(有详细答案)教师版高中物理选修3-3学案:第七章-气体动理论3-含答案-精品
物理选修3-3学案:第七章3分子间的作用力含解析
3分子间的作用力1.分子间作用力及其变化(1)分子力:由于分子间同时存在引力和斥力,两种力的合力就叫做分子力。
(2)分子间作用力的变化:分子间引力和斥力的大小都跟分子间的距离有关.①当分子之间距离r=r0时(r0约为10-10m),分子间的引力和斥力相互平衡,此时分子间的作用力为零。
②当分子之间距离r<r0时,随着分子之间距离的减小引力和斥力同时增大,但斥力增大得更快一些,故斥力大于引力,此时分子之间的作用力表现为斥力(此时引力仍然存在).③当分子之间距离r>r0时,随着分子之间距离的增大引力和斥力同时减小,但斥力减小得更快一些,故引力大于斥力,此时分子之间的作用力表现为引力(此时斥力仍然存在).④用图象法解析分子力分子间相互作用力同时存在着引力和斥力,有时表现为引力,有时表现为斥力,怎样把分子力的规律清晰地理出个头绪来呢?借助分子力随分子间距离的变化而变化的Fr图象,可以比较直观地反映出它们间的联系。
如图所示,分子斥力或分子引力都随分子间距离的增大而减小,但分子斥力的变化率较大,分子引力的变化率较小。
因此,当距离r<r0时,分子力表现为斥力;当距离r>r0时,分子力表现为引力;当距离r=r0时,分子力为零。
释疑点分子之间的引力和斥力总是同时存在的,且当分子之间距离变化时,引力和斥力同时发生变化,只是斥力变化得更快一些。
【例1】当钢丝被拉伸时,下列说法正确的是()A.分子间只有引力作用B.分子间的引力和斥力都减小C.分子间的引力比斥力减小得慢D.分子力为零时,引力和斥力同时为零解析:钢丝拉伸,分子间距离增大,分子间的引力、斥力都减小,但引力比斥力减小得慢,分子力表现为引力,所以B、C正确,A、D错误。
答案:BC点技巧分子力图象的应用处理此类问题的关键是熟记分子力与分子间距离的关系曲线。
分子力属定性内容,易记易忘,所以在理解时需要结合分子间的斥力与引力随分子间距离变化的图象。
另外对分子间距离的几个临界数量级要熟悉。
高中物理选修3-3 第七章 分析动理论 章节测试(含答案)
2018-2019学年人教版高中物理选修3-3 第七章分析动理论章节测试一、单选题1.下列现象中能说明分子间存在斥力的是()A. 气体的体积容易被压缩B. 液体的体积很难被压缩C. 走进中医院,中药的气味很容易被闻到D. 将破碎的玻璃用力挤在一起,却不能将它们粘合在一起2.我国已开展空气中PM2.5浓度的监测工作.PM2.5是指空气中直径等于或小于2.5 μm的悬浮颗粒物,其飘浮在空中做无规则运动,很难自然沉降到地面,吸入后对人体形成危害.矿物燃料燃烧排放的烟尘是形成PM2.5的主要原因.下列关于PM2.5的说法中正确的是()A. PM2.5的尺寸与空气中氧分子的尺寸的数量级相当B. PM2.5在空气中的运动属于分子热运动C. PM2.5的运动轨迹是由气流的运动决定的D. PM2.5必然有内能3.如图所示是描述分子引力与斥力随分子间距离r变化的关系曲线,根据曲线可知下列说法中错误的是()A. F引随r增大而增大B. F斥随r增大而减小C. r=r0时,F斥与F引大小相等D. F引与F斥随r增大而减小4.下列说法正确的是()A.布朗运动是固体小颗粒分子的无规则运动的反映B.分子势能随分子间距离的增大而增大C.气体分子的平均动能越大,则气体压强越大D.分子间相互作用的引力和斥力都随分子间距离的增大而减小5.如图所示,有关分子力和分子势能曲线的说法中,正确的是()A. 当r=r0时,分子为零,分子势能最小也为零B. 当r>r0时,分子力和分子势能都随距离的增大而增大C. 在两分子由无穷远逐渐靠近直至距离最小的过程中分子力先做正功后做负功D. 在两分子由无穷远逐渐靠近直至距离最小的过程中分子势能先增大,后减小,最后又增大6.下列说法正确的是()A. 布朗运动就是液体分子的热运动B. 在实验室中可以得到﹣273.15℃的低温C. 一定质量的气体被压缩时,气体压强不一定增大D. 热量一定是从内能大的物体传递到内能小的物体7.下列说法正确的是( )A. 物体温度降低,其分子热运动的平均动能增大B. 物体温度升高,其分子热运动的平均动能增大C. 物体温度降低,其内能一定增大D. 物体温度不变,其内能一定不变8.有关分子的热运动和内能,下列说法不正确的是()A. 一定质量的气体,温度不变,分子的平均动能不变B. 物体的温度越高,分子热运动越剧烈C. 物体的内能是物体中所有分子热运动动能和分子势能的总和D. 布朗运动是由悬浮在液体中的微粒之间的相互碰撞引起的二、多选题9.关于分子动理论即热力学定律的下列说法正确的是()A. 气体总是充满容器,说明气体分子间只存在斥力B. 对于一定质量的理想气体,温度升高,气体内能一定增大C. 温度越高布朗运动越剧烈,说明液体分子的运动与温度有关D. 物体内能增加,温度一定升高E. 热可以从高温物体传到低温物体10.如图所示为物体分子势能与分子间距离之间的关系,下列判断正确的是()A. 当r<r0时,r越小,则分子势能E p越大B. 当r>r0时,r越小,则分子势能E p越大C. 当r=r0时,分子势能E p最小D. 当r→∞时,分子势能E p最小11.如图所示,甲分子固定在坐标原点O,乙分子沿x轴运动,两分子间的分子势能与两分子间距离的变化关系如图中曲线所示图中分子势能的最小值为若两分子所具有的总能量为0,则下列说法中正确的是A. 乙分子在P点时,处于平衡状态B. 乙分子在P点时,加速度最大C. 乙分子在Q点时,其动能为D. 乙分子的运动范围为三、填空题12.已知地球大气层的厚度h远小于地球半径R,空气平均摩尔质量为M,阿伏伽德罗常数为N A,地面大气压强为P0,重力加速度大小为g.由此可估算得,地球大气层空气分子总数为________,空气分子之间的平均距离为________.13.在“用油膜法估测分子的大小”的实验中,已知一滴溶液中纯油酸的体积为V,配制的油酸溶液中,纯油酸与溶液体积之比为1:500,1mL溶液含250滴.那么一滴溶液中纯油酸的体积为V=________cm3;该实验中一滴油酸溶液滴在水面上,稳定后的面积为4×10﹣3m2,则油酸分子的直径为________ m.14.某房间,上午10时的温度为15℃,下午2时的温度为25℃,假定房间内气压无变化,则下午2时与上午10时相比较,房间内的单位时间内气体分子撞击墙壁单位面积的数目________四、实验探究题15.在“油膜法估测油酸分子的大小”实验中,有下列实验步骤:①往边长约为40 cm的浅盘里倒入约2 cm深的水。
高中物理选修3-3课本习题详细答案
人教版高中物理选修3-3 第七章 分子动理论 测试含答案和详细解析
绝密★启用前人教版高中物理选修3-3 第七章分子动理论测试本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分第Ⅰ卷一、单选题(共15小题,每小题4.0分,共60分)1.把萝卜腌成咸菜通常需要几天,而把萝卜炒成熟菜,使之具有相同的咸味,只需几分钟.造成这种差别的主要原因是()A.盐的分子很小,容易进入萝卜中B.盐分子间有相互作用的斥力C.萝卜分子间有空隙,易扩散D.炒菜时温度高,分子热运动激烈2.有关热平衡的说法正确的是()A.如果两个系统在某时刻处于热平衡状态,则这两个系统永远处于热平衡状态B.热平衡定律只能研究三个系统的问题C.如果两个系统彼此接触而不发生状态参量的变化,这两个系统又不受外界影响,那么这两个系统一定处于热平衡状态D.两个处于热平衡状态的系统,温度可以有微小的差别3.放在房间一端的香水,打开瓶塞后,位于房间另一端的人将()A.立即嗅到香味,因为分子热运动速率很大,穿过房间所需时间极短B.过一会儿才能嗅到香味,因为分子热运动的速率不大,穿过房间需要一段时间C.过一会儿才能嗅到香味,因为分子热运动速率虽然很大,但由于是无规则运动,且与空气分子不断碰撞,要嗅到足够多的香水分子必须经过一段时间D.过一会儿才能嗅到香味,因为分子热运动速率虽然很大,但必须有足够多的香水分子,才能引起嗅觉4.在“用油膜法估测分子大小”的实验中,认为油酸分子在水面上形成的是单分子层,这体现的物理思想方法是()A.等效替代法B.控制变量法C.理想模型法D.累积法5.在下列给出的四种现象中,属于扩散现象的有()A.雨后的天空中悬浮着许多小水珠B.海绵吸水C.把一块铅和一块金的接触面磨平、磨光后,紧紧地压在一起,几年后会发现铅中有金D.将大米与玉米混合均匀,大米与玉米“你中有我,我中有你”6.下列关于各种温标的说法正确的是()A.摄氏温标和热力学温标的建立依据是相同的B.摄氏温标表示的温度值与热力学温标表示的温度值应始终相同C.现代科学中普遍采用的是热力学温标D.温标只是一种标准,没有什么科学性可言7.关于分子,下列说法中正确的是()A.分子是球形的,就像我们平时的乒乓球有弹性,只不过分子非常非常小B.所有分子的直径都相同C.不同分子的直径一般不同,但数量级基本一致D.测定分子大小的方法只有油膜法一种方法8.某物质的摩尔质量是M,密度是ρ,若用N A表示阿伏加德罗常数,则平均每个分子所占据的空间是()A.B.MρN AC.D.9.甲、乙两分子,甲固定不动,乙从距甲大于r0(10-10m)小于10r0的某点,以速度v0开始向甲运动,那么接近甲的过程中()A.乙一直做加速运动B.乙一直做减速运动C.乙先做加速运动后做减速运动,运动到距甲为r0时具有最大速度D.乙先做减速运动后做加速运动,运动到距甲为r0时具有最小速度10.关于温度,下列说法正确的是()A.温度越高,分子动能越大B.物体运动速度越大,分子总动能越大,因而物体温度也越高C.一个分子运动的速率越大,该分子的温度越高D.温度是大量分子无规则热运动的平均动能的标志11.下列四种说法中,正确的是()A.温度越高,扩散越快B.扩散只能在气体中进行C.气体分子间只存在斥力D.固体分子间只存在引力12.有甲、乙两个分子,甲分子固定不动,乙分子从无穷远处以初动能E向甲分子运动,直至两者不能再靠近.规定在无穷远处分子势能为零,那么在此过程中下列说法不正确的是()A.除开始时刻外,乙分子动能还有可能等于EB.乙分子动能有可能等于0C.分子势能有可能等于ED.分子势能与动能不可能相等13.在测出单分子油膜的厚度后,为了进一步求出阿伏加德罗常数,还必须知道下列哪一个物理量()A.摩尔质量B.摩尔体积C.密度D.分子体积14.关于内能,下列说法正确的是()A.温度低的物体内能小B.温度低的物体分子运动的平均速率小C.做加速运动的物体,速度越来越大,分子平均动能越来越大D.物体的内能是物体中所有分子的动能和势能的总和15.在显微镜下观察布朗运动时,布朗运动的剧烈程度()A.与固体微粒相碰撞的液体分子数有关,分子数目越多,布朗运动越显著B.与悬浮颗粒中分子的大小有关,分子越小,布朗运动越显著C.与固体微粒相碰撞的液体分子数有关,分子数目越少,布朗运动越显著D.与观察时间的长短有关,观察时间越长,布朗运动越趋平稳第Ⅱ卷二、计算题(共4小题,每小题10分,共40分)16. 康菲中国公司蓬莱19—3油田作业区B平台、C平台先后发生两起溢油事故.虽经多方封堵,到10月17日油田C平台附近仍有油溢出.国家海洋局10月18日公布的溢油事故海洋环境监视监测情况显示,当日该平台溢油量约2 L.假设这些油在海面上形成单分子油膜,试估算能覆盖多大面积的海域.17.将未定温标的水银温度计刻划摄氏温标时,发现冰点(0 ℃)和沸点(100 ℃)间水银柱高度差为16 cm,问在25 ℃时水银柱最高点和冰点刻度的距离为多少?18.为保护环境和生态平衡,在各种生产活动中都应严禁污染水源.在某一水库中,一艘年久失修的快艇在水面上违规快速行驶,速度为8 m/s,导致油箱突然破裂,柴油迅速流入水中,从漏油开始到船员堵住漏油处共用1.5分钟.测量时,漏出的油已在水面上形成宽约为a=100 m的长方形厚油层.已知快艇匀速运动,漏出油的体积V=1.44×10-3m3.(1)该厚油层的平均厚度D为多少?(2)该厚油层的厚度D约为分子直径d的多少倍?(已知油分子的直径约为10-10m)19.目前,环境污染已非常严重,瓶装纯净水已经占领柜台.再严重下去,瓶装纯净空气也会上市.设瓶子的容积为500 mL,空气的摩尔质量M=29×10-3kg/mol.按标准状况计算,N A=6.0×1023mol-1,试估算:(1)空气分子的平均质量是多少?(2)一瓶纯净空气的质量是多少?(3)一瓶中约有多少个气体分子?答案解析1.【答案】D【解析】萝卜腌成咸菜或炒成熟菜,具有了咸味,是由于盐分子扩散引起的,炒菜时温度高,分子热运动激烈,扩散得快,故只有D项正确.2.【答案】C【解析】处于热平衡状态的系统,如果受到外界的影响,状态参量会随之变化,温度也会变化,故A错;热平衡定律对多个系统也适用,故B错;由热平衡的意义知,C正确;温度是热平衡的标志,必须相同,故D错.3.【答案】C【解析】分子的扩散需要一段时间,因为分子是无规则的运动,而且在扩散的同时会受到一些阻碍.4.【答案】C【解析】在用油膜法估测分子大小的实验中,让一定体积的纯油酸滴在水面上形成单分子油膜,将油酸分子看做球形,认为油酸分子是一个紧挨一个的,估算出油膜面积,从而求出分子直径,这里用到的方法是:理想模型法.5.【答案】C【解析】扩散现象指不同物质彼此进入对方的现象.很明显,A、B、D不是扩散现象,C满足扩散条件.6.【答案】C【解析】用不同的温标表示同一温度,数值一般是不同的,而热力学温标从理论上规定了零度,故C正确.7.【答案】C【解析】分子的形状非常复杂,为了研究和学习方便,把分子简化为球形,实际上不是真正的球形,故A项错误;不同分子的直径一般不同,但数量级基本一致,为10-10m,故B错,C对;油膜法只是测定分子大小的一种方法,还有其他方法,如扫描隧道显微镜观察法等,故D错误.8.【答案】C【解析】该物质的摩尔体积为,所以平均每个分子所占据的空间是,故选项C正确.9.【答案】C【解析】当r>r0时,分子力表现为引力,距离减小时,分子力做正功,分子动能将增大,分子速度将增大;当r=r0时,速度最大;当r<r0时,分子力表现为斥力,随着距离减小,分子力做负功,分子动能将减小,速度也减小,故C选项正确.10.【答案】D【解析】温度升高,分子的平均动能变大,而不是每个分子的动能都变大,故A错.物体宏观运动的速度对应的是机械能(动能),与分子无规则热运动的平均动能无关,与物体的温度无关,B错;温度是对大量分子而言的,是统计、平均的概念,对单个分子无意义,C错.11.【答案】A【解析】温度越高分子运动越剧烈,扩散越快,A项正确.三种物态下扩散均能进行,故B项错误.引力和斥力同时存在,在气体中由于分子间距较大可以忽略分子引力和分子斥力,故C,D均错.12.【答案】D【解析】两分子之间距离r>r0时,分子间的相互作用力表现为引力,靠近时分子力做正功,分子间势能减少,但是乙分子的动能增加,分子势能转化为乙分子的动能.当相距为r0时,分子力为0,再靠近,分子力表现为斥力,两分子间势能增加,乙分子动能减少,不能再靠近时,乙分子动能为0,此时分子间势能为E.13.【答案】B【解析】测量出分子直径后,就能计算出分子体积,分子体积乘以阿伏加德罗常数等于摩尔体积,B对.14.【答案】D【解析】物体内所有做无规则运动的分子的动能和分子势能的总和叫做内能,任何物体在任何情况下都具有内能,是一个状态量.内能的大小和物体的温度有关,温度是分子平均动能的标志,温度升高,内能增大.物体的机械运动与分子运动无关.15.【答案】C【解析】布朗运动是分子无规则碰撞悬浮颗粒引起的,温度一定,布朗运动的激烈程度就不变,与运动的时间无关.16.【答案】20 km2【解析】因为分子直径的数量级为d=10-10m,所以2 L原油形成的单分子油膜面积约为S=m2=2×107m2=20 km2.17.【答案】4 cm【解析】因25 ℃是100 ℃的1/4,所以水银柱最高点和冰点刻度的距离也是总高度16 cm的1/4,即4 cm.18.【答案】(1)2×10-8m(2)200倍【解析】(1)油层长度L=vt=8×90 m=720 m油层厚度D==m=2×10-8m(2)n==倍=200倍.19.【答案】(1)4.8×10-26kg(2)6.5×10-4kg(3)1.3×1022个【解析】(1)m==kg≈4.8×10-26kg.(2)m空=ρV瓶==kg≈6.5×10-4kg.(3)分子数N=nN A=N A=≈1.3×1022个.。
高中物理选修-3课本习题详细答案
高中物理选修3-3课本习题详细答案第七章:分子动理论
1 :物体是由大量分子组成的:
2 :分子的热运动
3 分子间的作用力
4 温度和温标
5 内能
第八章气体1 气体的等温变化
2 气体的等容变化和等压变化
3 理想气体的状态方程
4 物态变化中的能量交换
第十章热力学定律1 功和内能
①:
②:
④;
⑤;
2 热和内能
①;
②;
3 热力学第一定律能量守恒定律①;
②:
③;
④;
⑤;
4 热力学第二定律①;
②;
5 热力学第二定律的微观解释①;
②;
6 能源和可持续发展
【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
高考物理高考专题复习学案《选修3-3》(精品整理含答案)
高考物理高考专题复习学案《选修3-3》考题一热学的基本知识1.分子动理论知识结构2.两种微观模型(1)球体模型(适用于固体、液体):一个分子的体积V 0=43π(d 2)3=16πd 3,d 为分子的直径.(2)立方体模型(适用于气体):一个分子占据的平均空间V 0=d 3,d 为分子间的距离.3.阿伏加德罗常数是联系宏观与微观的桥梁,计算时要注意抓住与其相关的三个量:摩尔质量、摩尔体积和物质的量.4.固体和液体 (1)晶体和非晶体(2)液晶的性质液晶是一种特殊的物质,既可以流动,又可以表现出单晶体的分子排列特点,在光学、电学物理性质上表现出各向异性. (3)液体的表面张力使液体表面有收缩到球形的趋势,表面张力的方向跟液面相切. (4)饱和气压的特点液体的饱和气压与温度有关,温度越高,饱和气压越大,且饱和气压与饱和汽的体积无关. (5)相对湿度某温度时空气中水蒸气的压强与同一温度时水的饱和气压的百分比.即:B =pp s×100%.例1 下列说法中正确的是( )A.气体分子的平均速率增大,气体的压强也一定增大B.叶面上的小露珠呈球形是由于液体表面张力的作用C.液晶的光学性质与某些晶体相似,具有各向异性D.因为布朗运动的激烈程度与温度有关,所以布朗运动也叫做热运动解析气体压强由气体分子数密度和平均动能决定,气体分子的平均速率增大,则气体分子的平均动能增大,分子数密度可能减小,故气体的压强不一定增大,A错误;叶面上的小露珠呈球形是由于液体表面张力的作用,B正确;液晶的光学性质与某些晶体相似,具有各向异性,C正确;热运动属于分子的运动,而布朗运动是微小颗粒的运动,D错误.答案BC训练1.下列说法正确的是()A.空气中水蒸气的压强越大,人体水分蒸发的越快B.单晶体具有固定的熔点,多晶体没有固定的熔点C.水龙头中滴下的水滴在空中呈球状是由表面张力引起的D.当分子间作用力表现为斥力时,分子势能随分子间距离的减小而增大答案CD解析空气中水蒸气压强越大,越接近饱和气压,水蒸发越慢;故A错误;单晶体和多晶体都具有固定的熔点,选项B错误;水龙头中滴下的水滴在空中呈球状是由表面张力引起的,选项C正确;当分子间作用力表现为斥力时,分子距离减小,分子力做负功,故分子势能随分子间距离的减小而增大,选项D正确;故选C、D.2.下列说法正确的是()A.分子间距离增大,分子力先减小后增大B.只要知道气体的摩尔体积和阿伏加德罗常数,就可算出气体分子的体积C.一些物质,在适当的溶剂中溶解时,在一定浓度范围具有液晶态D.从塑料酱油瓶里向外倒酱油时不易外洒,这是因为酱油可以浸润塑料答案 C解析分子间距离从零开始增大时,分子力先减小后增大,再减小,选项A错误;只要知道气体的摩尔体积和阿伏加德罗常数,就可算出气体分子运动占据的空间大小,而不能计算气体分子的体积,选项B错误;当有些物质溶解达到饱和度时,会达到溶解平衡,所以有些物质在适当溶剂中溶解时在一定浓度范围内具有液晶态,故C正确;从塑料酱油瓶里向外倒酱油时不易外洒,这是因为酱油对塑料是不浸润的,选项D错误;故选C.3.关于能量和能源,下列说法正确的是()A.在能源利用的过程中,能量在数量上并未减少B.由于自然界中总的能量守恒,所以不需要节约能源C.能量耗散说明在转化过程中能量不断减少D.人类在不断地开发和利用新能源,所以能量可以被创造答案 A解析根据能量守恒定律可知,在能源使用过程中,能量在数量上并未减少,故A正确,C错误;虽然总能量不会减小,但是由于能源的品质降低,无法再应用,故还需要节约能源,故B错误;根据能量守恒可知,能量不会被创造,也不会消失,故D错误.4.下列说法中正确的是()A.能的转化和守恒定律是普遍规律,能量耗散不违反能量守恒定律B.扩散现象可以在液体、气体中进行,不能在固体中发生C.有规则外形的物体是晶体,没有确定的几何外形的物体是非晶体D.由于液体表面分子间距离大于液体内部分子间的距离,所以存在表面张力答案AD解析能的转化和守恒定律是普遍规律,能量耗散不违反能量守恒定律,选项A 正确;扩散现象可以在液体、气体中进行,也能在固体中发生,选项B错误;有规则外形的物体是单晶体,没有确定的几何外形的物体是多晶体或者非晶体,选项C错误;由于液体表面分子间距离大于液体内部分子间的距离,所以存在表面张力,选项D正确;故选A、D.考题二气体实验定律的应用1.热力学定律与气体实验定律知识结构2.应用气体实验定律的三个重点环节(1)正确选择研究对象:对于变质量问题要保证研究质量不变的部分;对于多部分气体问题,要各部分独立研究,各部分之间一般通过压强找联系.(2)列出各状态的参量:气体在初、末状态,往往会有两个(或三个)参量发生变化,把这些状态参量罗列出来会比较准确、快速的找到规律.(3)认清变化过程:准确分析变化过程以便正确选用气体实验定律.例2如图1所示,用销钉固定的活塞把导热汽缸分隔成两部分,A部分气体压强p A=6.0×105 Pa,体积V A=1 L;B部分气体压强p B=2.0×105 Pa,体积V B=3 L.现拔去销钉,外界温度保持不变,活塞与汽缸间摩擦可忽略不计,整个过程无漏气,A、B两部分气体均为理想气体.求活塞稳定后A部分气体的压强.图1解析拔去销钉,待活塞稳定后,p A′=p B′①根据玻意耳定律,对A部分气体,p A V A=p A′(V A+ΔV) ②对B部分气体,p B V B=p B′(V B-ΔV) ③由①②③联立:p A′=3.0×105 Pa答案 3.0×105 Pa变式训练5.如图2甲是一定质量的气体由状态A 经过状态B 变为状态C 的V -T 图象.已知气体在状态A 时的压强是1.5×105 Pa.图2(1)说出A →B 过程中压强变化的情形,并根据图象提供的信息,计算图甲中T A 的温度值.(2)请在图乙坐标系中,作出该气体由状态A 经过状态B 变为状态C 的p -T 图象,并在图线相应位置上标出字母A 、B 、C .需要计算才能确定的有关坐标值,请写出计算过程.答案 (1)200 K (2)见解析解析 (1)从题图甲可以看出,A 与B 连线的延长线过原点,所以A →B 是等压变化,即p A =p B根据盖—吕萨克定律可得V A T A=V B T B,所以T A =V A V BT B =0.40.6×300 K =200 K(2)由题图甲可知,由B →C 是等容变化,根据查理定律得p B T B=p CT C所以p C =T C T Bp B =400300×1.5×105 Pa =2.0×105 Pa则可画出由状态A →B →C 的p -T 图象如图所示.6.某次测量中在地面释放一体积为8升的氢气球,发现当气球升高到1 600 m 时破裂.实验表明氢气球内外压强近似相等,当氢气球体积膨胀到8.4升时即破裂.已知地面附近大气的温度为27 ℃,常温下当地大气压随高度的变化如图3所示.求:高度为1 600 m 处大气的摄氏温度.图3答案 17 ℃解析 由题图得:在地面球内压强: p 1=76 cmHg1 600 m 处球内气体压强: p 2=70 cmHg由气态方程得:p 1V 1T 1=p 2V 2T 2T 2=p 2V 2p 1V 1T 1=70×8.476×8×300 K ≈290 Kt 2=(290-273) ℃=17 ℃7.如图4所示,竖直放置的导热汽缸内用活塞封闭着一定质量的理想气体,活塞的质量为m ,横截面积为S ,缸内气体高度为2h .现在活塞上缓慢添加砂粒,直至缸内气体的高度变为h .然后再对汽缸缓慢加热,让活塞恰好回到原来位置.已知大气压强为p 0,大气温度为T 0,重力加速度为g ,不计活塞与汽缸壁间摩擦.求:图4(1)所添加砂粒的总质量;(2)活塞返回至原来位置时缸内气体的温度. 答案 (1)m +p 0Sg (2)2T 0解析 (1)设添加砂粒的总质量为m 0,最初气体压强为p 1=p 0+mgS 添加砂粒后气体压强为p 2=p 0+(m +m 0)gS该过程为等温变化, 有p 1S ·2h =p 2S ·h 解得m 0=m +p 0S g(2)设活塞回到原来位置时气体温度为T 1,该过程为等压变化,有V 1T 0=V 2T 1解得T 1=2T 08.如图5所示,一竖直放置的、长为L 的细管下端封闭,上端与大气(视为理想气体)相通,初始时管内气体温度为T 1.现用一段水银柱从管口开始注入管内将气柱封闭,该过程中气体温度保持不变且没有气体漏出,平衡后管内上下两部分气柱长度比为1∶3.若将管内下部气体温度降至T 2,在保持温度不变的条件下将管倒置,平衡后水银柱下端与管下端刚好平齐(没有水银漏出).已知T 1=52T 2,大气压强为p 0,重力加速度为g .求水银柱的长度h 和水银的密度ρ.图5答案 215L 105p 026gL解析 设管内截面面积为S ,初始时气体压强为p 0,体积为V 0=LS 注入水银后下部气体压强为p 1=p 0+ρgh 体积为V 1=34(L -h )S由玻意耳定律有:p 0LS =(p 0+ρgh )×34(L -h )S 将管倒置后,管内气体压强为p 2=p 0-ρgh 体积为V 2=(L -h )S由理想气体状态方程有:p0LST1=(p0-ρgh)(L-h)ST2解得:h=215L,ρ=105p026gL考题三热力学第一定律与气体实验定律的组合1.应用气体实验定律的解题思路(1)选择对象——即某一定质量的理想气体;(2)找出参量——气体在始末状态的参量p1、V1、T1及p2、V2、T2;(3)认识过程——认清变化过程是正确选用物理规律的前提;(4)列出方程——选用某一实验定律或气态方程,代入具体数值求解,并讨论结果的合理性.2.牢记以下几个结论(1)热量不能自发地由低温物体传递给高温物体;(2)气体压强是由气体分子频繁地碰撞器壁产生的,压强大小与分子热运动的剧烈程度和分子密集程度有关;(3)做功和热传递都可以改变物体的内能,理想气体的内能只与温度有关;(4)温度变化时,意味着物体内分子的平均动能随之变化,并非物体内每个分子的动能都随之发生同样的变化.3.对热力学第一定律的考查有定性判断和定量计算两种方式(1)定性判断.利用题中的条件和符号法则对W、Q、ΔU中的其中两个量做出准确的符号判断,然后利用ΔU=W+Q对第三个量做出判断.(2)定量计算.一般计算等压变化过程的功,即W=p·ΔV,然后结合其他条件,利用ΔU=W+Q进行相关计算.(3)注意符号正负的规定.若研究对象为气体,对气体做功的正负由气体体积的变化决定.气体体积增大,气体对外界做功,W<0;气体的体积减小,外界对气体做功,W>0.例3如图6所示,一圆柱形绝热汽缸竖直放置,通过绝热活塞封闭着一定质量的理想气体.活塞的质量为m,横截面积为S,与容器底部相距h,此时封闭气体的温度为T1.现通过电热丝缓慢加热气体,当气体吸收热量Q时,气体温度上升到T2.已知大气压强为p0,重力加速度为g,不计活塞与汽缸的摩擦,求:图6(1)活塞上升的高度;(2)加热过程中气体的内能增加量.[思维规范流程](1)气体发生等压变化,有hS(h+Δh)S=T1T2(1分)解得Δh=T2-T1T1h(1分)(2)加热过程中气体对外做功为W=pS·Δh=(p0S+mg)h T2-T1T1(1分)由热力学第一定律知内能的增加量为ΔU=Q-W=Q-(p0S+mg)h T2-T1T1(1分)答案(1)T2-T1T1h(2)Q-(p0S+mg)hT2-T1T1训练9.一定质量理想气体由状态A经过A→B→C→A的循环过程的p-V图象如图7所示(A→B为双曲线).其中状态___________(选填A、B或C)温度最高,A→B→C 过程是_______的.(选填“吸热”或“放热”)图7答案C吸热解析 根据公式pV T =C ,可得从A 到B 为等温变化,温度应不变,从B 到C 为等容变化,压强增大,温度升高,从外界吸热,从C 到A 为等压变化,体积减小,温度降低,所以C 温度最高,从A 到B 到C 需要从外界吸热.10.一只篮球的体积为V 0,球内气体的压强为p 0,温度为T 0.现用打气筒对篮球充入压强为p 0、温度为T 0的气体,使球内气体压强变为3p 0,同时温度升至2T 0.已知气体内能U 与温度的关系为U =aT (a 为正常数),充气过程中气体向外放出Q 的热量,篮球体积不变.求:(1)充入气体的体积;(2)充气过程中打气筒对气体做的功.答案 (1)0.5V 0 (2)Q +aT 0解析 (1)设充入气体体积为ΔV ,由理想气体状态方程可知:p 0(V 0+ΔV )T 0=3p 0V 02T 0则ΔV =0.5V 0(2)由题意ΔU =a (2T 0-T 0)=aT 0由热力学第一定律ΔU =W +(-Q )可得:W =Q +aT 011.如图8所示,一轻活塞将体积为V 、温度为2T 0的理想气体,密封在内壁光滑的圆柱形导热汽缸内.已知大气压强为p 0,大气的温度为T 0,气体内能U 与温度的关系为U =aT (a 为正常数).在汽缸内气体温度缓慢降为T 0的过程中,求:图8(1)气体内能减少量ΔU ;(2)气体放出的热量Q .答案 (1)aT 0 (2)aT 0-12P 0V解析 (1)由题意可知ΔU =a (2T 0-T 0)=aT 0(2)设温度降低后的体积为V ′,则V 2T 0=V ′T 0外界对气体做功W =p 0·(V -V ′)热力学第一定律ΔU =W +Q解得Q =aT 0-12P 0V《选修3-3》考前针对训练1.(1)下列说法中正确的是( )A.高原地区水的沸点较低,这是高原地区温度较低的缘故B.彩色液晶显示器利用了液晶的光学性质具有各向异性的特点C.布朗运动是由悬浮在液体中的微粒之间的相互碰撞引起的D.由于液体表面分子间距离大于液体内部分子间的距离,液体分子间表现为引力,所以液体表面具有收缩的趋势(2)若一条鱼儿正在水下10 m 处戏水,吐出的一个体积为1 cm 3的气泡.气泡内的气体视为理想气体,且气体质量保持不变,大气压强为p 0=1.0×105 Pa ,g =10 m/s 2,湖水温度保持不变,气泡在上升的过程中,气体________(填“吸热”或者“放热”);气泡到达湖面时的体积为________cm 3.(3)利用油膜法可以粗略测出阿伏加德罗常数.把密度ρ=0.8×103 kg/m 3的某种油,用滴管滴一滴在水面上形成油膜,已知这滴油的体积为V =0.5×10-3 cm 3,形成的油膜面积为S =0.7 m 2,油的摩尔质量M =9×10-2 kg/mol ,若把油膜看成单分子层,每个油分子看成球形,那么:①油分子的直径是多少?②由以上数据可粗略测出阿伏加德罗常数N A 是多少?(以上结果均保留一位有效数字)答案 (1)BD (2)吸热 2(3)①7×10-10 m ②6×1023 mol -1解析 (1)水的沸点和气压有关,高原地区水的沸点较低,是因为高原地区大气压较低,A 错误;液晶像液体一样具有流动性,而其光学性质与某些晶体相似具有各向异性,彩色液晶显示器利用了液晶的光学性质具有各向异性的特点,故B 正确;布朗运动显示的是悬浮微粒的运动,反应了液体分子的无规则运动,C错误;由于液体表面分子间距离大于液体内部分子间的距离,液体分子间表现为引力,所以液体表面具有收缩的趋势,D正确.(2)气泡上升的过程中体积增大,对外做功,由于保持温度不变,故内能不变,由热力学第一定律可得,气泡需要吸热;气泡初始时的压强p1=p0+ρgh=2.0×105 Pa气泡浮到水面上的气压p2=p0=1.0×105 Pa由气体的等温变化可知,p1V1=p2V2带入数据可得:V2=2 cm3(3)①油分子的直径d=VS=0.5×10-3×10-60.7m≈7×10-10 m②油的摩尔体积为V mol=M ρ,每个油分子的体积为V0=4πR33=πd36,阿伏加德罗常数可表示为N A=V mol V0,联立以上各式得N A=6Mπd3ρ,代入数值计算得N A≈6×1023 mol-1.2.(1)关于饱和汽和相对湿度,下列说法中错误的是()A.使未饱和汽变成饱和汽,可采用降低温度的方法B.空气的相对湿度越大,空气中水蒸气的压强越接近饱和气压C.密闭容器中装有某种液体及其饱和蒸汽,若温度升高,同时增大容器的容积,饱和气压可能会减小D.相对湿度过小时,人会感觉空气干燥(2)如图1所示,一定质量的理想气体发生如图1所示的状态变化,从状态A到状态B,在相同时间内撞在单位面积上的分子数____________(选填“增大”“不变”或“减小”),从状态A经B、C再回到状态A,气体吸收的热量________放出的热量(选填“大于”“小于”或“等于”).图1(3)已知阿伏加德罗常数为6.0×1023mol-1,在标准状态(压强p0=1 atm、温度t0=0 ℃)下任何气体的摩尔体积都为22.4 L,已知上一题中理想气体在状态C时的温度为27 ℃,求该气体的分子数.(计算结果取两位有效数字)答案(1)C(2)减小大于(3)2.4×1022解析(1)饱和气压是物质的一个重要性质,它的大小取决于物质的本性和温度,温度越高,饱和气压越大,则使未饱和汽变成饱和汽,可采用降低温度的方法,故A正确;根据相对湿度的特点可知,空气的相对湿度越大,空气中水蒸气的压强越接近饱和气压,故B正确;温度升高,饱和气压增大.故C错误;相对湿度过小时,人会感觉空气干燥.故D正确.(2)理想气体从状态A到状态B,压强不变,体积变大,分子的密集程度减小,所以在相同时间内撞在单位面积上的分子数减小,从状态A经B、C再回到状态A,内能不变,一个循环过程中,A到B外界对气体做功W1=-2×3=-6 J,B到C过程中外界对气体做功W2=12×()1+3×2=4 J,C到A体积不变不做功,所以外界对气体做功W=W1+W2=-2 J,根据ΔU=W+Q,Q=2 J,即一个循环气体吸热2 J,所以一个循环中气体吸收的热量大于放出的热量.(3)根据盖-吕萨克定律:V0T0=V1T1,代入数据:1273+27=V1 273,解得标准状态下气体的体积为V1=0.91 L,N=V1V mol N A=0.9122.4×6×1023个≈2.4×1022个.3.某学习小组做了如下实验,先把空的烧瓶放入冰箱冷冻,取出烧瓶,并迅速把一个气球紧套在烧瓶颈上,封闭了一部分气体,然后将烧瓶放进盛满热水的烧杯里,气球逐渐膨胀起来,如图2.图2(1)在气球膨胀过程中,下列说法正确的是________A.该密闭气体分子间的作用力增大B.该密闭气体组成的系统熵增加C.该密闭气体的压强是由于气体重力而产生的D.该密闭气体的体积是所有气体分子的体积之和(2)若某时刻该密闭气体的体积为V,密度为ρ,平均摩尔质量为M,阿伏加德罗常数为N A,则该密闭气体的分子个数为________;(3)若将该密闭气体视为理想气体,气球逐渐膨胀起来的过程中,气体对外做了0.6 J的功,同时吸收了0.9 J的热量,则该气体内能变化了________ J;若气球在膨胀过程中迅速脱离瓶颈,则该气球内气体的温度________.(填“升高”或“降低”)答案(1)B(2)ρVM N A(3)0.3降低解析(1)气体膨胀,分子间距变大,分子间的引力和斥力同时变小,故A错误;根据热力学第二定律,一切宏观热现象过程总是朝着熵增加的方向进行,故该密闭气体组成的系统熵增加,故B正确;气体压强是由气体分子对容器壁的碰撞产生的,故C错误;气体分子间隙很大,该密闭气体的体积远大于所有气体分子的体积之和,故D错误.(2)气体的量为:n=ρVM;该密闭气体的分子个数为:N=nN A=ρVM N A;(3)气体对外做了0.6 J的功,同时吸收了0.9 J的热量,根据热力学第一定律,有:ΔU=W+Q=-0.6 J+0.9 J=0.3 J;若气球在膨胀过程中迅速脱离瓶颈,气压气体迅速碰撞,对外做功,内能减小,温度降低.4.(1)某种气体在不同温度下的气体分子速率分布曲线如图3所示,图中f(v)表示v 处单位速率区间内的分子数百分率,由图可知()图3A.气体的所有分子,其速率都在某个数值附近B.某个气体分子在高温状态时的速率可能与低温状态时相等C.高温状态下大多数分子的速率大于低温状态下大多数分子的速率D.高温状态下分子速率的分布范围相对较小(2)如图4所示,一定质量的理想气体从状态A变化到状态B,已知在此过程中,气体内能增加100 J,则该过程中气体________(选填“吸收”或“放出”)热量________J.图4(3)已知气泡内气体的密度为1.29 kg/m3,平均摩尔质量为0.29 kg/mol,阿伏加德罗常数N A=6.0×1023 mol-1,取气体分子的平均直径为2×10-10 m,若气泡内的气体能完全变为液体,请估算液体体积与原来气体体积的比值.(结果保留一位有效数字)答案(1)BC(2)放出100(3)1×10-5解析(1)由不同温度下的分子速率分布曲线可知,在一定温度下,大多数分子的速率都接近某个数值,不是所有,故A错误;高温状态下大部分分子的速率大于低温状态下大部分分子的速率,不是所有,有个别分子的速率会更大或更小,故B正确;温度是分子平均动能的标志,温度高则分子速率大的占多数,即高温状态下分子速率大小的分布范围相对较大,故C正确,故D错误.(2)根据公式:ΔU=W+Q和外界对气体做功W=pΔV=200 J,可以得到:Q=-100 J,所以放出100 J热量.(3)设气体体积为V1,完全变为液体后体积为V2气体质量:m=ρV1含分子个数:n =m M N A每个分子的体积:V 0=43π(D 2)3=16πD 3液体体积为:V 2=nV 0液体与气体体积之比:V 2V 1=πρN A D 36M =3.14×1.29×6×1023×(2×10-10)36×0.29≈1×10-5. 5.(1)下列说法正确的是( )A.饱和气压随温度升高而增大B.露珠呈球形是由于液体表面张力的作用C.当分子间的引力和斥力平衡时,分子势能最大D.液晶显示器是利用了液晶对光具有各向同性的特点(2)图5所示为一定质量的理想气体等压变化的p -T 图象.从A 到B 的过程,该气体内能________(选填“增大”“减小”或“不变”)、________(选填“吸收”或“放出”)热量.图5(3)石墨烯是目前发现的最薄、最坚硬、导电导热性能最强的一种新型纳米材料.已知1 g 石墨烯展开后面积可以达到2 600 m 2,试计算每1 m 2的石墨烯所含碳原子的个数.阿伏加德罗常数N A =6.0×1023 mol -1,碳的摩尔质量M =12 g/mol.(计算结果保留两位有效数字)答案 (1)AB (2)增大 吸收 (3)1.9×1019个解析 (1)与液体处于动态平衡的蒸汽叫饱和蒸汽;饱和蒸汽压强与饱和蒸汽体积无关;在一定温度下,饱和蒸汽的分子数密度是一定的,因而其压强也是一定的,这个压强叫做饱和气压;故饱和气压随温度升高而增大,故A 正确;液体表面张力使液体具有收缩的趋势,露珠呈球形是由于液体表面张力的作用,故B 正确;分子力做功等于分子势能的减小量;当分子间的引力和斥力平衡时,分子力的合力为零;此后不管是增加分子间距还是减小分子间距,分子力都是做负功,故分子势能增加;故C 错误;液晶显示器是利用了液晶对光具有各向异性的特点,故D 错误.(2)理想气体的分子势能可以忽略不计,气体等压升温,温度升高则气体的内能一定增大;根据热力学第一定律ΔU =Q +W ,温度升高,内能增大,即ΔU 为正值;同时气体的体积增大,对外做功,则W 为负值,故Q 必定为正值,即气体一定从外界吸收热量.(3)由题意可知,已知1 g 石墨烯展开后面积可以达到2 600 m 2,1 m 2石墨烯的质量:m =12600 g ,而1 m 2石墨烯所含原子个数:n =m M N A =1260012×6×1023 个≈1.9×1019个.6.如图6所示,某种自动洗衣机进水时,洗衣机内水位升高,与洗衣机相连的细管中会封闭一定质量的空气,通过压力传感器感知管中的空气压力,从而控制进水量.图6(1)当洗衣缸内水位缓慢升高时,设细管内空气温度不变.则被封闭的空气( )A.分子间的引力和斥力都增大B.分子的热运动加剧C.分子的平均动能增大D.体积变小,压强变大(2)若密闭的空气可视为理想气体,在上述(1)中空气体积变化的过程中,外界对空气做0.6 J 的功,则空气________(选填“吸收”或“放出”)了________J 的热量;当洗完衣服缸内水位迅速降低时,则空气的内能________(选填“增加”或“减小”).(3)若密闭的空气体积V =1 L ,密度ρ=1.29 kg/m 3,平均摩尔质量M =0.029 kg/mol ,阿伏加德罗常数N A =6.02×1023 mol -1,试估算该气体分子的总个数(结果保留一位有效数字).答案(1)AD(2)放出0.6减小(3)3×1022个解析(1)水位升高,压强增大,被封闭气体做等温变化,根据理想气体状态方程可知,气体体积减小,分子之间距离减小,因此引力和斥力都增大,故A、D正确;气体温度不变,因此分子的热运动情况不变,分子平均动能不变,故B、C 错误.(2)在(1)中空气体积变化的过程中,气体温度不变,内能不变,外界对气体做功,根据热力学第一定律可知,气体放出热量;若水位迅速降低,压强则迅速减小,体积迅速膨胀,气体对外做功,由于过程迅速,没有来得及吸放热,因此内能减小.(3)物质的量为:n=ρV M分子总数:N=nN A=ρVM N A代入数据得:N≈3×1022个故该气体分子的总个数为3×1022个.。
2019-2020年人教版高中物理选修3-3教学案:第七章 第3节 分子间的作用力含答案
第3节分子间的作用力1.分子间存在着相互作用的引力和斥力,其合力表现为分子力。
2.分子间的引力和斥力都随分子间距离的增大而减少,随分子间距离的减小而增大;但斥力比引力变化更快。
3.分子动理论:物体是由大量分子组成的,分子在做永不停息的无规则运动,分子之间存在着引力和斥力。
一、分子间的作用力1.分子间有空隙(1)气体很容易被压缩,说明气体分子间有很大的空隙。
(2)水和酒精混合后总体积减小,说明液体分子之间存在着空隙。
(3)压在一起的金片和铅片,各自的分子能扩散到对方的内部,说明固体分子之间有空隙。
2.分子间的作用力(1)分子间同时存在着相互作用的引力和斥力。
(2)当两个分子的距离为r0时,分子所受的引力与斥力大小相等,此时分子所受的合力为零;当分子间的距离小于r0时,作用力的合力表现为斥力;当分子间的距离大于r0时,作用力的合力表现为引力。
二、分子动理论1.内容物体是由大量分子组成的,分子在做永不停息的无规则运动,分子之间存在着引力和斥力。
2.统计规律(1)微观方面:各个分子的运动都是不规则的,带有偶然性。
(2)宏观方面:大量分子的运动有一定的规律,叫做统计规律。
大量分子的集体行为受统计规律的支配。
1.自主思考——判一判(1)水的体积很难被压缩,这是分子间存在斥力的宏观表现。
(√)(2)气体总是很容易充满容器,这是分子间存在斥力的宏观表现。
(×)(3)两个相同的半球壳吻合接触,中间抽成真空(马德堡半球),用力很难拉开,这是分子间存在引力的宏观表现。
(×)(4)用力拉铁棒的两端,铁棒没有断,这是分子间存在引力的宏观表现。
(√)(5)气体容易被压缩,说明气体分子之间有空隙。
(√)(6)分子间的引力随距离的增大而增大,斥力随距离的增大而减小。
(×)2.合作探究——议一议(1)当压缩物体时,分子间的作用力表现为斥力,物体“反抗”被压缩,这时分子间还有引力吗?提示:分子间同时存在分子引力和斥力,当物体被压缩时,分子斥力大于分子引力,分子间表现为斥力,此时分子间仍存在引力。
选修3-3 气体(全章学案,带答案)
1气体的等温变化一、封闭气体压强的计算[导学探究](1)在图1中,C、D两处液面水平且等高,液体密度为ρ,其他条件已标于图上,试求封闭气体A的压强.(2)在图2中,汽缸置于水平地面上,汽缸横截面积为S,活塞质量为m,设大气压强为p0,试求封闭气体的压强.[知识梳理]封闭气体压强的计算方法主要有:(1)取等压面法根据同种液体在同一水平液面处________相等,在连通器内灵活选取等压面,由两侧压强相等列方程求气体压强.(2)力平衡法对于平衡态下用液柱、活塞等封闭的气体压强,可对液柱、活塞等进行受力分析,由F合=________列式求气体压强.(3)牛顿第二定律法当封闭气体所在的系统处于力学非平衡态时通常选择与封闭气体相关联的液柱、活塞等作为研究对象,进行受力分析,由F合=ma列式求气体压强.[即学即用]如图所示,求对应图号中被封闭气体A 的压强p A(已知大气压强为p0).(1)管内左、右液面高度差为h,横截面积为S,液体的密度为ρ,玻璃管处于静止状态,则p A=____________________________________________ ____________________________.(2)活塞的质量为M,横截面积为S,对活塞施加向上的拉力F,汽缸及活塞均保持静止,则p A=____________________________________________ ____________________________.(3)液柱的质量为m,横截面积为S,且液柱与玻璃管一起向上以加速度a加速运动时,p A=____________________________________________ ____________________________.二、探究气体等温变化的规律[导学探究]如图4所示为“探究气体等温变化的规律”的实验装置,实验过程中如何保证气体的质量和温度不变?图4[知识梳理]1.气体状态参量:气体的三个状态参量为压强p、体积V和温度T.2.等温变化:一定质量的气体,在温度不变的条件下其________与________变化时的关系.3.实验探究(1)实验器材:铁架台、__________、气压计等.(2)研究对象(系统):注射器内被封闭的__________.(3)实验方法:控制气体________和________不变,研究气体压强与体积的关系.(4)数据收集:压强由__________读出,空气柱长度由__________读出,空气柱长度与横截面积的乘积即为体积.(5)数据处理:以压强p为纵坐标,以体积的倒数1V为横坐标,作出p-1V图象,图象结果:p-1V图象是一条过原点的________.(6)实验结论:压强跟体积的倒数成________,即压强与体积成________.[即学即用]根据实验“探究气体等温变化的规律”,判断下列说法的正误.(1)实验过程中应保持被封闭气体的质量和温度都不发生变化.()(2)实验中为了找到压强与体积的关系,一定要测量空气柱的横截面积.()(3)为了减少实验误差,可以在柱塞上涂润滑油,以减小摩擦.()(4)处理数据时采用p-1V图象,是因为p-1V图象比p-V图象更直观.()三、玻意耳定律[导学探究](1)玻意耳定律成立的条件是什么?(2)用p1V1=p2V2解题时各物理量的单位必须是国际单位制中的单位吗?[知识梳理]1.玻意耳定律(1)内容:一定质量的某种气体,在________不变的情况下,压强p与体积V成________.(2)公式:________=C或者________________.2.成立条件玻意耳定律p1V1=p2V2是实验定律,只有在气体质量一定、________不变的条件下才成立.3.常量的意义p1V1=p2V2=C该常量C与气体的种类、质量、温度有关,对一定质量的气体,温度越高,该常量C越____________(选填“大”或“小”).[即学即用]如图5所示,粗细均匀的长玻璃管一端封闭,开口向下竖直放置时,长为h(cm)的水银柱封闭的空气柱长度为L1.(大气压强为p0,压强以cmHg 为单位)(1)若温度保持不变,玻璃管开口向上放置时,封闭空气柱的长度L2=________________.(2)若温度保持不变,将玻璃管倾斜,使玻璃管与水平方向的夹角为θ,则封闭空气柱的长度L3=____________________________________________ ____________________________.四、p-V图象[导学探究](1)如图6甲所示为一定质量的气体不同温度下的p-V图线,T1和T2哪一个大?(2)如图乙所示为一定质量的气体不同温度下的p-1V图线,T1和T2哪一个大?图6[知识梳理]1.p-V图象:一定质量的气体等温变化的p-V图象是双曲线的一支,双曲线上的每一个点均表示气体在该温度下的一个状态.而且同一条等温线上每个点对应的p、V坐标的乘积是__________的.一定质量的气体在不同温度下的等温线是不同的双曲线,且pV乘积越大,温度就________,图7中T2________T1.图72.p-1V图象:一定质量气体的等温变化过程,也可以用p-1V图象来表示,如图8所示.等温线是过原点的倾斜直线,由于气体的体积不能无穷大,所以原点附近等温线应用________表示,该直线的斜率k=________,故斜率越大,温度________,图中T2________T1.图8[即学即用]判断下列说法的正误.(1)一定质量的气体等温变化的p-V图象一定是双曲线的一支.()(2)一定质量的气体等温变化的p-V图象是通过原点的倾斜直线.()(3)p-1V图象的斜率越大,说明气体的温度越高.()(4)p-V图象中,pV乘积越大(即离原点越远)说明气体的温度越高.()一、封闭气体压强的计算例1如图9所示,活塞的质量为m,汽缸缸套的质量为M,通过弹簧吊在天花板上,汽缸内封有一定质量的气体.缸套和活塞间无摩擦,活塞面积为S,大气压强为p0.则封闭气体的压强为()图9A.p=p0+mgS B.p=p0+(M+m)gSC.p=p0-MgS D.p=mgS二、玻意耳定律的应用利用玻意耳定律解题的基本思路(1)明确研究对象,并判断是否满足玻意耳定律的条件.(2)明确初、末状态及状态参量(p1、V1;p2、V2)(3)根据玻意耳定律列方程求解.例2密闭圆筒内有一质量为100 g的光滑活塞,活塞与圆筒顶端之间有一根劲度系数k=20 N/m的轻弹簧,圆筒放在水平地面上,活塞将圆筒分成两部分,A室为真空,B室充有空气,平衡时,l0=0.10 m,弹簧刚好没有形变,如图10所示.现将圆筒倒置,达到新的平衡后,B室的高度是多少?(g取10 m/s2,气体温度保持不变)图10针对训练如图11所示,一个粗细均匀、导热良好、装有适量水银的U形管竖直放置,右端与大气相通,左端封闭长l1=20 cm的气柱,两管中水银面等高.现将右端与一低压舱(未画出)接通,稳定后右管水银面高出左管水银面h=10 cm.环境温度不变,大气压强p0=75 cmHg,求稳定后低压舱内的压强(用cmHg作单位).图11三、p-V图象或p-1V图象例3如图12所示,是一定质量的某种气体状态变化的p-V图象,气体由状态A变化到状态B的过程中,气体分子平均速率的变化情况是()图12 A.一直保持不变B.一直增大C.先减小后增大D.先增大后减小例4(多选)如图13所示,D→A→B→C表示一定质量的某种气体状态变化的一个过程,则下列说法正确的是()图13A.D→A是一个等温过程B.A→B是一个等温过程C.T A>T BD.B→C过程中,气体体积增大、压强减小、温度不变由玻意耳定律可知,pV=C(常量),其中C的大小与气体的质量、温度和种类有关,对同种气体质量越大、温度越高,C也越大,在p-V图象中,纵坐标的数值与横坐标的数值的乘积越大;在p-1V图象中,斜率k也就越大.1.如图14所示,竖直放置的U形管,左端开口,右端封闭,管内有a、b两段水银柱,将A、B两段空气柱封闭在管内.已知水银柱a长h1为10 cm,水银柱b两个液面间的高度差h2为5 cm,大气压强为75 cmHg,求空气柱A、B的压强分别是多少?图142.如图15所示,某种自动洗衣机进水时,与洗衣缸相连的细管中会封闭一定质量的空气,通过压力传感器感知管中的空气压力,从而控制进水量.设温度不变,洗衣缸内水位升高,则细管中被封闭的空气()图15A.体积不变,压强变小B.体积变小,压强变大C.体积不变,压强变大D.体积变小,压强变小3.(多选)下图中,p表示压强,V表示体积,T表示热力学温度,各图中正确描述一定质量的气体发生等温变化的是()4.如图16所示,横截面积为0.01 m2、足够高的汽缸内被重力G=200 N的活塞封闭了高30 cm的气体.已知大气压p0=1.0×105Pa,现将汽缸倒转竖直放置,设温度不变,求此时活塞到缸底的高度.图162气体的等容变化和等压变化一、气体的等容变化[导学探究](1)为什么拧上盖的水杯(内盛半杯热水)放置一段时间后很难打开杯盖?(2)打足气的自行车在烈日下曝晒,常常会爆胎,原因是什么?[知识梳理]1.等容变化:一定质量的某种气体,在________不变时,压强随温度的变化叫做等容变化.2.查理定律(1)内容:一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T成________(填“正比”或“反比”).(2)表达式:p=________或p1T1=________.推论式:pT =ΔpΔT(3)适用条件:气体的________和________不变.(4)图象:如图1所示.图1①p-T图象中的等容线是一条_______________________________________.②p-t图象中的等容线不过原点,但反向延长线交t轴于____________.③无论是p-T图象还是p-t图象,其斜率都能判断气体体积的大小,斜率越大,体积越________.[即学即用] 关于一定质量的气体,判断下列说法的正误.(1)气体做等容变化时,气体的压强与温度成正比.( )(2)气体做等容变化时,气体压强的变化量与热力学温度的变化量成正比.( )(3)气体做等容变化时,温度从13 ℃上升到52 ℃,则气体的压强升高为原来的4倍.( )(4)气体做等容变化,温度为200 K 时的压强为0.8 atm ,压强增加到2 atm 时的温度为500 K .( ) 二、气体的等压变化 [知识梳理]1.等压变化:一定质量的某种气体,在________不变时,体积随温度的变化叫做等压变化. 2.盖—吕萨克定律(1)内容:一定质量的某种气体,在压强不变的情况下,其体积V 与热力学温度T 成________. (2)表达式:V =________或V 1T 1=________.推论式:V T =ΔVΔT(3)适用条件:气体的________和________不变. (4)图象:如图2所示.图2①V -T图象中的等压线是一条__________________________________________. ②V -t 图象中的等压线不过原点,反向延长线交t 轴于____________.③无论V -T 图象还是V -t 图象,其斜率都能判断气体压强的大小,斜率越大,压强越________. [即学即用] 对于一定质量的气体,在压强不变时,判断下列说法的正误.(1)若温度升高,则体积减小.( )(2)若体积增大到原来的两倍,则摄氏温度升高到原来的两倍.( )(3)温度每升高1 K ,体积增加原来的1273.( )(4)体积的变化量与热力学温度的变化量成正比.( )一、查理定律的应用例1 气体温度计结构如图3所示,玻璃测温泡A 内充有气体,通过细玻璃管B 和水银压强计相连.开始时A 处于冰水混合物中,左管C 中水银面在O 点处,右管D 中水银面高出O 点h 1=14 cm ,后将A 放入待测恒温槽中,上下移动D ,使C 中水银面仍在O 点处,测得D 中水银面高出O 点h 2=44 cm.求恒温槽的温度(已知外界大气压为1个标准大气压,1个标准大气压相当于76 cmHg).图3明确研究对象,找准初、末状态,正确确定初、末状态的压强和温度,是运用查理定律的关键.二、盖—吕萨克定律的应用例2 如图4所示,绝热的汽缸内封有一定质量的气体,缸体质量M =200 kg ,活塞质量m =10 kg ,活塞横截面积S =100 cm 2.活塞与汽缸壁无摩擦且不漏气.此时,缸内气体的温度为27 ℃,活塞位于汽缸正中间,整个装置都静止.已知大气压恒为p 0=1.0×105 Pa ,重力加速度为g =10 m/s 2.求:图4(1)缸内气体的压强 p 1;(2)缸内气体的温度升高到多少℃时,活塞恰好会静止在汽缸缸口AB 处.判断出气体的压强不变是运用盖—吕萨克定律的关键.三、p -T 图象与V -T 图象的比较图象纵坐例3 图5甲是一定质量的气体由状态A 经过状态B 变为状态C 的V -T 图象,已知气体在状态A 时的压强是1.5×105 Pa.图5(1)根据图象提供的信息,计算图中T A 的值. (2)请在图乙坐标系中,作出由状态A 经过状态B 变为状态C 的p -T 图象,并在图线相应位置上标出字母A 、B 、C ,如果需要计算才能确定有关坐标值,请写出计算过程.针对训练 (多选)一定质量的气体的状态经历了如图6所示的ab 、bc 、cd 、da 四个过程,其中bc 的延长线通过原点,cd 垂直于ab 且与水平轴平行,da 与bc 平行,则气体体积在( )图6A .ab 过程中不断增加B .bc 过程中保持不变C .cd 过程中不断增加D .da 过程中保持不变 1.(多选)如图7所示为一定质量的气体的三种变化过程,则下列说法正确的是( )图7A.a→d过程气体体积增加B.b→d过程气体体积不变C.c→d过程气体体积增加D.a→d过程气体体积减小2.(多选)一定质量的某种气体由状态A经状态C变化到状态B,这一过程在V-T图象中如图8所示,则()图8A.在过程AC中,气体的压强不断变大B.在过程CB中,气体的压强不断变小C.在状态A时,气体的压强最大D.在状态B时,气体的压强最大3.一容器中装有某种气体,且容器上有一小孔跟外界大气相通,原来容器内气体的温度为27 ℃,如果把它加热到127 ℃,从容器中逸出的空气质量是原来质量的多少倍?4.容积为2 L的烧瓶,在压强为1.0×105Pa时,用塞子塞住,此时温度为27 ℃,当把它加热到127 ℃时停止加热并保持温度不变,此时打开塞子,稍过一会,重新把塞子塞好,并使它逐渐降温到27 ℃.求:(1)塞子打开前的最大压强;(2)重新降温到27 ℃时剩余空气的压强.3理想气体的状态方程一、理想气体[导学探究](1)理想气体有哪些特点?(2)实际气体符合什么条件时可看做理想气体?[知识梳理]1.理想气体(1)在________温度、________压强下都遵从气体实验定律的气体.(2)实际气体在温度不低于____________________、压强不超过________________时,可以当成理想气体来处理.(3)理想气体是对实际气体的一种__________,就像质点、点电荷模型一样,是一种__________,实际并不存在.2.理想气体的特点(1)严格遵从气体实验定律.(2)理想气体分子本身的大小与分子间的距离相比可忽略不计,分子不占空间,可视为________.(3)理想气体分子除碰撞外,________(填“有”或“无”)相互作用的引力和斥力.(4)理想气体分子________(填“有”或“无”)分子势能,内能等于所有分子热运动的动能之和,一定质量的理想气体内能只和________有关.[即学即用]判断下列说法的正误.(1)理想气体就是处于标准状况下的气体.()(2)理想气体只有分子动能,不考虑分子势能.()(3)实际计算中,当气体分子间距离r>10r0时,可将气体视为理想气体进行研究.( ) (4)被压缩的气体,不能作为理想气体.( ) 二、理想气体的状态方程 [导学探究]图1如图1所示,一定质量的某种理想气体从状态A 到B 经历了一个等温过程,又从状态B 到C 经历了一个等容过程,请推导状态A 的三个参量p A 、V A 、T A 和状态C 的三个参量p C 、V C 、T C 之间的关系.[知识梳理]1.理想气体的状态方程一定质量的某种理想气体,由初状态(p 1、V 1、T 1)变化到末状态(p 2、V 2、T 2)时,各量满足:p 1V 1T 1=p 2V 2T 2.2.气体的三个实验定律是理想气体状态方程的特例 (1)当T 1=T 2时,________________(玻意耳定律) (2)当V 1=V 2时,________________(查理定律) (3)当p 1=p 2时,________________(盖—吕萨克定律)[即学即用] 已知湖水深度为20 m ,湖底水温为4 ℃,水面温度为17 ℃,大气压强为1.0×105 Pa.当一气泡从湖底缓慢升到水面时,其体积约为原来的________倍.(取g =10 m /s 2,ρ水=1.0×103 kg/m 3)一、理想气体状态方程的基本应用应用理想气体状态方程解题的一般思路 (1)确定研究对象,即一定质量的理想气体.(2)确定气体的初、末状态参量p 1、V 1、T 1和p 2、V 2、T 2,并注意单位的统一. (3)由状态方程列式求解. (4)讨论结果的合理性.例1 如图2所示,粗细均匀一端封闭一端开口的U 形玻璃管竖直放置,管内水银将一定质量的理想气体封闭在U 形管内,当t 1=31 ℃,大气压强p 0=76 cmHg 时,两管水银面相平,这时左管被封闭的气柱长L 1=8 cm ,则当温度t 2是多少时,左管气柱L 2为9 cm?图2例2 一水银气压计中混进了空气,因而在外界温度为27 ℃、大气压为758 mmHg 时,这个水银气压计的读数为738 mmHg ,此时管中水银面距管顶80 mm ,当温度降至-3 ℃时,这个气压计的读数为743 mmHg ,求此时外界的实际大气压值为多少mmHg?理想气体状态方程是用来解决气体状态变化问题的方程,运用时,必须要明确气体不同状态下的状态参量,将它们的单位统一,且温度的单位一定要统一为国际单位K.二、理想气体状态方程的综合应用例3 如图3甲所示,一导热性能良好、内壁光滑的汽缸水平放置,横截面积为S =2×10-3 m 2、质量为m =4 kg 、厚度不计的活塞与汽缸底部之间封闭了一部分理想气体,此时活塞与汽缸底部之间的距离为24 cm,在活塞的右侧12 cm处有一对与汽缸固定连接的卡环,气体的温度为300 K,大气压强p0=1×105 Pa.现将汽缸竖直放置,如图乙所示,取g=10 m/s2.求:图3(1)活塞与汽缸底部之间的距离;(2)加热到675 K时封闭气体的压强.1.图4为伽利略设计的一种测温装置示意图,玻璃管的上端与导热良好的玻璃泡连通,下端插入水中,玻璃泡中封闭有一定质量的空气.若玻璃管内水柱上升,则外界大气的变化可能是()图4A.温度降低,压强增大B.温度升高,压强不变C.温度升高,压强减小D.温度不变,压强减小2.如图5所示,一汽缸竖直放置,横截面积S=50 cm2、质量m=10 kg的活塞将一定质量的气体封闭在缸内,气柱长h0=15 cm,活塞用销钉K销住,缸内气体的压强p1=2.4×105 Pa,温度为177 ℃.现拔去活塞上的销钉K(不漏气),不计活塞与汽缸壁的摩擦.当活塞速度达到最大时,缸内气体的温度为57 ℃,外界大气压为p0=1.0×105 Pa.g=10 m/s2,求此时气体柱的长度h.图53.如图6所示,竖直放置在水平面上的汽缸,其缸体质量M=10 kg,活塞质量m=5 kg,横截面积S =2×10-3m2,活塞上部的汽缸里封闭了一部分理想气体,下部有气孔a与外界相通,大气压强p0=1.0×105 Pa,活塞的下端与劲度系数k=2×103 N/m 的弹簧相连.当汽缸内气体温度为127 ℃时,弹簧的弹力恰好为零,此时缸内气柱长为L=20 cm.求当缸内气体温度升高到多少时,汽缸对地面的压力为零.(g取10 m/s2,活塞不漏气且与汽缸壁无摩擦)图6习题课 气体实验定律和理想气体状态方程的应用一、变质量问题分析变质量问题时,可以通过巧妙选择合适的研究对象,使这类问题转化为定质量的气体问题,从而用气体实验定律或理想气体状态方程解决.以常见的两类问题举例说明:(1)打气问题向球、轮胎中充气是一个典型的变质量的气体问题.只要选择球内原有气体和即将打入的气体作为研究对象,就可把充气过程看成等温压缩过程. (2)抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,总质量不变,故抽气过程可看成是等温膨胀过程. 例1 一只两用活塞气筒的原理如图1所示(打气时如图甲所示,抽气时如图乙所示),其筒内体积为V 0,现将它与另一只容积为V 的容器相连接,容器内的空气压强为p 0,当分别作为打气筒和抽气筒时,活塞工作n 次后,在上述两种情况下,容器内的气体压强分别为(大气压强为p 0)( )图1A .np 0,1n p 0 B.nV 0V p 0,V 0nV p 0C .(1+V 0V )n p 0,(1+V 0V )n p 0D .(1+nV 0V )p 0,(V V +V 0)np 0二、理想气体的图象问题 - pV 为常量,即pV 大的等温线对应的温度越高,离原点越远-p 率,即斜率越大,对应的温度越高-p 率即斜率越大,对应的体积越小 -V 率即斜率越大,对应的压强越小 例2 使一定质量的理想气体的状态按图2甲中箭头所示的顺序变化,图中BC 段是以纵轴和横轴为渐近线的双曲线的一部分.图2(1)已知气体在状态A 的温度T A =300 K ,求气体在状态B 、C 和D 的温度各是多少?(2)将上述状态变化过程在图乙中画成用体积V 和温度T 表示的图线(图中要标明A 、B 、C 、D 四点,并且要画箭头表示变化的方向),说明每段图线各表示什么过程.分析状态变化的图象问题,要与状态方程结合起来,才能由某两个参量的变化情况确定第三个参量的变化情况,由pVT=C 知,若气体在状态变化过程中pV 之积不变,则温度不变;若pT比值不变,则V 不变;若VT比值不变,则p 不变,否则第三个参量发生变化.三、理想气体的综合问题 1.定性分析液柱移动问题定性分析液柱移动问题常使用假设推理法:根据题设条件,假设液柱不动,运用相应的物理规律及有关知识进行严谨的推理,得出正确的答案. 常用推论有两个:(1)查理定律的分比形式:Δp ΔT =p T 或Δp =ΔTT p .(2)盖—吕萨克定律的分比形式:ΔV ΔT =V T 或ΔV =ΔTT V .2.定量计算问题定量计算问题是热学部分的典型的物理综合题,它需要考查气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题. 解决该问题的一般思路: (1)弄清题意,确定研究对象.(2)分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程进而求出压强. (3)注意挖掘题目中的隐含条件,如几何关系等,列出辅助方程.(4)多个方程联立求解.对求解的结果注意检验它们的合理性.例3 如图3所示,两端封闭、粗细均匀、竖直放置的玻璃管内,有一长为h 的水银柱将管内气体分为两部分,已知l 2=2l 1.若使两部分气体同时升高相同的温度,管内水银柱将如何运动?(设原来上、下两部分气体温度相同)图3此类问题中,如果是气体温度降低,则ΔT 为负值,Δp 亦为负值,表示气体压强减小,那么降温后水银柱应该向压强减小得多的一方移动.例4 如图4甲所示,水平放置的汽缸内壁光滑,活塞厚度不计,在A 、B 两处设有限制装置,使活塞只能在A 、B 之间运动,B 左面汽缸的容积为V 0,A 、B 之间的容积为0.1V 0.开始时活塞在B 处,缸内气体的压强为0.9p 0(p 0为大气压强),温度为297 K ,现缓慢加热汽缸内的气体,直至达到399.3 K .求:图4(1)活塞刚离开B处时的温度T B;(2)缸内气体最后的压强p;(3)在图乙中画出整个过程的p-V图象.1.某种喷雾器的贮液筒的总容积为7.5 L,如图5所示,装入6 L的药液后再用密封盖将贮液筒密封,与贮液筒相连的活塞式打气筒每次能压入300 cm3、1 atm的空气,设整个过程温度保持不变,求:图5(1)要使贮液筒中空气的压强达到4 atm,打气筒应打压几次?(2)当贮液筒中空气的压强达到4 atm时,打开喷嘴使其喷雾,直到内外气体压强相等,这时筒内还剩多少药液?2.如图6所示,一定质量的气体从状态A经状态B、C、D再回到状态A.问AB、BC、CD、DA经历的是什么过程?已知气体在状态A时的体积是1 L,求气体在状态B、C、D时的体积各为多少,并把此图改为p-V图象.图63.如图7所示的装置中,装有密度ρ=7.5×102 kg/m3的液体的均匀U形管的右端与体积很大的密闭贮气箱相连通,U形管的左端封闭着一段气体.在气温为-23 ℃时,气柱高62 cm,右端比左端低40 cm.当气温升至27 ℃时,左管液面上升了2 cm.求贮气箱内的气体在-23 ℃时的压强为多少?(g取10 m/s2)图74气体热现象的微观意义一、气体分子运动的特点和气体温度的微观意义[导学探究]1.把4枚硬币投掷10次并记录正面朝上的个数.比较个人、小组、大组、全班的数据,你能发现什么规律吗?2.气体分子间的作用力很小,若没有分子力作用,气体分子将处于怎样的自由状态3.温度不变时,每个分子的速率都相同吗?温度升高,所有分子运动速率都增大吗?[知识梳理]1.统计规律在一定条件下可能出现,也可能不出现的事件叫随机事件;大量随机事件整体表现出的规律叫统计规律.2.气体分子运动的特点(1)气体分子之间的距离很大,大约是分子直径的10倍左右,因此除了相互碰撞或者跟器壁碰撞外,气体分子不受力的作用,在空间____________.(2)分子的运动杂乱无章,在某一时刻,向着任何一个方向运动的分子都有,而且向各个方向运动的气体分子数目都.(3)每个气体分子都在做____________的无规则运动.(4)大量气体分子的速率分布呈“________________”的规律.3.气体温度的微观意义(1)温度越高,分子的热运动越________.当温度升高时,“中间多”的这一“高峰”向速率大的方向移动,即速率大的分子数目增多,速率小的分子数目减少,分子的平均速率增大.(2)温度是分子____________的标志.理想气体的热力学温度T与分子的平均动能E k成正比,即T=a E k.[即学即用]判断下列说法的正误.(1)气体内部所有分子的动能都随温度的升高而增大.()(2)当温度发生变化时,气体分子的速率不再是“中间多,两头少”.()(3)某一时刻一个分子的速度大小和方向是偶然的.()(4)温度相同时,各种气体分子的平均速度都相同.()二、气体压强的微观意义[导学探究]把一颗豆粒拿到台秤上方约10 cm的位置,放手后使它落在秤盘上,观察秤的指针的摆动情况.如图1所示,再从相同高度把100粒或更多的豆粒连续地倒在秤盘上,观察指针的摆动情况.使这些豆粒从更高的位置落在秤盘上,观察指针的摆动情况.用豆粒做气体分子的模型,试说明气体压强产生的原理.。
高中物理选修3-3精品学案:第七章 分子动理论
章末总结一、阿伏加德罗常数的相关计算阿伏加德罗常数N A 是联系宏观物理量和微观物理量的桥梁,在已知宏观量的基础上往往可借助N A 计算出某些微观物理量,有关计算主要有:(1)已知物质的摩尔质量M ,借助于阿伏加德罗常数N A ,可以求得这种物质的分子质量m 0=M N A. (2)已知物质的摩尔体积V mol ,借助于阿伏加德罗常数N A ,可以计算出这种物质的一个分子所占据的体积V 0=V molN A.(3)若物体是固体或液体,可把分子视为紧密排列的球体分子,可估算出分子直径d =36V molπN A. (4)依据求得的一个分子占据的体积V 0,可估算分子间距,此时把每个分子占据的空间看做一个小立方体模型,所以分子间距d =3V 0,这对气体、固体、液体均适用. (5)已知物体的体积V 和摩尔体积V mol ,求物体的分子数N ,则N =VV mol N A .(6)已知物体的质量m 和摩尔质量M ,求物体的分子数N ,则N =mMN A .例1 很多轿车中设有安全气囊以保障驾乘人员的安全,轿车在发生一定强度的碰撞时,利用叠氮化钠(NaN 3)爆炸产生气体(假设都是N 2)充入气囊.若氮气充入后安全气囊的容积V =56L ,囊中氮气密度ρ=2.5kg /m 3,已知氮气摩尔质量M =0.028 kg/mol ,阿伏加德罗常数N A =6×1023mol -1.试估算: (1)囊中氮气分子的总个数N ;(2)囊中氮气分子间的平均距离.(结果保留一位有效数字). [答案] (1)3×1024个 (2)3×10-9m [解析] (1)设N 2的物质的量为n ,则n =ρVM氮气的分子总数N =ρVM N A ,代入数据得N =3×1024个.(2)每个分子所占的空间为V 0=VN设分子间平均距离为a ,则有V 0=a 3,即a =3V 0=3V N代入数据得a ≈3×10-9m.二、对用油膜法估测分子的大小的理解用油膜法估测分子的大小的实验原理是:把一滴酒精稀释过的油酸溶液滴在撒有痱子粉的水面上,酒精溶于水或挥发,在水面上形成一层油酸薄膜,薄膜可认为是单分子层膜,如图1所示.将水面上形成的油膜形状画到玻璃板上,计算出油膜的面积,根据纯油酸的体积V 和油膜的面积S ,计算出油膜的厚度d =VS,即油酸分子的直径.图1例2在“用油膜法估测分子的大小”实验中,有下列实验步骤:①往边长约为40cm 的浅盘里倒入约2cm 深的水,待水面稳定后将适量的痱子粉均匀地撒在水面上.②用注射器将事先配好的油酸酒精溶液滴一滴在水面上,待薄膜形状稳定.③将画有油膜形状的玻璃板平放在坐标纸上,计算出油膜的面积,根据油酸的体积和面积计算出油酸分子直径的大小.④用注射器将事先配好的油酸酒精溶液一滴一滴地滴入量筒中,记下量筒内增加一定体积时的滴数,由此计算出一滴油酸酒精溶液的体积.⑤将玻璃板放在浅盘上,然后将油膜的形状用彩笔描绘在玻璃板上. 完成下列填空:(1)上述步骤中,正确的顺序是____________.(填写步骤前面的序号)(2)将1cm 3的油酸溶于酒精,制成300cm 3的油酸酒精溶液,测得1cm 3的油酸酒精溶液有50滴.现取一滴该油酸酒精溶液滴在水面上,测得所形成的油膜的面积是0.13m 2.由此估算出油酸分子的直径为____________m .(结果保留1位有效数字) [答案] (1)④①②⑤③ (2)5×10-10[解析] (2)每滴油酸酒精溶液中所含纯油酸的体积为: V =1300×150cm 3=115000cm 3=115000×10-6m 3油酸分子的直径:d =VS =115000×10-60.13m ≈5×10-10m.三、分子力图象和分子势能图象的应用分子力随分子间距离的变化图象与分子势能随分子间距离的变化图象非常相似,却有着本质的区别.(1)分子力曲线分子间作用力与分子间距离的关系曲线如图2甲所示,纵轴表示分子力F;斥力为正,引力为负,正、负表示力的方向;横轴表示分子间距离r,其中r0为分子间的平衡距离,此时引力与斥力大小相等.图2(2)分子势能曲线分子势能随分子间距离变化的关系曲线如图乙所示,纵轴表示分子势能E p;分子势能有正、负,但正、负反映其大小,正值一定大于负值;横轴表示分子间距离r,其中r0为分子间的平衡距离,此时分子势能最小.(3)曲线的比较图甲中分子间距离r=r0处,对应的是分子力为零,而在图乙中分子间距离r=r0处,对应的是分子势能最小,但不为零.例3(多选)图3甲、乙两图分别表示两个分子之间分子力和分子势能随分子间距离变化的图象.由图象判断以下说法中正确的是()图3A.当分子间距离为r0时,分子力和分子势能均最小且为零B.当分子间距离r>r0时,分子力随分子间距离的增大而增大C.当分子间距离r>r0时,分子势能随分子间距离的增大而增大D.当分子间距离r<r0时,随着分子间距离逐渐减小,分子力和分子势能都逐渐增大[答案]CD[解析]由题图可知,当分子间距离为r0时,分子力和分子势能均达到最小,但此时分子力为零,而分子势能不为零,为负值;当分子间距离r>r0时,分子力随分子间距离的增大先增大后减小,此时分子力做负功,分子势能增大;当分子间距离r<r0时,随着分子间距离逐渐减小,分子力逐渐增大,而此过程中分子力做负功,分子势能增大,由此知选项C、D正确.四、分子热运动和物体的内能1.分子热运动:分子热运动是永不停息且无规则的,温度越高,分子热运动越激烈.大量分子的运动符合统计规律.扩散现象能直接说明分子在做热运动,而布朗运动能间接说明分子在做热运动.2.物体的内能是指组成物体的所有分子的热运动动能与分子势能的总和.(1)由于温度越高,分子平均动能越大,所以物体的内能与温度有关.(2)由于分子势能与分子间距离有关,而分子间距离与物体体积有关,因此物体的内能与物体的体积有关.(3)由于物体所含物质的量不同,分子数目不同,分子势能与分子动能的总和不同,所以物体的内能与物质的量也有关系.总之,物体的内能与物体的温度、体积和物质的量都有关系.例4下列关于分子热运动和热现象的说法正确的是()A.气体如果失去了容器的约束就会散开,这是因为气体分子之间存在势能的缘故B.一定量100℃的水变成100℃的水蒸气,其分子平均动能增加C.一定量气体的内能等于其所有分子的热运动动能和分子势能的总和D.如果气体温度升高,那么每一个分子热运动的速率都增加[答案] C[解析]气体分子间的距离比较大,甚至可以忽略分子间的作用力,分子势能也就不存在了,所以气体在没有容器的约束下散开是分子热运动的结果,选项A错误;100℃的水变成同温度的水蒸气,分子的平均动能不变,所以选项B错误;根据内能的定义可知选项C正确;如果气体的温度升高,分子的平均动能增大,热运动的平均速率也增大,这是统计规律,但就每一个分子来讲,速率不一定都增加,故选项D错误.。
(有详细答案)教师版高中物理选修3-3学案:第七章-气体动理论5-含答案-精品
7.5内能[学习目标] 1.知道温度是分子平均动能的标志.2.明确分子势能与分子间距离的关系.3.理解内能的概念及其决定因素.一、分子动能[导学探究]分子处于永不停息的无规则运动中,因而具有动能.(1)为什么研究分子动能的时候主要关心大量分子的平均动能?(2)物体温度升高时,物体内每个分子的动能都增大吗?(3)物体运动的速度越大,其分子的平均动能也越大吗?答案(1)分子动能是指单个分子热运动的动能,但分子是无规则运动的,因此各个分子的动能以及一个分子在不同时刻的动能都不尽相同,所以研究单个分子的动能没有意义,我们主要关心的是大量分子的平均动能.(2)温度是大量分子无规则热运动的集体表现,含有统计的意义,对于个别分子,温度是没有意义的.所以物体温度升高时,个别分子的动能可能减小,也可能不变.(3)不是.分子的平均动能与宏观物体运动的动能无关.[知识梳理]1.分子动能:由于分子永不停息地做无规则运动而具有的能量.2.温度的理解(1)在宏观上:温度是物体冷热程度的标志.(2)在微观上:温度是物体分子热运动的平均动能的标志.3.分子动能的理解(1)由于分子热运动的速率大小不一,因而重要的不是系统中某个分子的动能大小,而是所有分子的动能的平均值,即分子热运动的平均动能.(2)温度是大量分子平均动能的标志,但对个别分子没有意义.同一温度下,各个分子的动能不尽相同.(3)分子的平均动能取决于物体的温度.(4)分子的平均动能与宏观上物体的运动速度无关.(填“有”或“无”).[即学即用]判断下列说法的正误.(1)物体温度升高时,每个分子的动能都增大.(×)(2)物体温度升高时,分子平均动能增大.(√)二、分子势能[导学探究](1)功是能量转化的量度,分子力做功对应什么形式的能量变化呢?(2)若分子力表现为引力,分子间距离增大时,分子力做什么功?分子势能如何变化?分子间距离减小时,分子力做什么功?分子势能如何变化?(3)若分子力表现为斥力,分子力做功情况以及分子势能的变化情况又如何呢?答案(1)分子力做功对应分子势能的变化.(2)负功分子势能增加正功分子势能减小(3)分子间距离增大时,分子力做正功,分子势能减小;分子间距离减小时,分子力做负功,分子势能增大.[知识梳理]分子势能(1)定义:分子间由分子力和分子间的相对位置决定的势能.(2)决定因素①宏观上:分子势能的大小与物体的体积有关.②微观上:分子势能与分子之间的距离有关.(3)分子力、分子势能与分子间距离的关系分子势能与分子间的距离的关系如图1所示.图1[即学即用]判断下列说法的正误.(1)物体的体积越大,分子势能越大.(×)(2)当分子间距离r=r0时,分子间合力为0,所以分子势能为0.(×)(3)当r→∞时,分子势能最小,且为0.(×)(4)当分子间距离由0逐渐增大到∞时,分子势能先减小后增大.(√)三、内能[导学探究](1)结合影响分子动能和分子势能的因素,从微观和宏观角度讨论影响内能的因素有哪些?(2)物体的内能随机械能的变化而变化吗?内能可以为零吗?答案(1)①微观上:物体的内能取决于物体所含分子的总数、分子的平均动能和分子间的距离.②宏观上:物体的内能取决于物体所含物质的量、温度和体积及物态.(2)物体的机械能变化时其温度和体积不一定变化,因此其内能不一定变化,两者之间没有必然联系.组成物体的分子在做永不停息的做无规则运动,因此物体的内能不可能为零.[知识梳理]1.内能:物体中所有分子的热运动动能与分子势能的总和.2.普遍性:组成任何物体的分子都在做着无规则的热运动,所以任何物体都具有内能.3.相关因素(1)物体所含的分子总数由物质的量决定.(2)分子热运动的平均动能由温度决定.(3)分子势能与物体的体积有关.故物体的内能由物质的量、温度、体积共同决定,同时受物态变化的影响.4.机械能与内能物体具有内能的同时也可以具有机械能.当物体的机械能增加时,内能不一定(填“一定”或“不一定”)增加,但机械能与内能之间可以相互转化.[即学即用]判断下列说法的正误.(1)0 ℃的冰块的内能为零.(×)(2)温度高的物体比温度低的物体内能多.(×)(3)体积大的物体内能一定比体积小的物体内能多.(×)(4)机械能越大的物体,内能也越大.(×)(5)物体的内能与物体的温度和体积都有关系.(√)一、分子动能1.温度是分子平均动能的标志.温度越高,分子的平均动能越大,但个别分子的动能可能减小,也可能不变.2.由于分子永不停息地做无规则运动,所以分子平均动能不能为零.3.分子的平均动能与宏观物体运动的动能无关.例1下列说法正确的是()A.只要温度相同,任何物体分子的平均动能都相同B.分子动能指的是由于分子定向移动具有的动能C.100个分子的动能和分子势能的总和就是这100个分子的内能D.温度高的物体中每一个分子的运动速率大于温度低的物体中每一个分子的运动速率答案A解析温度相同,物体分子的平均动能相同,A正确;分子动能是由于分子无规则运动而具有的动能,B错误;物体内能是对大量分子而言,对100个分子毫无意义,C错误;相同物质,温度高的物体分子平均速率大,温度是分子平均动能大小的标志,对单个分子没有意义,D错误.二、分子势能1.如果取两个分子间相距无穷远时(此时分子间作用力可忽略不计)的分子势能为零,分子势能E p与分子间距离r的关系可用如图2所示的实线表示(分子力F与分子间距离r的关系如图中虚线所示)图2由图可知,当r=r0时,F=0,此时分子势能最小,且小于0;当r>r0,随着r的增大,分子势能增大;当r<r0,随着r的减小,分子势能增大.2.分子势能的变化情况只与分子力做功相联系.分子力做正功,分子势能减小;分子力做负功,分子势能增大.分子力做功的值等于分子势能的变化量.例2(多选)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不能再靠近.在此过程中,下列说法正确的是()A.分子力先增大,后一直减小B.分子力先做正功,后做负功C.分子动能先增大,后减小D.分子势能先增大,后减小E.分子势能和分子动能之和不变答案BCE解析由分子动理论的知识,当两个分子相互靠近,直至不能再靠近的过程中,分子力先是表现为引力且先增大后减小,之后表现为分子斥力,一直增大,所以A选项错误;分子引力先做正功,然后分子斥力做负功,分子势能先减小再增大,分子动能先增大后减小,所以B、C正确,D错误;因为只有分子力做功,所以分子势能和分子动能的总和保持不变,E选项正确.讨论分子势能变化时,绝不能简单地由物体体积的增大、不变或减小得出结论.导致分子势能变化的原因是分子力做功.针对训练(多选)图3为两分子系统的势能E p与两分子间距离r的关系曲线.下列说法正确的是()图3A.当r大于r1时,分子间的作用力表现为引力B.当r小于r1时,分子间的作用力表现为斥力C.当r等于r2时,分子间的作用力为零D.在r由r1变到r2的过程中,分子间的作用力做负功答案BC解析当r<r1时,r减小,E p增大,说明克服分子间作用力做功,也说明分子间作用力表现为斥力,因此选项B正确.r1<r<r2时,分子势能随分子间距离的增大而减小,说明分子力做正功,因此分子间作用力表现为斥力,所以选项A、D均错.r=r2时分子间作用力为零,故选项C正确.分子势能图象问题的解题技巧(1)要明确分子势能、分子力与分子间距离关系图象中拐点的不同意义.分子势能图象的最低点(最小值)对应的距离是分子平衡距离r0,分子力图象与r轴交点的横坐标表示平衡距离r0. (2)要把图象上的信息转化为分子间距离,再求解其他问题.)三、内能1.温度、内能和热量的区别(1)温度宏观上表示物体的冷热程度,是分子平均动能的标志.(2)内能是物体中所有分子的热运动动能与分子势能的总和.(3)热量指在热传递过程中,物体吸收或放出热的多少,等于物体内能的变化量.2.内能和机械能的区别与联系例3下列说法正确的是()A.铁块熔化成铁水的过程中,温度不变,内能也不变B.物体运动的速度增大,则物体中分子热运动的平均动能增大,物体的内能增大C.A、B两物体接触时有热量从物体A传到物体B,这说明物体A的内能大于物体B的内能D.A、B两物体的温度相同时,A、B两物体的内能可能不同,分子的平均速率也可能不同答案D解析解答本题的关键是对温度和内能这两个概念的理解.温度是分子平均动能的标志,内能是所有分子热运动动能和分子势能的总和,故温度不变时,内能可能变化,A项错误;两物体温度相同,内能可能不同,分子的平均动能相同,但由E k=12m v2知,分子的平均速率v可能不同,故D项正确;最易出错的是认为有热量从A传到B,A的内能肯定大,其实有热量从A传到B,只说明A的温度高,内能大小还要看它们的总分子数和分子势能这些因素,故C项错误;机械运动的速度与分子热运动的平均动能无关,故B项错误.故选D.1.下列有关“温度”的概念的说法中正确的是()A.温度反映了每个分子热运动的剧烈程度B.温度是分子平均动能的标志C.一定质量的某种物质,内能增加,温度一定升高D.温度升高时物体的每个分子的动能都将增大答案B解析温度是分子平均动能的标志,而对某个确定的分子来说,其热运动的情况无法确定,不能用温度反映.故A、D错,B对;温度不升高而仅使分子的势能增加,也可以使物体内能增加,冰熔化为同温度的水就是一个例证,故C错.2.下列关于分子力和分子势能的说法正确的是()A.当分子力表现为引力时,分子力和分子势能总是随分子间距离的增大而增大B.当分子力表现为引力时,分子力和分子势能总是随分子间距离的增大而减小C.当分子力表现为斥力时,分子力和分子势能总是随分子间距离的减小而增大D.当分子力表现为斥力时,分子力和分子势能总是随分子间距离的减小而减小答案C3.关于物体的内能,下列说法中正确的是()A.机械能可以为零,但内能永远不为零B.温度相同、质量相同的物体具有相同的内能C.温度越高,物体的内能越大D.0 ℃的冰的内能与等质量的0 ℃的水的内能相等答案A解析机械能是宏观能量,当物体的动能和势能均为零时,机械能就为零;而物体内的分子在永不停息地做无规则运动,且存在相互作用力,所以物体的内能永不为零,A项对;物体的内能与物质的量、温度和体积及物态有关,B、C、D错误.。
高中人教版物理选修3-3学案:第7章 含答案
第七章分子动理论〔情景切入〕我们生活的世界绚丽多彩,构成这个世界的是千差万别的物质。
各种物质都是由分子组成的,分子是用肉眼看不到、用手摸不着的,但现实生活与分子运动相关的现象到处可见:我们可以闻到花的香味,这是分子运动的结果;物质能够聚在一起而不散开,这是分子间作用力的表现。
这一章我们就来学习涉及微观世界的运动理论——分子动理论。
〔知识导航〕本章介绍分子动理论的基本观点,它的主要内容是:物体是由大量分子组成的,分子在做永不停息的无规则运动,分子之间存在着引力和斥力。
本章知识共五节,整体分为两部分:第一部分包括第一节至第三节,是从微观上用分子动理论的观点认识热现象,阐述分子动理论的内容。
第二部分包括第四节和第五节,是从宏观上用能量的观点认识热现象。
本章重点:分子动理论的基本内容。
本章难点:分子模型的建立和对分子力的理解。
〔学法指导〕由于分子是看不见的,因此在学习这部分内容时要特别注意通过一些客观过程去理解微观状态,这对我们思维能力和想象力的发展是有好处的。
从能量的观点来研究问题是物理学中最重要的方法之一,本章将在初中的基础上进一步学习内能,内能和我们常见的机械能是不一样的,它是由物体内分子的热运动和分子间相对位置而决定的能量,学习时要抓住内能的含义加以理解。
学习本章知识要应用类比方法。
例如:将分子力做功与分子势能的变化,类比为弹力做功与弹性势能的变化,这样就可以把微观的研究对象宏观化。
第一节 物体是由大量分子组成的【素养目标定位】 ※ 知道分子的大小,知道分子直径的数量级※ 知道阿伏加德罗常数,知道物体是由大量分子组成的※※掌握“油膜法估测分子大小”的实验原理,操作及实验数据的处理方法【素养思维脉络】课前预习反馈知识点1 分子的大小1.分子物体是由__大量分子__组成的,在热学中,组成物质的微观粒子统称为__分子__。
2.油膜法估测分子直径(1)原理:把一滴油酸酒精溶液滴在水面上,在水面上形成油酸薄膜,认为薄膜是由__单层的__油酸分子组成的,并把油酸分子简化成__球形__,油膜的__厚度__认为是油酸分子的直径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.3分子间的作用力
[学习目标] 1.通过实验知道分子间存在着空隙和相互作用力.2.通过图象分析知道分子力与分子间距离的关系.3.明确分子动理论的内容.
一、分子间的作用力
[导学探究]
(1)如图1所示,把一块洗净的玻璃板吊在弹簧测力计下面,使玻璃板水平地接触水面,若想使玻璃板离开水面,在拉出玻璃板时,弹簧测力计的示数与玻璃板的重力相等吗?为什么?
图1
(2)既然分子间存在引力,当两个物体紧靠在一起时,为什么分子引力没有把它们粘在一起?
(3)无论容器多大,气体有多少,气体分子总能够充满整个容器,是分子斥力作用的结果吗?
答案(1)不相等;因为玻璃板和液面之间有分子引力,所以在使玻璃板拉出水面时弹簧测力计的示数要大于玻璃板的重力.(2)虽然两物体靠得很紧,但绝大部分分子间距离仍很大,达不到分子引力起作用的距离,所以不会粘在一起.(3)气体分子之间的距离r>10r0,分子间的作用力很微弱,可忽略不计.所以气体分子能充满整个容器,并不是分子斥力作用的结果,而是分子的无规则运动造成的.
[知识梳理]
1.分子间同时存在着相互作用的引力和斥力.分子间实际表现出的作用力是引力和斥力的合力.
2.分子间作用力与分子间距离变化的关系(如图2所示).分子间的引力和斥力都随分子间距离的增大而减小,随分子间距离的减小而增大.但斥力比引力变化得快.
图2
3.分子间作用力与分子间距离的关系.
(1)当r=r0时,F引=F斥,此时分子所受合力为零.
(2)当r<r0时,F引<F斥,作用力的合力表现为斥力.
(3)当r>r0时,F引>F斥,作用力的合力表现为引力.
(4)当r>10r0(即大于10-9 m)时,分子间的作用力变得很微弱,可忽略不计.
4.分子力弹簧模型:当分子间的距离在r0附近时,它们之间的作用力的合力有些像弹簧连接着两个小球间的作用力:拉伸时表现为引力,压缩时表现为斥力.
[即学即用]判断下列说法的正误.
(1)当分子间的距离小于r0时,分子间只有斥力作用.(×)
(2)压缩物体时,分子间斥力增大,引力减小.(×)
(3)当两个分子从远处(r>10-9m)相向运动到距离最小的过程中,分子力先减小,后增大;分子力对两个分子先做正功,后做负功.(×)
二、分子动理论
[导学探究](1)参与热运动的某一个分子的运动有规律可循吗?大量分子的运动呢?
(2)为什么物体既难以拉伸,又难以压缩?
答案(1)以气体为例,气体分子在无序运动中不断发生碰撞,每个分子的运动速率不断地发生变化.在某一特定时刻,某个特定分子究竟做怎样的运动完全是偶然的,不能预知.但对大量分子的整体,在一定条件下,实验和理论都证明,它们遵从一定的统计规律.(2)拉伸时,分子间表现为引力,压缩时分子间表现为斥力.
[知识梳理]
1.分子动理论
(1)概念:把物质的热学性质和规律看做微观粒子热运动的宏观表现而建立的理论.
(2)内容:
①物体是由大量分子组成的.
②分子在做永不停息的无规则运动.
③分子之间存在着引力和斥力.
2.统计规律:由大量偶然事件的整体所表现出来的规律.
(1)微观方面:单个分子的运动是无规则(选填“有规则”或“无规则”)的,具有偶然性.
(2)宏观方面:大量分子的运动表现出规律性,受统计规律的支配.
3.分子力的宏观表现
(1)当外力欲使物体拉伸时,组成物体的大量分子间将表现为引力,以抗拒外力对它的拉伸.
(2)当外力欲使物体压缩时,组成物体的大量分子间将表现为斥力,以抗拒外力对它的压缩.[即学即用]判断下列说法的正误.
(1)海绵容易压缩,说明分子间存在引力.(×)
(2)布朗运动可以用分子动理论解释.(√)
(3)固体、液体和气体有不同的宏观特征是分子力的宏观表现.(√)
一、分子间的作用力
1.分子间的引力、斥力和分子力随分子间距离变化的图象如图3所示.
图3
(1)分子间的引力和斥力都随分子间距离的增大而减小.
(2)当r<r0时,分子力随分子间距离的增大而减小;当r>r0时,分子力随分子间距离的增大先增大后减小.
2.分子力做功
由于分子间存在着分子力,所以当分子间距离发生变化时,分子力做功.
(1)当r>r0时,分子力表现为引力,当r增大时,分子力做负功;当r减小时,分子力做正功.
(2)当r<r0时,分子力表现为斥力,当r减小时,分子力做负功;当r增大时,分子力做正功.
例
1设r0是分子间引力和斥力平衡时的距离,r是两个分子间的实际距离,则以下说法中正确的是()
A.r=r0时,分子间引力和斥力都等于零
B.4r0>r>r0时,分子间只有引力而无斥力
C.r由4r0逐渐减小到小于r0的过程中,分子间的引力先增大后减小
D.r由4r0逐渐减小到小于r0的过程中,分子间的引力和斥力都增大,其合力先增大后减小再增大
答案D
解析当r=r0时,分子间引力和斥力相等,但都不为零,合力为零,A错;当4r0>r>r0时,引力大于斥力,两者同时存在,B错;在r减小的过程中,分子引力和斥力都增大,C 错;r由4r0逐渐减小到r0的过程中,由分子力随r的变化关系图线可知,分子力有一个极大值,到r<r0时分子力又增大,所以在r由4r0逐渐减小到小于r0的过程中分子力先增大后减小再增大,D对.
针对训练(多选)甲分子固定在坐标原点O,乙分子位于r轴上,甲、乙两分子间作用力与分子间距离的关系图象如图4所示.现把乙分子从r3处由静止释放,则()
图4
A.乙分子从r3到r1过程中一直加速
B.乙分子从r3到r2过程中两分子间的分子力呈现引力,从r2到r1过程中两分子间的分子力呈现斥力
C.乙分子从r3到r1过程中,两分子间的分子力先增大后减小
D.乙分子从r3到距离甲最近的位置过程中,两分子间的分子力先减小后增大
答案AC
解析乙分子从r3到r1过程中一直受甲分子的引力作用,且分子间作用力先增大后减小,故乙分子做加速运动,A、C正确;乙分子从r3到r1过程中两分子间的分子力一直呈现引力,B错误;乙分子从r3到距离甲最近的位置过程中,两分子间的分子力先增大后减小再增大,D错误.
例
2分子甲和乙距离较远,设甲固定不动,乙分子逐渐向甲分子靠近,直到不能再近的这一过程中()
A.分子力总是对乙做正功
B.乙分子总是克服分子力做功
C.先是乙分子克服分子力做功,然后分子力对乙分子做正功
D.先是分子力对乙分子做正功,然后乙分子克服分子力做功
答案D
解析如图所示,由于开始时分子间距大于r0,分子力表现为引力,因此分子乙从远处移到距分子甲r0处的过程中,分子力做正功;由于分子间距离小于r0时,分子力表现为斥力,因此分子乙从距分子甲r0处继续向甲移近时要克服分子力做功.故正确答案为D.
二、分子力的宏观表现
例
3(多选)下列说法正确的是()
A.水的体积很难被压缩,这是分子间存在斥力的宏观表现
B.气体总是很容易充满容器,这是分子间存在斥力的宏观表现
C.两个相同的半球壳吻合接触,中间抽成真空(马德堡半球),用力很难拉开,这是分子间存在引力的宏观表现
D.用力拉铁棒的两端,铁棒没有断,这是分子间存在引力的宏观表现
答案AD
解析水是液体、铁棒是固体,正常情况下它们分子之间的距离都为r0,分子间的引力和斥力恰好平衡.当水被压缩时,分子间距离由r0略微减小,分子间斥力大于引力,分子力表现为斥力,其效果是水的体积很难被压缩;当用力拉铁棒两端时,铁棒发生很小的形变,分子间距离由r0略微增大,分子间引力大于斥力,分子力表现为引力,其效果为铁棒没有断,所以选项A、D正确;气体分子由于永不停息地做无规则运动,能够到达容器内的任何空间,所以很容易就充满容器,由于气体分子间距离远大于r0,分子间几乎无作用力,就是有作用力,也表现为引力,所以B错;抽成真空的马德堡半球,之所以很难拉开,是由于球外大气压力对球的作用,所以C错.
分子力的作用是有范围的,当r<r0时,分子力表现为斥力,当r>r0时,分子力表现为引力.固体、液体的体积难以改变,往往是分子力的宏观表现,而对于气体,一般情况下分子力很小,甚至可忽略.解释相关的现象应从分子的热运动和气体压强产生原因等方面考虑.。