水塔水位控制系统
水塔供应控制系统的原理
水塔供应控制系统的原理
水塔的供水控制系统主要根据以下原理工作:
1. 在水塔顶部设置一个水位控制器,通过浮球等设备检测水塔水位。
2. 水位控制器通过导线连接到水泵,可以控制水泵启动或停止。
3. 当水位下降至设定的最低水位时,水位控制器发信号启动水泵。
4. 水被泵入水塔,当水位上升到设定的最高水位时,控制器发信号停止水泵。
5. 这样通过开关水泵来自动维持水塔内水位在一个合适的高度范围。
6. 水塔底部有水出水口和阀门,控制向外输送水量。
7. 出水口还连接有水压开关,检测水压避免管网水压过大。
8. 有时会设置定时器使水泵在非高峰时段工作,实现节能控制。
9. 现代系统还采用传感器、PLC控制来实现水位精确控制。
10. 控制系统确保了水塔能可靠、经济地提供稳定的水源供水。
水塔水位PLC自动控制系统
水塔水位P L C自动控制系统(总33页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除电气工程学院课程设计说明书设计题目:水塔水位PLC自动控制系统系别:电气工程及其自动化年级专业: 13级应电2班组员:贾猛、孟令军、修圣虎、李晶指导教师:郭忠南摘要随着现代社会生产的发展和技术进步,现代工业自动化生产水平的日益提高,微电子技术的飞速发展,在继电器控制系统的基础上产生了一种新型的工业控制装置——可编程控制器(PLC)。
随着科技的发展和现实暴露的一些问题,以便能更快捷更方便的完成一些任务,在工农业生产过程中,经常需要对水位进行测量和控制。
水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。
而水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。
本文采用PLC进行主控制,在水箱上安装一个自动测水位装置。
利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置。
关键词:PLC(Programmable Logic Controller) 自动化水塔水位三菱PLC目录第一章研究背景 (1)1.1可编程控制器的产生及发展 (1)1.2PLC的基本结构 (2)1.3PLC的特点 (5)1.4PLC的工作原理 (6)1.5梯形图程序设计及工作过程分析 (8)第二章水塔水位自动控制系统方案设计 (10)第三章水塔水位自动控制系统硬件设计 (12)3.1水塔水位控制系统设计要求 (12)3.2水塔水位控制系统主电路 (12)3.3水泵电机的选择 (13)3.4水位传感器的选择 (13)3.5可编程序控制器的选择 (14)3.6PLC I/O口分配 (14)3.7PLC控制电路原理图 (16)第四章水塔水位自动控制系统软件设计 (17)4.1程序流程图 (17)4.2梯形图 (18)第五章设计总结 (24)第一章研究背景1.1 可编程控制器的产生及发展可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入/输出接口与中断于一体的器件,已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业。
PLC水塔水位自动控制
根据实际运行情况,对控制算法 的参数进行优化,提高系统的响 应速度和稳定性。
建立故障诊断机制,快速定位并 排除系统故障,确保水塔水位控 制的可靠性。
04
水塔水位自动控制系统 的实际应用与效果分析
水塔水位自动控制系统的实际应用
实时监测
水塔水位自动控制系统能够实时监测水塔的水位,并将数 据传输到PLC控制器。
01
自动控制
根据预设的水位阈值,系统能够自动控 制水泵的启动和停止,以保持水位的稳 定。
02
03
数据记录与分析
系统能够记录水位数据,并生成报表, 方便用户对水位情况进行统计分析。
水塔水位自动控制系统的效果分析
节能降耗
01
通过自动控制水泵的启停,避免了人工操作的延误和浪费,降
低了能耗。
提高供水稳定性
plc水塔水位自动控制
目录
• 水塔水位控制系统的概述 • PLC在水塔水位控制系统中的应用 • 水塔水位自动控制系统的设计 • 水塔水位自动控制系统的实际应用与效果分析 • 结论
01
水塔水位控制系统的概 述
水塔水位控制的意义
保证供水稳定
水塔作为供水系统的重要环节,保持水位在合理 范围内对于保证供水稳定至关重要。
执行机构
根据PLC控制器的输出信号,执行相应的动 作,如调节阀门的开度或水泵的运行状态。
水塔水位控制系统的基本原理
采集水位数据
通过水位传感器实时监测水塔内的水 位数据。
计算控制信号
执行控制动作
执行机构根据PLC控制器的输出信号, 执行相应的控制动作,调节水流量或 水泵的运行状态,以保持水塔水位的 稳定。
02
系统能够实时监测水位,避免了因水位过高或过低对供水系统
水塔工作原理
水塔工作原理水塔是一种常见的水利设施,它可以用来储存和供应水源,为我们的生活和生产提供便利。
那么,水塔是如何工作的呢?接下来,我们将详细介绍水塔的工作原理。
首先,水塔的工作原理可以分为两个方面,储水和供水。
在储水方面,水塔通过管道系统将水源引入水塔内部,然后利用泵站将水抽入水塔的储水区域。
储水区域通常是一个封闭的空间,可以根据需要设计成不同的形状和容量。
当水塔接收到来自水源的水后,储水区域内的水位会逐渐上升,直至达到设计的最大容量。
在供水方面,当用户需要用水时,水塔通过管道系统将储存的水源供应给用户,从而满足用户的生活和生产需求。
其次,水塔的工作原理还涉及到水位控制系统。
水塔内部通常会安装水位控制系统,用于监测和控制储水区域内的水位。
当水位下降到一定程度时,水位控制系统会自动启动泵站,将水源抽入水塔,以保持水塔内部的储水量。
当水位达到一定高度时,水位控制系统会停止泵站的工作,从而实现对水位的自动控制。
这样一来,水塔就能够根据实际需求,自动地进行储水和供水,从而保证了水源的充足和稳定供应。
此外,水塔的工作原理还与水力学原理有关。
由于水塔内部的水位较高,当用户需要用水时,水会通过重力作用自动流向用户所在的区域。
这种通过重力实现供水的方式,不仅节省了能源,还能够减少供水过程中的管道压力,从而延长了管道和设备的使用寿命。
因此,水塔的工作原理不仅能够实现水源的储存和供应,还能够降低供水成本,提高供水效率。
总的来说,水塔的工作原理主要包括储水、供水和水位控制系统。
通过这些工作原理的相互配合,水塔能够实现对水源的储存和稳定供应,为我们的生活和生产提供了便利。
希望通过本文的介绍,您能更加深入地了解水塔的工作原理,从而更好地利用和维护水塔设施。
PLC水塔水位控制系统
安康学院可编程逻辑控制PLC设计报告书课题名称:水塔水位自动控制系统姓名:学号:院系:专业:指导教师:时间:设计项目成绩评定表设计报告书目录一、设计目的 (1)二、设计思路 (1)三、设计过程 (1)3.1、系统论证 (1)3.2、模块设计 (3)四、系统结果 (5)五、课程设计体会与建议 (6)5.1、设计体会 (6)5.2、设计建议 (6)六、参考文献 (6)一、设计目的1、了解PLC实验箱结构及其接线方法。
2、利用PLC构成水塔水位自动控制系统。
3、了解自动控制原理在日常生活中的应用4、熟悉水塔自动控制系统的设计与制作。
二、设计思路1、按水塔水位的控制要求,设计PLC外部电路;2、连接PLC外部(输入、输出)电路,编写用户程序;3、输入、编辑、编译、下载、调试用户程序;4、运行用户程序,观察程序运行结果。
三、设计过程水塔水位控制系统是我国住宅小区、工厂企业广泛应用的供水系统。
为了达到节能的目的,提高供水系统的质量,考虑采用可编程控制器(PLC)、继电器、传感器技术和数据采集,设计一套实用水位控制方案,使系统实现自动控制,以提高控制精度、可靠性和供水质量。
并通过模拟仿真来验证程序编写的正确性。
3.1、系统方案其工作原理为:按下启动按钮,当水槽水位低于下限,补水阀答开。
高于上限时,补水阀关闭,同时,当水塔水位低于下限时,并且水槽水位高于下限时,抽水泵打开,当水塔水位高于上限时,抽水泵关闭。
水塔自动控制总体方框图如图1所示:图1 总体控制方框图3.2、模块设计水塔水位模拟图如图2所示:图2 水塔水位模拟图该电路完成两个功能:一是为水池补水;二是为水塔注水。
I/O分配表如表1所示:表1 I/O分配表输入继电器输入变量名输出继电器输出变量名X0 控制开关Y0 电磁阀X1 水塔上限液位开关Y1 电动机MX2 水塔下限液位开关X3 水池下限液位开关X4 水池上限液位开关工作过程:1)初始状态:水箱没有水,液位开关S4断开(S4为OFF)。
水位控制系统工作原理
水位控制系统工作原理
水位控制系统是一种用于监测和控制水位的设备,常用于水池、水塔、河流和水利工程等地方。
该系统的工作原理基于水位测量和控制装置。
首先,系统中安装有水位传感器,用于测量水位的高度。
传感器能够根据水位的变化发出相应的信号。
接下来,传感器将测量到的水位信号传送给控制器。
控制器根据接收到的信号来判断水位的高低,并根据预设的水位设定值来进行调整。
控制器与一台或多台执行器连接,这些执行器可以是阀门、泵或其他类型的控制装置。
当水位高于或低于设定值时,控制器将通过操作执行器来调整水位。
例如,当水位过高时,控制器通过控制阀门或泵将多余的水排出,直到水位降至设定值为止。
相反,当水位过低时,控制器将通过开启阀门或泵来补充水源,直到水位升至设定值。
通过不断监测和调整水位,水位控制系统能够确保水位在所需的范围内稳定运行。
这对于保护水资源、防止水位溢出或干涸具有重要意义。
总之,水位控制系统通过水位传感器、控制器和执行器之间的协调工作,实现对水位的监测和控制,以确保水位稳定运行。
毕业设计 水塔水位自动控制系统 -解读
摘要供水是一个关系国计民生的重要产业。
随着社会的发展和人民生活水平的提高,对城市供水提出了更高的要求,要满足及时、准确、安全保证充足供水,如果仍然沿用人工方式,劳动强度大,工作效率低,安全性难以保障,为此必须进行水塔水位控制自动化系统的改造。
可编程控制器( PLC) 因其高可靠性和较高的性价比在工业控制中得到广泛的应用。
本文针对目前比较流行的控制技术,利用PLC和传感器构成了水塔水位恒的控制系统。
改造后的水塔水位自控系统,实现水塔水位自动控制系统,远程监控,实现无人值守。
关键词: 可编程逻辑控制器(PLC)水塔水位自动控制AbstractWater supply is a major industry involving the interests of the state and the people. With development of society and the improvement of the people's livelihood, city water supply has been brought forward a higher request. It needed to be timely , accurate and safely to plentifully conduct water supply. If we still continue to use a way of the man-power, the intensity of labor are high , availability is low and the security is difficult to ensure .We must carry out water tower water level under the control of automatic system reforming for this purpose . Programmable Logic Controller (PLC) is applied broadly in industrial control because of high reliability and higher nature price. The main body of this paper on the control technology is aimed at being popular for at present comparatively, which makes the using of PLC and the sensor to compose water tower control system of permanent water level. Water tower control system after being reformed have realized water tower water level auto-controlling system , long-range supervisory control, and nobody's value guards realization.Key wards:Programmable Logic Controller. water pool water lever.automatically controls目录摘要 (I)ABSTRACT (II)第一章水塔水位自动控制系统的现状和发展 (1)1.1水塔供水的发展 (1)1.2传感器和PLC的应用 (1)第二章水塔水位自动控制系统的组成 (3)2.1系统构成及其控制要求 (3)2.1.系统框图 (4)第三章水塔水位自动控制系统设计 (5)3.1水泵电动机控制电路的设计 (5)3.2水位传感器的选择: (6)第四章 PLC的设计 (8)4.1可编程序控制器(PLC)简介 (8)4.2PLC工作原理 (8)4.2.1扫描的概念 (8)4. 2. 2 PLC的工作过程 (8)4.3PLC的编程语言--梯形图 (10)4.4编程软件的简介和梯形图的基本绘制规则 (11)4.5水塔水位自动控制系统的软件设计 (14)第五章结束语(系统总结分析) (20)5.1系统的优点 (20)5.2结束语 (20)参考文献 (22)致谢 (23)第一章水塔水位自动控制系统的现状和发展1.1 水塔供水的发展中国的城镇供水具有120年的悠久历史。
水塔水位PLC自动控制系统
摘要随着科技的发展,无论在日常生活中,还是在工农业发展中,PLC具有广泛的应用。
PLC的一般特点:抗干扰能力强,可靠性极高、编程简单方便、使用方便、维护方便、设计、施工、调试周期短、易于实现机电一体化。
PLC总的发展趋势是:高功能、高速度、高集成度、大容量、小体积、低成本、通信组网能力强。
目前,大量的高位生活用水和工作用水逐渐增多。
利用人工控制水位会造成供水时有时无的不稳定供水情况。
后来,使用水位控制装置使供水状况有了改变,但常使用浮标或机械水位控制装置,由于机械装置的故障多,可靠性差,给维修带来很大的麻烦。
因此为更好的保证供水的稳定性和可靠性,传统的供水控制方法已难以满足现在的要求。
本课题设计和实现了一种采用可编程序控制器为主控制机的供水控制系统。
该控制系统是一种PLC控制的自动调节控制系统,在传统水塔供水的基础上,采用PLC为控制核心、变频器等器件组成,利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示,同时具备开启和全部停止功能,能够实现水塔水位的供水,应用此控制系统能显著提高劳动效率,减少劳动强度。
[关键词] 水位控制、PLC fx2n 自动控制目录摘要1第一章绪论 (3)1.1概述 (3)1.2可编程序控制器(PLC)简介 (3)1.3PLC工作原理 (3)1.4PLC特点 (4)1.5PLC选择 (5)第二章水塔水位系统PLC硬件设计 (6)2.1水塔水位控系统构成及其控制要求 (6)2.1.1水塔水位系统控制装置图 (6)2.1.2 水塔水位系统的输入/输出设备 (6)2.2水塔水位系统电机控制电路的设计 (7)2.3水塔水位系统水位传感器的选择 (8)2.4水塔水位系统PLC的输入/输出分配 (10)2.4.1水塔水位控制系统PLC的输入/输出接口分配表 (10)2.4.2水塔水位控制系统PLC的输入/输出接口接线图 (11)2.5水塔水位系统的元件器件 (12)第三章水塔水位控制系统PLC软件设计 (13)3.1工作过程 (13)3.2程序流程图 (14)3.3梯形图 (15)第四章总结 (16)参考文献 (17)第一章绪论1.1 概述在工业生产中,电流、电压、温度、压力、液位、流量、和开关量等都是常用的主要被控参数。
水塔水位PLC自动控制系统
目录1概论 ................................... 错误!未定义书签。
1.1 可编程序控制器简介................ 错误!未定义书签。
1.2 PLC的工作原理..................... 错误!未定义书签。
1.3 PLC的特点 ........................ 错误!未定义书签。
1.4 PLC的选择 ........................ 错误!未定义书签。
2 水塔水位自动控制系统方案设计........... 错误!未定义书签。
3 水塔水位自动控制系统硬件设计........... 错误!未定义书签。
3.1水塔水位控制系统设计要求........... 错误!未定义书签。
3.2 水塔水位控制系统主电路............ 错误!未定义书签。
3.3 水泵电机的选择.................... 错误!未定义书签。
3.4 水位传感器的选择.................. 错误!未定义书签。
3.5 PLC I/O接口分配................... 错误!未定义书签。
3.6 PLC控制电路原理图................ 错误!未定义书签。
4 水塔水位自动控制系统PLC软件设计....... 错误!未定义书签。
4.1 程序流程图........................ 错误!未定义书签。
4.2 梯形图程序........................ 错误!未定义书签。
4.3 指令表............................ 错误!未定义书签。
总结................................. 错误!未定义书签。
参考文献................................. 错误!未定义书签。
1概论我国的水工业科技发展较快,与国际先进水平的差距正在不断缩小,水工业科技体系已初步形成,拥有一支从事水工业基础科学研究、应用研究、产品研制和工程化产业化开发的科技队伍。
PLC-水塔水位自动控制-
(2)常数
在编程中经常会使用常数。常数数据长度可为字节、字和双字, 在机器内部旳数据都以二进制存储,但常数旳书写能够用二进制、 十进制、十六进制、ASCII码或浮点数(实数)等多种形式。几种 常数形式分别如表3.9所示。
CPU旳存储区
1. 输入映像寄存器(I)(I0.0~I15.7),每个扫描周期采样。 2.输出映像寄存器(Q)(Q0.0~Q15.7),每个扫描周期末尾 3. 变量存储器(V) 4.位存储器(M)区(M0.0~M31.7) 5.定时器(T)存储器区 6.计数器(C)存储器区 7.高速计数器(HC) 8.累加器(AC) 9. 特殊存储器(SM)标志位 如SM0.0,SM0.1,SM0.4,SM0.5
CPU旳存储区
10.局部存储器(L)区 11.模拟量输入映像寄存器(AI) 12.模拟量输出映像寄存器(AQ) 13.顺序控制继电器(S)
三、寻址方式
1. 直接寻址方式
按位寻址 存储区内另有某些元件是具有一定功能
旳硬件,因为元件数量极少,所以不用 指出元件所在存储区域旳字节,而是直 接指出它旳编号。 按字节、字或双字寻址
返回本节
PLC编程语言旳国际原则
1.顺序功能图 2.梯形图 3.功能块图 4.语句表 5. 其他编程语言
图3.4 顺序流程图
1. 顺序功能图
T0 S1
T1 S2
S T2 S3
S
T3 T8
S8 S
T9
2. 梯形图(LAD)
图3.2 梯形图举例
3. 功能块图(FBD)
功能块图(FBD)旳图形构造与数字电子电路旳构 造极为相同,如下图3.3所示。
必须指定存储器标识符、字节地址和位号,如 图3.8 所示。图3.8中MSB表达最高位,LSB表
PLC控制水塔水位
PLC控制水塔液位及温度控制程序设计
一:设计目的:
1、用PLC构成水塔液位和温度的自动控制系统。
2、了解PLC在实际生活中的应用。
二:控制要求:
(1)闭合水池低液位开关,驱动电磁阀打开,开始进水同时进行加热和搅拌,使水受热均匀,当水位到达水池高液位时,停止加水,但还可以加热,直到加热到温度为20度到30度之间为止,同时驱动蜂鸣器发出声音提醒。
(2)在蜂鸣器提醒的期间可以打开水塔低液位开关,启动抽水电机向水塔抽水并同时停止加热和搅拌。
直到到达水塔的高液位停止抽水。
三:设计参考:
1、输入:
2、输出:
X1 水塔高液位控制开关S1 Y0 电磁阀
X2 水塔低液位控制开关S2 Y1 抽水电动机
X3 水池高液位控制开关S3 Y2 加热器
X4 水池低液位控制开关S4 Y3 搅拌器
C5 温度传感器S5 Y4 蜂鸣器
四:设计流程图为:
五:水塔控制示意图:
六:硬件连接图如下:
七:由以上的分析可得梯形图如下:
八:从上梯形图可以看出,闭合X4后,一直进行加水并加热,直到水池充满,当热量到达20到30度之间蜂鸣器开始提醒,这之间可以打开水塔的低液位的开关,此时抽水机工作,关闭加热和搅拌,直到到达水塔高液位,整个系统停止工作。
任务二 水塔水位的PLC控制
低速定时器
OUT T
低速累计定时器 OUT ST
0.1~3276.7
ENO:=OUT_T(EN,C oil,Value);
普通定时器 累计定时器
OUTH T OUTH ST
0.01~327.67
高速定时器
OUTHS T
高速累计定时器 OUTHS ST
0.001~32.767
ENO:=OUTH(EN,Co il,Value);
11
项目一 任务二 水塔水位的PLC控制
FX5UPLC定 时器的分类
通用定时器 累计定时器
低速定时器
普通定时器
高速定时器
低速累计定 时器
普通累计定 时器
高速累计定 时器
12
项目一 任务二 水塔水位的PLC控制
表1-14 定时器输出指令使用要素
名称
助记符 定时范围(s)
梯形图表示
FBD/LD表示
ST表示
编号
功能描述
SM400 SM401 SM402
SM0 SM52 SM409 SM410 SM412 SM471030
SM8000 SM8001 SM8002 SM8004 SM8005 SM8011 SM8012 SM801231 SM8-022 SM801249 SM802304
运行监视,PLC运行时为ON 运行监视,PLC运行时为OFF 初始化脉冲,仅在PLC运行开始时ON一个扫描周期 发生出错,OFF:无出错,ON:有出错 PLC内置电池电压过低时为ON 10ms时钟脉冲,通、断各5ms 100ms时钟脉冲,通、断各50ms 1借s位时标钟志脉位冲:,减通、运断算各结0果.5为s 零时置位 2进s时位钟标脉志冲位,:通加、运断算各有1进s 位或结果溢出时置位 1指mi令n时执钟行脉完冲成,标通志、位断:各执3行0s完成为ON 零为标ON志时位禁:止加全减部运输算出结果为零时置位
水塔水位控制
水塔水位控制概述水塔是城市供水系统中的重要组成部分,它负责存储和供应给城市居民所需的水资源。
为了保持水塔的正常运行和水位的稳定,水塔水位控制是至关重要的。
目标水塔水位控制的主要目标是维持水塔水位在一个合理范围内,既不会溢出也不会过低。
通过合理的控制水塔的进水和出水流量,可以实现水位的稳定控制。
控制原理水塔水位控制可以通过几种方式实现,常见的方法有:浮球开关控制、压力传感器控制和液位传感器控制。
下面将简要介绍这些方法的原理。
1. 浮球开关控制浮球开关是通过浮动球的上升和下降来感知水位变化的。
当水位上升到一定高度时,浮球会随之上升,触发开关动作,控制进水阀门关闭;当水位下降到一定低度时,浮球下降,开关触发,进水阀门打开。
通过这种方式可以实现水位的控制。
2. 压力传感器控制压力传感器可以感知水塔内部的水压。
当水位上升时,水压也会相应增加;当水位下降时,水压减小。
通过监测水压的变化,可以控制进水和出水阀门的开闭,从而实现水位的控制。
3. 液位传感器控制液位传感器可以直接感知到水位的高度,通常通过使用电极来测量水位的变化。
当水位上升到一定高度时,液位传感器会触发控制信号,控制进水阀门关闭;当水位下降到一定低度时,信号触发,进水阀门打开。
这种方式也可以实现水位的控制。
控制方法在实际应用中,一般会结合多种控制方法来实现水塔水位的控制,以提高控制的准确性和可靠性。
下面是一种常见的水塔水位控制方法的流程图示例:graph TDA[获取当前水位] --> B[根据水位控制信号判断是否需要进水]B --> |需要进水| C[打开进水阀门]B --> |不需要进水| C[关闭进水阀门]C --> D[等待一段时间]D --> E[根据水位控制信号判断是否需要出水]E --> |需要出水| F[打开出水阀门]E --> |不需要出水| F[关闭出水阀门]F --> G[等待一段时间]G --> A该控制方法的基本流程如下: 1. 获取当前水位信息 2. 根据水位控制信号判断是否需要进水 3. 如果需要进水,则打开进水阀门,否则关闭进水阀门 4. 等待一段时间,让水位有时间上升或下降 5. 根据水位控制信号判断是否需要出水 6. 如果需要出水,则打开出水阀门,否则关闭出水阀门 7. 等待一段时间,让水位有时间上升或下降 8. 回到第1步,进行下一次水位控制控制策略为了更好地控制水塔水位,需要制定合理的控制策略。
水塔水位控制系统
水塔水位控制系统水塔水位控制系统是一种能够监测和控制水塔水位的智能化系统。
水塔作为储存和供给水源的设施,其水位的控制和管理对于保证正常的供水是至关重要的。
传统的水塔水位控制方式主要依靠人工监测和控制,但这种方式存在人力资源浪费、不够高效和容易出现人为错误等问题。
所以,采用水塔水位控制系统能够实现智能化的水位监测和控制,提高供水管理的效率和质量。
水塔水位控制系统主要由水位传感器、单片机控制器、执行器和数据处理单元组成。
水位传感器用于感知水位的高低,传输给控制器;单片机控制器负责接收并处理传感器传过来的数据,并根据预设的监测参数和逻辑,控制执行器进行相应的调节操作;执行器则根据控制器的指令,控制水流进出水塔,从而调节水位;数据处理单元则负责对监测数据进行存储和分析。
水塔水位控制系统的工作原理如下:首先,水位传感器通过测量水位的高低,将信号传输给控制器。
控制器接收到信号后,通过单片机处理器进行数据处理,并根据事先设定好的监测参数和逻辑进行判断和决策。
例如,当水位过低时,控制器会通过执行器控制阀门打开,让水流进入水塔,增加水位;当水位过高时,控制器则会通过执行器控制泵站排水,降低水位。
这样,系统就能够自动调节水位,保持在合适的范围内。
水塔水位控制系统具有以下几个优点:首先,它能够实现实时监测和控制水位,不需要人工干预,避免了人为错误的发生。
其次,系统具有高度的智能性,可以根据事先设定的参数和逻辑进行自动调节和控制,提高了供水管理的效率和质量。
再次,系统具有较高的可靠性和准确性,传感器精准地测量水位,数据处理单元对监测数据进行存储和分析,保证了数据的准确性和稳定性。
最后,系统结构简单、维护容易,降低了维护成本和管理难度。
水塔水位控制系统的应用范围广泛,可以用于城市供水系统、建筑工地、农田灌溉等多个领域。
在城市供水系统中,水塔水位控制系统能够自动控制和调节水位,保证正常供水,解决人工监测和调节不及时的问题。
水塔水位控制系统
水塔水位控制系统
水塔水位控制系统是一种用来控制水塔水位的系统。
它通常由传感器、控制器和执行器组成。
传感器用来测量水塔中的水位,常见的传感器包括浮球传感器和压力传感器。
浮球传感器通过测量浮球的位置来确定水位高低,而压力传感器则通过测量水压来推断水位情况。
控制器是系统的核心部分,它接收传感器的信号并根据预设的水位设定值来调节执行器的运行。
控制器可以使用逻辑控制、PID控制等算法来计算输出信号。
执行器是控制水位的关键部分,它根据控制器的指令来进行相应的动作。
执行器可以是阀门、泵或排水装置等。
水塔水位控制系统的工作原理如下:当水位低于设定值时,传感器会向控制器发送信号,控制器会打开执行器使水进
入水塔;当水位超过设定值时,传感器会再次向控制器发
送信号,控制器会关闭执行器停止水的进入。
水塔水位控制系统的优点是可以实现自动化的水位控制,
节省人力和物力成本,并且能够保持水位的稳定性和安全性。
它在工业生产、农业灌溉和民用供水等领域都有广泛
的应用。
PLC的水塔水位控制系统
PLC的水塔水位控制系统
PLC是一种可编程控制器,广泛应用于各种自动化系统,特别是在工业控制系统中。
水塔水位控制系统是一种常见的工业自动化控制系统。
它是用来控制水塔水位高低的系统,其主要组成部分包括水位传感器、水泵、水泵控制器、PLC等。
在水塔水位控制系统中,水位传感器被用来监测水位高低,如果水位高于预设值,则
水泵会开始运转,把多余的水泵送出水塔,保持水塔内部的水位稳定。
水泵控制器负责控
制水泵的开关,并根据水位传感器的反馈信号来控制水泵启动和停止。
PLC是整个水塔水位控制系统的核心部件,它可以根据预设程序来判断当前水位高低,并向水泵控制器发送信号来控制水泵的运转。
当水位高于预设值时,PLC会向水泵控制器
发送信号来启动水泵;当水位低于预设值时,PLC会向水泵控制器发送信号来停止水泵。
除此之外,PLC还可以记录水位的变化情况,并根据不同的数据来分析水塔的工作状态,从而为水塔的运行提供更加精准的控制。
同时,PLC还可以与其他自动化控制系统配
合使用,实现更加复杂的自动化控制功能。
总之,PLC在水塔水位控制系统中发挥了重要的作用,它可以支持多个输入和输出接口,可以实现数字和模拟量的控制,同时也具有实时性和可靠性等优点。
通过使用PLC,
水塔水位控制系统可以实现更加精准的水位控制,提高整个系统的效率和可靠性。
水塔水位控制系统设计精品
控制算法设计
根据水塔的实际情况和用户 需求,设计合适的控制算法 ,如PID控制、模糊控制等 ,实现对水位的精确控制。
执行机构选择
根据控制算法的要求,选择 合适的执行机构,如水泵、 阀门等,实现对水位的调节 。
通信与监控
建立水塔水位控制系统的通 信与监控网络,实现远程监 控、数据采集和故障预警等 功能。
防洪抗旱 在洪水或干旱时期,水塔水位控 制系统可发挥调节作用,减轻灾 害损失,保障人民生命财产安全 。
农业灌溉
在农业灌溉领域,水塔水位控制 系统能够根据土壤湿度和作物需 水情况,自动调节灌溉水量,提 高水资源利用效率。
工业冷却水供应
在工业生产中,水塔水位控制系 统可为冷却设备提供稳定的水源 ,确保设备正常运行,降低能耗 。
重要性
水塔水位控制系统对于保证供水系统 的稳定运行具有重要意义,能够避免 因水位过高或过低对供水系统造成的 影响,提高供水效率和水质安全。
水塔水位控制系统的历史与发展
历史
水塔水位控制系统最初采用人工 控制方式,随着技术的发展,逐 渐演变为自动化控制系统。
发展
现代水塔水位控制系统不断引入 新技术和智能化设备,如传感器 、PLC控制器、变频器等,实现 更加精准和高效的控制。
数据处理
对采集到的数据进行预处理和分析,为控制 算法提供准确可靠的数据支持。
安全保护机制的建立
权限管理
设置不同等级的用户权限,确保只有授权用户才能进行相应的操作。
异常处理
当出现异常情况时,系统能够及时报警并采取相应的安全措施,如自动关闭阀门、启动 备用设备等。
05
CATALOGUE
水塔水位控制系统的调试与优化
标准化与模块化
为便于系统的集成、互换和维护,水塔水位控制系统将逐步实现标准 化和模块化设计。
水塔水位智能控制系统
摘要水塔水位控制系统,根据水位传感器得知水塔内水位情况,水位传感器分为上限位传感器和下限位传感器,还有一个直接接上5V的传感器。
当水塔上限位和下限位传感器电位为0时,电机运转,期间电机状态不变,直到下限位传感器和上限位传感器的电位不为0时,电机停转。
当发生下限位传感器电位为0而上限位传感器电位不为0时,电机停转并报警。
水塔水位控制电路设有光耦合器,通过光耦合器的通断控制电机运转与停转。
同时设有LED 灯和蜂鸣器,报警时LED灯闪烁和蜂鸣器响。
水塔水位控制器系统有四种状态,分别为电机运转状态、电机停转状态、保持状态和报警状态。
各种状态皆由水位传感器传来的信号来判定并由单片机输出信号来执行,由此使得水位控制在上限位和下限位之间。
水塔水位控制系统的原理1、功能要求1)水塔水位下降至下线水位时,启动水泵上水。
2)水塔水位上升至上线水位时,关闭水泵。
3)水塔水位在上、下限水位之间时,水泵保持原状态。
4)供水系统出现故障时,自动报警。
2、基本原理图1 水塔水位检测原理图水塔水位控制原理图见图(1),图中两条虚线表示正常工作情况下水位升降的上下限,在正常供水时,水位应控制在两条虚线代表的水位之间。
B测量水位下限,C测量水位上限,A接+5V,B、C接地。
在水塔无水或水位低于下限水位时,B、C为断开,B、C两点电位为零(低电平“0” ),需要水泵供水,单片机输出低电平,控制电机工作供水。
水位上升到B点,B接通,B点电位变为高电平“1”,C开关仍断开,C点仍为低电平,维持现状水泵继续供水。
当水位上升到C点时,C接通。
这时B、C均接通,B、C两点都为高电平,表示水塔水位已满,需水泵停止供水,单片机输出高电平,电机断电停止供水。
水塔水位开始下降,水位在降到B点之前,B点电位为高、C点电位为低,单片机输出控制电平维持不变,仍为高。
当水位降到B 点以下,B、C两点电平都为低时,单片机输出控制电平又变低.水泵供水。
B和p1.0、C和P1.1之间接4.7k 的电阻(下拉电阻),目的是为了保护单片机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水塔水位控制系统
摘要
温度测量与控制在社会的发展而广泛的使用。
利用单片机技术的温度测控系统以其体积小,可靠性高而被广泛采用。
本文对该测控系统进行了分析设计。
首先,设计针对系统所使用的单片机的性能和发展情况做了简单介绍;对系统使用的模/数转换芯片ADC0809做了性能方面的简单说明;同时对测量温度在-55~150之间的集成型恒流测温元件AD590做了介绍。
其次,论文重点对测控硬件、软件的组成进行了分项、模块化逐步分析设计。
对各部分的电路一一进行了介绍,最终实现了该系统的硬件电路。
绘制了电路原理图,绘制了印制电路板图,并将制成的线路板焊接上了元件,完成了硬件调试。
根据硬件的设计和测控系统所要实现的功能,本设计对软件也进行了一一设计,并经过重复的模拟运行、调试,修改简化了软件系统,最后形成了一套完整的程序系统。
关键词: 单片机、ADC0809、AD590、软件系统、硬件系统
Abstract
The temperature survey and the control in profession and so on industry, agriculture, national defense has the widespread application. Using monolithic integrated circuit technology temperature observation and control system by its volume small, the reliability is high but is widely used. This article has carried on the analysis design to this observation and control system.
First, this article the monolithic integrated circuit performance and the development situation which used in view of the system has made the simple introduction; To system use mold/Number transformation chip ADC0809 has given the performance aspect simple explanation; Meanwhile to surveyed the temperature to make the introduction in -55 ~150 between integration constant flow temperature element AD590.
Next, this article key to observe and controlled the hardware, the software composition carries on the sub-item, the modulation has analyzed the design gradually.
11 has carried on the introduction to each part of electric circuits, finally has realized this system
hardware electric circuit. Has drawn up the electric circuit schematic diagram, has drawn up the printed circuit board chart, and will make in the line board welding the part, has completed the hardware debugging. Function must realize which according to the hardware design and the observation and control system, this design has also carried on 11 designs to the software,
and after the repeatedly simulation run, the debugging,
the revision simplified the software system, finally has formed set of complete software.
Key words: MCU, ADC0809, AD590, software system, hardware system
目录
第1章前言 ............................ 错误!未定义书签。
第2章单片机多通道温度采集测控系统分析与设计错误!未定义书签。
2.1 总体分析 ........................... 错误!未定义书签。
2.2 AT89C51单片机的性能及应用.......... 错误!未定义书签。
2.3 控制框图的设计系统 ................. 错误!未定义书签。
第3章单片机多通道温度采集测控 ........ 错误!未定义书签。
3.1 输入电路的设计 ..................... 错误!未定义书签。
3.1.1 集成温度传感器AD590的简单介绍.... 错误!未定义书签。
3.1.2 放大电路的设计 ................... 错误!未定义书签。
3.2 单通道,循环检测工作方式选择电路的设计错误!未定义书签。
3.3 A/D0809与AT89C51接口电路的设计..... 错误!未定义书签。
3.4 输出电路设计 ....................... 错误!未定义书签。
3.4.1 四位LED数码管驱动电路的设计...... 错误!未定义书签。
3.4.2 超温报警电路的设计 ............... 错误!未定义书签。
3.4.3 温度控制电路的设计 ............... 错误!未定义书签。
3.5 电源的设计实现 ..................... 错误!未定义书签。
3.6电路板的制作与调试.................. 错误!未定义书签。
3.6.1电路原理图的绘制过程.............. 错误!未定义书签。
3.6.2 PCB板的制作..................... 错误!未定义书签。
3.6.3 电路的焊接 ....................... 错误!未定义书签。
第4章单片机多通道温度采集测控系统的软件错误!未定义书签。
4.1 主程序的逐步 ....................... 错误!未定义书签。
4.1.1 初始化和工作方式选择程序的设计.... 错误!未定义书签。
4.1.2 显示程序的设计 ................... 错误!未定义书签。
4.1.3 二进制温度值转化成BCD码温度显示值的程序设计错误!未定义书签。
4.1.4 延时子程序的设计 ................. 错误!未定义书签。