i=d,因此对i=1,2,…,n﹣2都有a i+1即a1,a2,…,a n﹣1是等差数列.【点评】本题考查等差数列与等比数列的综合,突出考查考查推理论证与抽象思维的能力,考查反证法的应用,属于难题.。
2013年高考文科数学北京卷
最小值为
.
13.函数
f
(x)
log 1 2
x,x≥1 的值域为
.
2x ,x<1
14. 已 知 点 A(1,1) , B(3,0) , C(2,1) . 若 平 面 区 域 D 由 所 有 满 足 AP AB AC
(1≤≤2 , 0≤≤1 )的点 P 组成,则 D 的面积为
B. y ex
C. y x2 1
4.在复平面内,复数 i(2 i) 对应的点位于
A.第一象限
B.第二象限
C.第三象限
无
5.在 △ABC 中, a 3, b 5 , sin A 1 ,则 sin B
3
D. y lg|x| ()
D.第四象限 ()
A. 1
B. 5
C. 5
数学试卷 第 6 页(共 6 页)
的不同取值有
()
A.3 个 B.4 个 C.5 个 D.6 个
数学试卷 第 2 页(共 6 页)
第Ⅱ卷(非选择题 共 110 分)
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.把答案填在题中的横线上.
9.若抛物线 y2 2 px 的焦点坐标为 (1,0) ,则 p
;准线方程为
.
数学试卷 第 3 页(共 6 页)
三、解答题:本大题共 6 小题,共 80 分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分 13 分)
已知函数 f (x) (2cos2 x 1)sin 2x 1 cos 4x . 2
(Ⅰ)求 f (x) 的最小正周期及最大值;
(Ⅱ)若 ( π , π) ,且 f ( ) 2 ,求 的值.
2013年高考文科数学北京卷
2
2
16.(本小题满分 13 分) 下图是某市 3 月 1 日至 14 日的空气质量指数趋势图.空气质量指数小于 100 表示空气 质量优良,空气质量指数大于 200 表示空气重度污染,某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市,并停留 2 天.
17.(本小题满分 14 分) 如图,在四棱锥 P ABCD 中, AB∥CD , AB AD , CD 2AB ,平面 PAD 底 面 ABCD , PA AD . E 和 F 分别是 CD 和 PC 的中点,求证: (Ⅰ) PA 底面 ABCD ; (Ⅱ) BE∥平面 PAD ; (Ⅲ)平面 BEF 平面 PCD .
x y 3≤0,
最小值为
.
13.函数
f
(x)
log 1 2
x,x≥1 的值域为
.
2x ,x<1
14. 已 知 点 A(1,1) , B(3,0) , C(2,1) . 若 平 面 区 域 D 由 所 有 满 足 AP AB AC
(1≤≤2 , 0≤≤1 )的点 P 组成,则 D 的面积为
的不同取值有
()
A.3 个 B.4 个 C.5 个 D.6 个
数学试卷 第 2 页(共 6 页)
第Ⅱ卷(非选择题 共 110 分)
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.把答案填在题中的横线上.
9.若抛物线 y2 2 px 的焦点坐标为 (1,0) ,则 p
;准线方程为
(Ⅰ)求此人到达当日空气质量优良的概率; (Ⅱ)求此人在该市停留期间只有 1 天空气重度污染的概率; (Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷满分150分,考试时120分钟,考生务必将答案答在答题卡上,在试卷上作答无效,第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-2.设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b >3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x=B .x y e -=C .21y x =-+ D .lg y x =4.在复平面内,复数(2)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在ABC ∆中,3a =,5b =,1sin 3A =,则sin B =( )A .15 B .59 C D .16.执行如图所示的程序框图,输出的S 值为( )A .1B .23 C .1321D .6109877.双曲线221y x m-= A .12m >B .1m ≥C .1m >D .2m >8.如图,在正方体1111ABCD A BC D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 。
10.某四棱锥的三视图如图所示,则该四棱锥的体积为 。
11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = 。
12.设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 。
13.函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 。
14.向量(1,1)A -,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB AC λμ=+(12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为 。
三、解答题(共6小题,共80分。
解答应写出必要的文字说明,演算步骤) 15.(本小题共13分)已知函数21()(2cos 1)sin 2cos 42f x x x x =-+ (1)求()f x 的最小正周期及最大值。
(2)若(,)2παπ∈,且()2f α=,求α的值。
16.(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染。
某人随机选择3月1日至14日中的某一天到达该市,并停留2天。
(1)求此人到达当日空气重度污染的概率。
(2)求此在在该市停留期间只有一天空气重度污染的概率。
(3)由图判断,从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(本小题共14分)如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:(1)PA ⊥底面ABCD (2)//BE 平面PAD (3)平面BEF ⊥平面PCD18.(本小题共13分)已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值。
(2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围。
19.(本小题共14分)直线y kx m =+(0m ≠)W :2214x y +=相交于A ,C 两点,O 是坐标原点 (1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长。
(2)当点B 在W 上且不是W 的顶点时,证明四边形OABC 不可能为菱形。
20.(本小题共13分)给定数列1a ,2a ,,n a 。
对1,2,3,,1i n =-,该数列前i 项的最大值记为i A ,后n i-项1i a +,2i a +,,n a 的最小值记为i B ,i i i d A B =-。
(1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值。
(2)设1a ,2a ,,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d ,,1n d -是等比数列。
(3)设1d ,2d ,,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a ,,1n a -是等差数列。
2013年普通高等学校招生全国统一考试数学(文)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)1.B 2.D 3.C 4.A 5.B 6.C 7.C 8.B 二、填空题(共6小题,每小题5分,共30分)9.2,1x =- 10.3 11.2,121n +-12.513.(,2)-∞- 14.3 三、解答题(共6小题,共80分。
解答应写出必要的文字说明,演算步骤) 15.(本小题共13分)解:(1)21()(2cos 1)sin 2cos 42f x x x x =-+ 1cos 2sin 2cos 42x x x =+ 11sin 4cos 422x x =+)4x π=+ 所以,最小正周期242T ππ== 当4242x k πππ+=+(k Z ∈),即216k x ππ=+(k Z ∈)时max ()2f x =(2)因为())4f παα=+= 所以sin(4)14πα+=因为2παπ<<,所以9174444πππα<+<所以5442ππα+=,即916πα=16.(本小题共13分)解:(1)因为要停留2天,所以应该在3月1日至13日中的某天到达,共有13种选择,其间重度污染的有两天,所以概率为1213P =(2)此人停留的两天共有13种选择,分别是:(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(10,11),(11,12),(12,13),(13,14)其中只有一天重度污染的为(4,5),(5,6),(7,8),(8,9),共4种, 所以概率为2413P =(3)因为第5,6,7三天的空气质量指数波动最大,所以方差最大。
17.(本小题共14分)证明:(1)因为PA AD ⊥,平面PAD ⊥底面ABCD 且平面PAD 底面ABCD AD =所以PA ⊥底面ABCD(2)因为E 和F 分别是CD 和PC 的中点,所以//EF PD , 而EF ⊄平面PAD ,PD ⊂平面PAD ,所以//BE 平面PAD (3)因为PA ⊥底面ABCD , CD ⊂平面ABCD 所以PA CD ⊥,即CD PA ⊥因为AB AD ⊥,//CD AB ,所以//CD AD 而PA ⊂平面PAD ,AD ⊂平面PAD ,且PA AD A =所以CD ⊥平面PAD因为//AB CD ,所以2CD AB =,所以四边形ABED 是平行四边形, 所以//BE AD ,而BE ⊄平面PAD ,AD ⊂平面PAD 所以//BE 平面PAD ,同理//EF 平面PAD , 而EF ⊂平面BEF ,BE ⊂平面BEF 且EFBE E =所以平面//BEF 平面PAD , 所以CD ⊥平面//BEF 又因为CD ⊂平面PCD所以平面BEF ⊥平面PCD 18.(本小题共13分)解:(1)'()2cos (2cos )f x x x x x x =+=+因为曲线()y f x =在点(,())a f a 处的切线为y b =所以'()0()f a f a b =⎧⎨=⎩,即22cos 0sin cos a a a a a a a b+=⎧⎨++=⎩,解得01a b =⎧⎨=⎩(2)因为2cos 0x +>所以当0x >时'()0f x >,()f x 单调递增 当0x <时'()0f x <,()f x 单调递减 所以当0x =时,()f x 取得最小值(0)1f =, 所以b 的取值范围是(1,)+∞ 19.(本小题共14分)解:(1)线段OB 的垂直平分线为12y =, 因为四边形OABC 为菱形,所以直线12y =与椭圆的交点即为A ,C 两点 对椭圆2214x y +=,令12y =得x =所以AC =(2)方法一:当点B 不是W 的顶点时,联立方程2214y kx mx y =+⎧⎪⎨+=⎪⎩得222(14)8440k x kmx m +++-= 设11(,)A x y ,12(,)C x y ,则122814km x x k +=-+,21224414m x x k-=+, 1212y y k x mk x m +=+++ 12()2k x x m =++228214k m m k =-++ 2214mk=+若四边形OABC 为菱形,则OA OC =,即22OA OC = 所以22221122x y x y +=+即12122121()()()()x x x x y y y y +-=+- 因为点B 不是W 的顶点,所以120x x -≠, 所以12212112x x y y y y x x +-=+- 即22814214kmk k m k +-=-+,即4k k = 所以0k =此时,直线AC 与y 轴垂直,所以B 为椭圆的上顶点或下顶点,与已知矛盾, 所以四边形OABC 不可能为菱形 方法二:因为四边形OABC 为菱形,所以OA OC =, 设OA OC r ==(1r >)则A ,C 两点为圆222x y r +=与椭圆2214x y +=的交点 联立方程2222214x y r x y ⎧+=⎪⎨+=⎪⎩得224(1)3r x -=所以A ,C 两点的横坐标相等或互为相反数。
因为点B 在W 上若A ,C 两点的横坐标相等,点B 应为椭圆的左顶点或右顶点。
不合题意。
若A ,C 两点的横坐标互为相反数,点B 应为椭圆的上顶点或下顶点。
不合题意。
所以四边形OABC 不可能为菱形。
20.(本小题共13分)解:(1)111312d A B =-=-=,222413d A B =-=-=,333716d A B =-=-=(2)因为1a ,2a ,,n a (4n ≥)是公比大于1的等比数列,且10a >所以11n n a a q -= 所以当1,2,3,,1k n =-时,1k k k k k d A B a a +=-=- 所以当2,3,,1k n =-时,11111(1)(1)k k k k k k k k d a a a q q q d a a a q +------===-- 所以1d ,2d ,,1n d -是等比数列。