高中物理 第1章 电磁感应与现代生活
高中物理第一章电磁感应1.3法拉第电磁感应定律
答案 6 V
解析 根据法拉第电磁感应定律得感应电动势的大小
E=n
ΔΦ Δt
=1
500×4×10-3
V=6
V.
12/14/2021
解析 答案
达标检测
12/14/2021
1.(对法拉第电磁感应定律的理解)如图9所示,半径为R的n匝线圈套在边
长为a的正方形abcd之外,匀强磁场垂直穿过该正方形,当磁场以
E=n
ΔΦ Δt
,其中 n 是线圈的匝数.
12/14/2021
三、导体切割磁感线产生的感应电动势 1.导线垂直于磁场运动,B、L、v两两垂直时,如图1所示,E= BLv .
12/14/2021
图1
2.导线的运动方向与导线本身垂直,但与磁感线方向夹角为α时,如图 2所示,E=BLvsin α .
12/14/2021
12/14/2021
解析 答案
例4 如图8甲所示的螺线管,匝数n=1 500匝,横截面积S=20 cm2, 方向向右穿过螺线管的匀强磁场的磁感应强度按图乙所示规律变化. (1)2 s内穿过线圈的磁通量的变化量是多少?
答案 8×10-3 Wb
解析 磁通量的变化量是由磁感应强度
的变化引起的,
则Φ1=B1S,Φ2=B2S,ΔΦ=Φ2-Φ1,
解析 ac棒垂直切割磁感线,产生的感应电动势
的大小为E=BLv=0.40×0.50×4.0 V=0.80 V.
图7
12/14/2021
解析 答案
(2)回路中感应电流的大小.
答案 见解析 解析 回路中感应电流大小为I= ER=00..8200 A=4.0 A.
12/14/2021
解析 答案
(3)维持ac棒做匀速运动的水平外力的大小和方向. 答案 见解析 解析 ac棒受到的安培力大小为 F安=BIL=0.40×4.0×0.50 N=0.80 N, 由右手定则知,ac棒中感应电流由c流向a. 由左手定则知,安培力方向水平向左. 由于导体棒匀速运动,水平方向受力平衡,则F外=F安=0.80 N,方向 水平向右.
高中物理第1章电磁感应与现代生活课件
电感器在电路中的作用
电感器的定义与原理
电感器的应用领域与未来发 展
电磁感应与现代生活的 联系
电磁感应在电子设备中的应用
电磁感应现象:在电子设备中,电磁感应现象是普遍存在的,如变压器、电感器等。
电磁感应在电子设备中的作用:电磁感应在电子设备中起到转换电能、控制电流和保护电路的作用。 电磁感应在电子设备中的应用实例:如手机充电器、电磁炉、无线充电等,都利用了电磁感应的原理。
● 电磁感应技术还可以应用于节能环保领域。例如,可以利用电磁感应技术对工业生产过程中的余热进行回收利用,从而提高能源利用效率。此外,电磁感应技 术也可以应用于太阳能发电等领域,为环保事业做出贡献。
● 电磁感应技术应用于环保监测 最后,电磁感应技术还可以应用于环保监测领域。通过利用电磁感应技术对环境中的污染物质进行监测和分析,可以及 时了解环境状况,为环境保护提供科学依据。
● 电磁感应技术也可以应用于空气净化领域。通过产生电磁场,可以有效地去除空气中的有害物质,如甲醛、苯等。这种技术在空气净化领域的应用可以有效地 改善室内空气质量,保障人们的健康。
● 电磁感应技术应用于节能环保 电磁感应技术还可以应用于节能环保领域。例如,可以利用电磁感应技术对工业生产过程中的余热进行回收利用,从而 提高能源利用效率。此外,电磁感应技术也可以应用于太阳能发电等领域,为环保事业做出贡献。
电磁感应与现代生活的关系
电磁感应基本概念: 法拉第电磁感应定 律、楞次定律等
电磁感应在现代生 活中的应用:发电 机、变压器、无线 充电等
电磁感应对现代生 活的影响:能源转 换、环境保护、医 疗技术等
电磁感应的未来发 展:新能源、智能 家居、交通出行等
电磁感应的应用
电磁感应在发电机中的应用
高中物理第一章电磁感应第七节自感现象及其应用预习导学案粤教版选修3-2
第七节自感现象及其应用【思维激活】1.在接通或断开电动机电路时,在开关处会产生火花放电,你知道为什么吗?提示:电动机电路是含有线圈的电路,在通电瞬间或断电瞬间,线圈中就会有电流的巨大变化,从无到有或从有到无,在也会产生电磁感应现象,产生感应电动势,由于变化较快,感应电动势会比较大,加在开关的动片与静片之间,就会形成火花放电。
这是自感现象。
]2.在日常生活中,若发现或怀疑家用煤气泄漏,选用了打电话报警的方式求助,你认为这种方法正确吗?提示:不正确,打电话时会产生火花引起火灾,酿成更大的事故。
【自主整理】1.互感现象:绕在同一铁芯的两个线圈,当其中一个线圈上的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象就叫互感。
2.自感现象:当一个线圈中的电流发生变化时,它所产生的变化磁场不仅在邻近的电路中激发出感应电动势,同样也会在它本身激发出感应电动势。
这种由于导体本身的电流发生变化而使自身产生电磁感应的现象叫做自感。
3.自感电动势:由于自感而产生的感应电动势叫做自感电动势。
4自感系数:自感系数L简称自感或电感,它跟线圈的大小、形状、圈数以及是否有铁芯等因素有关,线圈的横截面积越大、线圈绕制得越密、匝数越多,它的自感系数就越大,另外有铁芯的线圈的自感系数比没有铁芯时大.单位:________,符号是H.常用的还有_____(mH)和_____(μH),换算关系是:1 H=____mH=____μH.。
5.磁场的能量:线圈中有电流,就有磁场,________就储存在磁场中。
【高手笔记】1.自感现象是否符合楞次定律?剖析:自感现象是一种特殊的电磁感应现象,其规律符合楞次定律,即感应电动势阻碍磁通量的变化。
只不过由于自感现象中磁通量的变化是由于电路中电流的变化引起的。
所以,自感电动势直接表现为阻碍原电源的变化。
这里要着重强调阻碍的含义:“阻碍”不是“相反”:原电流增加时“反抗”;原电流减小时“反抗”;原电流减小时“补偿”。
高一物理课件:第1章-电磁感应与现代生活剖析
[经典案例] (8分)(2012·陕西安康 高二检测)如图所示,线圈A中接 有如图所示的电源,线圈B有一半 的面积处在线圈A中,两线圈平行但不接触. 则在开关S闭合的瞬间,线圈B中有无感应电 流?
栏目 导引
第1章 电磁感应与现代生活
【思路点拨】 解答本题时可按以下思路分析:
明确线圈A的 磁感线分布
物理 意义
某时刻穿过磁场中 某个面的磁感线条 数
穿过某个面的磁 通量的差值
Φ=B·S,S为与B垂 大小 直的面积,不垂直 ΔΦ=Φ2-Φ1要首 计算 时,取S在与B垂直 先规定正方向
方向上的投影
栏目 导引
第1章 电磁感应与现代生活
磁通量Φ
磁通量变化量ΔΦ
穿过某个面有方向 与磁场垂直的平面,
相反的磁场,则不 开始时和转过
栏目 导引
第1章 电磁感应与现代生活
(4)B不变,S不变,θ变化,则ΔΦ=BS(sinθ2- sinθ1) 如图(丁)所示,闭合线圈abcd在匀强磁场中绕 垂直于磁场方向的转轴OO′转动,B不变,S不 变,但B和S的夹角θ发生变化,引起穿过线圈 的磁通量变化.
栏目 导引
第1章 电磁感应与现代生活
【审题指导】 解此题从以下三点思考: (1)磁通量大小的计算Φ=BS. (2)磁通量的变化量ΔΦ=Φ2-Φ1. (3)周长不变的线圈形状变化,面积变化情况.
高中物理-第一篇 专题四 第11讲 电磁感应
第11讲 电磁感应 命题规律 1.命题角度:(1)楞次定律与法拉第电磁感应定律的应用;(2)电磁感应中的图象问题;(3)电磁感应中的动力学与能量问题.2.常用方法:排除法、函数法.3.常考题型:选择题、计算题.考点一 楞次定律与法拉第电磁感应定律的应用1.感应电流方向的判断(1)楞次定律:线圈面积不变,磁感应强度发生变化的情形,往往用楞次定律.(2)右手定则:导体棒切割磁感线的情形往往用右手定则.2.楞次定律中“阻碍”的主要表现形式(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍物体间的相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——一般情况下为“增缩减扩”;(4)阻碍原电流的变化(自感现象)——一般情况下为“增反减同”.3.求感应电动势的方法(1)法拉第电磁感应定律:E =n ΔΦΔt ⎩⎨⎧ S 不变时,E =nS ΔB Δt B 不变时,E =nB ΔS Δt(2)导体棒垂直切割磁感线:E =Bl v .(3)导体棒以一端为圆心在垂直匀强磁场的平面内匀速转动:E =12Bl 2ω. (4)线圈绕与磁场垂直的轴匀速转动(从线圈位于中性面开始计时):e =nBSωsin ωt .4.通过回路截面的电荷量q =I Δt =n ΔΦR 总Δt Δt =n ΔΦR 总.q 仅与n 、ΔΦ和回路总电阻R 总有关,与时间长短无关,与Φ是否均匀变化无关.例1 (多选)(2022·广东卷·10)如图所示,水平地面(Oxy 平面)下有一根平行于y 轴且通有恒定电流I 的长直导线.P 、M 和N 为地面上的三点,P 点位于导线正上方,MN 平行于y 轴,PN 平行于x 轴.一闭合的圆形金属线圈,圆心在P 点,可沿不同方向以相同的速率做匀速直线运动,运动过程中线圈平面始终与地面平行.下列说法正确的有( )A .N 点与M 点的磁感应强度大小相等,方向相同B .线圈沿PN 方向运动时,穿过线圈的磁通量不变C .线圈从P 点开始竖直向上运动时,线圈中无感应电流D .线圈从P 到M 过程的感应电动势与从P 到N 过程的感应电动势相等答案 AC解析 依题意,M 、N 两点连线与长直导线平行,两点与长直导线的距离相等,根据右手螺旋定则可知,通电长直导线在M 、N 两点产生的磁感应强度大小相等、方向相同,故A 正确;根据右手螺旋定则,线圈在P 点时,穿进线圈中的磁感线与穿出线圈中的磁感线相等,磁通量为零,在向N 点平移过程中,穿进线圈中的磁感线与穿出线圈中的磁感线不再相等,穿过线圈的磁通量发生变化,故B 错误;根据右手螺旋定则,线圈从P 点竖直向上运动过程中,穿进线圈中的磁感线与穿出线圈中的磁感线始终相等,穿过线圈的磁通量始终为零,没有发生变化,线圈中无感应电流,故C 正确;线圈从P 点到M 点与从P 点到N 点,穿过线圈的磁通量变化量相同,依题意从P 点到M 点所用时间较从P 点到N 点的时间长,根据法拉第电磁感应定律,可知两次的感应电动势不相等,故D 错误.例2 (多选)(2021·辽宁卷·9)如图(a)所示,两根间距为L 、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R 的电阻,垂直导轨平面存在变化规律如图(b)所示的匀强磁场,t =0时磁场方向垂直纸面向里.在t =0到t =2t 0的时间内,金属棒水平固定在距导轨顶端L 处;t =2t 0时,释放金属棒.整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则( )A .在t =t 02时,金属棒受到安培力的大小为B 02L 3t 0RB .在t =t 0时,金属棒中电流的大小为B 0L 2t 0RC .在t =3t 02时,金属棒受到安培力的方向竖直向上 D .在t =3t 0时,金属棒中电流的方向向右答案 BC解析 由题图(b)可知在0~t 0时间段内闭合回路产生的感应电动势为E =ΔΦΔt =B 0L 2t 0,根据闭合电路欧姆定律有,此时间段内的电流为I =E R =B 0L 2Rt 0,在t 02时磁感应强度大小为B 02,此时安培力大小为F =B 02IL =B 02L 32Rt 0,故A 错误,B 正确;由题图(b)可知,在t =3t 02时,磁场方向垂直纸面向外并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,故C 正确;由题图(b)可知,在t =3t 0时,磁场方向垂直纸面向外,金属棒向下掉的过程中穿过回路的磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,故D 错误.考点二 电磁感应中的图象问题1.电磁感应中常见的图象常见的有磁感应强度、磁通量、感应电动势、感应电流、速度、安培力等随时间或位移的变化图象.2.解答此类问题的两个常用方法(1)排除法:定性分析电磁感应过程中某个物理量的变化情况,把握三个关注,快速排除错误的选项.这种方法能快速解决问题,但不一定对所有问题都适用.(2)函数关系法:根据题目所给的条件写出物理量之间的函数关系,再对图象作出判断,这种方法得到的结果准确、详细,但不够简捷.例3 (多选)(2022·河北卷·8)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,一根导轨位于x 轴上,另一根由ab 、bc 、cd 三段直导轨组成,其中bc 段与x 轴平行,导轨左端接入一电阻R .导轨上一金属棒MN 沿x 轴正向以速度v 0保持匀速运动,t =0时刻通过坐标原点O ,金属棒始终与x 轴垂直.设运动过程中通过电阻的电流强度为i ,金属棒受到安培力的大小为F ,金属棒克服安培力做功的功率为P ,电阻两端的电压为U ,导轨与金属棒接触良好,忽略导轨与金属棒的电阻.下列图象可能正确的是( )答案 AC解析 在0~L v 0时间内,在某时刻金属棒切割磁感线的长度L =l 0+v 0t tan θ(θ为ab 与ad 的夹角),则根据E =BL v 0,可得I =BL v 0R =B v 0R(l 0+v 0t tan θ),可知回路电流均匀增加;安培力F =B 2L 2v 0R =B 2v 0R (l 0+v 0t tan θ)2,则F -t 关系为二次函数关系,但是不过原点;安培力做功的功率P =F v 0=B 2L 2v 02R =B 2v 02R (l 0+v 0t tan θ)2,则P -t 关系为二次函数关系,但是不过原点;电阻两端的电压等于金属棒产生的感应电动势,即U =E =BL v 0=B v 0(l 0+v 0t tan θ),即U -t 图象是不过原点的直线;根据以上分析,可排除B 、D 选项;在L v 0~2L v 0时间内,金属棒切割磁感线的长度不变,感应电动势E 不变,感应电流I 不变,安培力F 大小不变,安培力的功率P 不变,电阻两端电压U 保持不变;同理可判断,在2L v 0~3L v 0时间内,金属棒切割磁感线长度逐渐减小,金属棒切割磁感线的感应电动势E 均匀减小,感应电流I 均匀减小,安培力F 大小按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,安培力的功率P 按照二次函数关系减小,但是不能减小到零,与0~L v 0内是对称的关系,电阻两端电压U 按线性均匀减小,综上所述选项A 、C 可能正确,B 、D 错误.例4 (多选)(2022·安徽省六校第二次联考)如图所示,水平面内有一足够长平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨平面垂直.阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好.开关S由1掷到2时开始计时,q、i、v和a分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.下列图象可能正确的是()答案ACD解析开关S由1掷到2,电容器放电后会在电路中产生电流且此刻电流最大,导体棒通有电流后会受到安培力的作用产生加速度而加速运动,导体棒切割磁感线产生感应电动势,导体棒速度增大,则感应电动势E=Bl v增大,则实际电流减小,安培力F=BIL减小,加速度a=Fm即减小,因导轨光滑,所以在有电流通过棒的过程中,棒是一直做加速度减小的加速运动(变加速),故a-t图象即选项D是正确的;导体棒运动产生感应电动势会给电容器充电,当充电和放电达到一种平衡时,导体棒做匀速运动,因此最终电容器两端的电压能稳定在某个不为0的数值,即电容器的电荷量应稳定在某个不为0的数值(不会减少到0),电路中无电流,故B错误,A、C正确.考点三电磁感应中的动力学与能量问题1.电磁感应综合问题的解题思路2.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流恒定的情况;(2)功能关系:Q=W克安(W克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量).例5 (多选)(2022·全国甲卷·20)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C 的电容器和阻值为R 的电阻.质量为m 、阻值也为R 的导体棒MN 静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中.开始时,电容器所带的电荷量为Q ,合上开关S 后( )A .通过导体棒MN 电流的最大值为Q RCB .导体棒MN 向右先加速、后匀速运动C .导体棒MN 速度最大时所受的安培力也最大D .电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热答案 AD解析 开始时电容器两极板间的电压U =Q C ,合上开关瞬间,通过导体棒的电流I =U R =Q CR ,随着电容器放电,通过电阻、导体棒的电流不断减小,所以在开关闭合瞬间,导体棒所受安培力最大,此时速度为零,A 项正确,C 项错误;由于回路中有电阻与导体棒,最终电能完全转化为焦耳热,故导体棒最终必定静止,B 项错误;由于导体棒切割磁感线,产生感应电动势,所以通过导体棒的电流始终小于通过电阻的电流,由焦耳定律可知,电阻R 上产生的焦耳热大于导体棒MN 上产生的焦耳热,D 项正确.例6 (2022·山东济南市一模)如图所示,在水平虚线下方存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B .磁场上方某高度处有一个正方形金属线框,线框质量为m ,电阻为R ,边长为L .某时刻将线框以初速度v 0水平抛出,线框进入磁场过程中速度不变,运动过程中线框始终竖直且底边保持水平.磁场区域足够大,忽略空气阻力,重力加速度为g ,求:(1)线框进入磁场时的速度v ;(2)线框进入磁场过程中产生的热量Q .答案 (1)v 02+m 2g 2R 2B 4L 4,速度方向与水平方向夹角的正切值为mgRB 2L 2v 0(2)mgL 解析 (1)当线框下边界刚进入磁场时,由于线框速度不变,对线框进行受力分析有BIL=mg由欧姆定律可得I=ER线框切割磁感线,由法拉第电磁感应定律可得E=BL v y由速度的合成与分解可得v=v02+v y2联立求解可得v=v02+m2g2R2B4L4设此时速度方向与水平面的夹角为θ,则tan θ=v yv0=mgR B2L2v0即此时速度方向与水平方向夹角的正切值为mgRB2L2v0.(2)线框进入磁场过程中速度不变,则从进入磁场开始到完全进入磁场,由能量守恒定律得Q=mgL.例7(2022·河南洛阳市模拟)如图甲所示,金属导轨MN和PQ平行,间距L=1 m,与水平面之间的夹角α=37°,匀强磁场磁感应强度大小B=2.0 T,方向垂直于导轨平面向上,MP 间接有阻值R=1.5 Ω的电阻,质量m=0.5 kg,接入电路中电阻r=0.5 Ω的金属杆ab垂直导轨放置,金属杆与导轨间的动摩擦因数为μ=0.2.现用恒力F沿导轨平面向上拉金属杆ab,使其由静止开始运动,当金属杆上滑的位移x=3.8 m时达到稳定状态,金属杆始终与导轨接触良好,对应过程的v-t图象如图乙所示.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,导轨足够长且电阻不计.求:(1)恒力F的大小及金属杆的速度为0.4 m/s时的加速度大小;(2)从金属杆开始运动到刚达到稳定状态,通过电阻R的电荷量;(3)从金属杆开始运动到刚达到稳定状态,金属杆上产生的焦耳热.答案(1)5.8 N 2.4 m/s2(2)3.8 C(3)1.837 5 J解析(1)当金属杆匀速运动时,由平衡条件得F=μmg cos 37°+mg sin 37°+F安由题图乙知v =1 m/s ,则F 安=BIL =B 2L 2v R +r =2 N 解得F =5.8 N当金属杆的速度为0.4 m/s 时F 安1=BI 1L =B 2L 2v 1R +r=0.8 N 由牛顿第二定律有F -μmg cos 37°-mg sin 37°-F 安1=ma解得a =2.4 m/s 2.(2)由q =I ·ΔtI =E R +rE =ΔΦΔt 得q =ΔΦR +r =BLx R +r=3.8 C. (3)从金属杆开始运动到刚到达稳定状态,由动能定理得(F -μmg cos 37°-mg sin 37°)x +W 安=12m v 2-0 又Q =|W 安|=7.35 J ,所以解得Q r =r R +rQ =1.837 5 J.1.(多选)(2022·河南郑州市二模)在甲、乙、丙图中,MN 、PQ 是固定在同一水平面内足够长的平行金属导轨.导体棒ab 垂直放在导轨上,导轨都处于垂直水平面向下的匀强磁场中,导体棒和导轨间的摩擦不计,导体棒、导轨和直流电源的电阻均可忽略,甲图中的电容器C 原来不带电.现给导体棒ab 一个向右的初速度v 0,对甲、乙、丙图中导体棒ab 在磁场中的运动状态描述正确的是( )A .甲图中,棒ab 最终做匀速运动B .乙图中,棒ab 做匀减速运动直到最终静止C .丙图中,棒ab 最终做匀速运动D .甲、乙、丙中,棒ab 最终都静止答案 AC解析 题图甲中,导体棒向右运动切割磁感线产生感应电流而使电容器充电,当电容器C 极板间电压与导体棒产生的感应电动势相等时,电路中没有电流,此时ab 棒不受安培力作用,向右做匀速运动,故A 正确;题图乙中,导体棒向右运动切割磁感线产生感应电流,通过电阻R 转化为内能,ab 棒速度减小,当ab 棒的动能全部转化为内能时,ab 棒静止,又由I =BL v R,F =BIL ,由于速度减小,则产生的感应电流减小,导体棒所受安培力减小,根据牛顿第二定律可知导体棒的加速度减小,所以题图乙中,棒ab 做加速度减小的减速运动直到最终静止,故B 错误;题图丙中,导体棒先受到向左的安培力作用向右做减速运动,速度减为零后在安培力作用下向左做加速运动,当导体棒产生的感应电动势与电源的电动势相等时,电路中没有电流,此时ab 棒向左做匀速运动,故C 正确;由以上分析可知,甲、乙、丙中,只有题图乙中棒ab 最终静止,故D 错误.2.(2022·山东泰安市高三期末)如图所示,间距为L 的平行光滑足够长的金属导轨固定倾斜放置,倾角θ=30°,虚线ab 、cd 垂直于导轨,在ab 、cd 间有垂直于导轨平面向上、磁感应强度大小为B 的匀强磁场.质量均为m 、阻值均为R 的金属棒PQ 、MN 并靠在一起垂直导轨放在导轨上.释放金属棒PQ ,当PQ 到达ab 瞬间,再释放金属棒MN ;PQ 进入磁场后做匀速运动,当PQ 到达cd 时,MN 刚好到达ab .不计导轨电阻,两金属棒与导轨始终接触良好,重力加速度为g .则MN 通过磁场过程中,PQ 上产生的焦耳热为( )A.2m 3g 2R 2B 4L4 B.m 3g 2R 2B 4L 4 C.m 3g 2R 24B 4L4 D.m 3g 2R 22B 4L4 答案 D解析 由题意知PQ 进入磁场后做匀速运动,则由平衡条件得安培力为F =mg sin θ,又因为F =BIL =B 2L 2v 2R ,解得金属棒速度为v =mgR B 2L 2,电流为I =mg 2BL ,因为金属棒从释放到刚进入磁场时做匀加速直线运动,由牛顿第二定律知mg sin θ=ma,所以加速时间为t=va,由题意知当PQ到达cd时,MN刚好到达ab,即金属棒穿过磁场的时间等于进入磁场前的加速时间,且MN在磁场中的运动情况和PQ一致,故MN通过磁场过程中,PQ上产生的焦耳热为Q焦耳=I2Rt,解得Q焦耳=m3g2R22B4L4,故选D.专题强化练[保分基础练]1.(2022·上海市二模)如图,某教室墙上有一朝南的钢窗,将钢窗右侧向外打开,以推窗人的视角来看,窗框中产生()A.顺时针电流,且有收缩趋势B.顺时针电流,且有扩张趋势C.逆时针电流,且有收缩趋势D.逆时针电流,且有扩张趋势答案 D解析磁场方向由南指向北,将钢窗右侧向外打开,则向北穿过窗户的磁通量减少,根据楞次定律,以推窗人的视角来看,感应电流为逆时针电流,同时根据“增缩减扩”可知,窗框有扩张趋势,故选D.2.(2022·广东肇庆市二模)如图所示,开口极小的金属环P、Q用不计电阻的导线相连组成闭合回路,金属环P内存在垂直圆环平面向里的匀强磁场,匀强磁场的磁感应强度随时间的变化率为k,若使金属环Q中产生逆时针方向逐渐增大的感应电流,则()A.k>0且k值保持恒定B.k>0且k值逐渐增大C.k<0且k值逐渐增大D.k<0且k值逐渐减小答案 B解析若使金属环Q中产生逆时针方向逐渐增大的感应电流,则金属环P中也有逆时针方向逐渐增大的感应电流,根据楞次定律和安培定则可知,金属环P中向里的磁感应强度增加,且增加得越来越快,即k>0且k值逐渐增大,故选B.3.(2022·陕西宝鸡市模拟)如图所示,两根电阻不计的平行光滑长直金属导轨水平放置,导体棒a和b垂直跨在导轨上且与导轨接触良好,导体棒a的电阻大于b的电阻,匀强磁场方向竖直向下.当导体棒b在大小为F2的水平拉力作用下匀速向右运动时,导体棒a在大小为F1的水平拉力作用下保持静止状态.若U1、U2分别表示导体棒a和b与导轨两个接触点间的电压,那么它们的大小关系为()A.F1=F2,U1> U2B.F1< F2,U1< U2C.F1 > F2,U1< U2D.F1=F2,U1=U2答案 D解析导体棒a、b与导轨构成了闭合回路,流过a、b的电流是相等的;a静止不动,b匀速运动,都处于平衡状态,即拉力等于安培力,所以F1=F2=BIL,导体棒b相当于电源,导体棒a相当于用电器,由于电路是闭合的,所以导体棒a两端的电压U1=IR a,导体棒b切割磁感线产生的电动势E=BL v b=I(R a+R b),所以其输出的路端电压U2=E-IR b=IR a=U1,故选D.4.(2022·广东省模拟)如图所示,水平面内光滑的平行长直金属导轨间距为L,左端接电阻R,导轨上静止放有一导体棒.正方形虚线框内有方向竖直向下、磁感应强度大小为B的匀强磁场,该磁场正以速度v匀速向右移动,则()A.电阻R两端的电压恒为BL vB .电阻R 中有从a 到b 的电流C .导体棒以速度v 向左运动D .导体棒也向右运动,只是速度比v 小 答案 D解析 根据楞次定律,磁场正以速度v 匀速向右移动,磁通量减小,则导体棒也向右运动,阻碍磁通量的减小,但由于要产生感应电流,棒的速度比v 小,C 错误,D 正确;由此可认为磁场不动,棒向左切割,感应电流方向从b 到a 流过R ,B 错误;产生感应电动势的大小看棒与磁场的相对速度,故电阻R 两端的电压不恒定且小于或等于BL v ,A 错误. 5.(2022·全国甲卷·16)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示.把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为I 1、I 2和I 3.则( )A .I 1<I 3<I 2B .I 1>I 3>I 2C .I 1=I 2>I 3D .I 1=I 2=I 3答案 C解析 设圆线框的半径为r ,则由题意可知正方形线框的边长为2r ,正六边形线框的边长为r ;所以圆线框的周长为C 2=2πr ,面积为S 2=πr 2,同理可知正方形线框的周长和面积分别为C 1=8r ,S 1=4r 2,正六边形线框的周长和面积分别为C 3=6r ,S 3=33r 22,三个线框材料粗细相同,根据电阻定律R =ρL S 横截面,可知三个线框电阻之比为R 1∶R 2∶R 3=C 1∶C 2∶C 3=8∶2π∶6,根据法拉第电磁感应定律有I =E R =ΔB Δt ·SR ,可得电流之比为I 1∶I 2∶I 3=2∶2∶3,即I 1=I 2>I 3,故选C.6.(2022·黑龙江哈师大附中高三期末)如图,一线圈匝数为n ,横截面积为S ,总电阻为r ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k (k >0且为常量),磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值分别为r 和2r .下列说法正确的是( )A .电容器下极板带正电B .此线圈的热功率为(nkS )2rC .电容器所带电荷量为3nSkC5D .电容器所带电荷量为nSkC2答案 D解析 根据楞次定律可以判断通过电阻r 的电流方向为从左往右,所以电容器上极板带正电,故A 错误;根据法拉第电磁感应定律可得线圈产生的感应电动势为E =n ΔΦΔt =nS ΔBΔt =nkS ,根据焦耳定律可得此线圈的热功率为P =(E 2r )2r =(nkS )24r ,故B 错误;电容器两端电压等于r两端电压,电容器所带电荷量为Q =CU =C ·rE 2r =nSkC2,故C 错误,D 正确.7.(2022·江苏盐城市二模)如图所示,三条平行虚线L 1、L 2、L 3之间有宽度为L 的两个匀强磁场区域Ⅰ、Ⅱ,两区域内的磁感应强度大小相等、方向相反,正方形金属线框MNPQ 的质量为m 、边长为L ,开始时MN 边与边界L 1重合,对线框施加拉力F 使其以加速度a 匀加速通过磁场区,以顺时针方向电流为正方向,下列关于感应电流i 和拉力F 随时间变化的图象可能正确的是( )答案 B解析 当MN 边向右运动0~L 的过程中,用时t 1=2L a ,则E 1=BLat ,电流I 1=E 1R =BLa Rt ,方向为正方向;拉力F 1=ma +F 安1=ma +B 2L 2aR t ;当MN 边向右运动L ~2L 的过程中,用时t 2=4L a-2La=(2-1)2L a =(2-1)t 1,E 2=2BLat ,电流I 2=E 2R =2BLa Rt ,方向为负方向,拉力F 2=ma +F 安2=ma +4B 2L 2aR t ;当MN 边向右运动2L ~3L 的过程中,用时t 3=6La-4La=(3-2)2L a =(3-2)t 1,E 3=BLat ,电流I 3=E 3R =BLa Rt ,方向为正方向,拉力F 3=ma +F 安3=ma +B 2L 2aRt ,对比四个选项可知,只有B 正确.[争分提能练]8.(多选)(2021·广东卷·10)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小 答案 AD解析 杆OP 匀速转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 转动过程中产生的感应电流由M 到N 通过杆MN ,由左手定则可知,杆MN 会向左运动,杆MN 运动会切割磁感线,产生电动势,感应电流方向与原来电流方向相反,使回路电流减小,杆MN 所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.9.(多选)(2021·全国甲卷·21)由相同材料的导线绕成边长相同的甲、乙两个正方形闭合线圈,两线圈的质量相等,但所用导线的横截面积不同,甲线圈的匝数是乙的2倍.现两线圈在竖直平面内从同一高度同时由静止开始下落,一段时间后进入一方向垂直于纸面的匀强磁场区域,磁场的上边界水平,如图所示.不计空气阻力,已知下落过程中线圈始终平行于纸面,上、下边保持水平.在线圈下边进入磁场后且上边进入磁场前,可能出现的是( )A .甲和乙都加速运动B .甲和乙都减速运动C .甲加速运动,乙减速运动D .甲减速运动,乙加速运动 答案 AB解析 设线圈下边到磁场上边界的高度为h ,线圈的边长为l ,则线圈下边刚进入磁场时,有v =2gh ,感应电动势为E =nBl v ,两线圈材料相同(设密度为ρ0),质量相等(设为m ), 则m =ρ0·4nl ·S ,设材料的电阻率为ρ,则线圈电阻 R =ρ4nl S =16n 2l 2ρρ0m感应电流为I =E R =mB v 16nlρρ0所受安培力为F =nBIl =mB 2v16ρρ0由牛顿第二定律有mg -F =ma 联立解得a =g -Fm =g -B 2v 16ρρ0加速度与线圈的匝数、横截面积无关,则甲和乙进入磁场时,具有相同的加速度. 当g >B 2v16ρρ0时,甲和乙都加速运动,当g <B 2v 16ρρ0时,甲和乙都减速运动,当g =B 2v16ρρ0时,甲和乙都匀速运动,故选A 、B.10.(2022·山东省第二次模拟)如图所示,“凹”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一平面内,ab 、bc 边长均为2l ,gf 边长为l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,bc 边离磁场上边界的距离为l ,线框由静止释放,从bc 边进入磁场直到gf 边进入磁场前,线框做匀速运动.在gf 边离开磁场后,ah 、ed 边离开磁场之前,线框又做匀速运动.线框在下落过程中始终处于竖直平面内,且bc 、gf 边保持水平,重力加速度为g .(1)线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的几倍? (2)若磁场上下边界间的距离为H ,则线框完全穿过磁场过程中产生的热量为多少? 答案 (1)4 (2)mg (H -13l )解析 (1)设bc 边刚入磁场时速度为v 1,bc 边刚进入时, 有E 1=2Bl v 1,I 1=E 1R ,F 1=2BI 1l线框匀速运动,有F 1=mg 联立可得v 1=mgR4B 2l2设ah 、ed 边将离开磁场时速度为v 2,ah 、ed 边将离开磁场时,有E 2=Bl v 2,I 2=E 2R ,F 2=BI 2l ,线框匀速运动,有F 2=mg 联立可得v 2=mgRB 2l 2,综上所述v 2v 1=4即线框ah 、ed 边将要离开磁场时做匀速运动的速度大小是bc 边刚进入磁场时的4倍. (2)bc 边进入磁场前,根据动能定理, 有mgl =12m v 12穿过磁场过程中能量守恒,。
高中物理教科版选修32课件:第一章 第1、2节 电磁感应的发现 感应电流产生的条件
(1)在闭合电路中是否产生感应电流,取决于穿过电路的 磁通量是否发生变化,而不是取决于电路有无磁通量。
(2)闭合电路的部分导体做切割磁感线运 动是引起电路磁通量变化的具体形式之一。但 闭合电路的部分导体做切割磁感线运动时,不 一定总会引起闭合电路的磁通量变化。如图所示,矩形线框 abcd 在范围足够大的匀强磁场中在垂直磁场的平面内向右平 动,虽然 ad、bc 边都切割磁感线,但穿过线框的磁通量没有 变化,因而没有产生感应电流。
(5)只要闭合电路内有磁通量,闭合电路中就有感应电流产生。(×)
(6)线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没
有感应电流产生。
(√)
2.合作探究——议一议 (1)很多科学家致力于磁与电的关系的探索,为什么他们在磁生电的
研究中没有成功? 提示:很多科学家在实验中没有注意磁场的变化、导体与磁场 之间的相对运动等环节,只想把导体放入磁场中来获得电流, 这实际上违反了能量转化和守恒定律。 (2)怎样理解“电生磁”? 提示:电流周围存在磁场是无条件的,无论电流是恒定不变的, 还是变化的,只要有电流,它的周围就一定有磁场。
(3)S 内有不同方向的磁场时,应先分别计算不同方向磁场 的磁通量,然后规定从某个面穿入的磁通量为正,从该面穿出 的磁通量为负,最后求代数和。
(4)有多匝线圈时,因为穿过线圈的磁感线的条数不受匝数 影响,故磁通量的计算也与匝数无关。
2.求磁通量的变化的三种方法 方法一:当磁感应强度 B 不变,而磁感线穿过的有效面积 S 变化时,则穿过回路的磁通量的变化量 ΔΦ=Φt-Φ0=B·ΔS。 方法二:当磁感应强度 B 变化,而磁感线穿过的有效面积 S 不变时,则穿过回路的磁通量的变化量 ΔΦ=Φt-Φ0=ΔB·S。 方法三:若磁感应强度 B 和回路面积 S 同时变化,则穿过 回路的磁通量的变化量 ΔΦ=Φt-Φ0。 注意:此时,ΔΦ=Φt-Φ0≠ΔB·ΔS。
高中物理教科版目录
高中物理- 教科版目录全套必修一第一章运动的描述1.1 质点参考系空间时间1.2 位置变化的描述位移1.3 直线运动中位移随时间变化的.1.4 运动快慢与方向的描述1.5 直线运动速度随时间变化的图.1.6 速度变化快慢的描述加速度1.7 匀速直线运动的规律1.8 匀速直线运动的规律的应用1.9 匀速直线运动的加速度第二章力2.1 力2.2 重力2.3 弹力2.4 摩擦力2.5 力的合成2.6 力的分解第三章牛顿运动定律3.1 从亚里士多德到伽利略3.2 牛顿第一定律3.3 牛顿第二定律3.4 牛顿第三定律3.5 牛顿运动定律的应用3.6 自由落体运动3.7 超重与失重3.8 汽车安全运行与牛顿运动定律第四章物体的平衡4.1 共点力作用下物体的平衡4.2 共点力平衡条件的应用4.3 平衡的稳定性选学必修二第一章抛体运动1.1 曲线运动1.2 运动的合成与分解1.3 平抛运动1.4 斜抛运动第二章圆周运动2.1 描述圆周运动2.2 圆周运动的向心力2.3 匀速圆周运动的实例分析2.4 圆周运动与人类文明选学第三章万有引力定律3.1 天体运动3.2 万有引力定律3.3 万有引力定律的应用3.4 人造卫星宇宙速度第四章机械能和能源4.1 功4.2 功率4.3 动能与势能4.4 动能定理4.5 机械能守恒定律4.6 能源的开发与利用第五章经典力学的成就与局限性5.1 经典力学的成就与局限性5.2 了解相对论5.3 初识量子论文科选修 - 选修1-1第一章电荷与电场1.1 静电现象及其应用1.2 点电荷之间的相互作用规律-库.1.3 电场第二章电流与磁场2.1 磁场现象与电流的磁效应2.2 磁场2.3 电磁感应定律2.4 磁场对运动电荷的作用力第三章电路3.1 直流电路3.2 交变电路第四章电磁场与电磁波4.1 电磁场4.2 电磁波4.3 电磁波普第五章电能及电信息的应用5.1 发电原理5.2 电能的运输5.3 电能的转化及应用5.4 信息概念及用电传输信息的方.5.5 电信息技术的几项重要作用5.6 传感器及应用第六章家用电器与家庭生活现代化6.1 家用电器的一般介绍6.2 电“热”类家用电器6.3 电动类与电光类家用电器6.4 信息类家用电器6.5 家用电器的选购及使用6.6 家电、家庭、社会和家电的未.第七章电磁技术与社会发展7.1 电磁学与电磁技术的关系及其.7.2 电磁技术对人类社会发展的贡.理科选修 - 选修3-1第一章电场1.1 电荷电荷守恒定律1.2 库仑定律1.3 电场电场强度和电场线1.4 电势差1.5 电势差与电场强度的关系1.6 电容器和电容1.7 静电的利用及危害第二章直流电路2.1 欧姆定律2.2 电阻定律2.3 焦耳定律2.4 电阻的串联、并联及其应用2.5 伏安法测电阻2.6 电源的电动势和内阻2.7 闭合电路欧姆定律2.8 欧姆表多用电表2.9 逻辑电路和控制电路第三章磁场3.1 磁现象磁场3.2 磁感应强度磁通量3.3 磁场对电流的作用-安培力3.4 磁场对运动电荷的作用-落伦兹.3.5 洛伦兹力的应用选修3-2第一章电磁感应1.1 电磁感应现象的发现1.2 感应电流产生的条件1.3 法拉第电磁感应定律1.4 楞次定律1.5 电磁感应中的能量转化与守恒1.6 自感日光灯1.7 涡流研究课题测量玩具电动机运转时的.第二章交变电流2.1 交变电流2.2 描述正弦交流电的物理量2.3 实验:练习使用示波器2.4 电容器在交流电路中的作用2.5 电感器在交流电路中的作用2.6 变压器2.7 电能的输送第三章传感器3.1 传感器3.2 温度传感器和光电式传感器3.3 生活中的传感器3.4 实验探究:简单的光控和温控.选修3-3第一章分子动理论与统计思想1.1 物体是由大量分子组成的1.2 分子的热运动1.3 分子间的相互作用力1.4 统计规律分子运动速率分布1.5 温度内能气体的压强1.6 实验探究:用油膜法测油酸分.第二章固体和液体2.1 晶体和非晶体2.2 半导体2.3 液体的表面张力2.4 液晶第三章气体3.1 气体实验定律3.2 气体实验定律的微观解释及图.3.3 理想气体3.4 饱和汽与未饱和汽3.5 空气的湿度第四章能量守恒与热力学定律4.1 能量守恒定律的发现4.2 热力学第一定律4.3 宏观热过程的方向性4.4 热力学第二定律4.5 熵概念初步第五章能源与可持续性发展5.1 能源与人类生存的关系5.2 能源利用与环境问题5.3 可持续发展战略选修3-4第一章机械振动1.1 简谐运动1.2 单摆1.3 简谐运动的图像和公式1.4 阻尼振动受迫振动1.5 实验探究:用单摆测定重力加.第二章机械波2.1 机械波德形成和传播2.2 横波德图像2.3 波德频率和波速2.4 惠更斯原理波德反射与折射2.5 波德干射、衍射第三章电磁振荡电磁波3.1 电磁振荡3.2 电磁场和电磁波3.3 电磁波普电磁波的应用3.4 无线电波发射、传播和接收第四章光的折射4.1 光的折射定律4.2 实验探究:测定玻璃的折射率4.3 光的全反射第五章光的波动性5.1 光的干涉5.2 实验探究:用双缝干涉观光的.5.3 光的衍射与偏振5.4 激光第六章相对论6.1 经典时空观6.2 狭义对相对论的两个基本假设6.3 相对论时空观6.4 相对论的速度变换定律质量和.6.5 广义相对论选修3-5第一章碰撞与能量守恒1.1 碰撞1.2 动量1.3 动量守恒定律1.4 动量守恒定律的应用第二章原子结构2.1 电子2.2 原子的核式结构模型2.3 光谱氢原子光谱2.4 波尔的原子模型能级第三章原子核3.1 原子核的组成与核力3.2 放射性衰变3.3 放射性的应用、危害与防护3.4 原子核的结合能3.5 核裂变3.6 核聚变3.7 粒子物理学简介第四章波粒二象性4.1 量子概念的诞生4.2 光电效应与光量子假说4.3 光的波粒二象性4.4 实物粒子的波粒二象性4.5 不确定关系统计人:om。
高中物理选修课件第章法拉第电磁感应定律
实验器材和步骤
• 实验器材:电磁铁、线圈、电流表、电压表、滑动变阻器 、开关、导线等。
实验器材和步骤
实验步骤 1. 按照实验电路图连接好实验器材。
2. 调节电磁铁的电流,使线圈中产生磁场。
实验器材和步骤
3. 迅速改变滑动变阻器的阻值 ,使线圈中的磁通量发生变化。
4. 观察电流表和电压表的读数 ,记录实验数据。
当穿过回路的磁通量发生变化时,回路中的感生电动势ε感的大小和穿过回路的 磁通量变化率等成正比。
磁通量与感应电动势关系
当线圈(导体回路)不动而磁场变化时,磁场变化时在路中激发的感应电动势与 磁通量的变化率成正比。
XX
PART 02
法拉第电磁感应定律公式 及推导
REPORTING
法拉第电磁感应定律公式
• 法拉第电磁感应定律公式:E = -N * (ΔΦ) / (Δt)。其中,E表示感应电动势,N表示线圈匝数,ΔΦ表示磁通量的变化量, Δt表示变化所用的时间。
公式中各物理量含义及单位
01
E
感应电动势,单位为伏特(V )
02
N
线圈匝数,无单位
03
04
ΔΦ
磁通量的变化量,单位为韦伯 (Wb)
Δt
变化所用的时间,单位为秒( s)
XX
PART 01
法拉第电磁感应定律基本 概念
REPORTING
电磁感应现象
电磁感应
当导体回路在变化的磁场中或导体回 路在恒定的磁场中作切割磁感线运动 时,导体回路中就会产生感应电动势 ,从而产生感应电流的现象。
感应电流方向
感应电流的方向可用楞次定律或右手 定则来判断。
法拉第电磁感应定律内容
法拉第电磁感应定律
(通用版)2018-2019版高中物理第1章电磁感应与现代生活1.4电磁感应的
1.4 电磁感应的案例分析[目标定位] 1.了解反电动势及其作用.2.掌握电磁感应中动力学问题的分析方法.3.掌握电磁感应中的能量转化与守恒问题,并能用来处理力电综合问题.一、反电动势1.定义:电动机转动时,线圈因切割磁感线,所以会产生感应电动势,线圈中产生的感应电动势跟加在线圈上的电压方向相反.这个跟外加电压方向相反的感应电动势叫反电动势.2.在具有反电动势的电路中,其功率关系为IU-IE反=I2R;式中IU是电源供给电动机的功率(输入功率),IE反是电动机输出的机械功率(输出功率),I2R是电动机回路中损失的热功率.二、电磁感应中的动力学问题1.电磁感应中产生的感应电流在磁场中将受到安培力作用,所以电磁感应问题往往与力学问题联系在一起,处理此类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流的大小和方向.(3)分析研究导体受力情况(包括安培力).(4)列动力学方程或平衡方程求解.2.两种状态处理(1)导体匀速直线运动,应根据平衡条件列式分析;(2)导体做匀速直线运动之前,往往做变加速直线运动,处于非平衡状态,应根据牛顿第二定律或结合功能关系分析.例1如图1所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,电阻R=0.3 Ω接在导轨一端,ab是跨接在导轨上质量m =0.1 kg、接入电路的电阻r=0.1 Ω的导体棒,已知导体棒和导轨间的动摩擦因数为0.2.从零时刻开始,对ab棒施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,过程中棒始终保持与导轨垂直且接触良好,求:(g=10 m/s2)图1(1)导体棒所能达到的最大速度;(2)试定性画出导体棒运动的速度-时间图像.答案(1)10 m/s (2)见解析图解析(1)导体棒切割磁感线运动,产生的感应电动势:E=BLv ①回路中的感应电流I=ER+r②导体棒受到的安培力F安=BIL ③导体棒运动过程中受到拉力F、安培力F安和摩擦力f的作用,根据牛顿第二定律:F-μmg-F安=ma ④由①②③④得:F-μmg-B2L2vR+r=ma ⑤由⑤可知,随着速度的增大,安培力增大,加速度a减小,当加速度a减小到0时,速度达到最大.此时有F-μmg-B2L2v mR+r=0 ⑥可得:v m=F-μmg R+rB2L2=10 m/s⑦(2)由(1)中分析可知,导体棒运动的速度-时间图像如图所示.。
2024-2025学年高中物理第一章电磁感应3法拉第电磁感应定律教案2教科版选修3-2
(1)磁通量的概念及其计算方法;
(2)感应电动势的方向判断;
(3)法拉第电磁感应定律在实际问题中的应用。
具体解释:
(1)磁通量的概念较为抽象,学生在理解上存在难度。教师应通过图示、实例等方式,帮助学生理解磁通量的含义,并掌握计算方法;
(2)感应电动势的方向判断是学生的一个常见难点,教师应总结判断方法,如右手定则等,并通过练习题巩固学生对该知识点的掌握;
(3)法拉第电磁感应定律在实际问题中的应用需要学生具备一定的综合分析能力。教师应挑选具有代表性的案例,引导学生分析问题,提高学生的综合应用能力。
在教学过程中,教师应针对重点和难点内容,采用不同的教学方法,如讲解、演示、讨论、练习等,以确保学生对核心知识的理解和掌握。同时,关注学生的个体差异,及时给予指导和帮助,帮助学生突破难点,提高教学质量。
5. 电磁感应在实际中的应用:电磁感应现象广泛应用于发电机、变压器、传感器等领域,是人类利用电磁现象的重要基础。
二、当堂检测
1. 计算题:一个长直导线在垂直于导线的磁场中以速度v运动,导线长度为L,求导线中感应电动势的大小。
答案:E=B·L·v
2. 分析题:一个长直导线在垂直于导线的磁场中向右运动,导线中感应电动势的方向是什么?
二、新课讲授(用时10分钟)
1. 理论介绍:首先,我们要了解电磁感应的基本概念。电磁感应是指闭合回路中的磁通量发生变化时,回路中产生感应电动势的现象。它在能源转换、信号传输等方面具有重要意义。
2. 案例分析:接下来,我们来看一个具体的案例。这个案例展示了电磁感应在实际中的应用,以及它如何帮助我们解决问题。
3. 通过实际案例分析,培养将物理知识应用于实际问题的能力,增强科学探究精神;
高中物理 第1章 电磁感应 第1节 磁生电的探索 认识“磁生电”与“电生磁”素材 鲁科版选修32
认识“磁生电”与“电生磁”磁是什么?一般提起磁,有些人都觉得磁是较为少见的,好像主要就是磁石或磁铁吸引铁,情况真是这样吗?现代科学的发展已经表明这样的看法是不对的。
现代科学研究和实际应用已经充分证实:任何物质都具有磁性,只是有的物质磁性强,有的物质磁性弱;任何空间都存在磁场,只是有的空间磁场高,有的空间磁场低。
所以说包含物质磁性和空间磁场的磁现象是普遍存在的。
电和磁是不可分割的,它们始终交织在一起。
简单地说,就是电生磁、磁生电。
一、磁生电如果把一个螺线管两端接上检测电流的检流计,在螺线管内部放置一根磁铁。
当把磁铁很快地抽出螺线管时,可以看到检流计指针发生了偏转,而且磁铁抽出的速度越快,检流计指针偏转的程度越大。
同样,如果把磁铁插入螺线管,检流计也会偏转,但是偏转方向和抽出时相反。
为什么会发生这种现象呢?我们已经知道,磁铁会向周围的空间发出磁力线。
如果把磁铁放在螺线管中,那么磁力线就会穿过螺线管。
这时,如果把磁铁抽出,磁铁远离了螺线管,将造成穿过螺线管的磁力线数目减少(或者说线圈内部的磁通量减少)。
正是这种穿过螺线管的磁力线数目(也就是磁通量)的变化使得螺线管中产生了感生电动势。
如果线圈闭合,就产生电流,称为感生电流。
如果磁铁是插入螺线管内部,这时穿过螺线管的磁力线增多,产生的感生电流和磁铁抽出时相反。
那么,如何决定线圈中感生电动势的大小和方向呢?从上面的实验我们知道,磁铁抽出的快慢决定检流计指针的偏转程度,这实际上是说,线圈中的感生电动势的大小与线圈内部磁通量的变化率成正比。
这称为法拉第定律。
通过实验我们可以证实,如果磁铁抽出,导致线圈中的磁通量减少,那么在线圈中产生的感生电流的方向是它所产生的磁通量能够补偿由于磁铁抽出引起的磁通量降低,也就是说,感生电流所产生的磁通量总是阻碍线圈中磁通量的变化。
这称为楞次定律。
如图所示,如果磁铁从线圈中向上抽出,将使得线圈中的磁通量减少,这时如果线圈是闭合的,线圈中产生感生电流,该感生电流的方向是:它产生的磁力线的方向也指向下方,以补偿由于磁铁抽出导致的磁通量减少。
(通用版)2018-2019版高中物理-第1章 电磁感应与现代生活 1.1 电磁感应——划时代的发现
3.实验3:如图7所示,将小螺线管A插入大螺线管B中不动,当开关S接通 或断开时,电流表中 有电流通过;若开关S一直闭合,当改变滑动变阻器 的阻值时,电流表中 有 电流通过;而开关一直闭合,滑动变阻器滑动触 头不动时,电流表中 无 电流产生(填“有”或“无”).
图7
4.上述三个实验产生感应电流的情况不同,但其中肯定有某种共同的 原因,完成下表并总结产生感应电流的条件.
解析 答案
例2 磁通量是研究电磁感应现象的重要物理量,如图4
所示,通有恒定电流的导线MN与闭合线框共面,第一次
将线框由位置1平移到位置2,第二次将线框绕cd边翻转
到位置2,设先后两次通过线框的磁通量变化量分别为
图4
ΔΦ1和ΔΦ2,则
A.ΔΦ1>ΔΦ2
√C.ΔΦ1<ΔΦ2
B.ΔΦ1=ΔΦ2 D.无法确定
图3
解析 答案
(2)在磁场转过90°角的过程中,线圈C中的磁通量变化 了多少?转过180°角呢?
答案 减少了6.28×10-5 Wb 减少了1.256×10-4 Wb
解析 对线圈C,Φ1=Bπr′2=6.28×10-5 Wb 当转过90°时,Φ2=0,故ΔΦ1=Φ2-Φ1=0-6.28×10-5 Wb =-6.28×10-5 Wb 当转过180°时,磁感线从另一侧穿过线圈,若取Φ1为正, 则Φ3为负,有Φ3=-Bπr′2, 故ΔΦ2=Φ3-Φ1=-2Bπr′2=-1.256×10-4 Wb.
图8
(2)是否仅是闭合电路的一部分导体在磁场内做切割磁感线运动, 如图丁.如果由切割不容易判断,则要回归到磁通量是否变化上去.
典型例题 例3 下图中能产生感应电流的是
√
解析 A选项中,电路没有闭合,无感应电流; B选项中,面积增大,通过闭合电路的磁通量增大,有感应电流; C选项中,穿过线圈的磁感线相互抵消,Φ恒为零,无感应电流; D选项中,磁通量不发生变化,无感应电流.
高中物理第一章电磁感应与现代生活1.1电磁感应——划时代的发现沪科32
电磁感应与现代(xiàndài)生活
12/9/2021
第一页,共二十三页。
-1-
1.1
电磁感应(diàncí-gǎnyìng)——划时代的发现
12/9/2021
第二页,共二十三页。
-2-
首页
X 新知导学
INZHIDAOXUE
学习目标
思维脉络
1.了解与电磁感应现象的发现相关的物理学史。领
悟科学探究中提出问题、观察实验、分析论证、归
条数是否变化来判断某过程中磁通量是否变化。
12/9/2021
第十三页,共二十三页。
D 当堂检测
ANGTANGJIANCE
首页
探究
(tànjiū)
一
X 新知导学
INZHIDAOXUE
Z 重难探究
HONGNANTANJIU
探究
(tànjiū)二
例题 2
如图所示的匀强磁场中有一个矩形闭合导线框,在下
列四种情况下,线框中会产生感应电流的是(
流。
3.结论:只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感
应电流。
第六页,共二十三页。
D 当堂检测
ANGTANGJIANCE
首页
探究
(tànjiū)一
X 新知导学
INZHIDAOXUE
Z 重难探究
HONGNANTANJIU
(tànjiū)
探究
二
磁通量及磁通量变化
问题导引
磁感线是形象描述磁场的物理模型,它与磁通量有什么关系?
HONGNANTANJIU
4
5
2. 如图所示,矩形线框 abcd 放置在水平面内,磁场方向与水平方向成 α 角,
高中物理电磁学知识在生活中的应用
高中物理电磁学知识在生活中的应用【摘要】电磁学是高中物理课程中一个重要的领域,其知识在我们的日常生活中有着广泛的应用。
在电器制造领域,电磁学知识被用于设计和制造各种电子设备,如手机、电视等;在通讯技术中,电磁学知识则是实现无线通讯的基础;在交通工具和医疗设备中,电磁学的应用也不可或缺,如磁悬浮列车和核磁共振成像技术。
家用电器中也广泛应用了电磁学知识,如微波炉和吹风机等。
电磁学对现代社会的发展做出了重要贡献,同时也提醒我们继续学习电磁学知识的重要性。
展望未来,电磁学将有更广泛的应用,为各行各业带来更多的便利和进步。
通过深入学习电磁学知识,我们可以更好地理解和应用这一领域的知识,促进科技的发展和社会的进步。
【关键词】电磁学、应用、生活、电器制造、通讯技术、交通工具、医疗设备、家用电器、社会贡献、学习、未来应用。
1. 引言1.1 电磁学在日常生活中的应用电磁学在日常生活中的应用是非常广泛的。
从我们的家用电器到交通工具,从通讯设备到医疗设备,都离不开电磁学知识的应用。
我们日常使用的电视、手机、洗衣机等电器制造都需要利用电磁学知识来实现。
在通讯技术领域,无线电通讯、电磁波传输、卫星通信等都是基于电磁学原理构建的。
在交通工具方面,列车的磁悬浮技术、电动汽车的电磁感应充电等都是电磁学知识的应用。
在医疗设备领域,核磁共振成像、超声波检查等医疗设备都是基于电磁学原理工作的。
而在家用电器中,微波炉、电磁炉、吸尘器等设备也都是利用电磁学知识实现的。
电磁学知识在日常生活中的应用无处不在,为我们的生活带来了极大的便利和效益。
1.2 电磁学知识在生活中的重要性电磁学是物理学中的重要分支,它研究电荷和电流之间的相互作用及电磁场的性质。
在当今现代社会,电磁学知识在生活中扮演着至关重要的角色。
电磁学知识在电器制造中的应用无处不在。
从家用电器如电视、冰箱、空调,到工业设备如发电机、变压器,都离不开电磁学原理。
电磁学的知识帮助我们设计和制造出更加高效、便捷、节能的电器产品,提高了人们的生活质量。
高中物理课件第1章 电磁感应与现代生活 1-2
上一页
返回首页
下一页
[合作探讨] 1834 年楞次在总结了安培的电动力学与法拉第的电磁感应现象后,发现了 确定感应电流方向的定律——楞次定律. 探讨 1:楞次定律中的“阻碍”是阻碍原来的磁场吗? 【提示】 “阻碍”的不是原来的磁场,而是阻碍原来磁场的磁通量的变 化.
上一页
返回首页
下一页
探讨 2:“阻碍”是“阻止”吗?是“相反”吗?
解法二:阻碍相对运动法.产生磁场的物体与闭合线圈之间的相互作用力可 概括为四个字“来拒去留”.磁铁向右运动时,铜环产生的感应电流总是阻碍导 体间的相对运动,则磁铁和铜环间有排斥作用.故 A 正确.
【答案】 A
上一页
返回首页
下一页
2.如图 1-2-3 所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管
知识脉络
上一页
返回首页
下一页
探究感应电流的方向 楞次定律
[先填空] 1.实验装置
返回首页
下一页
2.实验过程
操作步骤
现象
实质
条形磁铁的一极靠
铝环中产生感应电流,感应电流的磁
铝环和磁铁 排斥.
近铝环
场阻碍铝环中磁通量的增加.
条形磁铁的一极远
铝环中产生感应电流,感应电流的磁
D.从Ⅰ到Ⅱ是沿 dcba 流动,从Ⅱ到Ⅲ是沿 abcd 流动
图 1-2-4
上一页
返回首页
下一页
【解析】 侧视图如图所示,从Ⅰ到Ⅱ向上的磁通量减少,据楞次定律的 “增反减同”可知:线圈中感应电流产生的磁场方向向上,用安培定则可以判 断感应电流的方向为逆时针(俯视),即沿 abcd 流动.同理可以判断:从Ⅱ到Ⅲ向 下磁通量增加,由楞次定律可得:线圈中感应电流产生的磁场方向向上,感应 电流的方向沿 abcd 流动,故选 A.