山东青岛胶州市高三上学期期中考试数学试题含答案

合集下载

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题(含解析)

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题(含解析)

2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,52. 已知,则=( )i22i z =-z A. 2 B. 13. 已知.若,则( )a = ()2a b a+⊥ cos ,a b=A.B.D. 4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C .充要条件D. 既不充分也不必要条件5.此正四棱锥的体积为( )A. B. C.D.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对B. 2对C. 3对D. 4对7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A. B. C. 1D. 11e+e 1-e二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C 17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE V AE BD CD 4BD=(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,5【正确答案】B【分析】首先把集合用列举法表示出来,再运用交集的运算进行求解即可.P 【详解】若,,则是的正因数,而的正因数有,,,,61y x =+y ∈N 1x +661236所以,{}6,0,1,2,51P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N 因为,{}15Q x x =-≤<所以,{}0,1,2P Q ⋂=故选:B.2. 已知,则=( )i22i z =-z A. 2 B. 1【正确答案】C【分析】根据复数的运算法则计算出复数,再计算复数的模.z 【详解】由题意知,()()()i 22i i 22i 22i 22i z +==--+2i 28-=11i 44=-+所以,z ==故选:C.3. 已知.若,则()a = ()2a b a+⊥ cos ,a b =A.B.D. 【正确答案】B【分析】根据向量垂直可得,代入向量夹角公式即可得结果.32a b ⋅=-【详解】因为,且,()2a b a+⊥1a = 则,可得,()2220a a a ab b +⋅=+⋅= 21322a b a⋅=-=-rr r 所以.cos ,a b a b a b⋅===⋅r r r r r r 故选:B.4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【正确答案】A【分析】利用等比数列的性质,分别判断充分性与必要性即可.【详解】设等比数列的公比为,{}n a q 由,得,()223123111111S a a a a a q a q a q q ma =++=++=++=21q q m ++=当时,,解得或,充分性不成立;7m =217q q ++=2q =3q =-当时,,必要性成立.2q =217q q m ++==所以“”是“的公比为2” 的必要不充分条件.7m ={}n a 故选:A5. 此正四棱锥的体积为( )A. B. C. D. 【正确答案】B【分析】根据正四棱柱及正四棱锥的体积公式可得正四棱锥的高与斜高的关系式,进而可得解.【详解】如图所示,正四棱柱为,正四棱锥,1111ABCD A B C D -1O ABCD -设底边边长,高AB a =1OO =则,1O E ==又正四棱柱的侧面积,114S AB OO =⋅=正四棱锥的侧面积,21142S AB O E a=⋅⋅=则,解得,a=a =所以正四棱锥体积,2113ABCD V S OO =⋅==故选:B.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对 B. 2对C. 3对D. 4对【正确答案】C【分析】作出的图象,再作出函数关于原点对称的图象,进而数形结()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭合判断即可.【详解】作出的图象,再作出函数关于原点对称的图象如图所示.()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭因为函数关于原点对称的图象与图象有三个交点,故1,0,2xy x ⎛⎫=≥ ⎪⎝⎭22,0,y x x x =-+<图象上关于原点对称的点有3对.()fx故选:C7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π【正确答案】A【分析】先化简,根据图象变换求出,将方程转化为()f x ()g x ()21g x m -=,由函数图象的对称性求出答案.()12m g x +=()g x 【详解】根据题意可得,()1πcos sin 26f x x x x ⎛⎫=+=+ ⎪⎝⎭所以,()πππsin 2sin 21263g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,,7π012x ≤≤ππ3π2332x ∴≤+≤所以在上单调递增,在上单调递减,关于对称,()g x π0,12⎡⎤⎢⎥⎣⎦π7π,1212⎡⎤⎢⎥⎣⎦()g x π12x =且,,()π06g g ⎛⎫== ⎪⎝⎭π112g ⎛⎫= ⎪⎝⎭7π112g ⎛⎫=- ⎪⎝⎭方程等价于有两个不同的解,()21g x m -=()12m g x +=12,x x .12ππ2126x x ∴+=⨯=故选:A.8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A.B. C. 1D. 11e +e 1-e【正确答案】C【分析】构建,分析可知的定义域为,且在()()ln f x ax x b=--()f x (0,+∞)()0f x ≤内恒成立,利用导数可得,整理可得,构建(0,+∞)ln 1a b ≤+1e ln ln b a a a +-≥-,利用导数求其最值即可.()1ln ,ee g a a a a =-≤≤【详解】设,()()ln f x ax x b=--因为,可知的定义域为,所以在内恒成立,1e e a ≤≤()f x (0,+∞)()0f x ≤(0,+∞)又因为,()111xf x x x -=-='令,解得;令,解得;f ′(x )>001x <<f ′(x )<01x >可知在内单调递增,在内单调递减,()f x (0,1)(1,+∞)则,可得,则,()()1ln 10f x f a b ≤=--≤ln 1a b ≤+1ln e e b aa +≥=可得,当且仅当时,等号成立,1e ln ln b a a a +-≥-ln 1a b =+令,则,()1ln ,e e g a a a a =-≤≤()111a g a a a '-=-=令,解得;令,解得;()0g a '>1e a <≤()0g a '<11e a <≤可知在内单调递增,在内单调递减,则,()g a (]1,e 1,1e ⎡⎫⎪⎢⎣⎭()()11g a g ≥=即,当且仅当时,等号成立,1eln ln 1b a a a +-≥-≥1,1a b ==-所以的最小值为1.1eln b a +-故选:C.方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>【正确答案】ABD【分析】根据指对互化与运算以及指数函数、对数函数单调性即可判断ABC ,利用基本不等式即可判断D.【详解】由题可得,,33log 15log 310a =>=>55log 15log 510b =>=>,即,所以,1515110log 3log 5a b ∴<=<=110a b <<0a b >>对于A ,因为,所以,故A 正确;0a b >>lg lg a b >对于B ,,,故B 正确;15151511log 3log 5log 151a b +=+== a b ab ∴+=对于C ,因为,所以,故C 错误;0a b >>1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭对于D ,因为,,0a b >>111a b +=所以,()11444559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当,即时等号成立,这与已知矛盾,所以,故D 正4b aa b =2a b =35a b =49a b +>确.故选:ABD.10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 【正确答案】AC【分析】利用斐波那契数列的定义结合递推关系一一判定选项即可.【详解】对于A ,由题可得,,,,,故A 正确;32a =43a =55a =68a =713a =对于B ,因为,又,21112n n n n n n n n a a a a a a a a ++--=+=++=+12n n n a a a --=+所以,即,故B 错误;21213n n n n n a a a a a +---++=+223n n n a a a +-=+对于C ,2024202320222023202120202023202132a a a a a a a a a a =+=++==++++ ,故C 正确;2023202131a a a a =++++ 对于D ,2025202420232024202220212024202243a a a a a a a a a a =+=++=++++ ,故D 错误.20242022421a a a a a =+++++ 故选:AC.11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π【正确答案】ACD【分析】作出相应图形,先证明平面平面,再结合给定条件确定动点轨迹,//BDNM CEF 求出长度即可判断;建立空间直角坐标系,根据题意确定动点轨迹,求解长度即可判断,A B 将平面翻折到与平面共面,连接,与交于点,此时取到CEF 1111D C B A PC EF Q PQ CQ +最小值,利用勾股定理求出即可判断,先找到球心,利用勾股定理得出半径,求,PQ CQ C 出外接球的表面积即可判断.D 【详解】如图,取,的中点为,连接,,11A D 11A B ,N M ,,,,MN DN BD BM NE 11B D所以,又E ,F 分别是棱,的中点,11//MN B D 11B C 11C D 所以,所以,11//EF B D //MN EF 平面,平面,MN ⊄CEF EF ⊂CEF 平面,//MN ∴CEF 因为分别是棱,的中点,所以,且,,N E 11A D 11B C //NE CD NE CD =所以四边形为平行四边形,CDNE 所以,又平面,平面,//ND CE ND ⊄CEF CE ⊂CEF 平面,//ND ∴CEF 又,平面,MN ND N = ,MN ND ⊂BDNM 所以平面平面,//BDNM CEF点P 是正方形内的动点,且平面,1111D C B A //DP CEF 所以点P 的轨迹为线段,由勾股定理得,故正确;MN MN ==A 如图,以为原点,以所在直线为轴,轴,轴,A 1,,AB AD AA x y z 由题意得,设,(0,0,0)A (,,4)P x y,AP ==所以,所以点的轨迹为为圆心,半径为1的个圆,221x y +=P 1A 14所以点P 的轨迹长度为.故错误;1π2π42⋅=B 如图,将平面翻折到与平面共面,CEF 1111DC B A 连接,与交于点,此时取到最小值,PC EF Q PQ CQ+,且,CE CF === 2PE PF ==所以点为的中点,所以Q EFPQ EQ ===所以,CQ ===即的最小值为,故正确;PQ CQ +C如图,连接,交于点,连接,PF 11B D 1O PE 若P 是棱的中点,则,11A B 90FEP ∠= 所以是外接圆的一条直径,所以是外接圆的圆心,FP PEF !1O PEF !过点作平面的垂线,则三棱锥的外接球的球心一定在该垂线上,1O ABCD P CEF -O 连接,设,则,OP 1OO t =2222t R +=连接,,所以,OC 12AC ==()(2224t R -+=所以,解得,()(222224t t +=-+52=t 所以,222541244R =+=所以三棱锥的外接球的表面积为,故正确.P CEF -24π41πS R ==D 故选.ACD方法点睛:三棱锥外接球的半径的求法:(1)先找两个面的外心;(2)过外心作所在平面的垂线,两垂线的交点即为球心;(3)构造直角三角形,利用勾股定理求出半径.有时无须确定球心的具体位置,即只用找一个面的外心,则球心一定在过该外心与所在平面的垂线上.第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++【正确答案】.430x y -+=【分析】首先求函数的导数,再根据二次函数求最小值,即可求切线的斜率,以及代入切线方程,即可求解.【详解】由题意,223673(1)4y x x x '=++=++所以时,,又时,,1x =-min4y '=1x =-1y =-所以所求切线的方程为,即.14(1)y x +=+430x y -+=故.430x y -+=13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =【正确答案】【分析】设,在,,分别根据锐角三角函数定义求PO h =Rt POA △Rt POB △Rt POC △出,最后利用余弦定理进行求解即可.,,OA OB OC 【详解】设塔的高,PO h =在中,,同理可得,,Rt POA △otan 30OP OA ==OB =OC h =在中,,则,OAC πOBA OBC ∠+∠=cos cos OBA OBC ∠=-∠,22222222OB AB OA OB BC OC OB AB OB BC +-+-∴=-⋅⋅.=h =所以塔的高度为米.故答案为.14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ【正确答案】23【分析】根据中点坐标公式可得,进而可得为等比数列,()*122n n n a a a n +++=∈N {}1n n a a +-即可利用累加法求解,由极限即可求解.121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【详解】不妨设点、,设点,()10,0A ()21,0A ()(),0n n A a n *∈N 则数列满足,,,{a n }10a =21a =()*122n n n a a a n +++=∈N 所以,,1212n nn n a a a a +++--=-所以,数列是首项为,公比为的等比数列,{}1n n a a +-211a a -=12-所以,,11111122n n n n a a --+⎛⎫⎛⎫-=⨯-=- ⎪⎪⎝⎭⎝⎭当时,2n ≥()()()2121321110122n n n n a a a a a a a a --⎛⎫⎛⎫=+-+-++-=++-++- ⎪ ⎪⎝⎭⎝⎭ ,1111212113212n n --⎛⎫-- ⎪⎡⎤⎛⎫⎝⎭==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+也满足,故对任意的,.10a =121132n n a -⎡⎤⎛⎫=--⎢⎥⎪⎝⎭⎢⎥⎣⎦n *∈N 121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦所以,,故11212lim 1323n n A P ∞-→+⎧⎫⎡⎤⎪⎪⎛⎫=--=⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭23λ≥故答案为.23四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d 数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 【正确答案】(1),,24a =2n n a =*N n ∈(2)332n nn T +=-【分析】(1)先将代入题干表达式计算出,再将代入题干表达式即可计算1n =12a =2n =出的值,当时,由,可得,两式相减进一步推导即可2a 2n ≥22n n S a +=1122n n S a --+=发现数列是以为首项,为公比的等比数列,从而计算出数列的通项公式;{}n a 22{}n a (2)先根据第题的结果写出与的表达式,再根据题意可得,()1n a 1n a +()11n n n a a n d +-=+通过计算出的表达式即可计算出数列的通项公式,最后运用错位相减法即可计算出n d 1n d ⎧⎫⎨⎬⎩⎭前项和.n n T 【小问1详解】由题意,当时,,解得,1n =111222S a a +=+=12a =当时,,即,解得,2n =2222S a +=12222a a a ++=24a =当时,由,可得,两式相减,可得,2n ≥22n n S a +=1122n n S a --+=122n n n a a a -=-整理,得,∴数列是以2为首项,2为公比的等比数列,12n n a a -={}n a ∴,.1222n n n a -=⋅=*N n ∈【小问2详解】由(1)可得,,,2nn a =112n n a ++=在与之间插入个数,使得这个数依次组成公差为的等差数列,n a 1n a +n ()2+n n d 则有,()11n n na a n d +-=+∴,∴,1211nn n n a a d n n +-==++112n n n d +=∴,1231211123412222n n n n T d d d +=++⋅⋅⋅+=+++⋅⋅⋅+,()2311111123122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得,2112311111121111133221122222222212n n n n n n n n n T ++++-+++=+++⋅⋅⋅+-=+-=--∴.332n n n T +=-16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C【正确答案】(1)π3B =(2)18-【分析】(1)由正弦定理及两角和的正弦公式可得角的大小;B (2)由等面积法可得,再由正弦定理可得的值,再由22b ac =sin sin A C ,可得的值.cos cos()B A C =-+cos cos A C 【小问1详解】因为,π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭由正弦定理可得,12sin cos sin sin 2B A A A C ⎛⎫+=+ ⎪ ⎪⎝⎭即sin cos sin sin sin()B A A B A A B +=++即,sin cos sin sin sin cos cos sin B A A B A A B A B +=++,sin sin sin cos B A A A B =+在三角形中,,sin 0A >,cos 1B B -=即,因为,则π1sin 62B ⎛⎫-= ⎪⎝⎭(0,)B π∈ππ5π,666B ⎛⎫-∈- ⎪⎝⎭可得,则.ππ66B -=π3B =【小问2详解】因为边上的高,AC h =所以①21122ABC S b h b =⋅==又②11sin 22ABC S ac B ac === 由①②可得,22b ac =由正弦定理可得,2sin 2sin sin B A C =结合(1)中可得,π3B =3sin sin 8A C =因为,()1cos cos cos cos sin sin 2B A C A C A C =-+=-+=所以.1311cos cos sin sin 2828A C A C =-=-=-17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE VAE BD CD 4BD =(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 【正确答案】(1)证明见解析(2【分析】(1)连接,利用勾股定理证明,再根据线面垂直的判定定BE ,BE DE BE AE ⊥⊥理证得平面,再根据面面垂直的判定定理即可得证;BE ⊥ADE (2)以点为原点,建立空间直角坐标系,利用向量法求解即可.E【小问1详解】连接,BE 由题意,2,60,120AD DE ADE BCE ==∠=︒∠=︒则为等边三角形,ADE V 由余弦定理得,所以2144222122BE ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭BE =则,222222,DE BE BD AE BE BD +=+=所以,,BE DE BE AE ⊥⊥又平面,,,AE DE E AE DE ⋂=⊂ADE 所以平面,BE ⊥ADE 又平面,所以平面平面;BE ⊂ABCE ADE ⊥ABCE 【小问2详解】如图,以点为原点,建立空间直角坐标系,E 则,()()()(()2,0,0,0,,,,0,0,0A B CD E -设,()01DF DB λλ=≤≤故,()((,,1,EC ED DB=-==-,((()1,1,AD AD DF λλ=+=-+-=--因为轴垂直平面,故可取平面的一条法向量为,z ABCE ABCE ()0,0,1m =所以,cos ,m AF m AF m AF⋅===化简得,解得或(舍去),23830λλ+-=13λ=3λ=-所以,1133DF DB ⎛==- ⎝ 设平面的法向量为,DEC (),,n x y z =则有,可取,00n EC x n ED x ⎧⋅=-=⎪⎨⋅=+=⎪⎩)1n =- 所以点到平面FDEC18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=【正确答案】(1),最大值为0 2a =(2)证明见解析(3)2个,证明见解析【分析】(1)由求出的值,即可得到解析式,再利用导数求出函数的单调(0)0f '=a ()f x 区间,从而求出函数的最大值;(2)依题意即证当时,记,π,π6x ⎡⎤∈⎢⎥⎣⎦1sin ln(1)2x x ++>1()sin ln(1)2m x x x =++-,当时直接说明即可,当,利用导数说明函数的单调π,π6x ⎡⎤∈⎢⎥⎣⎦π5π,66x ⎡⎤∈⎢⎥⎣⎦5π,π6x ⎛⎤∈ ⎥⎝⎦性,即可得证;(3)设,,当时,由(1)知,()()h x f x x =+()1,x ∞∈-+(1,0)x ∈-()(0)0f x f <=则,当时,利用导数说明函数的单调性,结合零点存在性定理判断函()0f x x +<π()0,x ∈数的零点,当时,,令,[π,)x ∈+∞()1ln(1)h x x x ≤++-()1ln(1)(π)l x x x x =++-≥利用导数说明在区间上单调递减,即可得到,从而说明函数在()l x [π,)+∞()0l x <无零点,即可得解.[π,)+∞【小问1详解】由题意知,且,(0)0f =(0)0f '=,1()cos 1f x x a x '=+-+ ,解得,(0)20f a '∴=-=2a =,,()sin ln(1)2f x x x x ∴=++-()1,x ∞∈-+则,1()cos 21f x x x '=+-+当时,,.故,0x ≥cos 1≤x 111x ≤+()0f x '≤所以在区间上单调递减,所以.()f x [0,)+∞()(0)0f x f £=当时,令,10x -<<1()cos 21g x x x =+-+则,21()sin (1)g x x x '=--+,,,sin (0,1)x -∈ 211(1)x >+()0g x '∴<在区间上单调递减,则,()f x '∴(1,0)-()(0)0f x f ''>=在区间上单调递增,则,则.()f x ∴(1,0)-()(0)0f x f <=()()max 00f x f ==综上所述,,的最大值为.2a =()f x 0【小问2详解】因为,()sin ln(1)2f x x x x =++-要证当时,即证,π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>1sin ln(1)2x x ++>记,,1()sin ln(1)2m x x x =++-π,π6x ⎡⎤∈⎢⎥⎣⎦当时,,,π5π,66x ⎡⎤∈⎢⎥⎣⎦1sin 12x ≤≤ln(1)0x +>;1()sin ln(1)02m x x x ∴=++->当时,,5π,π6x ⎛⎤∈ ⎥⎝⎦1()cos 1m x x x '=++记,则,1()()cos 1n x m x x x '==++21()sin 0(1)n x x x '=--<+在区间上单调递减,则,()m x '∴5π,π6⎛⎤ ⎥⎝⎦5π6()065π6m x m ⎛⎫<=+< '+⎝'⎪⎭则在区间上单调递减,()m x 5π,π6⎛⎤⎥⎝⎦,()11()(π)sin πln(π1)ln π1022m x m ∴≥=++-=+->综上所述,当时,.π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>【小问3详解】设,,()()sin ln(1)h x f x x x x x =+=++-()1,x ∞∈-+,1()cos 11h x x x '∴=+-+当时,由(1)知,(1,0)x ∈-()(0)0f x f <=故,()()0f x x f x +<<故在区间上无实数根.()0f x x +=(1,0)-当时,,因此为的一个实数根.0x =(0)0h =0()0f x x +=当时,单调递减,π()0,x ∈1()cos 11h x x x '=+-+又,,(0)10h '=>1(π)20π1h '=-<+存在,使得,∴0(0,π)x ∈()00h x '=所以当时,当时,00x x <<ℎ′(x )>00πx x <<ℎ′(x )<0在区间上单调递增,在区间上单调递减,()h x ∴()00,x ()0,πx ,又,()0(0)0h x h ∴>=(π)ln(π1)π2π0h =+-<-<在区间上有且只有一个实数根,在区间上无实数根.()0f x x ∴+=()0,πx (]00,x 当时,,[π,)x ∈+∞()1ln(1)h x x x ≤++-令,()1ln(1)(π)l x x x x =++-≥,1()1011x l x x x -'∴=-=<++故在区间上单调递减,,()l x [π,)+∞()(π)ln(1π)π13π0l x l ≤=+-+<-<于是恒成立.故在区间上无实数根,()0f x x +<()0f x x +=[π,)+∞综上所述,有2个不相等的实数根.()0f x x +=方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈【正确答案】(1)2和5为两个质数“理想数” (2)的值为12或18m(3)证明见解析【分析】(1)根据“理想数”概念,结合列举法可解;(2)分析题意知道必为奇数,则必为偶数,结合整除知识得解;9m a m =-m (3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.【小问1详解】以内的质数为,202,3,5,7,11,13,17,19,故,所以为“理想数”;212=21a =2,而,故不是“理想数”;33110⨯+=1052=3,而,故是“理想数”;35116⨯+=41612=5,而,故不是“理想数”;37122⨯+=22112=7,而,故不是“理想数”;311134⨯+=34172=11,而,故不是“理想数”;313140⨯+=4058=13,而,故不是“理想数”;317152⨯+=52134=17,而,故不是“理想数”;319158⨯+=58292=19和5为两个质数“理想数”;2∴【小问2详解】由题设可知必为奇数,必为偶数,9m a m =-m ∴存在正整数,使得,即:∴p 92p m m =-9921p m =+-,且,921p ∈-Z211p-≥,或,或,解得,或,211p ∴-=213p -=219p-=1p =2p =,或,即的值为12或18.1991821m ∴=+=-2991221m =+=-m 【小问3详解】显然偶数"理想数"必为形如的整数,()*2k k ∈N 下面探究奇数"理想数",不妨设置如下区间:,((((0224462222,2,2,2,2,2,,2,2k k -⎤⎤⎤⎤⎦⎦⎦⎦若奇数,不妨设,1m >(2222,2k k m -⎤∈⎦若为"理想数",则,且,即,且,m (*3112s m s +=∈N )2s >(*213s m s -=∈N )2s >①当,且时,;(*2s t t =∈N )1t >41(31)133t t m -+-==∈Z ②当时,;()*21s t t =+∈N 2412(31)133t t m ⨯-⨯+-==∉Z ,且,(*413t m t -∴=∈N )1t >又,即,22241223t k k--<<1344134k t k-⨯<-≤⨯易知为上述不等式的唯一整数解,t k =区间]存在唯一的奇数"理想数",且,(2222,2k k -(*413k m k -=∈N )1k >显然1为奇数"理想数",所有的奇数"理想数"为,()*413k m k -=∈N 所有的奇数"理想数"的倒数为,∴()*341kk ∈-N 1133134144441k k k ++<=⨯---1212123111111222521n n n n S b b b b b b b +⎛⎫⎛⎫∴=+++<+++++<+++++++ ⎪ ⎪⎝⎭⎝⎭,即.21111171111124431124⎛⎫<⨯++++<+⨯=⎪⎝⎭-- ()*73n S n <∈N 知识点点睛:本题属于新定义的题目,综合了整除,数列的放缩,分组求和和等比数列公式.属于难题.。

2021届山东省青岛胶州市2018级高三上学期11月期中考试数学试卷及解析

2021届山东省青岛胶州市2018级高三上学期11月期中考试数学试卷及解析

2021届山东省青岛胶州市2018级高三上学期11月期中考试数学试卷★祝考试顺利★(解析版)本试卷4页,22小题,考试用时120分钟.注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号和座号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置;2.作答选择题时:选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上;非选择题必须用黑色字迹的专用签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效;3.考生必须保证答题卡的整洁,考试结束后,请将答题卡上交.一、单项选择题:本题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合1,0|2A x cosx x π=≥<<⎧⎫⎨⎬⎩⎭,集合{}2|B x R x x =∈≤.则A B =( ) A. 0,3π⎛⎤ ⎥⎝⎦ B. 0,3π⎡⎤⎢⎥⎣⎦ C. 0,3π⎛⎫ ⎪⎝⎭ D. ()0,1【答案】B【解析】根据余弦函数的性质和一元二次不等式的解法,分别求得集合(0,]3A π=,[0,1]B =,再结合并集的运算,即可求解. 【详解】由12cosx ≥,可得22,33k x k k Z ππππ-+≤≤+∈, 因为0πx <<,可得03x π<≤,即集合(0,]3A π=, 又由2x x ≤,即2(1)0x x x x -=-≤,解得01x ≤≤,即[0,1]B =,所以A B =0,3π⎡⎤⎢⎥⎣⎦.故选:B.2. 已知数列{}n a 各项均大于1,*n N ∈,“31n n a a +=”是“数列{}lg n a 成等比数列”的( )A. 充要条件B. 既不充分也不必要条件C. 必要不充分条件D. 充分不必要条件【答案】D【解析】从充分条件和必要条件两方面推导, 【详解】解:31n n a a +=,又1n a >,所以31lg lg 3lg n n n a a a +==,则数列{}lg n a 为等比数列;因为1n a >,所以lg 0n a >,若数列{}lg n a 为等比数列,则公比q 为正数且1lg lg n n a q a +=,则有1q n n a a +=成立,0q >,不能推出3q =.所以31n n a a +=是数列{}lg n a 为等比数列的充分不必要条件.故选:D.3. 已知角θ终边经过点)P a ,若6πθ=-,则a =( )B. 3C. 3-D. 【答案】C【解析】 根据三角函数的定义,列出方程,即可求解.【详解】由题意,角θ终边经过点)Pa ,可得OP =,又由6πθ=-,根据三角函数的定义,可得cos()6π-=且0a <,解得3a =-. 故选:C.4. 已知向量()()1,2,2,1AB BD ==-,(),1,BC t t R =∈,若//,AD CD ,则实数t 的值为( )A. 8B. 6C. 4D. 43 【答案】A【解析】。

山东省届高三文科数学上学期期中练习题及答案青岛市

山东省届高三文科数学上学期期中练习题及答案青岛市

青岛市高三第一学期期中练习数学试题(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}A x x x =<->1或1,2{log 0}B x x =>,则A B =A .{}|x x >1B .{}|x x >0C .{}|x x <-1D .{}|x x x <->1或12. 已知数列}{n a 为等差数列,n S 为}{n a 的前n 项和,47=a ,则211S S -的值为 A .9 B .18 C .36 D .723. 在ABC ∆中,若cos cos cos a b cA B C==,则ABC ∆是 A.-直角三角形 B.等边三角形 C.钝角三角形 D.等腰直角三角形4.定义{}|A B x x A x B -=∈∉且,若{}{},2,3,4,5,2,3,6M N ==1,则N M -= A .M B .N C .{},4,51 D .{}65. 设i j , 是平面直角坐标系(坐标原点为O )内分别与x 轴、y 轴正方向相同的两个单位向量,且42,34OA i j OB i j =+=+ ,则OAB ∆的面积等于A .51B .10C .7.5D .56.首项为24-的等差数列,从第01项开始为正,则公差d 的取值范围是A.833d <≤ B.3d < C.833d ≤< D. 83d > 7.已知点E 在ABC ∆所在的平面且满足)0(≠=+λλ,则点E 一定落在 A .BC 边的垂直平分线上 B .BC 边的中线所在的直线上 C .BC 边的高线所在的直线上 D .BC 边所在的直线上8.曲线313y x x =+在点4(,)31处的切线与坐标轴围成的三角形面积为 A.19 B.29 C.13 D.239.设函数1()7(0)2(),()1(0)xx f x f a x ⎧-<⎪=<≥若,则实数a 的取值范围是 A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)10. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有A .3,12min max ==z zB .,12max =z z 无最小值C .z z ,3min =无最大值D .z 既无最大值,也无最小值 11.已知函数)42sin(3)(π+-=x x f 的图象,给出以下四个论断:①该函数图象关于直线85π-=x 对称; ②该函数图象的一个对称中心是)0,87(π; ③函数)(x f 在区间⎥⎦⎤⎢⎣⎡83,8ππ上是减函数; ④)(x f 可由x y 2sin 3-=向左平移8π个单位得到.以上四个论断中正确的个数为A .1 B. 2 C .3D. 412. 设函数(){|()0},{|()0}1x af x M x f x P x f x x -'==<=≥-,集合,M 是P 的真子集,则实数a 的取值范围是 A .)1,(-∞B .(0,)1C .),1(+∞D .),1[+∞第Ⅱ卷(非选择题 共90分)二、填空:本大题共4小题,每小题4分,共16分.13. 若等比数列{}n a 的前n 项和2008nn S t =+(t 为常数),则a 1的值为 .14.若正实数y x 、满足,14=+y x 则22log log x y +的最大值为 . 15.已知cos()63πα-=-1,则2sin()3πα-的值为 . 16.已知)(x f 是定义在R 上的偶函数,并且)(1)2(x f x f -=+,当32≤≤x 时,x x f =)(,则=)5.105(f _________________.三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题共12分)在ABC ∆中,角C B A ,,的对边分别为c b a ,,,若(R 0).AB AC BA BC k k k ⋅=⋅=∈≠且 (Ⅰ)证明ABC ∆为等腰三角形; (Ⅱ)若2,k c =求的值.18.(本小题共12分)已知函数24521(R)y x ax ax a =-++∈的定义域为R ,解关于x 的不等式()(1)0x a x a --+<.19.(本小题共12分)已知函数()24cos 43sin cos f x x a x x =-,将()f x 的图象先向右平移4π个单位,再向下平移2个单位后,所得到函数)x g y (=的图象关于直线12x π=对称.(Ⅰ)求实数a 的值; (Ⅱ)已知()2cos 26f x x π-=-,求x x cos sin 2+的值.20.(本小题满分12分)某超市计划销售一种水果,已知水果的进价为每盒10元,并且水果的进货量由销售量决定.预计这种水果以每盒20元的价格销售时该超市可销售2000盒,经过市场调研发现每盒水果的价格在每盒20元的基础上每减少一元则增加销售400盒,而每增加一元则减少销售200盒,现设每盒水果的销售价格为x *(1026,N )x x <≤∈元.(Ⅰ)求销售这种水果所获得的利润y (元)与每盒水果的销售价格x 的函数关系式; (Ⅱ)当每盒水果的销售价格x 为多少元时,销售这种水果所获得的利润y (元)最大,并求出最大值.21.(本小题共12分)设定义在R 上函数)(x f 的图象与函数3()(2)2(2)g x a x x =-+- (a 为常数)的图象关于直线1=x 对称.(Ⅰ)求)(x f 的解析式;(Ⅱ)设()()(4ln )f x F x x x'=+,当0>m 时,判断()3m F 与()2F m 的大小关系,并说明理由.22.(本小题共14分)已知函数)sin (cos )(x x e x f x+⋅=,将满足0)(='x f 的所有正数x 从小到大排成数列}{n x ,记*()(N )n n a f x n =∈.(Ⅰ)证明数列}{n a 为等比数列;(Ⅱ)设n n a c ln =,求n c c c c ++++ 321;(Ⅲ)若nn n a n b )1()1(1+-=+,试比较1+n b 与n b 的大小.青岛市高三第一学期期中练习 数学试题(文科)答案一、选择题:本大题共12小题.每小题5分,共60分.ACBDD,ABACC,BD二、填空:本大题共4小题,每小题4分,共16分. 13.2007; 14.4-; 15.3-1; 16.2.5 三、解答题:本大题共6小题,共74分.17.解:(I )B ca BC BA A cb AC AB cos ,cos =⋅=⋅cos cos 3AB AC BA BCbc A ac B ⋅=⋅∴=又分B A A B cos sin cos sin =∴即0cos sin cos sin =-A B B A 0)sin(=-∴B A ……………5分 BA B A =∴<-<-ππABC ∆∴为等腰三角形.………………7分(II )由(I )知b a =22cos 2222c bc a c b bc A bc AC AB =-+⋅==⋅∴……………10分2k =2c ∴= ……………12分18.解:当0a =时,函数y 51x =-的定义域为R,满足题意, ……………………1分当0a ≠时,因为函数5y x =R , 所以2210ax ax ++≥恒成立,故0a >且2440a a ∆=-≤解得01a <≤ ………………………………………………………………5分 综上a 的取值范围是01a ≤≤…………………………………………………………6分 方程()()0x a x a --+=1的两个根为,a a -1,()2a a a --=-11 当102a ≤<时,不等式的解为:1a x a <<-;…………………………………8分 当12a =时, 不等式无解……………………………………………………9分 当112a <≤ 时,不等式的解为:1a x a -<< ………………………………………11分 综上,当102a ≤<时,不等式的解集为:{}1x a x a <<-;当12a =时, 不等式的解集为φ;当112a <≤时,不等式的解集为:{}1x a x a -<<……………………………………12分19.解:(Ⅰ)由题()2cos2sin 22f x x x =-+,将()f x 的图象先向右平移4π个单位,再向下平移2个单位后的解析式为()()22sin 2cos 24g x f x x x π=--=+, (3)分()g x 的图象关于直线12x π=对称,∴有(0)()6g g π=,即=,解得1a =……………6分(Ⅱ)()2cos 2224cos(2)23f x x x x π=-+=++由()2cos 26f x x π-=-得:4cos222cos 2x x +=-……………8分即0)1cos 4(cos =-x x 所以0cos =x ,或41cos =x ……………10分 又x x x x cos cos 1cos sin 22+-=+所以1cos sin 2=+x x ,或1619cos sin 2=+x x ……………12分 20. 解:(Ⅰ)依题意⎩⎨⎧≤<---≤<--+=2620),10)](20(2002000[2010),10)](20(4002000[x x x x x x y *N x ∈∴ ⎩⎨⎧≤<--≤<--=2620),10)(30(2002010),10)(25(400x x x x x x y *N x ∈ …………………5分(Ⅱ)⎪⎩⎪⎨⎧≤<+--≤<+--=2620,20000)20(2002010,22500)235(40022x x x x y *N x ∈ ………… 8分 当2010≤<x ,则当17=x 或18,22400max =y (元);当2026x <≤,20000<y ,y 取不到最大值;………………11分综合上可得当17=x 或18时,该特许专营店获得的利润最大为22400元.…………12分 21.解: (Ⅰ)∵)(x f 与 )(x g 的图象关于直线1=x 对称, ∴)(x f =)2(x g -,……………2分∴)(x f =)2(x g -=32x ax +- ……………4分(Ⅱ) ()()41(4ln )44()f x F x x x x x x x'=+=+=+ ()2141F x x ⎛⎫'∴=- ⎪⎝⎭……………6分()0,1x ∴∈时,()F x 单调递减;()1,x ∈+∞,()F x 单调递增………9分当3201,01m m m <<<<<∴()3m F >()2F m当1,m =()3m F =()2F m 当321,1m m m >>>∴()3mF >()2F m ……………12分22.解(Ⅰ)x e x x e x x e x f xx xcos 2)cos sin ()sin (cos )(=+-++=' …………2分 令0)(='x f ,∴()2cos 0,Z 2xf x e x x k k ππ'==∴=-∈,1,2,32n x n n ππ∴=-= ……………4分212)1()2sin()(π-π+π-π-=π-π⋅==∴n n n n n e n ex f aπ++-==∴e x f x f a a n n n n )()(11,且21a e π=∴}{n a 是以2e π为首项,π-e 为公比的等比数列. ……………6分(Ⅱ) n n a c ln =2π-π=n ,n c ∴是以2π为首项,π为公差等差数列∴n c c c c ++++ 321222)1(2n d n n n ⋅π=⋅-⋅+π⋅=……………9分 (Ⅲ) nn n a n b )1()1(1+-=+21π-π+=n e n ∴1+n b 2)1(2π-π++=n e n =-+n n b b 1-+π-π+2)1(2n en 21π-π+n en ……………11分222222)]2()1([])1()2[(π-ππ+ππππ-ππ-ππ+ππ-π⋅-+-=⋅⋅+-+=πn n n n n n eee e n eeee n n e2>πe ∴n n n n n b b eee e n e<∴<⋅-+-+π-ππ+ππππ-π12220)]2()1([……………14分。

山东省青岛胶州市2021届高三数学上学期期中试题含解析.docx

山东省青岛胶州市2021届高三数学上学期期中试题含解析.docx

山东省青岛胶州市2021届高三数学上学期期中试题(含解析)本试卷4页,22小题,考试用时120分钟.注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号和座号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置;2.作答选择题时:选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上;非选择题必须用黑色字迹的专用签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效;3.考生必须保证答题卡的整洁,考试结束后,请将答题卡上交.一、单项选择题:本题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {x|cosx2:,0<x<〃},集合B = <%}.则A|J3=( )A.]o,号B. 0号 C ]。

'勺 D.(0,1) 【答案】B【解析】【分析】7T根据余弦函数的性质和一元二次不等式的解法,分别求得集合A = (0,y], B = [0,l],再结合并集的运算,即可求解.1TT TR【详解】由cosx > —,可得-- 2k7i <x<—— 2k兀,keZ ,2 3 3TT TT因为0<x<7t,可得0<x〈§,即集合A = (0,§],又由 Tv》,即x2-x = x(x-l)<0,解得OMxMl,即B = [0,l],71所以AUB= 0,-.故选:B.2.已知数列{a,,}各项均大于1, “ e N*," a ll+l = a:”是“数列{1g a n}成等比数列”的()A.充要条件 C.必要不充分条件【答案】D 【解析】 【分析】从充分条件和必要条件两方面推导,【详解】解:少=a :,又a n >l,所以lg 《由=lga : = 3lg% ,则数列(lga n )为等比数 列; 因为%>1,所以lga… >0,若数列(lga…}为等比数列,则公比G 为正数且lga n+1 =qlga n , 则有a n+l= a :成立,0 > 0 ,不能推出0 = 3.所以a n+l = a :是数列(lg«…)为等比数列的充 分不必要条件. 故选:D.3, 已知角。

2020-2021青岛市高三数学上期中一模试题带答案

2020-2021青岛市高三数学上期中一模试题带答案
sin HAB sin AHB sin 45 sin 30
∴ OH HB sin HBO 20sin 60 10 3 ,
v 10 3 5 3 (米/秒). 46 23
故选 B. 【点睛】 本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用 恰当的公式,适当注意各个公式适合的条件.
2020-2021 青岛市高三数学上期中一模试题带答案
一、选择题
1.已知函数
f
(n)
n2 (n为奇数时) n2 (n为偶数时)
,若
an
f (n)
f (n 1) ,则
a1 a2 a3
A. 0 C. 100
a100
B.100 D.10200
y 0
2.若不等式组
2
x
x y
y
2 0
表示的平面区域是一个三角形,则实数
x y 0

x y 2x y
2

A
2 3
,
2 3


y 0 2x y
2

B
1,0

y 0
若原不等式组
2x
x
y
y
2 0
表示的平面区域是一个三角形,则直线
x
y
a

a
的取值范
x y a
围是 a 0,1
故选: D
【点睛】
4 3
,
平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面
8.B
解析:B 【解析】 【分析】
如解析中图形,可在 HAB 中,利用正弦定理求出 HB ,然后在 RtHBO 中求出直角边 HO 即旗杆的高度,最后可得速度.

2023-2024学年山东省青岛二中高三(上)期中数学试卷【答案版】

2023-2024学年山东省青岛二中高三(上)期中数学试卷【答案版】

2023-2024学年山东省青岛二中高三(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“∃x 0>1,ln (x 0﹣1)≥0”的否定是( ) A .∀x >1,ln (x ﹣1)<0 B .∀x ≤1,ln (x ﹣1)<0C .∀x >1,ln (x ﹣1)≥0D .∀x ≤1,ln (x ﹣1)≥02.已知集合A ={x ∈N *|1≤x <3},B ={x |ax ﹣2=0},且A ∩B =B ,则实数a 的所有取值集合是( ) A .{1}B .{1,2}C .{0,1,2}D .{0,2}3.若(1+x 14)8的展开式中共有m 个有理项,则m 的值是( ) A .1B .2C .3D .44.底面半径是1的圆锥,侧面积是3π,则圆锥的体积是( ) A .2√2πB .√2πC .2π3D .2√2π35.柯西不等式(Cauchy ﹣SchwarzLnequality )是法国数学家柯西与德国数学家施瓦茨分别独立发现的,它在数学分析中有广泛的应用.现给出一个二维柯西不等式:(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时即ac =b d时等号成立.根据柯西不等式可以得知函数f(x)=3√4−3x +√3x −2的最大值为( ) A .2√5B .2√3C .√10D .√136.设曲线y =x 3﹣2x 2+1在x =k 处的切线为l ,若l 的倾斜角小于135°,则k 的取值范围是( ) A .(−∞,13)∪(1,+∞) B .(−∞,0)∪(13,1)∪(43,+∞)C .(−∞,13)∪[43,+∞)D .(−∞,0]∪(13,1)∪[43,+∞)7.已知角α,β∈(0,π),且sin (α+β)+cos (α﹣β)=0,sin αsin β﹣3cos αcos β=0,则tan (α+β)=( ) A .﹣2B .−12C .12D .28.如图,已知直三棱柱ABC ﹣A 1B 1C 1的底面是等腰直角三角形,AA 1=2,AC =BC =1,点D 在上底面A 1B 1C 1(包括边界)上运动,则三棱锥D ﹣ABC 外接球表面积的最大值为( )A .81π16B .6πC .243π64D .2√6π二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知函数f(x)=2sinxcosx +cos(2x −π6),下列结论正确的是( ) A .f (x )的周期是πB .f (x )的图象关于点(π12,0)对称C .f (x )的单调递增区间为[−π3+kπ,π6+kπ](k ∈Z)D .要得到g(x)=√3sin2x 的图象,只需把f (x )的图象向右平移π6的单位10.已知直线l :x ﹣my +3=0和圆C :x 2+y 2﹣6x +5=0,下列结论成立的是( ) A .直线l :x ﹣my +3=0过定点(﹣3,0)B .当直线l 与圆C 相交时,直线l :x ﹣my +3=0被圆所截的弦长最大值为4C .当直线l 与圆C 相切时,则实数m =2√2D .当实数m 的值为3时,直线l 与圆C 相交,且所得弦长为2√10511.设数列{a n }前n 项和为S n ,满足(a n −1)2=4(100−S n ),n ∈N *且a 1>0,a 2>0,则下列选项正确的是( ) A .a n =﹣2n +21B .数列{S n n}为等差数列 C .当n =11时S n 有最大值D .设b n =a n a n +1a n +2,则当n =8或n =10时数列{b n }的前n 项和取最大值 12.点O 是△ABC 的外心,则下列选项正确的是( ) A .若AB =2,则AB →⋅AO →=2B .若BD →=λ(BA →|BA →|+BC →|BC →|)且BD →=μBA →+(1−μ)BC →(λ,μ∈R),则AD →=DC →C .若2BO →=BA →+BC →,则B 为△ABC 的垂心D .若∠B =π3,OB →=mOA →+nOC →,则m +n 的取值范围为[﹣2,1) 三、填空题(本题共4小题,每小题5分,共20分)13.已知函数f(x)=x 3⋅3xa x −1(a >0且a ≠1)为偶函数,则a = .14.1889年7月由恩格斯领导的第二国际在巴黎举行代表大会,会议上宣布将五月一日定为国际劳动节.五一劳动节某单位安排甲、乙、丙B 人在5天假期值班,每天只需1人值班,且每人至少值班1天,已知甲在五一假期期间值班2天,则甲连续值班的概率是 . 15.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 在C 上,且PF 1⊥F 1F 2,直线PF 2与椭圆C 交于另一点Q ,与y 轴交于点M ,MF 2→=2F 2Q →,则椭圆C 的离心率为 . 16.若x =0是函数f(x)=13x 3+ax 2+x −ln(x +1)的极大值点,则实数a 的取值范围是 . 四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知△ABC 的三个内角A ,B ,C 所对的边分别是a ,b ,c ,若2b sin A +b sin B =c sin2B . (1)求角C ;(2)若点D 在边AB 上,b =2,CD =1,请在下列三个条件中任选一个,求边长AB . ①CD 为△ABC 的一条中线; ②CD 为△ABC 的一条角平分线; ③CD 为△ABC 的一条高线.18.(12分)已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,2S n =(n +1)a n ﹣2. (1)求数列{a n }的通项公式;(2)设数列b n =2a n a n+1,求数列{b n }的前n 项和.19.(12分)已知四棱锥Q ﹣ABCD 的底面ABCD 是边长为2的正方形,且AB ⊥QD ,QA =QD =3. (1)求点B 到平面QCD 的距离; (2)求二面角B ﹣QD ﹣A 的正弦值.20.(12分)一个袋子里有大小相同的黑球和白球共10个,其中白球有a (0<a <10,a ∈N *)个,每次随机摸出1个球,摸出的球再放回.设事件A 为“从袋子中摸出4个球,其中恰有两个球是白球”. (1)当a 取a 0时,事件A 发生的概率最大,求a 0的值;(2)以(1)中确定的a 0作为a 的值,甲有放回地从袋子中摸球,如果摸到黑球则继续摸球,摸到白球则停止摸球,摸球的次数记为X ,求X 的数学期望E (X ).参考:(1)若P (X =k )=a k (k =1,2,3…),则E (X )=lim ∑ n k=1ka k ;(2)lim n→∞n ⋅(12)n =0.21.(12分)已知点(1,√2)在抛物线C :y 2=2px (p >0)上,A 、B 为抛物线C 上的两个动点,AB 不垂直于x 轴,F 为焦点,且|AF |+|BF |=5.(1)求p 的值,并证明AB 的垂直平分线过定点;(2)设(1)中的定点为Q ,求△ABQ 面积是否有最大值,若有,求出其最大值,若没有,请说明理由. 22.(12分)设函数f (x )=e x ,g (x )=e sin x +e cos x . (1)求曲线y =f (x )平行于直线y =x +3的切线; (2)讨论g (x )的单调性.2023-2024学年山东省青岛二中高三(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“∃x 0>1,ln (x 0﹣1)≥0”的否定是( ) A .∀x >1,ln (x ﹣1)<0 B .∀x ≤1,ln (x ﹣1)<0C .∀x >1,ln (x ﹣1)≥0D .∀x ≤1,ln (x ﹣1)≥0解:命题“∃x 0>1,ln (x 0﹣1)≥0”的否定是:∀x >1,ln (x ﹣1)<0. 故选:A .2.已知集合A ={x ∈N *|1≤x <3},B ={x |ax ﹣2=0},且A ∩B =B ,则实数a 的所有取值集合是( ) A .{1}B .{1,2}C .{0,1,2}D .{0,2}解:由题意集合A ={1,2}, 因为A ∩B =B ,则B ⊆A ,当B ={1}时,a ﹣2=0,解得a =2, 当B ={2}时,2a ﹣2=0,解得a =1, 当B ={1,2}时,a 无解, 当B =∅时,a =0,综上,实数a 的取值集合为{0,1,2}. 故选:C .3.若(1+x 14)8的展开式中共有m 个有理项,则m 的值是( )A .1B .2C .3D .4解:(1+x 14)8的展开式通项公式为:T r+1=C 8r x 2−14r,r =0,1,2,3,4,5,6,7,8,当r =0,4,8时,T 1,T 5,T 9为有理项,故m =3. 故选:C .4.底面半径是1的圆锥,侧面积是3π,则圆锥的体积是( ) A .2√2πB .√2πC .2π3D .2√2π3解:设圆锥的母线长为l ,高为h ,则π×1×l =3π, ∴l =3,∴h =√l 2−r 2=√9−1=2√2,∴圆锥的体积为13×π×12×ℎ=2√23π. 故选:D .5.柯西不等式(Cauchy ﹣SchwarzLnequality )是法国数学家柯西与德国数学家施瓦茨分别独立发现的,它在数学分析中有广泛的应用.现给出一个二维柯西不等式:(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时即ac =b d时等号成立.根据柯西不等式可以得知函数f(x)=3√4−3x +√3x −2的最大值为( ) A .2√5B .2√3C .√10D .√13解:该函数的定义域为[23,43],由柯西不等式可得:f(x)=3√4−3x +√3x −2≤√(32+12)(4−3x +3x −2)=2√5, 当且仅当√4−3x=√3x−2时取等号,即当x =1115时取等号.故选:A .6.设曲线y =x 3﹣2x 2+1在x =k 处的切线为l ,若l 的倾斜角小于135°,则k 的取值范围是( ) A .(−∞,13)∪(1,+∞) B .(−∞,0)∪(13,1)∪(43,+∞)C .(−∞,13)∪[43,+∞)D .(−∞,0]∪(13,1)∪[43,+∞)解:∵y ′=3x 2﹣4x ,∴l 的斜率为3k 2﹣4k .∵l 的倾斜角小于135°,∴l 的斜率小于﹣1或不小于0,则3k 2﹣4k <﹣1或3k 2﹣4k ≥0,解得k ∈(−∞,0]∪(13,1)∪[43,+∞). 故选:D .7.已知角α,β∈(0,π),且sin (α+β)+cos (α﹣β)=0,sin αsin β﹣3cos αcos β=0,则tan (α+β)=( ) A .﹣2B .−12C .12D .2解:∵sin (α+β)+cos (α﹣β)=0, ∴sin αcos β+cos αsin β+cos αcos β+sin αsin β=0, ∴sinαcosβ+cosαsinβcosαcosβ+sinαsinβ=−1,∴tanα+tanβ1+tanαtanβ=−1,∵sin αsin β﹣3cos αcos β=0, ∴sin αsin β=3cos αcos β, ∴tan αtan β=3,代入tanα+tanβ1+tanαtanβ=−1,得tan α+tan β=﹣4, 故tan(α+β)=tanα+tanβ1−tanαtanβ=2.故选:D .8.如图,已知直三棱柱ABC ﹣A 1B 1C 1的底面是等腰直角三角形,AA 1=2,AC =BC =1,点D 在上底面A 1B 1C 1(包括边界)上运动,则三棱锥D ﹣ABC 外接球表面积的最大值为( )A .81π16B .6πC .243π64D .2√6π解:因为△ABC 为等腰直角三角形,AC =BC =1, 所以△ABC 的外接圆的圆心为AB 的中点O 1,且AO 1=√22,连接O 1与A 1B 1的中点E ,则O 1E ∥AA 1,所以O 1E ⊥平面ABC , 设球的球心为O ,由球的截面性质可得O 在O 1E 上, 设OO 1=x ,DE =t (0≤t ≤√22),半径为R ,因为OA =OD =R ,所以√12+x 2=√(2−x)2+t 2,所以t 2=4x −72,又0≤t ≤√22, 所以78≤x ≤1,因为R 2=12+x 2,所以R 2≤32,所以三棱锥D ﹣ABC 的外接球表面积的最大值为4πR 2=6π.故选:B .二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知函数f(x)=2sinxcosx +cos(2x −π6),下列结论正确的是( ) A .f (x )的周期是πB .f (x )的图象关于点(π12,0)对称C .f (x )的单调递增区间为[−π3+kπ,π6+kπ](k ∈Z)D .要得到g(x)=√3sin2x 的图象,只需把f (x )的图象向右平移π6的单位解:∵f (x )=2sin x cos x +cos (2x ﹣6)=sin2x +cos2xcos π6+sin2xsin π6=32sin2x +√32cos2x =√3sin(2x +π6), 对于A :f (x )的周期T =2π2=π,故A 正确; 对于B :当x =π12时,f (π12)=√3sin(2×π12+π6)=√3sin π3≠0,∴f (x )的图象不关于点(π12,0)对称,故B 错误;对于C :令−π2+2kπ≤2x +π6≤π2+2kπ(k ∈Z),解得−π3+kπ≤x ≤π6+kπ(k ∈Z),∴f (x )的单调递增区间为[−π3+kπ,π6+kπ](k ∈Z),故C 正确;对于D :g(x)=√3sin2x 的图象向左平移π6个单位后解析式为g(x +π6)=√3sin[2(x +π6)]=√3sin(2x +π3),故D 错误. 故选:AC .10.已知直线l :x ﹣my +3=0和圆C :x 2+y 2﹣6x +5=0,下列结论成立的是( ) A .直线l :x ﹣my +3=0过定点(﹣3,0)B .当直线l 与圆C 相交时,直线l :x ﹣my +3=0被圆所截的弦长最大值为4C .当直线l 与圆C 相切时,则实数m =2√2D .当实数m 的值为3时,直线l 与圆C 相交,且所得弦长为2√105解:直线l :x ﹣my +3=0,可得{x +3=0y =0,可知直线恒过(﹣3,0),所以A 正确;圆C :x 2+y 2﹣6x +5=0,圆心(3,0),半径为2,(﹣3,0)是圆外的点,直线不表示直线y =0, 所以直线l 与圆C 相交时,直线l :x ﹣my +3=0被圆所截的弦长没有最大值,所以B 不正确; 直线与圆相切,可得√1+m 2=2,解得m =±2√2,所以C 不正确;实数m 的值为3时,直线l :x ﹣3y +3=0,圆的圆心到直线的距离为:√1+9=√102.所以直线与圆C 相交,所以D 正确. 故选:AD .11.设数列{a n }前n 项和为S n ,满足(a n −1)2=4(100−S n ),n ∈N *且a 1>0,a 2>0,则下列选项正确的是( ) A .a n =﹣2n +21B .数列{S n n}为等差数列 C .当n =11时S n 有最大值D .设b n =a n a n +1a n +2,则当n =8或n =10时数列{b n }的前n 项和取最大值 解:A 选项,当n =1时,(a 1−1)2=4(100−a 1), 又a 1>0,解得a 1=19,当n ≥2时,(a n −1)2=4(100−S n )①, (a n−1−1)2=4(100−S n−1)②,①﹣②得,(a n −1)2−(a n−1−1)2=4(100−S n )−4(100−S n−1),即a n 2+2a n −a n−12+2a n−1=0,化为(a n +a n ﹣1)(a n ﹣a n ﹣1+2)=0,∵a 1>0,a 2>0,∴a n +a n ﹣1=0不能对任意的n ≥2恒成立, ∴a n ﹣a n ﹣1+2=0, ∴a n ﹣a n ﹣1=﹣2,故{a n }为等差数列,公差为﹣2,首项为a 1=19, ∴通项公式为a n =19﹣2(n ﹣1)=﹣2n +21,A 正确; B 选项,S n =n(a 1+a n )2=n(19+21−2n)2=−n 2+20n , 故S n n=−n +20,则当n ≥2时,S n n−S n−1n−1=−n +20−(−n +21)=−1,故{Snn }为等差数列,B 正确;C 选项,S n =−n 2+20n =−(n −10)2+100,∴当n =10时,S n 取得最大值,C 错误;D 选项,令a n >0得1≤n ≤10,令a n <0得n ≥11, 则当n ∈[1,8]时,b n =a n a n +1a n +2>0, 当n =9时,b 9<0,当n =10时,b 10>0, 当n ≥11时,b n <0,又b 9=a 9a 10a 11=3×1×(﹣1)=﹣3,b 10=a 10a 11a 12=1×(﹣1)×(﹣3)=3, 则当n =8或n =10时数列{b n }的前n 项和取最大值,D 正确. 故选:ABD .12.点O 是△ABC 的外心,则下列选项正确的是( ) A .若AB =2,则AB →⋅AO →=2B .若BD →=λ(BA →|BA →|+BC →|BC →|)且BD →=μBA →+(1−μ)BC →(λ,μ∈R),则AD →=DC →C .若2BO →=BA →+BC →,则B 为△ABC 的垂心D .若∠B =π3,OB →=mOA →+nOC →,则m +n 的取值范围为[﹣2,1)解:对于A :因为AB →⋅AO →=|AB →|⋅|AO →|⋅cos∠BAO =|AB →|×12|AB →|=12|AB →|2=2,故A 正确;对于B :由BD →=μBA →+(1−μ)BC →(λ,μ∈R )可知,点A ,D ,C 共线, 又BD →=λ(BA →|BA →|+BC→|BC →|) 可知,点D 在∠CBA 的角平分线上,所以BD 为△ABC 的角平分线,AD 与DC 不一定相等,故B 错误;对于C :若2BO →=BA →+BC →则点O 是AC 的中点,点O 又是△ABC 的外心,所以∠ABC =90°,即B 为直角顶点,所以B 为垂心,故C 正确; 对于D :因为∠B =π3 所以∠AOC =2π3如图,建立平面直角坐标系, 设C (r ,0),A(−12r ,√32r),B (r cos θ,r sin θ),θ∈(2π3,2π), 因为OB →=mOA →+nOC →,所以{rcosθ=m ⋅(−12r)+nrrsinθ=m ⋅√32r,得m =2√3,n =cosθ1√3, m +n =cosθ+√3sinθ=2sin(θ+π6),θ∈(2π3,2π),θ+π6∈(5π6,13π6), sin(θ+π6)∈[−1,12), 则m +n ∈[﹣2,1).故D 正确. 故选:ACD .三、填空题(本题共4小题,每小题5分,共20分)13.已知函数f(x)=x 3⋅3xa x −1(a >0且a ≠1)为偶函数,则a = 9 . 解:∵f(x)=x 3⋅3xa x −1(a >0且a ≠1)为偶函数,y =x 3为奇函数,∴g (x )=3xa x −1=1(a 3)x −3−x 为奇函数,法1°:y =(a 3)x −3﹣x为奇函数,又y =3x ﹣3﹣x为奇函数,∴a3=3,∴a =9.法2°:∵y =(a3)x −3﹣x为奇函数,其定义域为R ,∴(a 3)1−13+(a 3)−1−3=0,整理得a 2﹣10a +9=0, 解得a =9或a =1(舍去). 故答案为:9.14.1889年7月由恩格斯领导的第二国际在巴黎举行代表大会,会议上宣布将五月一日定为国际劳动节.五一劳动节某单位安排甲、乙、丙B 人在5天假期值班,每天只需1人值班,且每人至少值班1天,已知甲在五一假期期间值班2天,则甲连续值班的概率是25.解:由题意知,甲在五一长假期间值班2天,有C 52=10种值班方法,其中甲连续2天值班的情况有4种, 所以甲连续值班的概率P =410=25.故答案为:25.15.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 在C 上,且PF 1⊥F 1F 2,直线PF 2与椭圆C 交于另一点Q ,与y 轴交于点M ,MF 2→=2F 2Q →,则椭圆C 的离心率为 √217. 解:如图,因为OM ∥PF 1,所以点M 是PF 2的中点,连接F 1Q , 由MF 2→=2F 2Q →,得|PF 2|=4|F 2Q |,设|F 2Q |=t ,则|PF 2|=4t ,|PF 1|=2a ﹣4t ,|QF 1|=2a ﹣t ,由余弦定理得|QF 1|2=|PF 1|2+|PQ|2−2|PF 1||PQ|cos∠F 1PQ , (2a ﹣t )=2(2a ﹣4t )2+(5t )2﹣2(2a ﹣4t )×5t ×2a−4t4t, 整理得t =514a ,则|F 1F 2|=√(4t)2−(2a −4t)2=√16at −4a 2=2√217a , e =2c2a =|F 1F 2|2a =√217. 故答案为:√217. 16.若x =0是函数f(x)=13x 3+ax 2+x −ln(x +1)的极大值点,则实数a 的取值范围是 (−∞,−12) . 解:由f(x)=13x 3+ax 2+x −ln(x +1), 得f ′(x)=x 2+2ax +1−1x+1, 所以f ″(x)=2x +2a +1(x+1)2,因为x =0是函数f(x)=13x 3+ax 2+x −ln(x +1)的极大值点, 所以f ′(0)=1﹣1=0,且f ''(0)<0, 所以2a +1<0,所以a <−12. 故答案为:(−∞,−12).四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知△ABC 的三个内角A ,B ,C 所对的边分别是a ,b ,c ,若2b sin A +b sin B =c sin2B . (1)求角C ;(2)若点D 在边AB 上,b =2,CD =1,请在下列三个条件中任选一个,求边长AB . ①CD 为△ABC 的一条中线; ②CD 为△ABC 的一条角平分线; ③CD 为△ABC 的一条高线. 解:(1)因为2b sin A +b sin B =c sin2B ,所以由正弦定理得:2sin B sin A +sin B sin B =2sin C sin B cos B , 因为B ∈(0,π),所以sin B ≠0,所以2sin A +sin B =2sin C cos B , 因为sin A =sin (B +C )=sin B cos C +cos B sin C , 所以2sin B cos C +sin B =0,所以cosC =−12, 因为C ∈(0,π),所以C =23π;(2)选择①,因为CD 为△ABC 的一条中线, 所以CD →=12(CA →+CB →),所以CD →2=14(CA →2+CB →2+2CA →⋅CB →),即1=14[4+a 2+2×2a ×(−12)],解得:a =2,由余弦定理得:AB =c =√a 2+b 2−2abcosC =√4+4−2×2×2×(−12)=2√3; 选择②,因为CD 为△ABC 的一条角平分线, 所以S △ACD +S △BCD =S △ABC ,即12b ⋅CD ×√32+12a ⋅CD ×√32=12ab ×√32, 因为b =2,CD =1,所以a =2,由余弦定理得:AB =c =√a 2+b 2−2abcosC =√4+4−2×2×2×(−12)=2√3; 选择③,因为CD 为△ABC 的一条高线, 所以S △ABC =12absinC =12c ⋅CD , 因为b =2,CD =1,所以c =√3a ,由余弦定理有:c 2=a 2+b 2﹣2ab cos C ,即3a 2=a 2+4−4a ×(−12), 解得:a =2或a =﹣1(舍去),所以c =2√3.,即AB =2√3.18.(12分)已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,2S n =(n +1)a n ﹣2. (1)求数列{a n }的通项公式; (2)设数列b n =2a n a n+1,求数列{b n }的前n 项和. 解:(1)因为当n ≥2时,2S n =(n +1)a n ﹣2且a 1=1, 若n =2,则2S 2=2(1+a 2)=3a 2﹣2,解得a 2=4, 若n ≥3,则2S n ﹣1=na n ﹣1﹣2, 两式相减可得2a n =(n +1)a n ﹣na n ﹣1, 整理得a n n=a n−1n−1,即a n n=a n−1n−1=...=a 22=2,可得a n =2n ,可知n =1不符合上式,n =2符合上式, 所以a n ={1,n =12n ,n ≥2.(2)因为b n =2a n a n+1={2,n =112n(n+1),n ≥2,即b n ={2,n =1⋅12(1n−1n+1),n ≥2, 当n =1时,令数列{b n }的前n 项和为T n ,则T n =2;当n ≥2时,则T n =b 1+b 2+...+b n ,=2+12[(12−13)+(13−14)+...+(1n −1n+1)]=2+12×(12−1n+1)=94−12(n+1),可知n =1符合上式,所以T n =94−12(n+1). 19.(12分)已知四棱锥Q ﹣ABCD 的底面ABCD 是边长为2的正方形,且AB ⊥QD ,QA =QD =3. (1)求点B 到平面QCD 的距离; (2)求二面角B ﹣QD ﹣A 的正弦值.解:(1)因为底面ABCD 是正方形,所以AB ⊥AD , 又因为AB ⊥QD ,AD ∩QD =D ,所以AB ⊥平面QAD , 又因为AB ⊂平面ABCD ,所以平面ABCD ⊥平面QAD , 因为平面QAD ∩平面ABCD =AD ,QA =QD , 取AD 的中点O ,连接QO ,则QO ⊥AD ,以O 为原点,OD 所在直线为y 轴,OQ 所在直线为z 轴,建立空间直角坐标系,如图所示:则B (2,﹣1,0),C (2,1,0),D (0,1,0),Q (0,0,2√2), BC →=(0,2,0),DC →=(2,0,0),DQ →=(0,﹣1,2√2),设平面QCD 的一个法向量为n →=(x ,y ,z ),则{n →⋅DC →=2x =0n →⋅DQ →=−y +2√2z =0,令z =1,则y =2√2,x =0,所以n →=(0,2√2,1),所以点B 到平面QCD 的距离为d =|BC →⋅n →||n →|=|0+4√2+0|0+8+1=4√23;(2)因为平面ADQ 的一个法向量为DC →=(2,0,0),DB →=(2,﹣2,0),设平面BDQ 的一个法向量为m →=(x ,y ,z ),则{m →⋅DB →=2x −2y =0m →⋅DQ →=−y +2√2z =0,令z =1,则y =2√2,x =2√2,所以m →=(2√2,2√2,1), 设二面角B ﹣QD ﹣A 为θ,则θ∈[0,π], 计算cos θ=m →⋅DC →|m →||DC →|=4√2+0+08+8+1×2=2√217,sin θ=√1−cos 2θ=√1−817=3√1717, 所以二面角B ﹣QD ﹣A 的正弦值为3√1717. 20.(12分)一个袋子里有大小相同的黑球和白球共10个,其中白球有a (0<a <10,a ∈N *)个,每次随机摸出1个球,摸出的球再放回.设事件A 为“从袋子中摸出4个球,其中恰有两个球是白球”.(1)当a 取a 0时,事件A 发生的概率最大,求a 0的值;(2)以(1)中确定的a 0作为a 的值,甲有放回地从袋子中摸球,如果摸到黑球则继续摸球,摸到白球则停止摸球,摸球的次数记为X ,求X 的数学期望E (X ).参考:(1)若P (X =k )=a k (k =1,2,3…),则E (X )=lim n→∞∑ n k=1ka k ;(2)lim n→∞n ⋅(12)n =0.解:(1)每次随机摸出1个球,摸到白球的概率为a10,摸到黑球的概率为1−a10, 所以件A 为“从袋子中摸出4个球,其中恰有两个球是白球“的概率为P (A )=C 42•(a10)2•(1−a10)2=6[a10(1−a10)]2,因为a10(1−a10)≤[a 10+(1−a10)2]2=14,当且仅当a10=1−a10=12时,a =5,即等号成立,故a 0=5.(2)由(1)知:每次随机摸出1个球,摸到白球的概率为12, X =1,2,3…,P (X =k )=a k (k =1,2,3…), P (X =1)=a 1=12, P (X =2)=a 2=122, P (X =3)=a 3=123,…, P (X =k )=a k =12k ,…,所以∑ n i=1ka k =∑ni=1k 2k=12+222+323+...+n2n ,① 12∑ n i=1ka k =122+223+324+...+n−12n +n2n+1,② ①﹣②得:12∑ n i=1ka k =12+122+123+...+12n −n2n+1=12−12n+11−12−n 2n+1=1−2+n2n+1, 所以∑ n i=1ka k =2−n+22n , E (X )=lim n→∞∑ n i=1ka k =lim n→∞(2−n+22n )=2. 21.(12分)已知点(1,√2)在抛物线C :y 2=2px (p >0)上,A 、B 为抛物线C 上的两个动点,AB 不垂直于x 轴,F 为焦点,且|AF |+|BF |=5.(1)求p 的值,并证明AB 的垂直平分线过定点;(2)设(1)中的定点为Q ,求△ABQ 面积是否有最大值,若有,求出其最大值,若没有,请说明理由. 解:(1)因为点(1,√2)在抛物线C :y 2=2px (p >0)上, 所以2=2P ,解得P =1, 所以抛物线的方程为y 2=2x ,设直线AB 的方程为y =kx +m ,(k ≠0),A (x 1,y 1),B (x 2,y 2), 由{y =kx +m y 2=2x ,得k 2x 2+2(km ﹣1)x +m 2=0, Δ=4(km ﹣1)2﹣4k 2m 2=4(1﹣2km )>0, x 1+x 2=−2(km−1)k2,x 1x 2=m 2k2,因为|AF |+|BF |=5,所以x 1+x 2+1=−2(km−1)k2+1=5,km =1﹣2k 2,所以m =1k −2k ,① 设AB 的中点为(x 0,y 0), 所以x 0=x 1+x 22=2,y 0=kx 0+m =2k +m , 所以AB 的垂直平分线方程为y ﹣2k ﹣m =−1k(x ﹣2),② 联立①②,可得y =−1k(x ﹣3), 所以AB 的垂直平分线过定点(3,0). (2)|AB |=√1+k 2•2√1−2kmk 2=√1+k2•2√4k 2−1k 2,点Q 到直线AB 的距离为d :d =|3k+m|√1+k=|k+1k|√1+k,所以S △ABQ =12|AB |d =12√1+k 2•2√4k 2−1k 2•|k+1k |√1+k 2=(k 2+1)√4k 2−1k 3,S △ABQ 2=(k 2+1)2(4k 2−1)k6=(1+1k2)2(4−1k2), 令1k 2=t ,则0<t <4,f (t )=(t +1)2(4﹣t ),f ′(t )=2(t +1)(4﹣t )﹣(t +1)2=(t +1)(7﹣3t )=0, 解得:t =﹣1(舍去),t =73,当0<t <73时,f ′(t )>0,当73<t <4时,f ′(t )<0,所以f (t )在(0,73)单调递增,在(73,4)单调递减,所以当t =73时,f (t )取最大值为(73+1)2×(4−73)=50027,所以△ABQ 面积最大值为10√159.22.(12分)设函数f (x )=e x ,g (x )=e sin x +e cos x . (1)求曲线y =f (x )平行于直线y =x +3的切线; (2)讨论g (x )的单调性.解:(1)∵f (x )=e x ,f ′(x )=e x , ∴f ′(t )=1⇒e t =1⇒t =0,f (0)=1,∴曲线y =f (x )平行于直线y =x +3的切线方程为y ﹣1=1•(x ﹣0)即y =x +1.(2)∵令p(x)=e x x (x <1),则 p ′(x)=e x (x−1)x 2<0 恒成立,p(x)=e xx 在(﹣∞,0),(0,1)上单调递减.g (x )=e sin x +e cos x ,g ′(x )=e sin x •cos x ﹣e cos x •sin x ,∴g ′(x )>0⇒sinx ⋅cosx(e sinxsinx −e cosxcosx )>0⇒{sinxcosx >0sinx <cosx或{sinxcosx <0sinx <0cosx >0⇒2kπ<x <2kπ+π4或2kπ+5π4<x <2kπ+3π2或2kπ+3π2<x <2kπ+2π(k ∈Z ),∴g (x )在(2kπ,2kπ+π4)(k ∈Z),(2kπ+5π4,2kπ+2π)(k ∈Z)上单调递增,在(2kπ+π4,2kπ+5π4)(k ∈z )上单调递减.。

山东省青岛胶州市2021届高三上学期期中考试数学试题

山东省青岛胶州市2021届高三上学期期中考试数学试题

由正弦定理得: b2 + c2 − a2 = bc ·······························································2 分
在 ABC中由余弦定理知: cos A = b2 + c2 − a2 = 1 ······································4 分
2
4
高三数学第 3 页 共 11 页
18.(12 分)
如图,在半圆柱W 中,AB 、CD 分别为该半圆柱的上、下底面直径,E 、F 分别为半圆弧 AB 、
CD 上的点, AD 、 BC 、 EF 均为该半圆柱的母线, AB = AD = 2 . (1)证明:平面 DEF ⊥ 平面 CEF ;
(2)设 CDF = (0 ) ,若二面角 E − CD − F 的余弦值为 5 ,求 的值.
2
5
E
A
B
F
D
C
19.(12 分)
已知正项数列{an}的前 n
项和为 Sn , a1
= 1, Sn+1
+
Sn
=
a2 n+1

n
N*

(1)求 {an } 的通项公式;
(2)若数列{bn}满足: a1b1 + a2b2 + a3b3 +
+
anbn
=
2−
n+2 2n
,求数列{ an |
1 log2
bn+2
9. BCD;
10. BC;
11. AC;
12. ACD;
三、填空题:本题共 4 个小题,每小题 5 分,共 20 分。

2020届山东省青岛市崂山区青岛第二中学高三上学期期中数学试题(含答案解析)

2020届山东省青岛市崂山区青岛第二中学高三上学期期中数学试题(含答案解析)

11.(多选题)如图,设 ABC 的内角 A , B , C 所对的边分别为 a , b , c ,
3
a
cos
C
c
cos
A
2b
sin
B
,且
CAB
3
.若点
D

ABC
外一点,
DC
1,
DA
3

下列说法中,正确的命题是( )
B A. ABC 的内角 3
C B. ABC 的内角 3
5 3 3
C.四边形 ABCD 面积的最大值为 2
2020 届山东省青岛市崂山区青岛第二中学高三上学期期中数学试题
一、单选题
1.设集合
A
x
|
1
2x
1
3

B
x
|
y
log2
x
,则
A
B
()
0,1
A.
1, 0
B.
1, 0
C.
0,1
D.
【答案】A
【解析】化简集合 A,B,根据交集的运算求解即可.
【详解】
因为 A x | 1 2x 1 3 [1,1] , B x | y log2 x (0, ) ,
3 sin( A C) 2sin2 B 3 sin B 2sin2 Bsin B 3 2
CAB B (0, 2 ) B ,C A B
3
3
3
3 ,因此 A,B 正确;
四边形 ABCD 面积等于 SABC SACD
3 AC2 1 AD DC sin ADC
4
2
3 ( AD2 DC2 2AD DC cos ADC) 1 AD DC sin ADC

青岛数学高三上期中基础卷

青岛数学高三上期中基础卷

一、选择题1.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=A .0B .100C .100-D .102002.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭3.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-4.已知数列{}n a 满足11a =,12nn n a a +=+,则10a =( )A .1024B .2048C .1023D .20475)63a -≤≤的最大值为( )A .9B .92C.3 D .26.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .137.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞C .()2,4-D .(][),24,-∞-⋃+∞8.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .403720209.若a ,b ,c ,d∈R,则下列说法正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a >b ,c >d ,则a+c >b+d C .若a >b >0,c >d >0,则c d a b> D .若a >b ,c >d ,则a ﹣c >b ﹣d10.在数列{}n a 中,12a =,11ln(1)n n a a n +=++,则n a =A .2ln n +B .2(1)ln n n +-C .2ln n n +D .1ln n n ++11.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S12.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .1613.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,a=4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒D .60B =︒14.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4015.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题16.已知等差数列{}n a 的前n 项和为n S ,且136S =,则91032a a -=__________.17.若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则z =2x +y 的最大值是_____.18.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.19.已知数列{ a n }的前n 项和S n =n 2+n(n ∈N ∗),则limn→∞na n S n=_______.20.某公司租赁甲、乙两种设备生产A,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.21.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = ________.22.若已知数列的前四项是2112+、2124+、2136+、2148+,则数列前n 项和为______. 23.如图在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是___________.24.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.25.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.三、解答题26.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值. 27.设等差数列{}n a 满足35a =,109a =- (Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值28.已知各项均为正数的数列{}n a 的前n 项和为n S ,且11a =,1n n n a S S -(*n N ∈,且2n ≥) (1)求数列{}n a 的通项公式;(2)证明:当2n ≥时,12311113232n a a a na ++++< 29.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,且sin sin 3a B b A π⎛⎫=+ ⎪⎝⎭. (1)求A ; (2)若3,,2b ac 成等差数列,ABC ∆的面积为23a .30.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.D 3.C 4.C 5.B 6.D 7.A 8.B 9.B 10.A 11.D 12.D 13.C 14.B 15.D二、填空题16.【解析】分析:根据等差数列中下标和的性质和前n项和公式求解详解:∵等差数列中∴∴设等差数列的公差为则点睛:等差数列的项的下标和的性质即若则这个性质经常和前n项和公式结合在一起应用利用整体代换的方法可17.5【解析】【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求得最优解的坐标把最优解的坐标代入目标函数得结论【详解】作出变量满足的可行域如图由知所以动直线的纵截距取18.【解析】作出不等式组所表示的可行域如图阴影部分由三角形ABC构成其中作出直线显然点A到直线的距离最近由其几何意义知区域内的点最短距离为点A到直线的距离的2倍由点到直线的距离公式有:所以区域内的点与区19.2【解析】【分析】【详解】由Sn=n2+n(n∈n*)当n=1a1=S1=1+1=2当n≥2时an=Sn﹣Sn﹣1=n2+n﹣(n﹣1)2-(n﹣1)=2n当n=1时a1=2×1=2成立∵an=2n20.2300【解析】【分析】【详解】设甲种设备需要生产天乙种设备需要生产天该公司所需租赁费为元则甲乙两种设备生产AB两类产品的情况为下表所示:产品设备A类产品(件)(≥50)B类产品(件)(≥14021.【解析】【分析】根据正弦定理将边化为角再根据两角和正弦公式以及诱导公式化简得cosB的值即得B角【详解】由2bcosB=acosC+ccosA及正弦定理得2sinBcosB=sinAcosC+sin22.【解析】【分析】观察得到再利用裂项相消法计算前项和得到答案【详解】观察知故数列的前项和故答案为:【点睛】本题考查了数列的通项公式裂项相消求和意在考查学生对于数列公式方法的灵活运用23.()【解析】如图所示延长BACD交于E平移AD当A与D重合与E点时AB最长在△BCE中∠B=∠C=75°∠E=30°BC=2由正弦定理可得即解得=平移AD当D与C重合时AB最短此时与AB交于F在△B24.-4【解析】【分析】根据已知可得即可求解【详解】且故答案为:-4【点睛】本题考查数列的递推关系以及周期数列考查计算求解能力属于中档题25.-10【解析】作出可行域如图所示:由得平移直线由图象可知当直线经过点时直线的截距最大此时最小由得此时故答案为三、解答题26.27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.B 解析:B 【解析】试题分析:由题意可得,当n 为奇数时,()22()(1)121;n a f n f n n n n =++=-+=--当n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以()1231001399a a a a a a a ++++=+++()()()2410021359999224610099100a a a ++++=-++++-++++++=,故选B.考点:数列的递推公式与数列求和.【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与运算能力,属于中档题.本题解答的关键是根据给出的函数()22(){()n n f n n n =-当为奇数时当为偶数时及()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分组求和的方法得到数列{}n a 前100项的和.2.D解析:D【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n na a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .3.C解析:C 【解析】 【分析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=,数列{}n a 是等比数列, 则11a =,故412λ+=, 解得2λ=-, 故选C . 【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础.4.C解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】因为12n n n a a +=+,所以12nn n a a +-=,因此10981010921198122221102312a a a a a a a a -=-+-++-+=++++==-,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.5.B解析:B 【解析】 【分析】根据369a a -++=是常数,可利用用均值不等式来求最大值. 【详解】 因为63a -≤≤, 所以30,60a a ->+> 由均值不等式可得:36922a a -++≤= 当且仅当36a a -=+,即32a =-时,等号成立,故选B. 【点睛】本题主要考查了均值不等式,属于中档题. 6.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.7.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >,所以()2142224448x y x y x y y x ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.8.B解析:B 【解析】 【分析】由题意可得n ≥2时,a n -a n -1=n ,再由数列的恒等式:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),运用等差数列的求和公式,可得a n ,求得1n a =()21n n +=2(1n -11n +),由数列的裂项相消求和,化简计算可得所求和. 【详解】解:数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1, 即有n ≥2时,a n -a n -1=n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+2+3+…+n =12n (n +1),1n =也满足上式 1n a =()21n n +=2(1n -11n +), 则122019111a a a ++⋯+=2(1-12+12-13+…+12019-12020) =2(1-12020)=20191010.故选:B . 【点睛】本题考查数列的恒等式的运用,等差数列的求和公式,以及数列的裂项相消求和,考查化简运算能力,属于中档题.9.B解析:B 【解析】 【分析】利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】A 项,虽然41,12>->-,但是42->-不成立,所以不正确;B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;C 项,虽然320,210>>>>,但是3221>不成立,所以C 不正确; D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.10.A解析:A 【解析】 【分析】 【详解】试题分析:在数列{}n a 中,11ln 1n n a a n +⎛⎫-=+ ⎪⎝⎭112211()()()n n n n n a a a a a a a a ---∴=-+-+⋅⋅⋅⋅⋅⋅+-+12lnln ln 2121n n n n -=++⋅⋅⋅⋅⋅⋅++-- 12ln()2121n n n n -=⋅⋅⋅⋅⋅⋅⋅⋅+-- ln 2n =+ 故选A. 11.D 解析:D 【解析】 【分析】将所给条件式变形,结合等差数列前n 项和公式即可证明数列的单调性,从而由870a a +<可得7a 和8a 的符号,即可判断n S 的最小值.【详解】由已知,得()11n n n S nS ++<, 所以11n n S S n n +<+, 所以()()()()1111221n n n a a n a a n n ++++<+, 所以1n n a a +<,所以等差数列{}n a 为递增数列.又870a a +<,即871a a <-, 所以80a >,70a <,即数列{}n a 前7项均小于0,第8项大于零, 所以n S 的最小值为7S , 故选D. 【点睛】本题考查了等差数列前n 项和公式的简单应用,等差数列单调性的证明和应用,前n 项和最值的判断,属于中档题.12.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1,∴()111199911016y x x y x y x y x y ⎛⎫+=+⋅+=+++≥+= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.13.C解析:C 【解析】 【分析】将已知代入正弦定理可得1sin 2B =,根据a b >,由三角形中大边对大角可得:60B <︒,即可求得30B =︒. 【详解】解:60A =︒,a =4b =由正弦定理得:sin 1sin2b A B a === a b >60B ∴<︒ 30B ∴=︒ 故选C. 【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.14.B解析:B 【解析】 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.15.D解析:D 【解析】 【分析】根据等差数列的性质前n 项和的性质进行求解即可. 【详解】因为等差数列{}n a 和{}n b ,所以2201111715111122a a a a b b b b +==+,又211121S a =,211121T b =,故令21n =有2121721214921324S T ⨯+==+,即1111211492124a b =,所以111114924a b = 故选:D. 【点睛】本题主要考查等差数列的等和性质:若{}n a 是等差数列,且(,,,*)m n p q m n p q N +=+∈,则m n p q a a a a +=+ 与等差数列{}n a 前n 项和n S 的性质*21(21),()n n S n a n N -=-∈二、填空题16.【解析】分析:根据等差数列中下标和的性质和前n 项和公式求解详解:∵等差数列中∴∴设等差数列的公差为则点睛:等差数列的项的下标和的性质即若则这个性质经常和前n 项和公式结合在一起应用利用整体代换的方法可解析:613. 【解析】分析:根据等差数列中下标和的性质和前n 项和公式求解. 详解:∵等差数列{}n a 中136S =, ∴()11371313132622a a a S +⨯===, ∴7613a =. 设等差数列{}n a 的公差为d ,则()9109109976322213a a a a a a d a -=-+=-==. 点睛:等差数列的项的下标和的性质,即若()*,,,,m n p q m n p q Z+=+∈,则m n p q a a a a +=+,这个性质经常和前n 项和公式()12n n n a a S +=结合在一起应用,利用整体代换的方法可使得运算简单.17.5【解析】【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求得最优解的坐标把最优解的坐标代入目标函数得结论【详解】作出变量满足的可行域如图由知所以动直线的纵截距取 解析:5 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】作出变量,x y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩的可行域如图,由2z x y =+知,2y x z =-+,所以动直线2y x z =-+的纵截距z 取得最大值时, 目标函数取得最大值, 由2239x y x y +=⎧⎨-=⎩得()3,1A -,结合可行域可知当动直线经过点()3,1A -时, 目标函数取得最大值2315z =⨯-=,故答案为5. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.18.【解析】作出不等式组所表示的可行域如图阴影部分由三角形ABC 构成其中作出直线显然点A 到直线的距离最近由其几何意义知区域内的点最短距离为点A 到直线的距离的2倍由点到直线的距离公式有:所以区域内的点与区 25【解析】作出不等式组所表示的可行域1Ω ,如图阴影部分,由三角形ABC 构成,其中(11),(30),(12)A B C -,,, ,作出直线20x y += ,显然点A 到直线20x y +=的距离最近,由其几何意义知,区域12,ΩΩ 内的点最短距离为点A 到直线20x y +=的距离的2倍,由点到直线的距离公式有:2221521d -==+,所以区域1Ω 内的点与区域2Ω 内的点之25,即25CD =点睛:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题. 巧妙识别目标函数的几何意义是解答本题的关键.19.2【解析】【分析】【详解】由Sn=n2+n(n∈n*)当n=1a1=S1=1+1=2当n≥2时an=Sn﹣Sn﹣1=n2+n﹣(n﹣1)2-(n﹣1)=2n当n=1时a1=2×1=2成立∵an=2n解析:2【解析】【分析】【详解】由S n=n2+n(n∈n*),当n=1,a1=S1=1+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+n﹣(n﹣1)2-(n﹣1)=2n,当n=1时,a1=2×1=2,成立,∵a n=2n(n∈n*),∴limn→∞na nS n=limn→∞2n2n(n+1)=2limn→∞11+1n=2,∴limn→∞na nS n=2,故答案为2.20.2300【解析】【分析】【详解】设甲种设备需要生产天乙种设备需要生产天该公司所需租赁费为元则甲乙两种设备生产AB两类产品的情况为下表所示:产品设备A类产品(件)(≥50)B类产品(件)(≥140解析:2300【解析】【分析】【详解】设甲种设备需要生产天, 乙种设备需要生产天, 该公司所需租赁费为元,则200300z x y=+,甲、乙两种设备生产A,B两类产品的情况为下表所示:产品 设备A 类产品 (件)(≥50)B 类产品 (件)(≥140)租赁费(元)甲设备510200乙设备620300则满足的关系为5650{10201400,0x y x y x y +≥+≥≥≥即:6105{2140,0x y x y x y +≥+≥≥≥, 作出不等式表示的平面区域,当200300z x y =+对应的直线过两直线610{5214x y x y +=+=的交点(4,5)时,目标函数200300z x y =+取得最低为2300元.21.【解析】【分析】根据正弦定理将边化为角再根据两角和正弦公式以及诱导公式化简得cosB 的值即得B 角【详解】由2bcosB =acosC +ccosA 及正弦定理得2sinBcosB =sinAcosC +sin解析:3π 【解析】 【分析】根据正弦定理将边化为角,再根据两角和正弦公式以及诱导公式化简得cos B 的值,即得B角. 【详解】由2b cos B =a cos C +c cos A 及正弦定理,得2sin B cos B =sin A cos C +sin C cos A . ∴2sin B cos B =sin(A +C ).又A +B +C =π,∴A +C =π-B .∴2sin B cos B =sin(π-B )=sin B . 又sin B ≠0,∴cos B =.∴B =.∵在△ABC 中,a cos C +c cos A =b ,∴条件等式变为2b cos B =b ,∴cos B =. 又0<B <π,∴B =. 【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.22.【解析】【分析】观察得到再利用裂项相消法计算前项和得到答案【详解】观察知故数列的前项和故答案为:【点睛】本题考查了数列的通项公式裂项相消求和意在考查学生对于数列公式方法的灵活运用解析:()()3234212n n n +-++ 【解析】 【分析】 观察得到21111222n a n n n n ⎛⎫==- ⎪++⎝⎭,再利用裂项相消法计算前n 项和得到答案. 【详解】 观察知()2111112222n a n n n n n n ⎛⎫===- ⎪+++⎝⎭.故数列的前n 项和11111113111...232422212n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ()()3234212n n n +=-++. 故答案为:()()3234212n n n +-++. 【点睛】本题考查了数列的通项公式,裂项相消求和,意在考查学生对于数列公式方法的灵活运用.23.()【解析】如图所示延长BACD 交于E 平移AD 当A 与D 重合与E 点时AB 最长在△BCE 中∠B=∠C=75°∠E=30°BC=2由正弦定理可得即解得=平移AD 当D 与C 重合时AB 最短此时与AB 交于F 在△B解析:(62-,6+2) 【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BEE C=∠∠,即o o2sin 30sin 75BE=,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BCFCB BFC =∠∠,即o o2sin 30sin 75BF =,解得BF=62-,所以AB 的取值范围为(62-,6+2).考点:正余弦定理;数形结合思想24.-4【解析】【分析】根据已知可得即可求解【详解】且故答案为:-4【点睛】本题考查数列的递推关系以及周期数列考查计算求解能力属于中档题解析:-4 【解析】 【分析】根据已知可得6n n b b +=,即可求解. 【详解】121,5b b ==且*21()n n n b b b n N ++=-∈, 321211n n n n n n n n b b b b b b b b ++++++=-==-=--, 63,20166336n n n b b b ++=-==⨯, 201663214b b b b b ∴==-=-+=-.故答案为:-4 【点睛】本题考查数列的递推关系以及周期数列,考查计算求解能力,属于中档题.25.-10【解析】作出可行域如图所示:由得平移直线由图象可知当直线经过点时直线的截距最大此时最小由得此时故答案为解析:-10【解析】作出可行域如图所示:由3z x y =-得33x z y =-,平移直线33x zy =-,由图象可知当直线经过点A 时,直线33x zy =-的截距最大,此时z 最小由1{2x x y =-+=得(1,3)A -,此时13310z =--⨯=-故答案为10-三、解答题 26.(Ⅰ)13b =.sin A 31372. 【解析】试题分析:利用正弦定理“角转边”得出边的关系2a b =,再根据余弦定理求出cos A , 进而得到sin A ,由2a b =转化为sin 2sin A B =,求出sin B ,进而求出cos B ,从而求出2B 的三角函数值,利用两角差的正弦公式求出结果. 试题解析:(Ⅰ) 解:在ABC 中,因为a b >,故由3sin 5B =,可得4cos 5B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以13b =. 由正弦定理sin sin a b A B =,得sin 313sin 13a B Ab ==. 所以,b 13sin A 313. (Ⅱ)解:由(Ⅰ)及a c <,得213cos A =,所以12sin22sin cos 13A A A ==,25cos212sin 13A A =-=-.故πππ72sin 2sin2cos cos2sin 44426A A A ⎛⎫+=+= ⎪⎝⎭.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.27.a n =11-2n,n=5时,S n 取得最大值 【解析】试题分析:解:(1)由a n =a 1+(n-1)d 及a 3=5,a 10=-9得,a 1+9d=-9,a 1+2d=5,解得d=-2,a 1=9,,数列{a n }的通项公式为a n =11-2n,(2)由(1)知S n =na 1+(1)2n n -d=10n-n 2.因为S n =-(n-5)2+25.所以n=5时,S n 取得最大值. 考点:等差数列点评:数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.28.(1) 21n a n =- (2)见证明 【解析】 【分析】(1)由题意将递推关系式整理为关于n S 与1n S -的关系式,求得前n 项和然后确定通项公式即可;(2)由题意结合通项公式的特征放缩之后裂项求和即可证得题中的不等式. 【详解】 (1)由n a =1n n S S --=+1(2)n =≥,所以数列1==为首项,以1为公差的等差数列,1(1)1n n =+-⨯=,即2n S n =,当2n ≥时,121n n n a S S n -=-=-,当1n =时,111a S ==,也满足上式,所以21n a n =-; (2)当2n ≥时,111(21)(22)n na n n n n =<--111112(1)21n n n n ⎛⎫==- ⎪--⎝⎭, 所以123111123n a a a na +++⋅⋅⋅+1111111122231n n ⎛⎫<+-+-++- ⎪-⎝⎭313222n =-< 【点睛】给出n S 与n a 的递推关系,求a n ,常用思路是:一是利用1n n n a S S -=-转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .29.(1)3π ; (2) 【解析】【分析】(1)由正弦定理化简已知可得sinA=sin (A +3π),结合范围A ∈(0,π),即可计算求解A 的值;(2)利用等差数列的性质可得b ,利用三角形面积公式可求bc 的值,进而根据余弦定理即可解得a 的值.【详解】(1)∵asinB=bsin (A+3π). ∴由正弦定理可得:sinAsinB=sinBsin (A +3π). ∵sinB≠0,∴sinA=sin (A+3π). ∵A ∈(0,π),可得:A +A+3π=π, ∴A=3π.(2)∵b ,c 成等差数列,∴,∵△ABC 的面积为S △ABC =12,∴123bc sin π⨯⨯bc=8, ∴由余弦定理可得:a 2=b 2+c 2﹣2bccosA=(b+c )2﹣2bc ﹣2bccos3π=(b+c )2﹣3bc=)2﹣24,∴解得:【点睛】 本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.30.(1) 21n a n =- (2) m 的最小值为30.【解析】试题分析:第一问根据条件中数列为等差数列,设出等差数列的首项和公差,根据题中的条件,建立关于等差数列的首项和公差的等量关系式,从而求得结果,利用等差数列的通项公式求得数列的通项公式,第二问利用第一问的结果,先写出()()3311212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,利用裂项相消法求得数列{}n b 的前n 项和,根据条件,得出相应的不等式,转化为最值来处理,从而求得结果.试题解析:(1)因为{}n a 为等差数列,设{}n a 的首项为1a ,公差为d ()0d ≠,所以 112141,2,46S a S a d S a d ==+=+.又因为124,,S S S 成等比数列,所以()()2111462a a d a d ⋅+=+.所以212a d d =. 因为公差d 不等于0,所以12d a =.又因为24S =,所以1a 1,d 2,所以21n a n =-.(2)因为()()3311212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭, 所以311111123352121n T n n ⎛⎫=-+-++- ⎪-+⎝⎭31312212n T n ⎛⎫=-< ⎪+⎝⎭. 要使20n m T <对所有n N *∈都成立,则有3202m ≥,即30m ≥.因为m N *∈,所以m 的最小值为30.考点:等差数列,裂项相消法求和,恒成立问题.。

山东省胶州一中高三上学期第二次质量检测(12月)数学(

山东省胶州一中高三上学期第二次质量检测(12月)数学(

z yxO DC BAD 1C 1B 1A 1胶州一中高三阶段性检测数学答案(理)1-5:BCBAD 6-10:BDBAB11. 12.1 13. 14.4 15.①②③16. 解:(1)在中,则余弦定理,得ADAC CD AD AC CAD ⋅-+=∠2cos 222.由题设知,77272417cos =-+=∠CAD .…………4分 (2)设,则因为,,所以721)772(1cos 1sin 22=-=∠-=∠CAD CAD14213)147(1cos 1sin 22=--=∠-=∠BAD BAD . 于是CAD BAD CAD BAD CAD BAD ∠∠-∠∠=∠-∠=sin cos cos sin )sin(sin α23721)147(77214213=⋅--⋅=.…………10分 在中,由正弦定理,,故3621237sin sin =⋅=∠⋅=CBAAC BC α…………12分 17.(1)证明:如图,连接,则四边形为正方形,所以,且,………2分 故四边形为平行四边形,所以. 又平面,平面,所以平面. ……………5分(2)因为为的中点,所以,又侧面⊥底面,交线为,故⊥底面。

…………6分以为原点,所在直线分别为轴,轴,轴建立如图所示的坐标系, 则()()1,0,0 , 0,1,0 , C D ()()10,0,1 , 0,1,0D A -,()()11,1,0 , 0,1,1 , DC DD ∴--()()1110,1,1 , 1,1,0D A D C DC --==-,设为平面的一个法向量,由,得,令,则()1, 1 , 1,1,1y x m ==∴= .又设为平面的一个法向量,由,得,令,则()111, 1 , 1,1,1y x n =-=-∴=--, (10)分则1cos ,3m n <>==-, 故所求锐二面角的余弦值为. …………12分18.解:(1)因为每件商品售价为5元,则万件商品销售收入为万元,依题意得当时,2211()5()34333L x x x x x x =-+-=-+-…………2分 当时,100100()5(638)335()L x x x x x x=-+--=-+…………4分所以2143,083()10035(),8x x x L x x x x ⎧-+-<<⎪⎪=⎨⎪-+≥⎪⎩…………6分(2)当时,21()(6)93L x x =--+此时, 当时…………8分当时,100()35()3515L x x x =-+≤-= 当且仅当即时等号成立,即当时……10分综上,当年产量为10万件时小王在这一商品的生产中所获利润最大为15万元…12分 19.解:(1)由2)n a n =≥得1n n S S --=1(2)n =≥ 所以数列是首项为,公差为1的等差数列 ,即…………3分当时,221(1)21n n n a S S n n n -=-=--=-当时也符合上式,因此…………6分(2)2222(21)344411111()(21)144(1)1n n n n b n n n n n n n ++++===+=+-+-+++…………8分 所以1111111(1)1()1()122311n T n n n n =+-++-+++-=+-++…………10分 因为,所以…………12分20解:(1)因为,所以即 又因为,所以不等式可化为所以不等式的解集为…………3分 (2)2()[(21)1]xf x ax a x e '=+++ ①当时,在上恒成立,当且仅当时取等号, 故符合题意…………5分②当时,令222()(21)1,(21)4410g x ax a x a a a =+++∆=+-=+>所以有两个不等的实根,不妨设 因此既有极大值也有极小值 若因为,所以在内有极值点 故在上不单调………………7分 若,开口向下且可知 若在上单调递增,则 即,所以,综上可知,实数的取值范围为………………9分 (3)当时,方程即为,由于,所以不是方程的解 所以原方程等价于,令 因为对任意恒成立所以在内是单调递增函数…………11分 又2321(1)30,(2)20,(3)0,(2)03h e h e h e h e --=-<=->-=-<-=> 所以方程有且只有两个实根,且分别在区间上 所以整数的所有取值为…………13分 21.解:(1)椭圆的顶点为即c e a ===解得,故椭圆方程为……2分 (2)由题知直线比与椭圆相交当直线斜率不存在时,经检验不合题意……3分 设直线为1122(1),(,),(,)y k x M x y N x y =-由2222221(23)636032(1)x y k x k x k y k x ⎧+=⎪⇒+-+-=⎨⎪=-⎩22121222636,2323k k x x x x k k -∴+=⋅=++……5分2212121224(1)23k y y k x x x x k -=--+=+2121226123k OM ON x x y y k --∴⋅=+==-+解得,故直线的方程为……9分(3)设11223344(,),(,),),(,)M x y N x y Ax y B x y ,(当不存在斜率时,可求得MN AB ==6= 由(2)可得:当存在斜率时12MN x =-==……11分由22132x yy kx⎧+=⎪⎨⎪=⎩得34AB x-=13分6==综上6=……14分。

2021届青岛胶州市高三上学期期中考试数学试题及答案

2021届青岛胶州市高三上学期期中考试数学试题及答案

一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合1{|cos ,0}2A x x x π=≥<<,集合2{R |}B x x x =∈≤.则A B =( )A .(0,]3πB .[0,]3π C .(0,)3πD .(0,1)2.已知数列{}n a 各项均大于1,*N n ∈,“31n n a a +=”是“数列{lg }n a 成等比数列”的( )A .充要条件B .既不充分也不必要条件C .必要不充分条件D .充分不必要条件3.已知角θ终边经过点(2,)P a ,若6πθ=-,则a =( )A 6B .63C .63-D .6-4.已知向量(1,2),(2,1),(,1),R AB BD BC t t ==-=∈,若//AD CD ,则实数t 的值为( )A .8B .6C .4D .435.在空间中,a 、b 是两条不同的直线,α、β是两个不同的平面,则下列判断正确的是( ) A .若//a b ,//a α,则//b αB .若a β⊥,αβ⊥,则//a αC .若a b ⊥,a α⊥,b β⊥,则αβ⊥D .若//a α,αβ⊥,则a β⊥6.已知函数ln ,0,(),0.x x f x kx x >⎧=⎨≤⎩,若0R x ∃∈,使得00()()f x f x -=成立,则实数k 的取值范围是( )A .(,1]-∞B .1(,]e-∞ C .[1,)-+∞ D .1[,)e-+∞7.已知函数2()(sin 3)f x x x =+([0,]2x π∈),则()f x 的单调递增区间是( )A .[0,]6π B .[0,]4πC .[0,]3πD .[0,]2π8.定义在[0,)+∞上的函数()f x 满足:当02x ≤<时,3()31f x x x =-+-;当2x ≥时,()3(2)f x f x =-.记函数()f x 的极大值点从小到大依次记为12,,,,n a a a ,并记相应的极大值为12,,,,n b b b ,则11221818a b a b a b ⋅+⋅++⋅的值为A .191831⨯+B .181831⨯+C .171731⨯+D .181731⨯+二、多项选择题:本题共4小题,每小题5分,共20分。

山东省青岛胶州市届高三上学期期中考试[001]

山东省青岛胶州市届高三上学期期中考试[001]

山东省青岛胶州市届高三上学期期中考试(模块测试)历史试题说明:.本试题分选择题和非选择题两部分,请将所有题目的答案写在答题纸上。

.满分分,考试时间分钟。

一、选择题:本大题共小题,每小题分,共分。

在每小题列出的四个选项中,只有一项符合题目要求。

.《耒耜经》记载:“……辕之上又有如槽形,亦如箭焉,刻为级,前高而后庳,所以深浅由箭,进退为评……”该工具应是.唐初的租庸调制规定:凡是均田人户,每丁每年除向国家交租外,还要交纳绢二丈、绵三两或布二丈五尺、麻三斤;每丁每年服徭役二十天,如不服役,则每丁可按每天交纳绢三尺或布三尺七寸五分以代役。

此规定最有利于.家庭手工业的发展.官营手工业的发展.民营手工业的发展.商品经济的发展.据《史记》记载,西汉中期“富商大贾或贮财役贫,转毂百数,囤积牟利,封君皆低首仰给焉。

冶铸煮盐,财或累万金,而不偌国家之急,黎民重困”。

这反映了.民营手工业的作用超过官营手工业.地方封国势力与商业势力相勾结.西汉政府重视商业的发展.中央政府对商业势力进行了有效控制.康熙年(年)规定,“凡直隶、山东、江南、浙江等省民人,情愿在海上贸易捕鱼者,许令载五百石以下船只,往来行走”,“外国贡船以内者,其所携货物予以免税。

西洋商船船钞较东洋船钞减十分之二。

”对此解释正确的是.一度开放对外贸易.废除了海禁政策.对洋货征税一视同仁.取消了对沿海居民出海贸易的限制.“在中世纪后期,出现许许多多为突破或绕过将欧洲人限制在地中海地区的穆斯林屏障而制订的计划。

那时的欧洲正如一位作家所描绘的那样,象一个靠他人通过墙上的裂缝喂养的巨人。

但是,这位巨人的力量和知识正在增长,牢狱的围墙已不能长久地禁锢住他”。

材料指出了.人类开启了近代化的起点.近代科技发展的社会基础.新航路开辟的原因和条件.启蒙运动的历史影响.《英国社会的商业化历史进程》中说:“通过与殖民地的贸易,英国商人获得了大量的财富……从而促进了西部港口城市的崛起和曼彻斯特等制造业城市的发展以及一些新工业的诞生。

胶州高三期中数学试卷

胶州高三期中数学试卷

1. 已知函数f(x) = x^2 - 4x + 3,若f(x)的图像关于直线x = 2对称,则f(1)的值为()A. 0B. 1C. 2D. 32. 下列各式中,能表示平面α内任意一点P的坐标的为()A. (x, y, z)B. (x, y)C. (x + y, z)D. (x, x + z)3. 若向量a = (2, 3, -1),向量b = (1, -2, 3),则|a + b|的值为()A. 2B. 3C. 4D. 54. 已知等差数列{an}的前n项和为Sn,若a1 = 2,d = 3,则S10的值为()A. 100B. 120C. 150D. 1805. 函数y = log2(3x - 1)的值域为()A. (0, +∞)B. (-∞, 0)C. (0, 1]D. (1, +∞)6. 已知等比数列{bn}的首项b1 = 1,公比q = 2,则b5的值为()A. 2B. 4C. 8D. 167. 在△A BC中,若∠A = 60°,∠B = 45°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°8. 已知函数f(x) = |x - 1| + |x + 1|,则f(x)的最小值为()A. 0B. 1C. 2D. 39. 已知圆O的方程为x^2 + y^2 = 4,则圆心O到直线2x + 3y - 6 = 0的距离为()A. 1B. 2C. 3D. 410. 若等差数列{an}的前n项和为Sn,若a1 = 3,S10 = 100,则数列的公差d为()A. 1B. 2C. 3D. 411. 已知函数f(x) = 2x - 3,若f(2x) = 7,则x的值为______。

12. 若向量a = (1, 2),向量b = (-2, 3),则向量a与向量b的数量积为______。

13. 已知等差数列{an}的首项a1 = 5,公差d = -2,则第10项an的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年度第一学期期中学业水平检测高三数学本试卷4页,22小题,满分150分.考试用时120分钟.注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号和座号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置;2.作答选择题时:选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上;非选择题必须用黑色字迹的专用签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效;3.考生必须保证答题卡的整洁,考试结束后,请将答题卡上交.一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合1{|cos ,0}2A x x x π=≥<<,集合2{R |}B x x x =∈≤.则A B =( )A .(0,]3πB .[0,]3π C .(0,)3πD .(0,1)2.已知数列{}n a 各项均大于1,*N n ∈,“31n n a a +=”是“数列{lg }n a 成等比数列”的( )A .充要条件B .既不充分也不必要条件C .必要不充分条件D .充分不必要条件3.已知角θ终边经过点(2,)P a ,若6πθ=-,则a =( )A 6B .63C .63-D .6-4.已知向量(1,2),(2,1),(,1),R AB BD BC t t ==-=∈,若//AD CD ,则实数t 的值为( )A .8B .6C .4D .435.在空间中,a 、b 是两条不同的直线,α、β是两个不同的平面,则下列判断正确的是( ) A .若//a b ,//a α,则//b αB .若a β⊥,αβ⊥,则//a αC .若a b ⊥,a α⊥,b β⊥,则αβ⊥D .若//a α,αβ⊥,则a β⊥6.已知函数ln ,0,(),0.x x f x kx x >⎧=⎨≤⎩,若0R x ∃∈,使得00()()f x f x -=成立,则实数k 的取值范围是( )A .(,1]-∞B .1(,]e-∞ C .[1,)-+∞ D .1[,)e-+∞7.已知函数2()(sin )f x x x =+([0,]2x π∈),则()f x 的单调递增区间是( ) A .[0,]6πB .[0,]4πC .[0,]3πD .[0,]2π8.定义在[0,)+∞上的函数()f x 满足:当02x ≤<时,3()31f x x x =-+-;当2x ≥时,()3(2)f x f x =-.记函数()f x 的极大值点从小到大依次记为12,,,,n a a a ,并记相应的极大值为12,,,,n b b b ,则11221818a b a b a b ⋅+⋅++⋅的值为A .191831⨯+B .181831⨯+C .171731⨯+D .181731⨯+二、多项选择题:本题共4小题,每小题5分,共20分。

在每小题给出的四个选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得3分,有选错的得0分。

9.在ABC ∆中,||2AB =,||1AC =,2AB AC AP +=,则( ) A .0PB PC ⋅> B .0PB PC +=C .PB =1122AB AC - D .34AP BP ⋅=-10.已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的最小正周期为4,其图象的一个最高点为1(,2)3A ,下列结论正确的是( )A .ωπ=B .3πϕ=C .将()f x 图象上各点的横坐标变为原来的12,纵坐标不变,得到()h x 图象;再将()h x 图象向右平移16个单位长度,得到函数2sin()6y x ππ=+的图象D .()y f x =的图象关于1x =对称11.在三棱柱111ABC A B C -中,E F G 、、分别为线段111AB A B AA 、、的中点,下列说法正确的是( )A .平面1//AC F 平面1B CE B .直线//FG 平面1B CEC .直线CG 与BF 异面D .直线1C F 与平面CGE 相交12.已知()f x 是定义在R 上的奇函数,且(1)(1)f x f x +=-,当01x ≤≤时,()f x x =,关于函数|()|())|(|f g f x x x =+,下列说法正确的是( ) A .()g x 为偶函数B .()g x 在(1,2)上单调递增C .()g x 不是周期函数D .()g x 的最大值为2三、填空题:本题共4个小题,每小题5分,共20分。

13.已知复数1i 1i z =++,i 为虚数单位,则||z = . 14.已知2 sin 23α=,04πα<<,则sin cos αα-= .15.已知2log 6a =,5log 15b =,2c π-=,则,,a b c 的大小关系为 (用“<”连接).16.在四面体P ABC -中,PA ⊥底面ABC ,1PA =,ABC ∆、PBC ∆、PAC ∆、PAB∆均为直角三角形,若该四面体最大棱长等于3,则(1)该四面体外接球的表面积为 ;(2)该四面体体积的最大值为 .(第一空2分,第二空3分)四、解答题:本题共6小题,共70分。

解答应写出文字说明,证明过程或演算步骤。

17.(10分)在①sin()sin2B C a A C b ++=,②2221cos cos cos sin sin A B C B C +=++两个条件中任选一个,补充到下面问题中,并解答.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知 . (1)求A ; (2)已知函数1()cos(4)2f x x A =-,[0,]4x π∈,求()f x 的最小值.18.(12分)如图,在半圆柱W 中,AB 、CD 分别为该半圆柱的上、下底面直径,E 、F 分别为半圆弧AB 、CD 上的点,AD 、BC 、EF 均为该半圆柱的母线,2AB AD ==. (1)证明:平面DEF ⊥平面CEF ; (2)设(0)2CDF πθθ∠=<<,若二面角E CD F --θ的值.19.(12分)已知正项数列{}n a 的前n 项和为n S ,11a =,211n n n S S a +++=,*N n ∈.(1)求{}n a 的通项公式;(2)若数列{}n b 满足:112233222n n nn a b a b a b a b +++++=-,求数列221{}|log |n n a b +⋅的前n项和n T . 20.(12分)已知函数()ln ln f x a x x a =-,0a >. (1)讨论()f x 的极值点; (2)若()0f x ≤恒成立,求a 的值.21.(12分)如图1,在平面四边形ABDC中,12,1,90,cos 5AB AC CD A BCD ===∠=︒∠=. (1)求sin D ;(2)将BCD ∆沿BC 折起,形成如图2所示的三棱锥D ABC -,2AD =.(ⅰ)三棱锥D ABC -中,证明:点D 在平面ABC 上的正投影为点A ;(ⅱ)三棱锥D ABC -中,点,,E F G 分别为线段,,AB BC AC 的中点,设平面DEF 与平面DAC 的交线为l ,Q 为l 上的点.求DE 与平面QFG 所成角的正弦值的取值范围.图1ABCDEF GA图222.(12分)已知函数()ln sin xf x a x ea x -=⋅+,0a >.(1)若0x =恰为()f x 的极小值点.(ⅰ)证明:112a <<; (ⅱ)求()f x 在区间(,)π-∞上的零点个数; (2)若1a =,()(1)(1)(1)(1)(1)(1)(1)(1)2233f x x x x x x xx x x n n ππππππππ=-+-+-+-+,又由泰勒级数知:2462(1)cos 12!4!6!(2)!n n x x x x x n -=-+-+++,*N n ∈.证明:2222211111236nπ+++++=.2020-2021学年度第一学期期中学业水平检测高三数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分。

1-8:B D C A C D A D二、多项选择题:本题共4小题,每小题5分,共20分。

9. BCD; 10. BC; 11. AC; 12. ACD; 三、填空题:本题共4个小题,每小题5分,共20分。

13.2; 14. 33-; 15. c b a <<; 16. (1)9π;(2)23;四、解答题:本题共6小题,共70分。

解答应写出文字说明,证明过程或演算步骤。

17.(10分)解:(1)若选择①;因为sin()sin 2B Ca A Cb ++=, 所以sin sin()22A a B b π=-,即sin cos 2Aa Bb = ··········································· 1分由正弦定理得:sin sin sin cos 2A B B A= ························································ 2分由于B 为ABC ∆的内角,所以sin 0B ≠所以sin cos 2A A =,即2sin cos cos 222A A A= ·················································· 3分由于A 为ABC ∆的内角,∴cos 02A ≠,所以1sin 22A =····································· 4分又因为(0,)A π∈,所以26A π=,3A π= ··················································· 5分若选择②;因为2221cos cos cos sin sin A B C B C +=++所以222sin sin sin sin sin B C A B C +-= ······················································ 1分由正弦定理得:222b c a bc +-= ································································· 2分在ABC ∆中由余弦定理知:2221cos 22b c a A bc +-== ······································· 4分所以3A π=······························································································ 5分(2)由(1)知:1()cos(4)23f x x π=- ························································· 6分 因为[0,]4x π∈,所以24[,]333x πππ-∈- ······················································· 7分 所以cos(4)123x π≤-≤-1 ············································································ 8分 所以当4233x ππ-=,即4x π=时,min 1()()44f x f π==- ································ 10分18.(12分)解:(1)因为EF 为半圆柱的母线,所以EF ⊥平面CDF ································ 1分 所以EF CF ⊥ ··························································································· 2分又因为CD 为直径,所以DF CF ⊥ ······························································· 3分 因为DF EF F =,所以CF ⊥平面DEF····················································· 4分 又因为CF ⊂平面CEF ,所以平面DEF ⊥平面CEF ······································· 5分 (2)以F 坐标原点,分别以FD FC FE 、、为z y x 、、轴建立空间直角坐标系O xyz -, 所以(2cos ,0,0)D θ,(0,2sin ,0)C θ,E ········· 6分 设平面CDE 的法向量1(,,)n x y z = 因为1(,,)(2cos ,2sin ,0)0n CD x y z θθ⋅=⋅-=1(,,)(0,2sin ,2)0n CE x y z θ⋅=⋅-=所以2cos 2sin 02sin 20x y y z θθθ⋅-⋅=⎧⎨-⋅+=⎩,取1y =,解得tan ,sin x z θθ== 所以平面CDE 的法向量1(tan ,1,sin )n θθ= ····················································· 8分 取平面CDF 的法向量2(0,0,1)n =································································· 9分由题知:12125||5||||n n n n ⋅==所以2(2sin cos )1θθ=,即2(sin 2)1θ= ······················································· 10分 所以sin 21θ=或sin 21θ=-(舍) ······························································ 11分所以,此时4πθ= ······················································································ 12分19.(12分)解:(1)由题知:22111,(2)n n n n n n S S a S S a n ++-+=+=≥ ····································· 1分 两式相减得:2211n n n n a a a a +++=-;所以2211()0n n n n a a a a ++--+=所以11(1)()0n n n n a a a a ++--+=;所以11n n a a +-=(2)n ≥* ····························· 3分 又因为2212S S a +=,所以22122a a a +=因为11a =,解得:22a = ··········································································· 4分 所以211a a -=适合*式所以{}n a 是以1为首项,1为公差的等差数列 ···················································· 5分 所以1(1)1n a n n =+-⨯= ············································································ 6分 (2)由(1)得:12322322n n n b b b nb +++++=-①; 所以12311123(1)2(2)2n n n b b b n b n --+++++-=-≥② ····································· 7分 ①-②得:2n n n nb =(2)n ≥,所以12n n b =(2)n ≥ ·········································· 8分 又由①式得,112b =适合上式所以12n nb =*(N )n ∈ ················································································· 9分 所以2211111()|log |(2)22n n a b n n n n +==-⋅++ ················································ 10分 所以1111111111(1)232435112n T n n n n =-+-+-++-+--++ ························ 11分 31142(1)2(2)n n =--++ ·································································· 12分 20.(12分)解: (1)由题知:a xax f ln )(-=', ···························································· 1分 若10≤<a ,则0ln )(>-='a xax f 所以()f x 在),0(+∞上单调递增,所以()f x 无极值点 ········································ 2分若1>a ,则0ln )(=-='a x a x f ,解得a ax ln =·············································· 3分 所以,当)ln ,0(a a x ∈时,0)(>'x f ,()f x 在)ln ,0(a a上单调递增; ·················· 4分 当),ln (+∞∈a a x 时,0)(<'x f ,()f x 在),ln (+∞aa上单调递减; ············· 5分 所以,当1>a 时,()f x 存在唯一极大值点ln ax a= ·········································· 6分(2)若1=a ,由(1)知:()ln f x x =,不满足题意 ······································· 7分 若10<<a ,由(1)知:()f x 在),0(+∞上单调递增,且(1)ln 0f a =-> 所以10<<a 时,也不合题意 ········································································ 8分若1>a ,由(1)知:)]ln (11[ln ]1)ln (1[)ln ()(aan e a a a n a a a f x f -=-=≤所以ea a 1ln ≥ ····························································································· 9分 令a a a g ln )(=,2ln 1)(aaa g -=' ·································································· 10分 所以,当),0(e a ∈时,0)(>'a g ,()g a 在),0(e 上单调递增;当),(+∞∈e a 时,0)(<'a g ,()g a 在),(+∞e 上单调递减;所以e e g a g 1)()(=≤;即ln 1a a e≤ ······················································ 11分 所以ea a 1ln =,a e = 综上,若()0f x ≤,则a e = ······································································· 12分 21.(12分)解:(1)在R t ABC ∆中:BC =!未找到引用源。

相关文档
最新文档