绝对值2

合集下载

初一数学(北京版)相反数和绝对值(2)

初一数学(北京版)相反数和绝对值(2)
a
引入新知
求+7的绝对值距离是7个单位长度,
所以+7的绝对值仍是+7,记作 7 7.
引入新知
求-5的绝对值:
5个单位长度
数轴上表示-5的点到原点的距离是5个单位长度,
所以-5的绝对值是+5,记作 5 5. 特殊地,我们规定0的绝对值是0,记作 0 0.
25,- 5 ,- 0.16,0,16546,- 0.0001. 12
解: -0.16 = -( - 0.16) =0.16;
应用新知
例2 分别求下列有理数的绝对值
25,- 5 ,- 0.16,0,16546,- 0.0001. 12
解: 0 = 0;
应用新知
例2 分别求下列有理数的绝对值
25,- 5 ,- 0.16,0,16546,- 0.0001. 12
探究新知
例1 (1)依次用数轴上的点A,B,C,D,E,F,O分 别表示下列各数:-2,+3, -4, -2.5,1,5,0
-2.5
(2)分别求出这几个数的绝对值.
探究新知
(2)分别求出这几个数的绝对值.
-2的绝对值 2个单位长度
在数轴上表示-2的点A,到原点的距离是2个单位长度,所以-2
的绝对值是+2,记作 2 2.
探究新知
(2)分别求出这几个数的绝对值.
-2.5的绝对值 2.5个单位长度
-2.5
在数轴上表示-2.5的点D,到原点的距离是2.5个单位长度,
所以-2.5的绝对值是 +2.5,记作 2.5 2.5.
探究新知
(2)分别求出这几个数的绝对值.
1的绝对值
1个单位长度
在数轴上表示1的点E,到原点的距离是1个单位长度,所以1的

最新版初中数学教案《绝对值2》精品教案(2022年创作)

最新版初中数学教案《绝对值2》精品教案(2022年创作)

1.2.4 绝对值第1课时 绝对值【教学目标】 〔一〕知识技能1. 使学生掌握有理数的绝对值概念及表示方法。

2. 使学生熟练掌握有理数绝对值的求法和有关计算问题。

〔二〕过程方法1. 在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。

2. 能根据一个数的绝对值表示“距离〞,初步理解绝对值的概念。

3. 给出一个数,能求它的绝对值。

〔三〕情感态度从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。

教学重点给出一个数会求它的绝对值。

教学难点绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。

【情景引入】问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值. 【教学过程】 1.绝对值的定义:我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值)。

记作|a |。

例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。

同样可知|―4|=4,|+1.7|=1.7。

2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道: (1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ;(3)|―3|= ,|―0.2|= ,|―8.2|= 。

概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数〔正数〕的绝对值有什么特点?在原点左边的点表示的数〔负数〕的绝对值又有什么特点?由学生分类讨论,归纳出数a 的绝对值的一般规律: 〔1〕一个正数的绝对值是它本身; 〔2〕 0的绝对值是0;〔3〕 一个负数的绝对值是它的相反数。

初中数学知识点精讲精析 绝对值 (2)

初中数学知识点精讲精析 绝对值 (2)

2.3 绝对值学习目标1.会借助数轴,理解绝对值和相反数的概念。

2.知道| a|的含义以及互为相反数的两个数在数轴上的位置关系。

3.会求一个数的绝对值和相反数,能用绝对值比较两个负数的大小。

知识详解1.相反数(1)相反数的定义像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0。

相反数的理解:①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数③0的相反数为0是相反数定义的重要组成部分。

(2)相反数的求法求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数。

一个有理数a,它的相反数是多少呢?有理数a的相反数是-a.这里a可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a=2时,-a=-2,2与-2是互为相反数;当a=-1时,-a=-(-1),因为-1的相反数是1,所以-(-1)=1;当a=m+n时,-a=-(m +n),所以m+n的相反数是-(m+n).(3)相反数的几何意义一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等。

2.绝对值(1)绝对值的几何定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

①绝对值是一个数在数轴上的对应点离开原点的长度,如图中,点-4距离原点4个单位长度,则-4的绝对值就是4②绝对值是一个距离。

(2)绝对值的表示方法一个数a的绝对值记作|a|,读作a的绝对值.如,+4的绝对值记作|+4|,-8的绝对值记作|-8|。

(3)绝对值的代数意义①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0。

用式子表示为:|a|=⎩⎪⎨⎪⎧ a ,a>0,0,a =0,-a ,a<0.3.绝对值的性质(1)数轴上表示某个数的点到原点的距离越近,它的绝对值就越小,到原点的距离越远,它的绝对值就越大。

绝对值(2)

绝对值(2)
| | | | | | | | |
-5 -4 -3 -2 -1 0
1
2
3
小结
拓展
2、直接比较法。 (1)正数都大于零,负数都小于零,正数 大于一切负数。 (2)两个正数比较大小,绝对值大的数大; (3)两个负数比较大小,绝对值大的反而小。
小结
拓展
2、你觉得什么情况下运用直接比较法简
单,什么情况下利用数轴比较法简单? 说说你的想法?

下图表示某一天我国5个城市的最低气温。
武汉5 ℃
北京-10℃
上海0℃
广州10℃
哈尔滨-20℃
问:你能将上述五个城市的最低气温按从低到高的 顺序依次排列吗?
哈尔滨 -20℃
北京
上海
武汉
广州
< -10℃ < 0℃ < 5℃ < 10℃
请大家思考这五个数的大小与它们在数 轴上的位置有什么关系?
越 来 越 大
解: 这些增幅中2006年的-9.6%最小,增幅是 负数说明我国人均水资源比上年减少了。
2010年春季,西南5省面临世纪大旱,5000多万同 胞受灾。这场少见的世纪大旱使农作物受灾面积近 500万公顷,其中40万公顷良田颗粒无收,2000万 同胞面临无水可饮的绝境。
小结
拓展
一、有理数的大小比较有两种方法: 1、 数轴比较法: 在数轴上表示的两个数,右边的数总比 左边的数大。
● ● ● ● ●
-20
-10
0
5
10
有理数大小的比较方法:
一、数轴比较法:
在数轴上表示的两个数,右边的数总比左 边的数大。 小 大
-5 -4 -3 -2 -1 0 1 2 3 4 5
有没有最大的有理数?有没有最小的有 理数?为什么?

绝对值2

绝对值2

1.2.4 绝对值(2)总课时7 三维目标一、知识与技能掌握有理数的大小比较的两种方法──利用数轴和绝对值.二、过程与方法经历利用绝对值以及利用数轴比较有理数的大小,进一步体会“数形结合”的数学方法,培养学生分析、归纳的能力.三、情感态度与价值观会把所学知识运用于解决实际问题,体会数学知识的应用价值.教学重、难点与关键1.重点:会利用绝对值比较有理数的大小.2.难点:两个负数的大小比较.3.关键:正确理解绝对值的概念.一、教学过程1、复习提问,引入新课用“>”、“<”号填空.1.5.7______6.3; 2.27_____38; 3.0.03_______0;4.│-3│_______│2│; 5.│-23│_______│-32│.二、新授引入负数后,如何比较两个有理数的大小呢?让我们从熟悉的温度来比较,大家观察课本第12页中“未来一周天气预报”.1.课本图1.2-6中共有14个温度,其中最低的是多少?最高的是多少?2.请你将这14个温度按从低到高的顺序排列.课本图1.2-6中的14个温度按从低到高排列为:-4℃,-3℃,-2℃,-1℃,0℃,1℃,2℃,3℃,4℃,5℃,6℃,7℃,8℃,9℃.按照这个顺序排列的温度,在温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的,如课本图1.2-•7,这就是说在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数,因此,我们可以利用数轴比较有理数的大小.例如在数轴上表示-6的点在表示-5的点的左边,所以-6<-5.同样-5<-4,-312<-3,-2<0,-1<1,…从数轴上可知:表示正数的点都在原点的右边;表示负数的点都在原点左边.因此有正数大小0,0大于负数,正数大于负数.两个正数的大小比较小学已学过,不画数轴你会比较两个负数的大小吗?探索:我们知道,在数轴上越靠左边的点所表示的数越小,而这个点与原点的距离越大,即这个点所表示的数的绝对值越大,因此,我们还可以利用绝对值比较两个负数的大小.即两个负数,绝对值大的反而小.例如:│-2│=2,│-5│=5,即│-2│<│-5│,因此-2>-5.同样│-1│<│-3│,所以-1>-3.例1:比较下列各对数的大小:(1)-(-1)和-(+2);(2)-821和-37;(3)-(-0.3)和│-13│.解:(1)先化简,-(-1)=1,-(+2)=-2,正数大于负数,1>-2.即 -(-1)>-(+2).(2)这是两个负数比较大小,要比较它们的绝对值,绝对值大的反而小.│-821│=821,│-37│=37=921.因为821<921,即│-821│<│-37│,所以-821>-37.(3)先化简,-(-0.3)=0.3,│-13│=13=.0.3, 0.3<0.3,即-(-0.3)<│-13│.初学时,要求学生按以上步骤进行,能化简的要先化简,•然后按照有理数的大小比较法则:异号两数比较大小,要考虑它们的正负,根据“正数大于负数”,•同号两数比较大小,要考虑它们的绝对值,特别是两个负数大小比较,先各自求出它们的绝对值,然后依法则:两个负数,绝对值大的反而小,比较绝对值大小后,即可得出结论.例2:已知a>0,b<0且│b│>│a│,比较a,-a,b,-b的大小.解:方法一,可通过数轴来比较大小,先在数轴上找出a,-a,b,-b•的大致位置,再比较.由a>0,b<0可知表示a 的点在原点的右边,表示b 的点在原点的左边;由│b │>•│a │,可知表示b 的点离开原点的距离更远,即它应在表示a 的点的左边,•然后再根据两个互为相反数在数轴上所表示的点在原点两边,且与原点距离相等即可得到下图. -b -a a 0b根据数轴上,较左边的点所表示的数较小,可得:b<-a<a<-b .三、课堂练习1.课本第14页练习.2.补充练习: (1)比较大小,并用“<”连结.①-34,-712,-56;②-(-10),-│-10│,9,-│+18│,0. (2)有理数a ,b 在数轴上的表示如下图,用“>”或“<”号填空. 1-10b①a_____b ; ②│a │_____│b │; ③-a_____-b ; ④1a_____1b . 四、全课小结(提问式)比较有理数的大小有哪几种方法? 有两种方法,方法一:利用数轴,把这些数用数轴上的点表示出来,然后根据“数轴上较左边的点所表示的数比较右边的点所表示的数小”来比较.方法二:利用比较法则:“正数大于零,负数小于零,两个负数比较绝对值大的反而小”来进行.在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数.五、作业布置1.课本第15页习题1.2第5、6、8题.教后反思。

绝对值(2)

绝对值(2)
(2)-3到原点的距离 > -2到原点的距离, 即|-3| > |-2|; -3 < -2 (3)-2到原点的距离 > -1到原点的距离, 即|-2| > |-1|; -2 < -1
3、分析问题2中的结果,你 发现了什么规律? 归纳: 两个负数比较大小,绝对值 大的 反而小 。
自学指导2
请同学们认真阅读课本第13页 的“例”,注意解题的步骤,然后 归纳方法: 异号两数比较大小,要考虑 正负 它们的 ; 同号两数比较大小,要考虑 它们的 绝对值。
自学检测2
课本第13页的“练习”
小结:
大家这节课学到哪些 知识,你能说一说吗?
作业:
1教材P14的6
当堂训练
1. 课本第14页的7,8,9
2、比较下列数的大小 (1)-9.1与-9.099 1 4 (2)-2 3与- 2
5
当堂训练:
3,用“ <”或“ > ”填空。 因为|-10| |-100|, 所以-10 -100 因为|-5/3| |-3/5|, 所以-5/3 -3/5>来自0 ;0>
负数;
> 负数(填>或<)
自学检测1 1、画数轴比较大小:(填>或<) (1)-1 < 2;
(2)0 (3)-4
>
<
-0.5; -2
2、观察数轴,并填空:(填>或<)
-4 -3 -2 -1 0 1 2 3 4
1)-4到原点的距离 > -3到原点的距离, < -3 即|-4| > |-3|; -4
1.2.4 绝对值(2)
学习目标:
会利用数轴、绝对值 比较数的大小

绝对值2教案

绝对值2教案

学科:数学 教学内容:绝对值【基础知识精讲】1.给出一个数,能求出它的绝对值. 2.会利用绝对值比较两个负数的大小.【重点难点解析】 明确绝对值的意义一个数的绝对值就是数轴上表示这个数的点与原点的距离,这就是绝对值的几何意义,即表示数a 的点是P ,则一定是|a|=OP .绝对值的代数定义是:设a 为有理数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值为0,注意对于任何有理数a ,都有0||≥a ,在今后的学习中很重要.A .重点、难点提示B .考点指要绝对值是初中数学的一个重要内容,也是中考的必考内容之一。

一个数的绝对值与这个数的关系:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

比较两个负数的大小,可利用绝对值比较,也可以利用数轴比较。

【难题巧解点拨】例1 求下列各数的绝对值: -32,53+,0,-2.1 解:32|32|=-,5353=+,|0|=0,|-2.1|=2.1。

例2 比较下列各组数的大小:(1)-1与0 (2)-1与-2 (3)32-与-2.1 解:(1)因为-1在数轴上的对应点在0在数轴上的对应点的左边,所以-1<0。

(2)因为|-1|=1,|-2|=2,1<2,所以-2<-1。

(3)在为3232=-,|-2.1|=2.1,1.232<,所以321.2-<-。

(两个负数的比较,转化成了它们的绝对值的大小的比较,即两个正数的大小的比较,这就是化归转化的思想)注:比较两个有理数的大小,还可以应用数轴比较,这样较直观。

方便,同学们不妨试一试。

例3 已知a>b>0,试比较-a 与-b 的大小。

解法一:因为a>b>0,所以-a<0,-b<0, 而|-a|=a ,|-b|=b ,又a>b ,所以-a<-b 。

初中数学人教版 绝对值2 人教版

初中数学人教版  绝对值2 人教版
绝对值
情境引入:
指出下列各点与原点的距离是多少?
A
BF
CD
E
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
A
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
一个数a的绝对值:
数轴上表示这个数的点与原点之间的距离。
一个数的绝对值应该怎么样去记呢?
一个数a的绝对值用 |a| 表示。
课后思考 已知|x–2|+|y–3|+|z–4|=0,求x+y–z的值。
本节课你掌握了以下知识吗?
绝对值的定义是什么? 绝对值的性质是什么?
作业:
课本P13 3题
11.下列语句正确的个数有(B )
①若a=b,则|a|=|b|; √ ②若a= –b,则|a|=|b|; ③若|a|=|b|,则a=b;
3.判断(对的打“√”,错的打“×”):
(1)一个有理数的绝对值一定是正数 ×( ) (2)-1.4<0,则│-1.4│<0。 ( ×) (3) │-32︱的相反数是32 ( ×)
练习:
1 、 符 号 是 “ +” 号 , 绝 对 值 是 6 的 数
是 6 ;符号是“-”号,绝对值是6的 数是 -6 ;绝对值等于6的数有几个? 2、绝对值是0的数是 0 。
世界上有一种爱很伟大,那就是母爱!世上有一个人最值得我们去回报,那就是母亲。 母亲像什么,母亲像天使一样把一点一滴汗水与祝福慢慢地撒在我们的心里。
母亲是什么,母亲为我们打开成长的大门,母亲是上帝派下来哺育我们的天使。 在人生崎岖坎坷的旅途上,是谁给予你最真诚、最亲切的关爱,是谁对你嘘寒问暖,时刻给予你无私的奉献;是谁不知疲倦地教导着你为人处世的道理;是谁为了你的琐事而烦恼?

武汉市实验中学七年级数学上册 第二章 有理数及其运算 2.3 绝对值教学设计2 北师大版

武汉市实验中学七年级数学上册 第二章 有理数及其运算 2.3 绝对值教学设计2 北师大版

绝对值2教学目标知识目标:(1)理解绝对值的概念及表示法。

(2)理解数的绝对值的几何意义。

能力目标:(1)掌握求一个数的绝对值及有关的简单计算,(2)掌握绝对值等于某一正数的有理数的求法,探索绝对值的简单应用。

情感目标:让学生经历绝对值的产生过程,体会数形结合思想。

教学重点、难点重点:绝对值的概念和求一个数的绝对值。

难点:绝对值的几何意义。

教学过程一、新课引入我们已经知道有理数在日常生活中应用广泛,与生产实践联系紧密,用正、负数可以来表示相反意义的量,而数轴使我们直观的感受到有理数中正、负数的区别和数在数轴上相应的位置。

乘城市中的出租车去逛商店是我们经常经历的事,其中的数量关系与我们所学的有理数、数轴有密切联系。

例如有2位同学在书店购买书籍后回家,一位同学乘上甲出租车向东行驶10 Km到达A处,另一位同学乘上乙出租车向西行驶10 Km到达B处。

二、合作学习把全班同学分4---5组分组讨论完成下面的三个问题1:描述请大家用数轴来表示这一过程(记向东行驶的里程数为正)2:思考两位同学付费额度是否一样?为什么?3:结论付费额度与行驶方向有没有关系?然后请各组代表总结发言:(鼓励学生积极参与,并给予高度的评价)这两位同学由于乘车离开书店的距离一样,所以付费额度也是一样的,与行驶方向无关。

说明在数轴上的A(+10)、B(-10)两点到原点(书店)的距离是一样的,都是10。

同样数轴上+5和-5两点到原点的距离也是一样的。

我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

(注意是离开原点的距离)如数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5,记作55=- ;+5的绝对值也是5,记作55=+ 。

其实际意义是:数轴上+5这个点到原点的距离为5。

(强调绝对值符号的书写格式) 三、课内练习1、求下列各数的绝对值: -1.6 580 -10 +10 同时说出它们的几何意义。

2、说出下列各数的绝对值: -7 -2.05 0 1000 97 97-由上述两题可概括出:(在教师的引导下让学生得出结论)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,互为相反的两个数的绝对值相等。

绝对值2

绝对值2
2、根据绝对值的意义,思考:
a (1)如果 1 ,那么a ________0 a
(2)如果a<0,那么-︱a︱=
a 。 则 _____ a

创新思维
在日常生活和生产中,我们借助绝对值的意义可以判断 某些产品质量的好差,你能回答下列问题吗? 正式 足球比赛对所有足球的质量有严格的规定,下列6个 质量检测结果:(用正数记超过质量的克数,用负数记不足 质量的克数) -25 , +10, -20 , +30, +15, -40 请指出哪个足球的质量好一些,并用绝对值知识进行说明.
11.一个数的倒数等于它本身的数一共有 ( ).
A.1个;
C.3个;
B.2个;
D.4个.
12.如果一个数的相反数是非正数,

这个数一定是( )
A.正数 ;
C.非负数 ;
B.负数;
D.非正数.
1.已知:|a|=3,|b|=2.
求:a+b的值.
2 . | x-3|+|y-2|=0 成 立 的 条 件 是 ( ). A. x=3 ; C. x=3且y=2; 数. B. y=2; D. x、y为任意
1. 判断(对的打“√”,错的打“×”) :
(1)一个有理数的绝对值一定是正数。 (2)-1.4<0,则│-1.4│<0。 (3) │-32︱的相反数是32 ( ( ( ) ) )
(4) 如果两个数的绝对值相等,那么这两个数 相等 ( (5) 互为相反数的两个数的绝对值相等 (
) )
归纳小结:
任何有理数的绝对值一定不是负数,|a|≥0
2、知道一个数的绝对值,求这个数
⑴.绝对值是+3.1的数是_________,绝对值小 于2的整数是_________. ⑵.若│x│=5,则x=______,若│x-3│=0,则 x=_________. ⑶.若│x│=│-7│,则x=___,若│x-1│=2,则 x=_________.

初一 第一讲 绝对值(2)(答案)

初一 第一讲 绝对值(2)(答案)

绝对值(2)(答案)1 / 1绝对值(2)——北师大家教例17.(1)求21-+-x x 的最小值。

解答:几何意义是x 到1的距离加上x 到2的距离,最短是1(2)求321-+-+-x x x 的最小值。

解答:几何意义是x 到1的距离加上x 到2的距离加上x 到3的距离,等于x 到1的距离加上x 到3的距离,再加上x 到2的距离,最小值是1到3的距离,加上x 到2的距离,当2x =时,最小为2(3)求4321-+-+-+-x x x x 的最小值。

解答:几何意义是x 到1的距离加上x 到2的距离加上x 到3的距离加上x 到4的距离,最小值是等于1到4的距离加上2到3的距离,最小为4(4)23321++-+-x x x 何时取到最小值?解答:几何意义是x 到1的距离加上2倍的x 到32的距离加上3倍的x 到23-的距离,最小值为23x =-时,取到6例18.设1x ,2x ,…,2011x ,2012x 是1,2,…,2011,2012 的一个排列,(1)求201221201221-++-+-x x x 的最大值。

解答:去绝对值得到加上2012个数,减去2012个数,最大是加上两个1007~2012,减去两个1~1006,最大值为2024072(2)求201121201121-++-+-x x x 的最大值。

解答:去绝对值得到加上2011个数,减去2011个数,最大是加上一个1007~2011,一个1006~2011,减去一个1~1005,一个1~1006,最大值为2022060例19.已知9≤-b a ,16≤-d c ,且25=+--d c b a ,求c d a b ---的值。

解答:()()25a b c d a b c d --+=---=99a b -≤-≤,1616c d -≤-≤ 7b a d c ---=-例20.已知36)13)(12)(21(=++-++--++z z y y x x ,求z y x 32++的最大值和最小值。

奥数-绝对值-2

奥数-绝对值-2
补充题1已知m、n为整数,且 ,那么 的值为多少?
解:2或3或5或6
补充题2已知 ,如果 , ,那么y的最大值是多少?
解:当x=96时,y取最大值211
补充题3已知 ,且 ,那么 _______
解:
初中数学竞赛真题选讲
——绝对值
绝对值的题型主要包括绝对值方程,绝对值不等式,最值,几何意义等几类。
例题部分
例4解方程
解:零点分段法,x=7/3
C)解不等式
例5解下列不等式1、
2、
解:1,x<-1或x>9;2,x>2或x<-3
例6解不等式
解:零点分段法,x〉17/13
例7解不等式
解:不等式的解集为任意数
D)最值问题
例8已知 ,求 的最大值与最小值
解:当 时,取最大值为5;当 时,取最小值为-3
例9已知 ,求 的最大值与最小值
11.(同步,P114)(1997,希望杯)有理数a和b满足 ,则()
A B C D
12.(同步,P120)(第10届,希望杯)已知 ,那么 的最大值等于()
A 1 B5 C8 D 3
13.(同步,P127)(1999,武汉市)若 ,则方程 的解集是________.
14.(同步,P133)(1997,希望杯)有理数a和b满足 ,则()
18.(同步,P209)(2001,北京市初二决赛)在6张纸片的正面分别写上整数1,2,3,4,5,6,打乱次序后,将纸片翻过来,在它们的反面也随意写上1~6这六个整数,然后计算每张纸片正面与反面所写数字之差的绝对值,得出6个数,请你证明:所得的六个数中至少有两个是相同的。
练习部分
19.(同步,P77)(南京市竞赛题)讨论关于x的方程 的解的情况

2.4(2)绝对值第2课时

2.4(2)绝对值第2课时
2.4
绝对值 绝对值的应用
题型1、绝对值的概念的理解
判断: (1)一个数的绝对值是 2 ,则这数是2 。 ±2 (2)|5|=|-5|。 (3)|-0.3|=|0.3|。 (4)|3|>0。 (5)|-1.4|>0。 非负数 (6)有理数的绝对值一定是正数。 (7)若a=b,则|a|=|b|。 a=±b (8)若|a|=|b|,则a=b。 非正数 (9)若|a|=-a,则a必为负数。 (10)互为相反数的两个数的绝对值相等。
m的绝对值是5,试求|a+b|+
1 2 (2 5m m )的值. cd
课堂小结
1、数轴上表示数a的点与原点的距离叫做数a 的绝对值。 2、(1)如果a>0,那么|a|=a (2)如果a<0,那么|a|=-a
(3)如果a=0,那么|a|=0
3、 a 0 4、几个非负数的和为0,那么这几个数分别为 0
(6)如果|a|=8,|b|=2,且|a-b|=b-a,则 |a+b|(1)、若│x-2│+ │y-3│=0,则 x· y= ____ 6
2 (2)、若│x-6│+ │y-3│=0,则x/y= ____ ab (3)、若│a-4│+ │b-2│=0,求 的 ab 值。 1/4 (4)、若│m-2│与│n-10│互为相反数, 12 求m+n的值。 结论:若几个非负数的和为0,则这 几个数分别等于0.
所以这天汽车耗油共计34.8升
题型一:利用绝对值的意义化简绝对值
例1、有理数a、b、c顺次在数轴上的 位置如图所示,化简: -|a|+|a+b|-|0|-|c-b|.
拓展与提高
练习:《超越训练》19页14题
1 1 1 1 1 1 1 2.计算: - 1 + - +......+ + 2 3 2 99 98 100 99

绝对值6个基本公式

绝对值6个基本公式

绝对值6个基本公式绝对值是数学中的一个基本概念,在许多不同的领域和应用中都有重要的作用。

在本文档中,我将向您介绍绝对值的基本概念和六个基本公式,帮助您更好地理解和应用它们。

一、绝对值的定义在数学中,绝对值表示一个数距离原点的距离,无论这个数是正数、负数还是零,它的绝对值都是非负数。

二、绝对值的符号表示绝对值可以用两条竖线“| |”来表示。

如|a|代表a的绝对值。

三、绝对值的性质1. 非负性:对于任何实数a,|a| ≥ 0。

2. 非负数的绝对值:对于任何非负实数a,|a| = a。

3. 负数的绝对值:对于任何负实数a,|a| = -a。

4. 绝对值的乘法:对于任何实数a和b,|a · b| = |a| · |b|。

5. 绝对值的加法:对于任何实数a和b,|a + b| ≤ |a| + |b|。

6. 绝对值的三角不等式:对于任何实数a和b,|a - b| ≤ |a| +|b|。

接下来,我将分别介绍这六个基本公式的应用和推导过程。

1. 非负性由绝对值的定义可知,绝对值是一个非负数,即|a| ≥ 0。

这个性质在解决绝对值不等式和证明问题中经常用到。

2. 非负数的绝对值正数的绝对值是它本身,即|a| = a。

例如,|3| = 3。

3. 负数的绝对值负数的绝对值是它的相反数的绝对值,即|a| = -a。

例如,|-3| = 3。

4. 绝对值的乘法绝对值的乘法指的是两个数的绝对值相乘等于这两个数的乘积的绝对值。

例如,对于实数a = -2和b = 3,我们有|a · b| = |-2 · 3|= |(-2) · 3| = 6 = |a| · |b|。

5. 绝对值的加法绝对值的加法指的是两个数的绝对值之和大于等于这两个数之和的绝对值。

例如,对于实数a = -2和b = 3,我们有|a + b| = |-2 + 3|= |1| = 1 ≤ |-2| + |3| = 5。

第一讲 绝对值 2

第一讲  绝对值 2

第一讲 绝对值一、知识点:1、脱去绝值符号是解绝对值问题的切入点。

脱去绝对值符号常用到相关法则、分类讨论、数形结合等知识方法。

去绝对值符号法则:()()()0000<=>⎪⎩⎪⎨⎧-=a a a a a a 2、恰当地运用绝对值的几何意义 从数轴上看a 表示数a 的点到原点的距离;b a -表示数a 、数b 的两点间的距离。

3、灵活运用绝对值的基本性质 ①0≥a ②222a a a == ③b a ab ⋅= ④()0≠=b ba b a ⑤b a b a +≤+ ⑥b a b a -≥-二、考点聚集考点1、去绝对值符号法则例1:已知3,5==b a 且a b b a -=-那么=+b a 。

变式训练:1、已知,3,2,1===c b a 且c b a >>,那么()=-+2c b a 。

(北京市“迎春杯”竞赛题) 2、若5,8==b a ,且0>+b a ,那么b a -的值是( )A .3或13B .13或-13C .3或-3D .-3或-13例2: 有理数c b a ,,在数轴上的位置如图所示,式子c b b a b a -++++化简结果为( ) A .c b a -+32 B .c b -3 C .c b + D .b c -变式训练:3、有理数c b a ,,在数轴上的位置如图所示,则化简c c a b b a ------+11的结果为 。

4、已知有理数c b a ,,在数轴上的对应的位置如下图:则b a c a c -+-+-1化简后的结果是( ) (湖北省初中数学竞赛选拨赛试题)A .1-bB .12--b aC .c b a 221--+D .b c +-21考点2、恰当地运用绝对值的几何意义别用a ,b 表示,那么AB=|a —b|。

(思考一下,为什么?),利用此结论,回答以下问题:(1)数轴上表示2和5 的两点之间的距离是_______, 数轴上表示-2和-5的两点之间的距离是______,数轴上表示1和-3的两点之间的距离是______;(2) 数轴上表示x 和-1的两点A 、B 之间的距离是_______,如果|AB|=2,那么x 的值为_____;(3)说出|x+1|+|x+2|表示的几何意义是_________________________________,当x 取何值时,该式取值最小:_____________.(4)若x 为有理数,则︱x-3︱+︱x+7︱+︱x+1︱的最小值为_____________※(5)求|x -1|+|x -2|+|x -3|+…+|x -2009|的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 < 1.5 <3 <5
(3)由以上知:两个负数比较大 小,绝对值大的反而小
例2. 比较下列每组数的大小
解法一(利用绝对值比较两个负数的大小) 解: (1)| -1| = 1,| -5 | = 5 ,1﹤5, 所以 - 1> - 5
5 6
(1) -1和 – 5; (2)- 5 和 2.7 6
(2)因为| 5 6
5 | 6
=
,|- 2.7| =2.7,
﹤2.7,所以 - 5 ﹥ -2.7 6
解法二 (利用数轴比较两个负数的大小) 解:(1) 因为- 5在 –1左边,所以 - 5﹤ - 1
(2) 因为- 2.7在 - 5 的左边,所以 2.7 ﹤- 5 6 6
• 会利用绝对值比较两个负数的大小: • 两个负数,绝对值大的反而小.
作业: 习题 2.3 一试1~3
1~7 试
厦门名片制作/chanping/pingmian/mingpiansheji/
;
ቤተ መጻሕፍቲ ባይዱ
uyd20vau
感到腰和胳膊都特别疼,忍不住“哎哟”了一声。耿正轻轻地问:“很累吧爹,是不是胳膊很疼啊?”耿老爹说:“是啊,腰腿和胳膊都有点 儿不得劲儿。爹可能是有点儿老了呢,怎么这么一点儿活儿就给累成这个样子了!”耿正说:“不是你老了,这活儿就是怪累人的。我并没有 干多少,还感觉很累呢。”耿老爹说:“明儿个都歇着吧,那些家伙什儿不用着急还的。”耿正说:“爹,这些事情你就不用结记了,我明儿 个下午再过去叫他们派车来拉吧!明儿个上午,恐怕连我也不想动弹了呢。”小青和耿正兄妹三人到底年纪小,体力恢复得快。第二天,他们 只好好地歇息了一个上午以后,就全都歇过来了。乔氏为大家做了非常丰盛的午饭,不但有清蒸鱼和盐水鸭,而且还炒了好几个素菜,烙了牛 肉馅饼,做了鸡蛋挂面汤。大家高高兴兴地吃完午饭以后,乔氏还是不让小青和耿英帮她洗锅刷碗,让她们继续歇息去。但是,小青和耿正兄 妹三人谁也不想再待在床上休息了,只有耿老爹一人还是懒得动,依然回东边屋里睡觉去了。110第三十二回 小树林勾起思乡情|(为省事现买 石灰膏,小树林勾起思乡情;耿老爹德才让人敬,乔氏期盼得佳婿。)接下来的一段时间里,耿正兄妹仨继续做水果贩卖生意,耿老爹把两张 大床和大凳子小板凳什么的都做好了。所有的木料用得干干净净的,耿老爹和乔氏都非常高兴。五间新屋下一步该进行的是亮家了。所谓的亮 家实际上就是用石灰泥进行屋内上面。完成这一步工程时,必须得使用专门淋制的熟石灰膏。于是,耿老爹在次日的早饭桌上与乔氏商量: “咱们得在院子里挖个淋灰池子了。你看在哪里挖合适?”乔氏说:“出门儿不远的小树林旁边,有几个专门做这种生意的人呢,他们常年里 都在淋制和售卖熟好了的石灰膏。淋制熟石灰膏这个活儿太麻烦,咱们就不要自己做了,去那里买一些使用吧!”耿老爹说:“说的也是,这 个活儿不但麻烦费时,而且还会坏了水土,对今后在院儿里种菜种花的,多多少少会有一些影响呢。”小青听了,眨巴眨巴那双特别好看的杏 仁眼,脆生生地问耿老爹:“耿伯伯,您准备什么时候去购买石灰膏啊?”耿老爹说:“如果那里时时有人的话,我想今儿个上午就去看看。” 小青说:“应该是时时有人的。那咱们吃完饭了,我就带你们去吧!”耿老爹笑着说:“好啊,我就知道,你一定会给我们当向导的!”想一 想又说:“不过啊,这装石灰膏,得准备一些特别的家伙什儿呢!”乔氏说:“不用准备,他们有现成的家伙什儿可以抵押了借用的。用完了 给他们送回去,顺便取回押金就行了。”耿老爹高兴地说:“这样最好不过。装了石灰膏的家伙什儿,可是很不好清理的呢!”转而又问: “那咱们自己推上小推车,挑
做一做
( 1 )在数轴上表示下列各数,并 比较它们的大小:
- 1.5 , -3, -1, -5 ( 2 ) 求出(1)中各数的绝对值, 并比较它们的大小 ( 3 )你发现了什么?
解:(1) - 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3; | -1 | = 1 ; | - 5 | = 5.
相关文档
最新文档