一次函数综合提高训练测试题精选(二)——学生版
一次函数提高练习题
一次函数提高1、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m为 .2、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3、在同一直角坐标系内,直线3y x =+与直线23y x =-+都经过点 .4、当m 满足 时,一次函数225y x m =-+-的图象与y 轴交于负半轴.5、函数312y x =-,如果0y <,那么x 的取值范围是 . 6、一个长120m ,宽100m 的矩形场地要扩建成一个正方形场地,设长增加xm ,宽增加ym ,则y 与x 的函数关系是 .自变量的取值范围是 .且y 是x 的 函数.7、如图1是函数152y x =-+的一部分图像,(1)自变量x 的取值范围是 ;(2)当x 取 时,y 的最小值为 ;(3)在(1)中x 的取值范围内,y 随x 的增大而 . 8、已知函数y=(k-1)x+k 2-1,当k_______时,它是一次函数,当k=_______•时,它是正比例函数.9、已知一次函数y kx b =+的图象经过点(2,5)-,且它与y 轴的交点和直线32x y =-+与y 轴的交点关于x 轴对称,那么这个一次函数的解析式为 . 10、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .11、一次函数1y kx b =+-的图象如图2,则3b 与2k 的大小关系是 ,当b = 时,1y kx b =+-是正比例函数.12、b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上.13、已知直线42y x =-与直线3y m x =-的交点在第三象限内,则m 的取值范围是 .14、要使y=(m-2)x n-1+n 是关于x 的一次函数,n,m 应满足 , .选择题1、图3中,表示一次函数y mx n =+与正比例函数(y mx m =、n 是常数,且0,0)m n ≠<的图象的是( )2、直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( )3、若直线11y k x =+与24y k x =-的交点在x 轴上,那么12k k 等于( ) .4A .4B - 1.4C 1.4D - 4、直线0px qy r ++=(0)pq ≠如图5,则下列条件正确的是( ).,1A p q r == .,0B p q r ==.,1C p q r =-= .,0D p q r =-=5、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A. 0,0k b >> .0,0B k b ><.0,0C k b <> .0,0D k b <<6、如果0ab >,0a c <,则直线a c y x b b=-+不通过( ) A .第一象限 B .第二象限C .第三象限D .第四象限7、已知关于x 的一次函数27y mx m =+-在15x -≤≤上的函数值总是正数,则m 的取值范围是( )A .7m >B .1m >C .17m ≤≤D .都不对8、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )图69、已知一次函数2y x a =+与y x b =-+的图像都经过(2,0)A -,且与y 轴分别交于点B ,c ,则ABC ∆的面积为( )A .4B .5C .6D .710、已知直线(0)y kx b k =+≠与x 轴的交点在x 轴的正半轴,下列结论:① 0,0k b >>;②0,0k b ><;③0,0k b <>;④0,0k b <<,其中正确的个数是( )A .1个B .2个C .3个D .4个11、已知(0,0)b c a c a b k b a b c a b c+++===>++=,那么y kx b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限12、如图7,A 、B 两站相距42千米,甲骑自行车匀速行驶,由A 站经P 处去B 站,上午8时,甲位于距A 站18千米处的P 处,若再向前行驶15分钟,使可到达距A 站22千米处.设甲从P 处出发x 小时,距A 站y 千米,则y 与x 之间的关系可用图象表示为( )学习、不复习、不练习等于没出息! 解答题1、已知一次函数(63)(4),y m x n =++-求: (1)m 为何值时,y 随x 的增大而减小;(2),m n 分别为何值时,函数的图象与y 轴的交点在x 轴的下方? (3),m n 分别为何值时,函数的图象经过原点?(4)当1,2m n =-=-时,设此一次函数与x 轴交于A ,与y 轴交于B ,试求AOB面积。
一次函数综合提高综合练习
11.已知:一次函数y=kx+b的图象经过(0,2),(1,3)两点。
(1)求k、b的值;
(2)若一次函数y=kx+b的图象与x轴的交点为A(a,0),求a的值。
12.点A,B,C,D的坐标如图,求直线AB与直线CD的交点坐标。
*13.小明从家里骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过tmin时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD,线段EF分别是表示s1、s2与t之间函数关系的图象。
三、综合运用
11.解:(1)由题意得,解得,∴k,b的值分别是1和2。(2)由(1)得y=x+2,∴当y=0时,x=-2,即a=-2。
12.解:设直线AB的解析式是y=k1x+b1,直线CD的解析式是y=k2x+b2,由图可知:,,解得,,所以直线AB:y=2x+6,直线CD:y=-x+1。由解得,所以直线AB与CD的交点坐标是(-2,2)。
A.m>0,n<2B.m>0,n>2C.m<0,n<2D.m<0,n>2
*4.在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示。有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米。其中正确的说法有()
(1)求s2与t之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
**14.已知A,B两地的路程为240千米。某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须预定。现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
八年级数学一次函数提高训练题学生版
八年级数学《一次函数》能力提高训练题1、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .2、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3、已知函数y=(k-1)x+k 2-1,当k_______时,它是一次函数,当k=_______•时,它是正比例函数.4、已知一次函数y kx b =+的图象经过点(2,5)-,且它与y 轴的交点和直线32xy =-+与y 轴的交点关于x 轴对称,那么这个一次函数的解析式为 .5、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .6、已知直线42y x =-与直线3y m x =-的交点在第三象限内,则m 的取值范围是 .7、无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 8、若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).(A )k<13 (B )13<k<1 (C )k>1 (D )k>1或k<139、在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )(A )1个 (B )2个 (C )3个 (D )4个 10、若直线11y k x =+与24y k x =-的交点在x 轴上,那么12k k 等于( ) .4A .4B - 1.4C 1.4D -11、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A. 0,0k b >> .0,0B k b >< .0,0C k b <> .0,0D k b << 12、如果0ab >,0a c <,则直线a cy x b b=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限13、已知关于x 的一次函数27y mx m =+-在15x -≤≤上的函数值总是正数,则m 的取值范围是( )A .7m >B .1m >C .17m ≤≤D .都不对14、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )15、如图7,A 、B 两站相距42千米,甲骑自行车匀速行驶,由A 站经P 处去B 站,上午8时,甲位于距A 站18千米处的P 处,若再向前行驶15分钟,使可到达距A 站22千米处.设甲从P 处出发x 小时,距A 站y 千米,则y 与x 之间的关系可用图象表示为( )16、如图4,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n),且2m +n =6,则直线AB 的解析式是( ).A 、y =-2x -3B 、y =-2x -6C 、y =-2x +3D 、y =-2x +617、已知关于x 的一次函数27y mx m =+-在15x -≤≤上的函数值总是正数,则m 的取值范围是( )A .7m >B .1m >C .17m ≤≤D .都不对18、已知(0,0)b c a c a bk b a b c a b c+++===>++=,那么y kx b =+的图象一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 19、当-1≤x ≤2时,函数6+=ax y 满足10<y ,则常数a 的取值范围是( ) A 、04<<-a B 、20<<a C 、24<<-a 且0≠a D 、24<<-a20、在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x -3与y=kx+k的交点为整数时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个21、已知y 与x+1成正比例关系,当x=2时,y =1,求当x=-3时y 的值?22、已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .23、已知一次函数(63)(4),y m x n =++-求: (1)m 为何值时,y 随x 的增大而减小;(2),m n 分别为何值时,函数的图象与y 轴的交点在x 轴的下方?(3),m n 分别为何值时,函数的图象经过原点? (4)当1,2m n =-=-时,设此一次函数与x 轴交于A ,与y 轴交于B ,试求AOB 面积。
(完整版)初二数学一次函数综合习题提高训练及答案详解
一次函数提高训练一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2 (B)y1=y2(C)y1<y2 (D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m 的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A 的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、•q•)表示______元.9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,•则一次函数的解析式为________.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为Sk(k=1,2,3,……,2008),那么S1+S2+…+S2008=_______.三、解答题1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=3的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩g gg g g其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①若a+b+c≠0,则p=()()()a b b c c aa b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p过第二、三、四象限,综上所述,y=px+p一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p2+4│q│>0,||k b pk b qk b+=-⎫⎪=-⇒⎬⎪≠⎭ggk·b<0,一次函数y=kx+b中,y随x的增大而减小kkb<⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A.二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m的图像的可能情况考虑周全.5.(13,3)或(53,-3).提示:∵点P到x轴的距离等于3,∴点P的纵坐标为3或-3当y=3时,x=13;当y=-3时,x=53;∴点P的坐标为(13,3)或(53,-3).提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,故点P的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b.∵直线y=kx+b与y=x+1平行,∴k=1,∴y=x+b.将P(8,2)代入,得2=8+b,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4xy xy x y⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得∴两函数的交点坐标为(98,34),在第一象限.8.222()aq bpbp aq--. 9.y=2x+7或y=-2x+3 10.10042009三、1.(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,yB),其中yB<0,∵S△AOB=6,∴12AO·│yB│=6,∴yB=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴= 5.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.,面积为2.8.∵点A、B分别是直线y=3与x轴和y轴交点,∴A(-3,0),B(0),∵点C坐标(1,0)由勾股定理得,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD=,∴=①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b,5 52b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-5.(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴AD BDAB CB=,∴=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D点坐标为(-14,0),∴图象过B、D(-14,0)两点的一次函数解析式为,综上所述,满足题意的一次函数为y=-5或.9.直线y=12x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA ⊥OB ,CD ⊥AB ,∴∠ODC=∠OAB ,∴cot ∠ODC=cot ∠OAB ,即OD OA OC OB =,∴OD=463OC OA OB ⨯=g =8.∴点D 的坐标为(0,8), 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为(225,-45).10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′(如图), 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt △BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78.∴当k=78时,⊙Q 与直线AB 相切.11.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.12.设稿费为x元,∵x>7104>400,∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x·45·15·710x=111125x=7104.∴x=7104×111125=8000(元).答:这笔稿费是8000元.13.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5,③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<552 3.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。
一次函数综合提高练习试题[附详解]
一次函数综合提高练习题(附详解)1.如图,直线l与x轴,y轴分别交于M,N两点,且OM=ON=3.(1)求这条直线的函数表达式;(2)Rt△ABC与直线 l在同一个平面直角坐标系内,其中∠ABC=90°,AC= 25,A (1,0),B(3,0),将△ABC沿x轴向左平移,当点C落在直线l上时,求线段AC扫过的面积.2.某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.(1)设用x辆车装甲种苹果,y辆车装乙种苹果,求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若运送三种苹果所获利润的情况如下表所示:设此次运输的利润为W(万元),问:如何安排车辆分配方案才能使运输利润W最大,并求出最大利润.3.如图,直线y=4-x与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B 两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D。
(1)当点M在AB上运动时,四边形OCMD的周长为________;(2)当四边形OCMD为正方形时,将正方形OCMD沿着x轴的正方向移动,设平移的距离为a (0<a≤4),在平移过程中:①当平移距离a=1时, 正方形OCMD与△AOB重叠部分的面积为________;②当平移距离a是多少时,正方形OCMD的面积被直线AB分成l:3两个部分?4.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元(1) 求甲、乙两种商品每件的进价分别是多少元?(2) 商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润5.为支援四川抗震救灾,某省某市A、B、C三地分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾区的甲、乙两县.根据灾区的情况,这批赈灾物资运往甲县的数量比运往乙县的数量的2倍少20吨.(1)求这批赈灾物资运往甲、乙两县的数量各是多少吨?(2)若要求C地运往甲县的赈灾物资为60吨,A地运往甲县的赈灾物资为x吨(x为整数),B地运往甲县的赈灾物资数量少于A地运往甲县的赈灾物资数量的2倍,其余的赈灾物资全部运往乙县,且B地运往乙县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往甲、乙两县的方案有几种?(3)已知A、B、C三地的赈灾物资运往甲、乙两县的费用如表:A地B地C地运往甲县的费用(元/220 200 200吨)运往乙县的费用(元/250 220 210吨)为及时将这批赈灾物资运往甲、乙两县,某公司主动承担运送这批物资的总费用,在(2)的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?6.已知点A(6,0)及在第一象限的动点P(x,y),且2x+y=8,设△OAP的面积为S.(1)试用x表示y,并写出x的取值范围;(2)求S关于x的函数解析式;(3)△OAP的面积是否能够达到30?为什么?7.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.8.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y,图中的折线表示y与x之间的函数关系.(1)甲、乙两地之间的距离为千米;图中点B的实际意义是;(2)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?9.货车在公路A处加满油后,以每小时60千米的速度匀速行驶,前往与A处相距360千米的B处.下表记录的是货车一次加满油后油箱剩余油量y(升)与行驶时间x(时)之间的关系:(1)如果y关于x的函数是一次函数,求这个函数解析式(不要求写出自变量的取值范围)(2)在(1)的条件下,如果货车的行驶速度和每小时的耗油量都不变,货车行驶4小时后到达C处,C的前方12千米的D处有一加油站,那么在D处至少加多少升油,才能使货车到达B处卸货后能顺利返回会D处加油?(根据驾驶经验,为保险起见,油箱内剩余油量应随时不少于10升)参考答案1.(1)3y x =--;(2)40【解析】(1)∵ OM=ON=3∴ M(3,0),N (0,3)设()0y kx b k =+≠则有 30{3k b b -+==- 解得 1{3k b =-=- ∴直线的函数表达式为3y x =--(2)∵A (1,0),B (3,0) ∴AB =2∵∠ABC =90° ∴BC =()222524-=∴C (3,4)因AC 平移后点C 落在直线对l 上,所以对3y x =--令4y =得7x =-即点C 平移到了点(7,4),AC 向左平移了10个单位∴S=10×4=402.(1)y 与x 之间的函数关系式为 310y x =-+,自变量x 的取值范围是x =1或x =2或x =3;(2)获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果. 试题解析:(1)∵()8101110100x y x y ++--=,∴ y 与x 之间的函数关系式为 310y x =-+.∵ y ≥1,解得x ≤3.∵ x ≥1, 10x y --≥1,且x 是正整数,∴ 自变量x 的取值范围是x =1或x =2或x =3.(2)()80.22100.2111100.20.1421W x y x y x =⨯+⨯+--⨯=-+.因为W 随x 的增大而减小,所以x 取1时,可获得最大利润,此时20.86W =(万元).获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果. 3.(1)8;(2)①3.5;②a 2或4-2试题解析:(1)(1)设OC =x ,则CM =4-x .∵MC ⊥OA ,MD ⊥OB ,OD ⊥OC ,∴四边形OCMD 为矩形,∴四边形OCMD 的周长=OD+OC+CM+DM =2(CO+CM )=2(x +4-x )=2×4=8.(2)①如图( 2 ),当0<a ≤2时,S=S 四边形O′CMD -S △MEF =4-12a 2=-12a 2+4, ②∵当四边形为OCMD 为正方形时,OC=CM ,即x =4-x ,解得:x =2,∴S 正方形OCMD 的面积=4.∵正方形OCMD 的面积被直线AB 分成1:3两个部分,∴两部分的面积分别为1和3.当0<a ≤2时,如图1所示:∵直线AB 的解析式为y =4-x ,∴∠BAO =45°.∴△MM′E 为等腰直角三角形.∴MM′=M′E .∴12MM′2=1. ∴MM ′=2,即a =2当2<a <4时,如图2所示:∵∠BAO =45°,∴△EO′A 为等腰直角三角形.∴EO′=O′A .∴12O ′A 2=1,解得:O′A =2. ∵将y =0代入y =4-x 得;4-x =0,解得:x =4,∴OA =4.∴OO ′=4-2,即a =4-2.综上所述,当平移的距离为a =2或a =4−2时,正方形OCMD 的面积被直线AB 分成1:3两个部分. 4.(1) 甲种商品每件的进价为30元,乙种商品为70元;(2) 购进甲种商品80件,则购进乙种商品20件时获利最大,为1200元.试题解析:(1) 设甲种商品每件的进价为x 元,乙种商品每件的进价为y 元23270{32230x y x y +=+=,解得30{70x y == 答:甲种商品每件的进价为30元,乙种商品为70元(2) 设该商场购进甲种商品m 件,则购进乙种商品(100-m )件,利润为wm ≥4(100-m ),解得m ≥80利润w =(40-30)m +(90-70)(100-m )=-10m +2000∵k =-10<0∴w 随m 的增大而减小当m =80时,w 有最大值为12005.(1)这批赈灾物资运往甲、乙两县的数量分别是180吨、100吨.(2)见解析;(3)该公司承担运送这批赈灾物资的总费用最多是60390元.【解析】解:(1)设这批赈灾物资运往乙县的数量是a 吨,则运往甲县的数量是(2a ﹣20)吨, 则a+2a ﹣20=100+100+80,a=100,2a ﹣20=2×100﹣20=180,答:这批赈灾物资运往甲、乙两县的数量分别是180吨、100吨.(2)根据题意得:,解①得:x>40,解②得:x≤45,∴不等式组的解集为:40<x≤45,整数解为:41、42、43、44、45;则A、B两地的赈灾物资运往甲、乙两县的方案有五种;(3)设总费用为w元,则w=220x+250(100﹣x)+200(180﹣60﹣x)+220(x﹣20)+200×60+210×20,w=﹣10x+60800,∵﹣10<0,∴w随x的增大而减小,∴当x=41时,w有最大值,w大=﹣10×41+60800=60390,答:该公司承担运送这批赈灾物资的总费用最多是60390元.6.(1)y=8﹣2x ;0<x<4;(2)S=-6x+24;(3)△OAP的面积不能够达到30.【解析】试题分析:(1)利用2x+y=8,得出y=8﹣2x及点P(x,y)在第一象限内求出自变量的取值范围;(2)根据△OAP的面积=OA×y÷2列出函数解析式;(3)利用当S=30,﹣6x+24=30,求出x的值,进而利用x的取值范围得出答案.试题解析:(1)∵2x+y=8,∴y=8﹣2x,∵点P(x,y)在第一象限内,∴x>0,y=8﹣2x>0,解得:0<x<4,∴y=8﹣2x,x的取值范围是0<x<4;(2)△OAP的面积S=6×y÷2=6×(8﹣2x)÷2=﹣6x+24,即S=-6x+24;(3)∵S=﹣6x+24,∴当S=30,﹣6x+24=30,解得:x=﹣1,∵0<x<4,∴x=﹣1不合题意,故△OAP的面积不能够达到30.考点:一次函数的性质;一次函数图象上点的坐标特征.7.(1)A种树每棵100元,B种树每棵80元;(2)当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.试题解析:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为(100﹣a)棵,则a>3(100﹣a),解得a≥75.设实际付款总金额是y元,则y=0.9[100a+80(100﹣a)],即y=18a+7200.∵18>0,y随a的增大而增大,∴当a=75时,y最小.即当a=75时,y最小值=18×75+7200=8550(元).答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.考点:(1)一次函数的应用;(2)二元一次方程组的应用.8.(1)900,4小时两车相遇.(2)所以线段BC所表示的y与x之间的函数关系式为:y=225x﹣900(4≤x≤6)(3)第二列快车比第一列快车晚出发0.75小时解:(1)由图象可知,甲、乙两地间的距离是900km;图中点B的实际意义是:4小时两车相遇;故答案为:900,4小时两车相遇.(2)慢车速度是:900÷12=75km/h,两车的速度和:900÷4=225km/h快车速度是:225﹣75=150km/h;相遇时慢车行驶的路程75×4=300km,两车相遇后快车到达乙地所用的时间:300÷150=2h,两车相遇后,2h两车行驶的路程:225×2=450km,所以,B(4,0),C(6,450),设线段BC的解析式为y=kx+b,则,解得.所以线段BC所表示的y与x之间的函数关系式为:y=225x﹣900(4≤x≤6)(3)相遇时快车行驶的路程900﹣300=600km,第二列快车与慢车相遇时行驶的路程:600﹣75×=562,5km,第二列快车与慢车相遇时所用的时间:562,5÷150=3.75h,4.5﹣3.75=0.75h.所以,第二列快车比第一列快车晚出发0.75小时9.(1)y=﹣30x+150.(2)D处至少加94升油,才能使货车到达灾区B地卸物后能顺利返回D处加油.解:(1)把5组数据在直角坐标系中描出来,这5个点在一条直线上,所以y与x满足一次函数关系,设y=kx+b,(k≠0)则,解得:,∴y=﹣30x+150.(2)设在D处至少加W升油,根据题意得:150﹣4×30﹣×30+W≥×30×2+10 (3分)即:150﹣120﹣6+W≥118 解得W≥94,答:D处至少加94升油,才能使货车到达灾区B地卸物后能顺利返回D处加油.。
中考数学总复习《一次函数》专项提升练习题(附答案)
中考数学总复习《一次函数》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________命题点1一次函数的图象与性质 1(2022株洲)在平面直角坐标系中,一次函数y=5x+1的图象与y 轴的交点的坐标为( )A.(0,-1)B.(-15,0) C.(15,0) D.(0,1) 2(2022凉山州)一次函数y=3x+b (b ≥0)的图象一定不经过 ( )A.第一象限B.第二象限C.第三象限 D .第四象限3(2022广安)在平面直角坐标系中,将函数y=3x+2的图象向下平移3个单位长度,所得的函数的解析式是( )A.y=3x+5B.y=3x-5C.y=3x+1D.y=3x-1 4(2022邵阳)在直角坐标系中,已知点A (32,m ),点B (√72,n )是直线y=kx+b (k<0)上的两点,则m ,n 的大小关系是( )A .m<nB .m>nC .m ≥nD .m ≤n5(2022抚顺)如图,在同一平面直角坐标系中,一次函数y=k 1x+b 1与y=k 2x+b 2的图象分别为直线l 1和直线l 2,下列结论正确的是( )A.k 1·k 2<0B.k 1+k 2<0C.b 1-b 2<0D.b 1·b 2<06(2022河南)请写出一个y 随x 的增大而增大的一次函数的表达式: . 7(2022德阳)如图,已知点A (-2,3),B (2,1),直线y=kx+k 经过点P (-1,0).试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是 .8(2022北京)在平面直角坐标系xOy 中,函数y=kx+b (k ≠0)的图象过点(4,3),(-2,0),且与y 轴交于点A.(1)求该函数的解析式及点A 的坐标;(2)当x>0时,对于x 的每一个值,函数y=x+n 的值大于函数y=kx+b (k ≠0)的值,直接写出n 的取值范围.命题点2一次函数与方程、不等式结合9(2022陕西)在同一平面直角坐标系中,直线y=-x+4与y=2x+m 相交于点P (3,n ),则关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为 ( )A.{x =−1,y =5B.{x =1,y =3C.{x =3,y =1D.{x =9,y =−5 10(2022鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b (k ,b 为常数,且k<0)的图象与直线y=13x 都经过点A (3,1),当kx+b<13x 时,根据图象可知,x 的取值范围是( )A.x>3B.x<3C.x<1D.x>111(2021嘉兴)已知点P (a ,b )在直线y=-3x-4上,且2a-5b ≤0,则下列不等式一定成立的是( )A.a b ≤52B.a b ≥52C.b a ≥25D.b a ≤25命题点3一次函数的实际应用 角度1行程问题12(2021陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1 min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”“猫”距起点的距离y (m)与时间x (min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.13(2022湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/时,轿车行驶的速度是60千米/时.(1)轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式.(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.角度2方案选取问题14(2021宁波)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用/元20 56 266每月免费使用流1 024 m无限量/兆超出后每兆收费/n n元A,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1 024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?角度3最值问题15(2022云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍,怎样购买,才能使总费用W最少?并求出最少费用.16(2022福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰, 问可购买绿萝和吊兰分别多少盆.(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.17(2022南充)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种商品,它们的进价和售价如下表.用15 000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)种类真丝衬衣真丝围巾进价/(元/件) a80售价/(元/件) 300 100(1)求真丝衬衣进价a的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?角度4其他问题18(2022哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35 L时,那么该汽车已行驶的路程为()A.150 kmB.165 kmC.125 kmD.350 km19(2022吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快,在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如图所示.(1)加热前水温是℃.(2)求乙壶中水温y关于加热时间x的函数解析式.(3)当甲壶中水温刚达到80 ℃时,乙壶中水温是℃.20(2022绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:时),y表示水位高度(单位:米).x0 0.5 1 1.5 2y 1 1.5 2 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选(k≠0).择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=kx(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.命题点4一次函数与几何知识的综合21(2022泸州)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点B 的坐标为(10,4),四边形ABEF 是菱形,且tan ∠ABE=43.若直线l 把矩形OABC 和菱形ABEF 组成的图形的面积分成相等的两部分,则直线l 的解析式为( )A.y=3xB.y=-34x+152 C.y=-2x+11 D .y=-2x+1222(2021扬州)如图,一次函数y=x+√2的图象与x 轴、y 轴分别交于点A ,B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A .√6+√2B .3√2C .2+√3D .√3+√223(2021成都)如图,在平面直角坐标系xOy 中,直线y=√33x+2√33与☉O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .分类训练7 一次函数1.D 【解析】 当x=0时,y=5x+1=1,故该一次函数图象与y 轴的交点坐标为(0,1).2.D3.D4.A 【解析】 对于一次函数y=kx+b ,∵k<0,∴y 随x 的增大而减小.又∵32>√72,∴m<n.5.D 【解析】 由题图可得k 1>k 2>0,b 1>0>b 2,∴k 1·k 2>0,k 1+k 2>0,b 1-b 2>0,b 1·b 2<0,故选D .6.y=2x+3(答案不唯一)7.k ≤-3或k ≥13 【解析】 当直线y=kx+k 经过点A (-2,3)时,-2k+k=3,解得k=-3;当直线y=kx+k 经过点B (2,1)时,2k+k=1,解得k=13.分析可知,当直线与线段AB 有交点时,k ≤-3或k ≥13.8.【参考答案】 (1)把(4,3),(-2,0)分别代入y=kx+b 得{4k +b =3,-2k +b =0,解得{k =12,b =1,∴该函数的解析式为y=12x+1. 对于y=12x+1,当x=0时,y=1∴A (0,1). (2)n ≥1.解法提示:函数y=12x+1的图象如图所示,易知当直线y=x+n 与y 轴的交点与点A 重合或在点A 上方时符合题意,故n ≥1.9.C 【解析】 把(3,n )代入y=-x+4,可知n=1,故关于x ,y 的方程组{x +y -4=0,2x -y +m =0的解为{x =3,y =1.故选C .10.A11.D 【解析】 ∵点P (a ,b )在直线y=-3x-4上,∴-3a-4=b.又∵2a-5b ≤0,∴2a-5(-3a-4)≤0,解得a ≤-2017.易得a=b+4-3,∴b ≥-817.易知当b=0时,ab 无意义,故A,B 错误.∵2a-5b ≤0,∴2a -5b a≥0,即2-5·b a≥0,∴b a ≤25.故选D .12.【参考答案】 (1)1解法提示:由题图可知,“鼠”的平均速度为30÷6=5(m/min) “猫”的平均速度为30÷(6-1)=6(m/min)故“猫”的平均速度与“鼠”的平均速度的差是6-5=1(m/min).(2)设AB 的函数表达式为y=kx+b (k ≠0),则{30=7k +b ,18=10k +b ,解得{k =−4,b =58,∴y=-4x+58.(3)令y=0,则-4x+58=0,∴x=14.5. 14.5-1=13.5(min)∴“猫”从起点出发到返回至起点所用的时间为13.5 min .13.【参考答案】 (1)设轿车行驶的时间为x 小时,则大巴行驶的时间为(x+1)小时. 根据题意,得60x=40(x+1) 解得x=2则60x=60×2=120.答:轿车出发2小时后追上大巴,此时两车与学校相距120千米. (2)∵轿车追上大巴时,大巴行驶了3小时∴点B 的坐标是(3,120).由题意,得点A 的坐标为(1,0).设AB 所在直线的解析式为s=kt+b则{3k +b =120,k +b =0,解得{k =60,b =−60,∴AB 所在直线的解析式为s=60t-60.(3)由题意,得40(a+1.5)=60×1.5解得a=34 ∴a 的值为34.14.【参考答案】 (1)m=3 072,n=0.3.(2)设函数关系式为y=kx+b (k ≠0)把(1 024,20),(1 144,56)代入y=kx+b得{20=1024k +b ,56=1144k +b ,解得{k =0.3,b =−287.2, ∴y 关于x 的函数表达式为y=0.3x-287.2(x ≥1 024).(注:x 的取值范围对考生不作要求)(3)3 072+(266-56)÷0.3=3 772(兆).由题中图象得,当每月使用的流量超过3 772兆时,选择C 方案最划算.15.【参考答案】 (1)设每桶甲消毒液的价格为x 元,每桶乙消毒液的价格为y 元根据题意,得{9x +6y =615,8x +12y =780,解得{x =45,y =35.答:每桶甲消毒液、每桶乙消毒液的价格分别是45元、35元.(2)由题意,得W=45a+35(30-a )=10a+1 050. 根据题意,得{a ≥30−a +5,a ≤2(30−a ),解得17.5≤a ≤20 ∴a 的取值范围是17.5≤a ≤20,且a 是正整数.∵10>0,∴W 随a 的增大而增大∴当a=18时,W 的值最小,最小值为1 230此时30-a=12.答:当购买甲消毒液18桶、乙消毒液12桶时,总费用最少,最少费用是1 230元.16.【参考答案】 (1)设购买绿萝x 盆,吊兰y 盆.根据题意,得{x +y =46,9x +6y =390,解得{x =38,y =8.因为38>2×8,所以答案符合题意.答:可购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,吊兰(46-m)盆,购买两种绿植的总费用为W元则W=9m+6(46-m)=3m+276.根据题意,得m≥2(46-m),解得m≥923.因为3>0,所以W随m的增大而增大.又m为整数,所以m取最小值31时,W的值最小.当m=31时,W=3×31+276=369.答:购买两种绿植总费用的最小值为369元.17.【参考答案】(1)根据题意,得50a+25×80=15 000.解得a=260.(2)设购进真丝衬衣x件,销售利润为y元,则购进真丝围巾(300-x)件.根据题意得y=(300-260)x+(100-80)(300-x)化简得y=20x+6 000.∵300-x≥2x,x≥0,∴0≤x≤100.∵20>0,∴y随x的增大而增大∴当x=100时,y有最大值,为20×100+6 000=8 000.故购进真丝衬衣100件,真丝围巾200件时,获得的利润最大,最大利润为8 000元.(3)设余下围巾每件降价m元,根据题意得100×40+100×20+100×(20-m)≥8 000×90%解得m≤8故余下围巾每件最多降价8元.18.A【解析】设y与x的函数关系式为y=kx+b,将(0,50),(500,0)分别代入,得{b=50,500k+b=0,解得{b=50,k=−110,故y=-110x+50.当y=35时,-110x+50=35,解得x=150.故选A.一题多解500÷50=10(km/L),故该汽车每行驶10 km耗油1 L.由题可知汽车已耗油50-35=15(L),故该汽车已行驶的路程为15×10=150(km).19.【参考答案】(1)20(2)由甲壶比乙壶加热速度快,可知乙壶中水温y关于加热时间x的函数图象经过点(0,20),(160,80).设乙壶中水温y关于加热时间x的函数解析式为y=kx+b将(0,20),(160,80)分别代入得{b =20,160k +b =80,解得{k =38,b =20,故乙壶中水温y 关于加热时间x 的函数解析式为y=38x+20.(3)65解法提示:由甲壶中水温y 关于加热时间x 的函数图象经过点(0,20),(80,60) 易求得甲壶中水温y 关于加热时间x 的函数解析式为y=12x+20.令12x+20=80,解得x=120 将x=120代入y=38x+20中,得y=38×120+20=65.故当甲壶中水温刚达到80 ℃时,乙壶中水温是65 ℃.20. 【参考答案】 (1)画图略.选择y=kx+b ,将(0,1),(1,2)代入得{b =1,k +b =2,解得{k =1,b =1, ∴y=x+1(0≤x ≤5).(2)当y=5时,x+1=5∴x=4.答:当水位高度达到5米时,进水用时x 为4小时.21.D 【解析】 连接OB ,AC 交于点M ,连接AE ,BF 交于点N ,则直线MN 为符合条件的直线l ,如图.∵四边形OABC 是矩形,∴OM=BM.∵点B 的坐标为(10,4),∴M (5,2),AB=10,BC=4.∵四边形ABEF 为菱形,∴BE=AB=10.过点E 作EG ⊥AB 于点G.在Rt △BEG 中,∵tan ∠ABE=43,∴EG BG =43.设EG=4k ,则BG=3k ,∴BE=√EG 2+BG 2=5k ,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4,∴E (4,12).又∵A (0,4),点N 为AE 的中点,∴N (2,8).设直线l 的解析式为y=ax+b ,则{5a +b =2,2a +b =8,解得{a =−2,b =12,∴直线l 的解析式为y=-2x+12.22.A 【解析】 当x=0时,y=√2;当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°,AB=√(√2)2+(√2)2=2.如图(1),过点C 作CD ⊥AB ,垂足为点D ,∵∠CAD=∠OAB=45°,∴△ACD 为等腰直角三角形.设CD=AD=m ,∴AC=√AD 2+CD 2=√2m.由旋转可知∠ABC=30°,∴BC=2CD=2m.在Rt △BCO 中,BC 2=OC 2+OB 2,即(2m )2=(√2+√2m )2+(√2)2,解得m=1+√3(负值不合题意,已舍去),∴AC=√2m=√2(√3+1)=√6+√2.故选A .图(1) 一题多解当x=0时,y=√2.当y=0时,x=-√2.∴A (-√2,0),B (0,√2),∴OA=OB ,∴△OAB 为等腰直角三角形,∴∠ABO=∠BAO=45°.由旋转可知,∠ABC=30°,∴∠BCO=15°.如图(2),作线段BC 的垂直平分线,交OC 于点E ,连接BE ,则BE =CE ,∴∠EBC=∠ECB=15°,∴∠BEO=30°,∴BE=2BO=2√2,OE=√3OB=√6,∴AC=CE+OE-OA=2√2+√6-√2=√6+√2.图(2)23.2√3 【解析】 如图,设☉O 与x 轴的另一个交点为点C ,AB 交y 轴于点D ,连接BC.对于y=√33x+2√33,当x=0时,y=2√33,当y=0时,x=-2,∴A (-2,0),D (0,2√33),∴AC=4,tan ∠OAD=OD OA =2√332=√33,∴∠OAD=30°.∵AC 为☉O 的直径,∴∠ABC=90°,∴AB=AC cos 30°=4×√32=2√3.。
一次函数提高练习题
提高练习一、求一次函数的解析式1. 一次函数y kx b =+,当x ≤≤14时,y ≤≤36,则b 的值是 。
2. 在平面直角坐标系中,已知点A (2,3),B (4,7),直线()ykx k k =-≠0与线段AB 有交点,则k 的取值范围是 。
二.一次函数的图象与性质3.已知k===,且+n 2+9=6n ,则关于自变量x 的一次函数y=kx +m +n 的图象一定经过第( )象限.A .一、二B .二、三C .三、四D .一、四4.如图,直线l 经过第二、三、四象限,l 的解析式是y=(m ﹣2)x +n ,则m 的取值范围在数轴上表示为( )A .B .C .D .三.一次函数的实际应用问题与函数图像5.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y (米)与时间t (秒)之间的函数关系如图,则这次越野跑的全程为 米.6.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y (千米)与所用时间x (小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a 的值;(2)快车与慢车第一次相遇时,距甲地的路程是多少千米?(3)两车出发后几小时相距200千米?直接写出答案四.一次函数与几何探究7.如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、A2B3、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、S2、S3、…、S n,则S n为()A.B.C.D.第7题图第8题图第9题图8.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为.9.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为,A2n+1的坐标为.10.在直角坐标系中,设点A(-1,-3),B(4,-1),C(m,0),D(n,n)为四边形的四个顶点,当四边形ABCD的周长最短时,mn的值为。
最新一次函数综合提高测试题资料
A •p A > P B 一次函数综合测试题、选择题。
(3分x 10)1、已知一次函数 y 二kx-k ,若y 随着x 的增大而减小,则该函数的图像经过: ____________________A •第一、二、三象限B •第一、二、四象限C •第二、三、四象限D •第一、三、四象限22、 ________________________________________________________________________ 若函数y =3x ・m -1是一次函数,则 m 的值为: _________________________________________________A • m = 1B • m -二1的全体实数C .全体实数D .不能确定3、 如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积 为600L ,又知单开进水管10min 可以把容器注满,若同时打开进、出水管, 20min 可以把满容器的水放完,现已知水池内有水200L ,先打开进水管5min ,再打开出水管,两管同时开放,直到把容器中的水放完,则正确反映这一过程中容器的水量Q ( L )随时间t (min )变化的图像是A •第三象限B ・第四象限C •第一象限D •第二象限5、 y 二mxV 与y=2x-1的图像交于x 轴上一点,则 m 为: ___________________C1 1A • 2B • - 2C •D •——2 2 b 11 6、 已知两个一次函数 y x-4, y x的图像重合,则一次函数y = ax b 的图像所经2 aa过的象限为: _______________ A •第一、二、三象限B •第二、三、四象限C 第一、三、四象限D •第一、二、四象限7、 两个物体A 、B 所受的压强分别为 P A (P)与P B (P) (P A 、P B 为常数),它们所受压力F(N)与受 力面积S (血2)的函数关系图像分别是射线|A 、I B ,(公式P=F ),如图所示,则: _________________St 'Q/L500 .一人200 '| !、 t/min 0— 5 90D34、无论m 为何实数,直线-x 4的交点不可能在: ________________B • p A V p BC • pA A PBD • pA W pB 8、下列四个图像,不表示某一函数图像的是:9、若abc V 0,且y =b x -E的图像不过第四象限,则点(a b, c)所在象限为____________________a aA、一B、二C、三D、四10、如果一次函数当自变量x的取值范围是一1v x V 3时,函数y的取值范围是一2 V y V 6,那么此函数解析式为: ________________________________A、y = 2xB、y 二-2x 4C、y = 2x 或y = -2x 4D、y 二-2x 或y 二2x「4二、填空题。
湘教版八年级下册数学第4章 一次函数 阶段综合训练(2)
二、填空题 9.函数y=5x的图象经过点(1,a),则a=________.
5
10.直线y=4x-1与x轴交点的坐标为__14_,__0___.
11.【中考•宿迁】已知一次函数y=2x-1的图象经过点A(x1, 1),B(x2,3),则x1________x2(填 “>” “<”或 “=”).
(1)当x为何值时,两人第一次相遇?
解:甲从 A 点出发的速度为 1 000÷4=250(米/分), 由题意得 250x=150x+3600,解得 x=0.75.
(2)当两人第二次相遇时,求甲跑的总路程.
解:当 x=5 时,乙跑的路程为 150×5+3600=825(米)<1 000 米, 所以甲、乙两人在甲返回时第二次相遇. 甲返回时的速度为 1 000÷(10-5)=200(米/分),令 200(x-5)+ 150x+3600=1 000,解得 x=5.5.所以甲跑的总路程为 1 000+ 200(x-5)=1 000+200×(5.5-5)=1 100(米).
解:∵对于每一个摆动时间t,都有 唯一的h值与其对应,∴变量h是关 于t的函数.
(2)结合图象回答以下问题: ①当t=0.7时,h的值是多少?并说明它的实际意义; ②秋千摆动第一个来回需多长时间?
解:①当t=0.7时,h=0.5,它的实际意义是秋千摆动 0.7s时,离地面的高度为0.5m. ②秋千摆动第一个来回需2.8s.
A.y=4x
B.y=-4x
C.y=x-4
D.y=x+2
4.【中考•柳州】已知A,B两地相距3千米,小黄从A地到B
地,平均速度为4千米/时,若用x表示行走的时间(小时),
y表示余下的路程(千米),则y关于x的函数表达式是( ) D
19.2.2 一次函数 人教版数学八年级下册提升训练(含答案)
19.2.2一次函数一、单选题1.若是y关于x的一次函数,则m的值为()A.2B.C.2或D.或2.下列函数中,一次函数一共有( )个.(1);(2)y=kx+b;(3)y=3x;(4)y=(x+1)2﹣x2;(5)y=x2﹣2x+1.A.1B.2C.3D.43.已知点关于轴的对称点在正比例函数的图象上,则的值为()A.B.C.D.4.对于函数y=2x+1,下列结论错误的是( )A.当x>1时,y<0B.y随x的增大而增大C.它的图象必经过点(0,1)D.它的图象经过第一、二、三象限5.一次函数的大致图象是()A.B.C.D.6.直线如图所示,则下列关于直线的说法错误的是()A.直线一定经过点B.直线经过第一、二、三象限C.直线与坐标轴围成的三角形的面积为2D.直线与直线关于轴对称7.函数的图象如图所示,对之间的大小关系判定正确的是()A.B.C.D.无法确定8.如图,在平面直角坐标系中,的顶点在轴上,定点的坐标为,若直线经过点,且将平行四边形分割成面积相等的两部分,则直线的表达式()A.B.C.D.二、填空题9.直线与坐标轴组成的三角形的面积是.10.函数y=-6x+8的图象,可以看作由直线y=-6x向平移个单位长度而得到.11.已知正比例函数的图像经过点(1,﹣2),则此函数的解析式是,将此正比例函数的图像向下平移2个单位,得到的函数关系式是.12.在平面直角坐标中,已知点P(1,2),Q(2,6),直线y=kx+k(k≠0)与线段有交点,则k的取值范围为.13.如图,已知直线:和直线:相交于点,且,当时,的取值范围是.14.如图,直线,分别交轴于点,交轴于点,以为直角边构造直角等腰三角形,,动点的坐标为,如果的面积与的面积相等,那么所有符合条件的值之和为.三、解答题15.如图,已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.16.已知函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围.17.某健身器材公司主要推A、B两种型号的健身器材,今年五、六月份的销售情况如表所示:A型(台)B型(台)利润(元)五月份25156750六月份30208500(1)求每台A型健身器材和B型健身器材的销售利润分别是多少;(2)该公司计划一次购进两种型号的健身器材共300台,其中B型健身器材的进货量不超过A型健身器材的1.5倍.设购进A型健身器材x台,这300台健身器材的销售总利润为y元.①求y与x的关系式;②该公司购进A、B型健身器材各多少台,才能使销售利润最大?18.如图,在直角坐标平面内xoy中,点A在x轴上,点C与点E在y轴上,且E为OC中点,BC∥x轴,且BE⊥AE,连接AB.(1)求证:AE平分∠BAO;(2)当OE=6,BC=4时,求直线AB的解析式.参考答案:1.B2.B3.A4.A5.A6.C7.A8.A9.10.上811.y=﹣2x y=﹣2x﹣212.13./14.015.(1)由题意得,k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3;(2)由(1)知,一次函数的解析式是y=x+3.当x=-1时,y=2,∴点B(-1,5)不在该一次函数图象上;当x=0时,y=3,∴点C(0,3)在该一次函数图象上;当x=2时,y=5,∴点D(2,1)不在该一次函数图象上.16.(1)解:把(0,0)代入,得:m﹣1=0,∴m=1;(2)解:根据截距的定义,得:m﹣1=﹣3,∴m=﹣2;(3)解:根据题意,得:2m+3=1,∴m=﹣1;(4)解:根据y随x的增大而减小说明k<0,∴2m+3<0,∴.17.(1)解:设每台型健身器材的销售利润为元,每台型健身器材的销售利润为元,由表格得:,解得,答:每台型健身器材的销售利润为150元,每台型健身器材的销售利润为200元.(2)解:①由题意得:购进型健身器材台,则,即与的关系式是;②∵型健身器材的进货量不超过型健身器材的1.5倍,∴,解得,对于一次函数,在内,随的增大而减小,则当时,取得最大值,此时,答:该公司购进型健身器材120台,型健身器材180台,才能使销售利润最大.18.(1)证明:如图,取AB的中点D,并连接ED,∵E为OC中点,∴DE是梯形OABC的中位线(梯形中位线的定义),∴DE∥OA即∠DEA=∠EAO,∵BE⊥AE,ED是边AB上的中线,∴ED=AD AB,∴∠DEA=∠DAE,∴∠EAO=∠DAE,即AE平分∠BAO;(2)解:设OA为x,∵OE=EC=6,∴C(0,12),∵CB=4,且BC∥x轴,∴B(4,12),∵ED AB,∴AB=2ED=x+4,在Rt△EBC中,BE2=52,在Rt△OAE中,AE2=36+x2,∴在Rt△BEA中,52+36+x2=(x+4)2,x=9,∴A(9,0),设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y x.。
一次函数 单元综合提高测试卷 含详细解析
一次函数单元综合提高测试卷一.选择题(每题3分,共10小题,30分)1.下列函数中,一次函数是( )A.y=8x2B.y=x+1C.;D.2.函数y=中,自变量x的取值范围是( )A.x>1B.x≥1C.x<1D.x≤13.已知正比例函数y=kx的图象经过点(1,2),则k的值为( )A.B.1C.2D.44.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限5.在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是( )A.B.C.D.6.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是( )A.B.C.D.7.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( ).....若函数,则当函数值±±或﹣y=中,自变量其中正确的说法是 .(把你认为正确说法的序号都填上)14.甲乙两地相距50千米.星期天上午2a+b(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案. 参考答案与试题解析一.选择题(共10小题)1.下列函数中,一次函数是( )A.y=8x2B.y=x+1C.;D.【分析】一次函数y=kx+b的定义条件逐一分析即可.【解答】解:A、自变量次数不为1;B、是一次函数;C、不符合一次函数的形式;D、分母中含有未知数不是一次函数.故选B.【点评】解题关键是掌握一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.函数y=中,自变量x的取值范围是( )A.x>1B.x≥1C.x<1D.x≤1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.已知正比例函数y=kx的图象经过点(1,2),则k的值为( )A.B.1C.2D.4【分析】本题较为简单,把坐标代入解析式即可求出k的值.【解答】解:把(1,2)代入y=kx解得:k=2.故选C.【点评】利用待定系数法直接代入求出未知系数k,比较简单.4.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【分析】根据正比例函数的性质解答.【解答】解:根据题意,函数值随x的增大而增大,k值大于0,图象经过第一、三象限.故选B.【点评】本题主要考查正比例函数的性质,当k>0时,函数图象经过第一三象限,y随x 的增大而增大.5.在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是( )A.B.C.D.【分析】露出水面前读数y不变,出水面后y逐渐增大,离开水面后y不变.【解答】解:因为小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y不变,出水面后y逐渐增大,离开水面后y不变.故选:C.【点评】本题考查函数值随时间的变化问题.注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.6.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是( )A.B.C.D.【分析】因为正比例函数y=kx(k≠0)的函数值y随x的增大而减小,可以判断k<0;再根据k<0判断出y=kx+k的图象的大致位置.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∴一次函数y=kx+k的图象经过一、三、二象限.故选:D.【点评】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第二、三象、四象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.7.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的( )A.B.C.D.【分析】根据每一段函数的性质,确定其解析式,特别注意根据函数的增减性,以及几个最值点,确定选项比较简单.【解答】解:点P由A到B这一段中,三角形的AP边上的高不变,因而面积是路程x的正比例函数,当P到达B点时,面积达到最大,值是1.在P由B到C这一段,面积随着路程的增大而减小;到达C点,即路程是3时,最小是;由C到M这一段,面积越来越小;当P到达M时,面积最小变成0.因而应选第一个图象.故选:A.【点评】本题考查了分段函数的画法,是难点,要细心认真.8.若函数,则当函数值y=8时,自变量x的值是( )A.±B.4C.±或4D.4或﹣【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得x=,∵x≤2,x=不合题意舍去,故x=﹣;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣.故选:D.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.9.一次函数y=﹣3x﹣2的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质容易得出结论.【解答】解:∵解析式y=﹣3x﹣2中,﹣3<0,﹣2<0,∴图象过二、三、四象限.故选A.【点评】在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.10.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )A.4个B.3个C.2个D.1个【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,然后根据图象上特殊点的意义进行解答.【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷=15千米/时;故②正确;④设乙出发x分钟后追上甲,则有:×x=×(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×=6km,故③错误;所以正确的结论有三个:①②④,故选:B.y=中,自变量=0.7(小时)之间的函数关系如图所示,小明父亲出发 或 x=或x=,所以,出发或小时时,行进中的两车相距故答案为:或.(﹣1,2) . ,﹣ .a=,﹣.故答案为:;﹣.17.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;a=×2b=×0≤x≤10时,设y2=k2x,∵函数图象经过点(0,0)和(10,800),∴10k2=800,∴k2=80,∴y2=80x,x>10时,设y2=kx+b,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴y2=64x+160;∴y2=;(3)设B团有n人,则A团的人数为(50﹣n),当0≤n≤10时,80n+48×(50﹣n)=3040,解得n=20(不符合题意舍去),当n>10时,800+64×(n﹣10)+48×(50﹣n)=3040,解得n=30,则50﹣n=50﹣30=20.答:A团有20人,B团有30人.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,准确识图获取必要的信息并理解打折的意义是解题的关键,(3)要注意分情况讨论.19.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?【分析】(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小黄家的用水量判断其再哪个范围内,代入相应的函数关系式求值即可.【解答】解:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元.根据题意得,解得:.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.y=.可得:,解得:,所以直线解析式为:=.【解答】解:(解得:.解得y=x+4y=x+4y=×)由题意可得,解①得x≥12,解②得x≤14,∴不等式组的解集为12≤x≤14,∵x是正整数,∴x的取值为12,13,14,即有3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个;(3)∵y=x+40中,y随x的增大而增大,要使费用最少,则x=12,∴最少费用为y=x+40=52(万元),村民每户集资700元与政府补助共计700×264+340000=524800>520000,∴每户集资700元能满足所需要费用最少的修建方案.【点评】本题综合考查一次函数和一元一次不等式组,解题的关键是根据题意列出正确的函数关系式.。
一次函数综合题(学生版)--2024年中考数学压轴题专项训练
一次函数综合题通用的解题思路:(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x 的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.1(2024•鼓楼区一模)如图,直线y =-3x +6与⊙O 相切,切点为P ,与x 轴y 轴分别交于A 、B 两点.⊙O 与x 轴负半轴交于点C .(1)求⊙O 的半径;(2)求图中阴影部分的面积.2(2023•宿豫区三模)如图①,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =-2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,ΔABC 的面积为s .(1)当t =2时,求点B 的坐标;(2)s 关于t 的函数解析式为s =14t 2+bt -54t -1或t 5 a t +1 t -5 (-1<t <5),其图象如图②所示,结合图①、②的信息,求出a 与b 的值;(3)在直线l 2上是否存在点A ,使得∠ACB =90°,若存在,请求出此时点A 的坐标;若不存在,请说明理由.3(2023•溧阳市一模)如图1,将矩形AOBC放在平面直角坐标系中,点O是原点,点A坐标为(0,4),点B坐标为(5,0),点P是x轴正半轴上的动点,连接AP,ΔAQP是由ΔAOP沿AP翻折所得到的图形.(1)当点Q落在对角线OC上时,OP= 165 ;(2)当直线PQ经过点C时,求PQ所在的直线函数表达式;(3)如图2,点M是BC的中点,连接MP、MQ.①MQ的最小值为;②当ΔPMQ是以PM为腰的等腰三角形时,请直接写出点P的坐标.4(2022•启东市模拟)我们知道一次函数y=mx+n与y=-mx+n(m≠0)的图象关于y轴对称,所以我们定义:函数y=mx+n与y=-mx+n(m≠0)互为“M”函数.(1)请直接写出函数y=2x+5的“M”函数;(2)如果一对“M”函数y=mx+n与y=-mx+n(m≠0)的图象交于点A,且与x轴交于B,C两点,如图所示,若∠BAC=90°,且ΔABC的面积是8,求这对“M”函数的解析式;(3)在(2)的条件下,若点D是y轴上的一个动点,当ΔABD为等腰三角形时,请求出点D的坐标.5(2024•新北区校级模拟)如图①,动点P从矩形ABCD的顶点A出发,以v1的速度沿折线A-B-C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =4,NH =1,点G 的坐标为(8,0).(1)点P 与点Q 的速度之比v 1v 2的值为 85 ;ABAD的值为;(2)如果OM =15.①求线段NF 所在直线的函数表达式;②求FG 所在曲线的函数表达式;③是否存在某个时刻t ,使得S ≥154?若存在,求出t 的取值范围:若不存在,请说明理由.6(2024•梁溪区校级模拟)在平面直角坐标系xOy 中,二次函数y =-ax 2+3ax +4a 的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴正半轴交于点C ,直线y =12x 交于第一象限内的D 点,且ΔABC 的面积为10.(1)求二次函数的表达式;(2)点E 为x 轴上一点,过点E 作y 轴的平行线交线段OD 于点F ,交抛物线于点G ,当GF =5OF 时,求点G 的坐标;(3)已知点P (n ,0)是x 轴上的点,若点P 关于直线OD 的对称点Q 恰好落在二次函数的图象上,求n 的值.7(2023•邗江区校级一模)如图1,在平面直角坐标系中,直线l :y =-33x +43分别与x 轴、y 轴交于点A 点和B 点,过O 点作OD ⊥AB 于D 点,以OD 为边构造等边ΔEDF (F 点在x 轴的正半轴上).(1)求A 、B 点的坐标,以及OD 的长;(2)将等边ΔEDF ,从图1的位置沿x 轴的正方向以每秒1个单位的长度平移,移动的时间为t (s ),同时点P从E出发,以每秒2个单位的速度沿着折线ED-DF运动(如图2所示),当P点到F点停止,ΔDEF也随之停止.①t=(s)时,直线l恰好经过等边ΔEDF其中一条边的中点;②当点P在线段DE上运动,若DM=2PM,求t的值;③当点P在线段DF上运动时,若ΔPMN的面积为3,求出t的值.8(2023•武进区校级模拟)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点). ,B为y轴上的一个动点,(1)已知点A-12,0①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=3x+3上的一个动点,4①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.9(2023•海安市一模)对于平面直角坐标系xOy中的图形W和点P,给出如下定义:F为图形W上任意一点,将P,F两点间距离的最小值记为m,最大值记为M,称M与m的差为点P到图形W的“差距离”,记作d(P,W),即d(P,W)=M-m,已知点A(2,1),B(-2,1)(1)求d(O,AB);(2)点C为直线y=-1上的一个动点,当d(C,AB)=1时,点C的横坐标是 (2-5)或(5-2,) ;(3)点D为函数y=x+b(-2≤x≤2)图象上的任意一点,当d(D,AB)≤2时,直接写出b的取值范围.10(2022•姑苏区校级模拟)平面直角坐标系xOy 中,对于任意的三个点A 、B 、C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的“三点矩形”.在点A ,B ,C 的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A ,B ,C 的“最佳三点矩形”.如图1,矩形DEFG ,矩形IJCH 都是点A ,B ,C 的“三点矩形”,矩形IJCH 是点A ,B ,C 的“最佳三点矩形”.如图2,已知M (4,1),N (-2,3),点P (m ,n ).(1)①若m =2,n =4,则点M ,N ,P 的“最佳三点矩形”的周长为,面积为;②若m =2,点M ,N ,P 的“最佳三点矩形”的面积为24,求n 的值;(2)若点P 在直线y =-2x +5上.①求点M ,N ,P 的“最佳三点矩形”面积的最小值及此时m 的取值范围;②当点M ,N ,P 的“最佳三点矩形”为正方形时,求点P 的坐标;(3)若点P (m ,n )在抛物线y =ax 2+bx +c 上,当且仅当点M ,N ,P 的“最佳三点矩形”面积为12时,-2≤m ≤-1或1≤m ≤3,直接写出抛物线的解析式.11(2022•太仓市模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =3,NH =1,点G 的坐标为(6,0).(1)点P 与点Q 的速度之比v 1v 2的值为 32 ;AB :AD 的值为;(2)如果OM =2.①求线段NF 所在直线的函数表达式;②是否存在某个时刻t ,使得S ≥23?若存在,求出t 的取值范围;若不存在,请说明理由.12(2022•邗江区校级一模)在平面直角坐标系xOy 中,对于点P 和线段ST ,我们定义点P 关于线段ST 的线段比k =PSST (PS <PT )PT ST(PS ≥PT ).(1)已知点A (0,1),B (1,0).①点Q (2,0)关于线段AB 的线段比k = 22 ;②点C (0,c )关于线段AB 的线段比k =2,求c 的值.(2)已知点M (m ,0),点N (m +2,0),直线y =x +2与坐标轴分别交于E ,F 两点,若线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,直接写出m 的取值范围.13(2022•泰州)定义:对于一次函数y 1=ax +b 、y 2=cx +d ,我们称函数y =m (ax +b )+n (cx +d )(ma +nc ≠0)为函数y 1、y 2的“组合函数”.(1)若m =3,n =1,试判断函数y =5x +2是否为函数y 1=x +1、y 2=2x -1的“组合函数”,并说明理由;(2)设函数y 1=x -p -2与y 2=-x +3p 的图像相交于点P .①若m +n >1,点P 在函数y 1、y 2的“组合函数”图像的上方,求p 的取值范围;②若p ≠1,函数y 1、y 2的“组合函数”图像经过点P .是否存在大小确定的m 值,对于不等于1的任意实数p ,都有“组合函数”图像与x 轴交点Q 的位置不变?若存在,请求出m 的值及此时点Q 的坐标;若不存在,请说明理由.14(2024•钟楼区校级模拟)在同一平面内,具有一条公共边且不完全重合的两个全等三角形,我们称这两个三角形叫做“共边全等”.(1)下列图形中两个三角形不是“共边全等”是;(2)如图1,在边长为6的等边三角形ABC 中,点D 在AB 边上,且AD =13AB ,点E 、F 分别在AC 、BC 边上,满足ΔBDF 和ΔEDF 为“共边全等”,求CF 的长;(3)如图2,在平面直角坐标系中,直线y=-3x+12分别与直线y=x、x轴相交于A、B两点,点C是OB 的中点,P、Q在ΔAOB的边上,当以P、B、Q为顶点的三角形与ΔPCB“共边全等”时,请直接写出点Q 的坐标.15(2023•新北区校级二模)如图,在平面直角坐标系xOy中,点A、点B的坐标分别为(-2,0)、(0,8).经过A、B、O三点的圆的圆心为M,过点M的直线与⊙M的公共点是D、E,与x轴交于点F,与y轴交于点N,连接AE、OD、BD.已知∠ODF=45°.(1)⊙M的直径为 217 ,点M的坐标为;(2)求直线DF所对应的函数表达式;(3)若P是线段AF上的动点,∠PEA与ΔBDO的一个内角相等,求OP的长度.16(2023•梁溪区模拟)如图,以A(-9,0)、B(-2,0)为顶点作等边ΔABC,点C在第二象限.(1)求直线BC所对应的函数表达式.(2)过点D(1,0)作一条直线交BC于点P,交AC于点Q,且DP:PQ=3:2.①求点P的坐标与∠BPD的度数;②在y轴上是否存在这样的点M,使得点M到∠BPD的两边所在直线的距离相等?若存在,请直接写出所以符合条件的点M的坐标;若不存在,请说明理由.17(2023•海州区校级二模)问题提出:(1)在学习几何时,我们可以通过构造基本图形,将几何“模型“化.例如在三角形全等与三角形的相似的学习过程中,“k”字形是非常重要的基本图形.如图1,已知:∠ADC=∠BEC=∠ACB=90°,D、C、E三点共线,AC=BC,由ASA易证ΔADC≅ΔCEB;如图2,已知:∠ADC=∠BEC=∠ACB=90°,D、C、E三点共线,若AC=6、BC=3、BE=1,则AD的长为 42 ;问题探究:(2)①如图3,已知:∠ADC=∠BEC=∠ACB=90°,AC=BC,D、C、E三点共线,求证:AD=BE+ DE;②如图4,已知点A(-3,1),点B在直线y=-2x+4上,若∠AOB=90°,则此时点B的坐标为;问题拓展:(3)如图5,正方形ABCD中,点G是BC边上一点,BF⊥AG,DE⊥AG,垂足分别为F、E.若AE=1,四边形ABFD的面积等于10,求正方形ABCD的面积.(4)如图6,正方形ABCD中,点E、F分别在AD、AB边上,AE=BF,连接EF、DF,则EFDF的最小值是.18(2023•金坛区一模)在平面直角坐标系xOy中,对于点A,记线段OA的中点为M.若点A,M,P,Q按逆时针方向排列构成菱形AMPQ,其中∠QAM=α°(0<α<180),则把菱形AMPQ称为点A的“α°菱形”AMPQ,把菱形AMPQ边上所有点都称为点A的“α°菱点”.已知点A(0,4).(1)在图1中,用直尺和圆规作出点A的“60°菱形”AMPQ,并直接写出点P的坐标(不写作法,保留作图痕迹);(2)若点B(1,1)是点A的“α°菱点”,求α的值;x+b的图象上存在点A的“α°菱点”,直接写出b的取值范围.(3)若一次函数y=-3319(2022•吴中区模拟)探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K字形是非常重要的基本图形,可以建立如下的“模块”(如图①):(1)请就图①证明上述“模块”的合理性.已知:∠A=∠D=∠BCE=90°,求证:ΔABC∽ΔDCE;(2)请直接利用上述“模块”的结论解决下面两个问题:①如图②,已知点A(-2,1),点B在直线y=-2x+3上运动,若∠AOB=90°,求此时点B的坐标;②如图③,过点A(-2,1)作x轴与y轴的平行线,交直线y=-2x+3于点C、D,求点A关于直线CD的对称点E的坐标.20(2022•雨花台区校级模拟)阅读并解答下列问题;在学习完《中心对称图形》一章后,老师给出了以下一个思考题:如图1,在平面直角坐标系xOy中,已知点A(0,3),B(5,1),C(a,0),D(a+2,0),连接AC,CD,DB,求AC+CD+DB最小值.【思考交流】小明:如图2,先将点A向右平移2个单位长度到点A1,作点B关于x轴的对称点B1,连接A1B1交x轴于点D,将点D向左平移2个单位长度得到点C,连接AC.BD.此时AC+CD+DB的最小值等于A1B1+CD.小颖:如图3,先将点A向右平移2个单位长度到点A1,作点A1关于x轴的对称点A2,连接A2B可以求解.小亮:对称和平移还可以有不同的组合⋯.【尝试解决】在图2中,AC+CD+DB的最小值是.【灵活应用】如图4,在平面直角坐标系xOy中,已知点A(0,3),B(5,1),C(a,1),D(a+2,0),连接AC,CD,DB,则AC+CD+DB的最小值是,此时a=,并请在图5中用直尺和圆规作出AC+CD +DB最小时CD的位置(不写作法,保留作图痕迹).【拓展提升】如图6,在平面直角坐标系xOy中,已知点A(0,3),C是一次函数y=x图象上一点,CD与y轴垂直且CD=2(点D在点C右侧),连接AC,CD,AD,直接写出AC+CD+DA的最小值是,此时点C的坐标是.21(2022•滨海县校级三模)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”,例如,点(-1,1)是函数y=x+2的图象的“好点”.2+2x+1的图象上,存在“好点”的函数是(填序号).(1)在函数①y=-x+5,②y=6x,③y=x(x<0)与y=kx-1的图象的“好点”分别为点A、B,过点A作AC⊥y轴,垂足为C.(2)设函数y=4x当ΔABC为等腰三角形时,求k的值;(3)若将函数y=2x2+4x的图象在直线y=m下方的部分沿直线y=m翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m的值.22(2022•宜兴市校级一模)如图(1),在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A坐标(6,0),点B在y轴上,点C在第二象限角平分线上,动点P、Q同时从点O出发,点P以1cm/s的速度沿O→A→B匀速运动到终点B;点Q沿O→C→B→A运动到终点A,点Q在线段OC、CB、BA上分别做匀速运动,速度分别为V1cm/s、V2cm/s、V3cm/s.设点P运动的时间为t(s),ΔOPQ的面积为S(cm2所示.),已知S与t之间的部分函数关系如图(2)中的曲线段OE、曲线段EF和线段FG(1)V1=,V2=;(2)求曲线段EF的解析式;(3)补全函数图象(请标注必要的数据);(4)当点P、Q在运动过程中是否存在这样的t,使得直线PQ把四边形OABC的面积分成11:13两部分,若存在直接写出t的值;若不存在,请说明理由.11。
一次函数》综合提高题及答案
一次函数》综合提高题及答案2018年八年级数学下册一次函数综合复题知识点复一次函数与变量x、y的关系为,当x发生改变时,其对应的y也随之改变,这个y就是x的函数。
正比例函数的图象性质包括:当k>0时,函数图象经过第一象限和第三象限;当k0时,函数图象从左下到右上逐渐增长;k<0时,函数图象从右上到左下逐渐减小。
一次函数的图象性质包括:当k>0且b>0时,函数图象经过第一象限;当k>0且b0时,函数图象经过第二象限;当k0时,函数图象从左下到右上逐渐增长;k<0时,函数图象从右上到左下逐渐减小。
一次函数的增减性为:当k>0时,函数单调递增;当k<0时,函数单调递减。
两条直线的位置关系取决于它们的斜率k1和k2的大小关系。
当k1>k2时,两条直线相交;当k1=k2时,两条直线重合;当k1<k2时,两条直线平行。
直线的平移分为上下平移和左右平移。
对于y=kx+b的直线,上下平移与b有关,左右平移与k有关。
关于x轴对称后的解析式为y=-kx-b,关于y轴对称后的解析式为y=kx-b。
一次函数与方程组的关系为,方程组的解在坐标系中即为两条直线的交点。
其中,y=0表示直线与x轴相交,y>0表示直线在x轴上方,y<0表示直线在x轴下方。
一次函数与不等式的关系为,当y=kx+b时,y>y0表示直线在y0上方,y<y0表示直线在y0下方,y≥y0表示直线在y0及以上,y≤y0表示直线在y0及以下。
一次函数的解析式求法为,已知两点坐标(x1,y1)和(x2,y2),则k=(y2-y1)/(x2-x1),b=y1-kx1.若已知函数图象的平移后的解析式,则平移前的解析式为y=k(x-a)+b,平移方向为向左平移a,向上平移b。
题目练1.如图是某蓄水池的横断面示意图,分深水区和浅水区,如果向这个蓄水池中以固定的水流量(单位时间注水的体积)注水,下面图中能大致表示水的深度h和时间t之间关系的图象是(图略)。
八年级数学下《一次函数》综合提高题及答案
八年级数学下《一次函数》综合提高题及答案1.某蓄水池横断面示意图如下,分为深水区和浅水区。
如果以固定的水流量(单位时间注水的体积)向蓄水池中注水,水深h与时间t之间的关系大致如下图所示:[插入示意图]2.一次函数y=-2x+1的图象不经过第二象限。
3.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系为a>b。
4.下图中表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数)图像的是[插入图像]。
5.已知一次函数y=kx+b中y随x的增大而减小,且kb<0,则直线y=kx+b的图象经过第一三四象限。
6.已知一次函数y=-2x+1通过平移后得到直线y=-2x+7,则向上平移6个单位。
7.直线y=x-1与坐标轴交于A、B两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的三角形最多有6个。
8.当直线y=x+2上的点在直线y=3x-2上相应点的上方时,则x<2.9.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是x>(1-b)/k。
10.A、B两点在一次函数图象上的位置如图,两点的坐标分别为A(x+a,y+b),B(x,y),则结论a<0成立。
11.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为x≥3.12.如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的整数解为x≤-5.13.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是m>1.22.已知函数 $y=(m-5)x^{m-4}-4m-4+m-2$,若它是一次函数,则 $m=5$;$y$ 随 $x$ 的增大而增大。
23.已知一次函数 $y=(k+3)x+2k-10$,$y$ 随 $x$ 的增大而增大,且图像不经过第二象限,则 $k>-3$。
一次函数提高检测卷(附答案)
一次函数检测卷一、填空题(每题2分,共26分)1、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .2、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3、一次函数2(4)(1)y m x m =-+-和2(2)3y m x m =++-的图象与y 轴分别相交于p 点和Q 点,p 、Q 关于x 轴对称,则m = .4、已知12y y y =-,1y 与2x 成正比例,2y 与x 成反比例,当1x =时3y =,1x =-时,7y =,则当2x =时,y = .5、函数312y x =-,如果0y <,那么x 的取值范围是 . 6、一个长120m ,宽100m 的矩形场地要扩建成一个正方形场地,设长增加xm ,宽增加ym ,则y 与x 的函数关系是 .自变量的取值范围是 .且y 是x 的 函数.7、如图1是函数152y x =-+的一部分图像,(1)自变量x 的取值范围是 ;(2)当x 取 时,y 的最小值为 ;(3)在(1)中x 的取值范围内,y 随x 的增大而 .8、已知一次函数2y x m =+和31xy m =+-的图象交点的横坐标为1,则m = ,一次函数2y x b =+的图象与两坐标轴所围成的三角形的面积为8,则b = .9、已知一次函数y kx b =+的图象经过点(2,5)-,且它与y 轴的交点和直线32xy =-+与y 轴的交点关于x 轴对称,那么这个一次函数的解析式为 .10、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .11、一次函数1y kx b =+-的图象如图2,则3b 与2k 的大小关系是 ,当b = 时,1y kx b =+-是正比例函数.12、b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上. 13、已知直线42y x =-与直线3y m x =-的交点在第三象限内,则m 的取值范围是 .二、选择题(每题3分,共36分)14、图3中,表示一次函数y mx n =+与正比例函数(y mx m =、n 是常数,且0,0)m n ≠<的图象的是( )15、若直线11y k x=+与24y k x=-的交点在x轴上,那么12kk等于().4A.4B-1.4C1.4D-16、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()17、直线0px qy r++=(0)pq≠如图5,则下列条件正确的是().,1A p q r==.,0B p q r==.,1C p q r=-=.,0D p q r=-=18、直线y kx b=+经过点(1,)A m-,(,1)B m(1)m>,则必有()A. 0,0k b>>.0,0B k b><.0,0C k b<>.0,0D k b<<19、如果0ab >,0a c <,则直线a cy x b b=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限20、已知关于x 的一次函数27y mx m =+-在15x -≤≤上的函数值总是正数,则m 的取值范围是( )A .7m >B .1m >C .17m ≤≤D .都不对21、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )图622、已知一次函数2y x a =+与y x b =-+的图像都经过(2,0)A -,且与y 轴分别交于点B ,c ,则ABC ∆的面积为( )A .4B .5C .6D .723、已知直线(0)y kx b k =+≠与x 轴的交点在x 轴的正半轴,下列结论:①0,0k b >>;②0,0k b ><;③0,0k b <>;④0,0k b <<,其中正确的个数是( )A .1个B .2个C .3个D .4个 24、已知(0,0)b c a c a bk b a b c a b c+++===>++=,那么y kx b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限25、如图7,A 、B 两站相距42千米,甲骑自行车匀速行驶,由A 站经P 处去B 站,上午8时,甲位于距A 站18千米处的P 处,若再向前行驶15分钟,使可到达距A 站22千米处.设甲从P 处出发x 小时,距A 站y 千米,则y 与x 之间的关系可用图象表示为( )三、解答题(1~6题每题8分,7题10分,共58分) 26、如图8,在直角坐标系内,一次函数(0,0)y kx b kb b =+><的图象分别与x 轴、y 轴和直线4x =相交于A 、B 、C 三点,直线4x =与x 轴交于点D ,四边形OBCD (O 是坐标原点)的面积是10,若点A的横坐标是1-,求这个一次函数解析式.227、一次函数y kx b=+,当k b=时,函数图象有何特征?请通过不同的取值得出结论?28、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.(1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.(2)在同一坐标系中,画出这三个函数的图象.29、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度元计费.(1)设用电x度时,应交电费y元,当x≤100和x>100时,分别写出y关于x的函数关系式.(2)小王家第一季度交纳电费情况如下:问小王家第一季度共用电多少度?30、某地上年度电价为元,年用电量为1亿度.本年度计划将电价调至~元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x—)(元)成反比例,又当x=时,y=.(1)求y与x之间的函数关系式;(2)若每度电的成本价为元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]31、汽车从A站经B站后匀速开往C站,已知离开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站距离y与B站开出时间t的关系;(2)如果汽车再行驶30分,离A站多少千米?32、甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)(1)设甲库运往A地水泥x吨,求总运费y(元)关于x(吨)的函数关系式,画出它的图象(草图).(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?附参考答案1、2-或32、163、1-4、195、23x <6、20y x =+;0x ≥;一次7、05x <≤;5;2.5;减小8、0或2;±9、43y x =-- 10、1-;2b >11、32b k >;1 12、83- 13、23m <-14、D 15、D 16、B 17、B 18、C 19、A 20、A 21、A 22、C 23、B 24、C 25、A26、12y x =-- 27、当k b =图象过(1,0)-28、(1)当08t ≤≤时;3Q t = 当824t <≤时;16Q t =+ 当2444t <≤时;288Q t =-+ (2)略 29、(1)0.57(100)y x x =≤; 0.57(100)y x x =+> (2)330度 30、(1)152y x =-(0.550.75)x ≤≤ (2)1(1)(0.3)(0.80.3)(120%)52x x +-=-+-解得10.6x =;20.5x =(舍去)31、(1)23y t = (2)40千米32、(1)3039200(070)y x x =-+≤≤百度文库- 让每个人平等地提升自我11 (2)当甲库运往A地70吨水泥,乙库不向A地运水泥时,总运费最省,最省为37100元.。
一次函数综合提高训练测试题精选(二)——学生版
一次函数综合提高训练测试题(二)一、选择题:1.已知y与3成正比例,并且1时,8,那么y与x 之间的函数关系式为()(A)8x (B)26 (C)86 (D)53 2.若直线经过一、二、四象限,则直线不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线24与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)16 4.若甲、乙两弹簧的长度y()与所挂物体质量x()之间的函数解析式分别为11和22,如图,所挂物体质量均为2时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y12(C)y1<y2(D)不能确定5.设b>a,将一次函数与的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线经过一、二、四象限,则直线不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线2m与4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到324的图像,可把直线32().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数(5)(41)x2(m为常数)中的y与x 成正比例,则m的值为()(A)m>-14(B)m>5 (C)14(D)511.若直线31与的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知≠0,而且a b b c c ac a b+++==,那么直线一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数6满足y<10,则常数a 的取值范围是()(A)-4<a<0 (B)0<a<2 (C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△为等腰三角形,则符合条件的点P 共有()(A)1个(B)2个(C)3个(D)4个16.一次函数(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线3与的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线3与的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2│q│=0的两个实根(≠0),在一次函数中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数61,当-3≤x≤1时,y的取值范围是.2.已知一次函数(2)3的图像经过第一,第三,第四象限,则m的取值范围是.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:.4.已知直线2不经过第三象限,则m的取值范围是.5.函数32的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为.6.过点P(8,2)且与直线1平行的一次函数解析式为.7.23与23的图像的交点在第象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、•q•)表示元.9.若一次函数,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•则一次函数的解析式为.10.(湖州市南浔区2005年初三数学竞赛试)设直线(1)1=0(为正整数)与两坐标所围成的图形的面积为(1,2,3,……,2008),那么S 12+…2008.11.据有关资料统计,两个城市之间每天的电话通话次数T•与这两个城市的人口数m 、n (单位:万人)以与两个城市间的距离d (单位:)有2kmnd的关系(k 为常数).•现测得A 、B 、C 三个城市的人口与它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话次数为次(用t 表示).三、解答题1.已知一次函数的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.已知,这里p 是一个常数,z 与x 成正比例,且2时,1;3时,1.(1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1≤x ≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y 是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x 的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77,凳子的高度为43.5,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A 点到B点经过的路线的长.7.由方程│1│+│1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y的图象与x 轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠∠,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数123的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作的垂线交于点E,交y 轴于点D ,求点D 、E 的坐标.10.某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地收割小麦,其中30•台派往A 地,20台派往B 地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A 地x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y ,并注明x 的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.11.已知写文章、出版图书所获得稿费的纳税计算方法是f (x )=(800)20%(130%),400(120%)20%(130%),400x x x x --≤⎧⎨-->⎩ 其中f (x )表示稿费为x 元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?12.某中学预计用1500元购买甲商品x个,乙商品y 个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.13.某市为了节约用水,规定:每户每月用水量不超过最低限量3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.14.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数综合提高训练测试题一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2 (C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t (分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y 的值随x 的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m 不经过第三象限,则m 的取值范围是_________.5.函数y=-3x+2的图像上存在点P ,使得P•到x•轴的距离等于3,•则点P•的坐标为__________. 6.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________. 7.y=23x 与y=-2x+3的图像的交点在第_________象限. 8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a 年,他的退休金比原有的多p 元,如果他多工作b 年(b ≠a ),他的退休金比原来的多q 元,那么他每年的退休金是(以a 、b 、p 、•q•)表示______元.9.若一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•则一次函数的解析式为________. 10.设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为S k (k=1,2,3,……,2008),那么S 1+S 2+…+S 2008=_______.11.据有关资料统计,两个城市之间每天的电话通话次数T•与这两个城市的人口数m 、n (单位:万人)以及两个城市间的距离d (单位:km )有T=2kmnd的关系(k 为常数).•现测得A 、B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话次数为_______次(用t 表示).三、解答题1.已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.已知y=p+z ,这里p 是一个常数,z 与x 成正比例,且x=2时,y=1;x=3时,y=-1. (1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1≤x ≤4,求y 的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.8.在直角坐标系x0y中,一次函数y=3x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典型肺炎的抗生素.据临床观察:如果成人按规定的剂量注射这种抗生素,注射药液后每毫升血液中的含药量y(微克)与时间t(小时)之间的关系近似地满足图所示的折线.(1)写出注射药液后每毫升血液中含药量y与时间t之间的函数关系式及自变量的取值范围.(2)据临床观察:每毫升血液中含药量不少于4微克时,控制“非典”病情是有效的.如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效这个有效时间有多长?(3)假若某病人一天中第一次注射药液是早晨6点钟,问怎样安排此人从6:00~20:00注射药液的时间,才能使病人的治疗效果最好?12.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.A 市、B 市和C 市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E 市10.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B•市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值.15、如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l交于点C .(1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.16、如图,以等边△OAB 的边OB 所在直线为x 轴,点O 为坐标原点,使点A 在第一象限建立平面直角坐标系,其中△OAB 边长为6个单位,点P 从O 点出发沿折线O-A-B 向B 点以3单位/秒的速度向B 点运动,点Q 从O 点出发以2单位/秒的速度沿折线O-B-A 向A 点运动,两点同时出发,运动时间为t (单位:秒),当两点相遇时运动停止.① 点A 坐标为_____________,P 、Q 两点相遇时交点的坐标为________________; ② 当t =2时,S =△OPQ ____________;当t =3时,OPQ S =△____________;③ 设△OPQ 的面积为S ,试求S 关于t 的函数关系式;④ 当△OPQ 的面积最大时,试求在y 轴上能否找一点M ,使得以M 、P 、Q 为顶点的三角形是Rt △,若能找到请求出M 点的坐标,若不能找到请简单说明理由。