《复变函数与积分变换》期末考试试卷及答案1
【复变函数与积分变换期末复习题】含大题答案
复习题2一.单项选择题1.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是()(A)),(y x u 在),(00y x 处连续(B)),(y x v 在),(00y x 处连续(C)),(y x u 和),(y x v 在),(00y x 处连续(D)),(),(y x v y x u +在),(00y x 处连续2.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为()(A)3-(B)2-(C)1-(D)13.函数)(z f 在点z 可导是)(z f 在点z 解析的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既非充分条件也非必要条件4.下列命题中,正确的是()(A)设y x ,为实数,则1)cos(≤+iy x (B)若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C)若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析(D)若)(z f 在区域D 内解析,则)(z if 在D 内也解析5.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ()(A)iπ2-(B)0(C)iπ2(D)iπ46.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ()(A)1sin -(B)1sin (C)1sin 2i π-(D)1sin 2i π7.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2()(A)i6561-(B)i 6561+-(C)i 6561--(D)i6561+8.复变函数1)(-=z e z f 在复平面上()(A)无可导点(B)有可导点,但不解析(C)仅在零点不解析(D)处处解析9.使得22z z =成立的复数z 是()(A)不存在的(B)唯一的(C)纯虚数(D)实数10.设z 为复数,则方程i z z +=+2的解是()(A)i +-43(B)i +43(C)i -43(D)i --4311.ii 的主值为()(A)0(B)1(C)2πe(D)2eπ-12.ze 在复平面上()(A)无可导点(B)有可导点,但不解析(C)有可导点,且在可导点集上解析(D)处处解析13.设z z f sin )(=,则下列命题中,不正确的是()(A))(z f 在复平面上处处解析(B))(z f 以π2为周期(C)2)(iziz e e z f --=(D))(z f 是无界的14.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2()(A)i 6561-(B)i 6561+-(C)i 6561--(D)i 6561+15.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为()(A)2iπ(B)2i π-(C)0(D)(A)(B)(C)都有可能16.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz zzc c c 212sin ()(B)i π2-(B)0(C)iπ2(D)iπ417.设()()F f t F ω=⎡⎤⎣⎦则()0sin F f t t ω=⎡⎤⎣⎦().A .()()00j2F F ωωωω+--⎡⎤⎣⎦B.()()00j2F F ωωωω++-⎡⎤⎣⎦C.()()0012F F ωωωω+--⎡⎤⎣⎦D.()()0012F F ωωωω++-⎡⎤⎣⎦18.设()()F f t F ω=⎡⎤⎣⎦则()()1F t f t -=⎡⎤⎣⎦().A .()()F F ωω'- B.()()F F ωω'--C.()()j F F ωω'- D.()()j F F ωω'--19.积分=-⎰=231091z dz z z ()(A)0(B)i π2(C)10(D)5i π20.积分21sin z z zdz ==⎰()(A)0(B)61-(C)3i π-(D)iπ-21.复数ii+=1z 位于复平面第()象限.A .一B .二C .三D .四22.下列等式成立的是().A .Lnz Lnz 77=;B .)1arg()1(r =g A ;C .112=i;D .)z z Re(z z =。
(完整版),复变函数与积分变换期末考试题及答案,推荐文档
1. z0 为函数 f z 的 m 阶零点;
2. z0 为函数 f z 的 m 阶极点;
求
Res
z
f f
z z
,
z0
。
ez2
六.(15 分)写出函数
的幂级数展开式至含项为止,并指出其收敛范围。
cos z
七.(10 分)求函数 f t 1 tu t 3 t sin 2t 傅氏变换。
四、填空题(15 分,每空 3 分)
1. ln 2 i 。2. i 。3. 2 z 3 3 。4. 半平面 Re w 1 R。5.0。
4
2
三.(10 分)解:容易验证 u 是全平面的调和函数。利用 C-R 条件,先求出 v 的两个偏导数。
v u 2 y x, v u 2x y
江西科技师范学院卷(B)
2007--2008 学年第二学期
时间 110 分钟
复变函数与积分变换 课程 40 学时 2.5 学分 考试形式:闭卷
专业年级:电子科学与技术 总分 100 分,占总评成绩 70 %
注:此页不作答题纸,请将答案写在答题纸上
三、单项选择题(15 分,每小题 3 分)
1.A。2. B 。3. A。4. C。5.C。
z
z
z0
z
z0
n z0
n!
z
z0
n
(1)z0为f的阶z 零m点等价于在的一个z0邻域内
f z z z0 m z
其中在点z 解析, z0
于z是在0,的去心领z0 域
z
f f
z z
m z
z z0
z
z z
m z0
z z0
m
n1
m zz
复变函数与积分变换试题和答案
复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。
2.-8i得三个单根分别为:、、。
3.Lnz在得区域内连续。
4.得解极域为:ﻩﻩﻩﻩﻩ。
5.得导数ﻩﻩﻩﻩﻩ。
6. ﻩﻩ。
7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。
8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。
9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。
10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。
二、(10分)已知、求函数使函数为解析函数、且f(0)=0。
三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。
五、(10分)求函数在以下各圆环内得罗朗展式。
1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。
八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。
复变函数与积分变换试题及答案
南昌大学2008~2009学年第一学期期末考试试卷Q(z) f(z)=复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模,幅角。
2.-8i 的三个单根分别为: , , 。
3.Ln z 在 的区域内连续。
4.z z f =)(的解极域为:。
5.xyi y x z f 2)(22+-=的导数=')(z f。
6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。
7.指数函数的映照特点是: 。
8.幂函数的映照特点是:。
9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f。
10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。
五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。
1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。
(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。
八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1. 22942ln π+ ,ππk arctg 22ln 32+-2.3-i2i3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 07.将常形域映为角形域8. 角形域映为角形域9.⎰∞+∞-ωωπωωd e F i )(2110.⎰∞+-0)(dt e t f st二、解:∵y ux x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u += (5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴222222)2(2)(2)(z i xyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π 01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π 33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π- 四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i,)1(1Re 221 (3分) z 1=0 z 2=1]11[2+-=i π=0(2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(3分) ∴结论成立 (2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX(3分)S (2)-(1): ∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y tt -=--=-121211)( 八、解:①定义;②C-R 充要条件Th ; ③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
(完整版)北京交通大学《复变函数和积分变换》期末试卷及其答案
北 京 交 通 大 学2006-2007学年第二学期《复变函数和积分变换》期末试卷(B )学院_____________ 专业_________________ 班级____________ 学号_______________ 姓名_____________ 任课教师一.(1) 方程()t i 1z +=(t 为实参数)给出的曲线是 ; (2) 复数3i 1+的指数形式是 ; (3) 函数()224z z 1z +-,z=0为 级极点,2i z ±=为 级极点;(4)(5) 若∑==0n n n2nz )(z f ,则其收敛半径 ;(6) 计算留数:⎪⎭⎫⎝⎛0,z cosz Res 3 ;(7) 函数()()()y ,x iv y ,x u z f +=在()y ,x z =可微的充要条件为;(8) 曲线y x :=C 在映射z1)(=z f 下的像是 ;(9) C 为以a 为圆心,r 为半径的圆周,计算()⎰-Cna z dz(n 为正整数); (10) 判断n1n 25i 1∑∞=⎪⎭⎫ ⎝⎛+的敛散性 .二、计算题(25分,每小题各5分) (1)、计算积分⎰CRezdz 其中积分路径C 为:①连接由原点到1+i 的直线段;②连接由原点到点1的直线段及连接由点1到点1+i 的直线段所组成的折线.(2)、已知:()()3z e 1zsinzz f -=求:]0),z (f [Re s(3)、计算()()10dz z 1ln rz <<+⎰=r(4)、计算()()dz i z z 9zC2⎰+-,其中2||=z C 为正向圆周:。
(5)计算dz e 1z z 12⎰=.三、求积分()dz 1z z e 4z 22z⎰=-(7分)四、求解析函数),(),()(y x v y x u z f +=,已知()233x y x y ,x u -= ,且()i 0f =.(7分)五、验证()()0x xyarctgy ,x v >=在右半z 平面内满足Laplace 方程,即0,0=∆=∆ψϕ;其中22y x ∂∂+∂∂=∆, 并求以此为虚部的解析函数()z f .(8分)六、(8分)求函数()()()2z 1z 1z f --=分别在如下区域展成洛朗展式(1).1|1|0<-<z (2)0<2z -<1.七、求实轴在映射iz 2i+=ω下的象曲线(8分) 八、求函数()()0t 0,t 1,t f >⎪⎩⎪⎨⎧>≤=δδδ的傅立叶变换(7分)一、(1)直线y=x(2)i32k 2e⎪⎭⎫ ⎝⎛+ππ(3)一;二 (4)()()3i 12;2;3i 12313231--+--(5)2 (6)21-(7)①函数u(x,y),v(x,y)在(x,y)可微②u(x,y),v(x,y)在(x,y)满足C.-R.条件.即x y y x v u ,v u -==. (8)x=-y (9)⎩⎨⎧>=1n ,01n ,i 2π(10发散二、(1) ①连接原点到点1+i 的直线段的参数方程为:z=(1+i)t 1)t (0≤≤故⎰CRezdz =()[]{}()dt i 1t i 1Re 1++⎰=()⎰+1tdt i 1=2i1+ ②连接由原点到点1的直线段的参数方程为: z=t 1)t (0≤≤,连接由点1到点1+i 的直线段参数方程为: z=(1-t)+(1+i)t 1)t (0≤≤, 即 z=1+it 1)t (0≤≤,故⎰CRezdz =()[]⎰⎰++110idt it 1Re Retdt=⎰⎰+110dt i tdt=i 21+ (2)由题可知被积函数只有z=0一个奇点。
《复变函数与积分变换》期末考试试卷及答案(K12教育文档)
《复变函数与积分变换》期末考试试卷及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《复变函数与积分变换》期末考试试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《复变函数与积分变换》期末考试试卷及答案(word版可编辑修改)的全部内容。
«复变函数与积分变换»期末试题(A)一.填空题(每小题3分,共计15分)1.231i-的幅角是();2。
)1(iLn+-的主值是( );3. 211)(zzf+=,=)0()5(f();4.0=z是4sinzzz-的( )极点;5.zzf1)(=,=∞]),([Re zfs( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(yxivyxuzf+=的导函数为();(A) yxiuuzf+=')(; (B)yxiuuzf-=')(;(C)yxivuzf+=')(;(D)xyivuzf+=')(.2.C是正向圆周3=z,如果函数=)(zf(),则0d)(=⎰C zzf.(A)23-z;(B)2)1(3--zz; (C)2)2()1(3--zz;(D)2)2(3-z.3.如果级数∑∞=1nnnzc在2=z点收敛,则级数在(A)2-=z点条件收敛; (B)iz2=点绝对收敛;(C)iz+=1点绝对收敛; (D)iz21+=点一定发散.4.下列结论正确的是( )(A)如果函数)(zf在z点可导,则)(zf在0z点一定解析;(B) 如果)(zf在C所围成的区域内解析,则0)(=⎰C dzzf)(=dzzf(D)函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A ) 的可去奇点;为z1sin ∞(B ) 的本性奇点;为z sin ∞ (C) ;1sin 1的孤立奇点为z ∞(D) .sin 1的孤立奇点为z ∞三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a(2).计算⎰-Cz z z z e d )1(2其中C 是正向圆周:2=z ;(3)计算⎰=++3342215d )2()1(z z z z z(4)函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββt e t f 的傅立叶变换,并由此证明:ted tββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2。
《复变函数与积分变换》期末考试试卷含答案
一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ); 2.)1(i Ln +-的主值是( i 432ln 21π+ ); 3. 211)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4sin zzz -的( 一级 )极点; 5.zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题4分,共24分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为(B ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f . (A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z .3.如果级数∑∞=1n n nz c 在2=z 点收敛,则级数在(C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v在该区域内均为调和函数.5.下列结论不正确的是( D ).的可去奇点;为、z A 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、z C 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
复变函数与积分变换试题及答案
南昌大学2008~2009学年第一学期期末考试试卷468复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模,幅角。
2.-8i 的三个单根分别为: , , 。
3.Ln z 在 的区域内连续。
4.z z f =)(的解极域为:。
5.xyi y x z f 2)(22+-=的导数=')(z f。
6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。
7.指数函数的映照特点是: 。
8.幂函数的映照特点是:。
9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f。
10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。
五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。
1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。
(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。
八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1. 22942ln π+ ,ππk arctg 22ln 32+-2.3-i2i3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 07.将常形域映为角形域8. 角形域映为角形域9.⎰∞+∞-ωωπωωd e F i )(2110.⎰∞+-0)(dt e t f st二、解:∵y ux x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u += (5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴222222)2(2)(2)(z i xyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π 01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π 33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π-四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221 (3分) z 1=0z 2=1]11[2+-=i π=0(2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(3分) ∴结论成立 (2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX(3分)S (2)-(1): ∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y tt -=--=-121211)( 八、解:①定义;②C-R 充要条件Th ; ③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
《复变函数与积分变换》期末考试试卷及答案[1](可打印
------14 分
1i
1.
的幅角是(
2k , k 0 1,2,L
);
2
4
2. Ln(1 i) 的主值是( 1 ln 2 i
z
ez 1)
2
z0
2i
无论采用那种方法给出公式至少给一半分,其他酌情给分。
z15
(3).
dz
z 3 (1 z 2 )2 (2 z 4 )3
共 6 页第 2 页
3/8
解:设 f (z) 在有限复平面内所有奇点均在: z 3 内,由留数定理
z15
dz 2i Re s[ f (z), ]
z 3 (1 z 2 )2 (2 z 4 )3
, Re
s[
f
( z ), ]
(-1
);
二.选择题(每题 4 分,共 24 分)
1.解析函数 f (z) u(x, y) iv(x, y) 的导函数为(B );
(A) f (z) u x iu y ; (B) f (z) u x iu y ; (C) f (z) u x iv y ; (D) f (z) u y ivx .
(D)函数 f (z) u(x, y) iv(x, y) 在区域内解析的充分必要条件是 u(x, y) 、
共 6 页第 1 页
2/8
v(x, y) 在该区域内均为调和函数.
5.下列结论不正确的是( D
( A)、
、
sin
1、、、、、、 z
).
(B)、 、 sin z、、、、、、
(C )、 、 1 、、、、、 1
2.C 是正向圆周 z 3 ,如果函数 f (z) ( D ),则 f (z)dz 0 . C
3
复变函数与积分变换期末试题附有答案
复变函数与积分变换期末试题附有答案Last revision on 21 December 2020复变函数与积分变换期末试题一.填空题(每小题3分,共计15分)1.231i -2.)1(i Ln +-的主值是();3. 211)(z z f +=,=)0()5(f( 0 ),4.0=z 是4sin z z z -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题3分,共15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ;3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
复变函数与积分变换期末考试试卷及答案
一、单项选择题(本大题共15小题,每题2分,共30分) 1.以下复数中,位于第三象限的复数是〔 〕A. 12i +B. 12i --C. 12i -D. 12i -+ 2.以下等式中,不成立的等式是〔 〕4.34arctan3A i π-+-的主辐角为 .arg(3)arg()B i i -=-2.rg(34)2arg(34)C a i i -+=-+2.||D z z z ⋅=3.以下命题中,正确的选项是......〔 〕 A. 1z >表示圆的内部B. Re()0z >表示上半平面C. 0arg 4z π<<表示角形区域D. Im()0z <表示上半平面4.关于0limz zz zω→=+以下命题正确的选项是〔 〕 A.0ω=B. ω不存在C.1ω=-D. 1ω=5.以下函数中,在整个复平面上解析的函数是〔 〕.z A z e +2sin .1z B z + .tan z C z e + .sin zD z e +6.在复平面上,以下命题中,正确的选项是......〔 〕A. cos z 是有界函数B. 22Lnz Lnz =.cos sin iz C e z i z =+.||D z =7.在以下复数中,使得ze i =成立的是〔 〕.ln 223iA z i ππ=++.ln 423iB z i ππ=++.ln 226C z i ππ=++.ln 426D z i ππ=++8.已知31z i =+,则以下正确的选项是〔 〕12.iA z e π=34.i B z eπ=712.i C z eπ=3.iD z e π=9.积分||342z dz z =-⎰的值为〔 〕A. 8i πB.2C. 2i πD. 4i π10.设C 为正向圆周||4z =, 则10()zC e dz z i π-⎰等于〔 〕 A.110!B.210!iπ C.29!iπ D.29!iπ- 11.以下关于级数的命题不正确的选项是〔 〕A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n i n n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C. 在收敛圆内,幂级数绝对收敛D.在收敛圆周上,条件收敛12.0=z 是函数(1cos )ze z z -的〔 〕A. 可去奇点B.一级极点C.二级极点D. 三级极点13.1(2)z z -在点 z =∞ 处的留数为〔 〕A. 0.1B C.12D. 12-14.设C 为正向圆周1||=z , 则积分 sin z c e dzz⎰等于〔 〕A .2πB .2πiC .0D .-2π15.已知()[()]F f t ω=F ,则以下命题正确的选项是〔 〕 A. 2[(2)]()j f t e F ωω-=⋅F B. 21()[(2)]j e f t F ωω-⋅=+F C. [(2)]2(2)f t F ω=FD. 2[()](2)jt e f t F ω⋅=-F二、填空题〔本大题共5小题,每题2分,共10分〕 16. 设121,1z i z =-=,求12z z ⎛⎫=⎪⎝⎭____________. 17. 已知22()()()f z bx y x i axy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =cos zt tdt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(2)z n ∞=-∑的收敛半径为_______. 20. 设3z ω=,则映射在01z i =+处的旋转角为____________,伸缩率为____________. 20. 设函数2()sin f t t t =,则()f t 的拉氏变换等于____________.三、计算题〔本大题共4小题,每题7分,共28分〕 21.设C 为从原点到3-4i 的直线段,计算积分[()2]CI x y xyi dz =-+⎰22. 设2()cos ze f z z z i=+-. (1)求)(z f 的解析区域,〔2〕求).(z f '24.已知22(,)4u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)3f = 23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为洛朗级数.25. 计算2||3(1)()(4)z dzz z i z =++-⎰.四、综合题〔共4小题,每题8分,共32分〕 25. 计算201.54cos d πθθ-⎰26. 求分式线性映射()f z ω=,使上半平面映射为单位圆内部并满足条件(2)0f i =,arg (0)1f =.27. 求函数2,10(),010,t f t t t --<≤⎧⎪=<≤⎨⎪⎩其它的傅氏变换。
复变函数与积分变换五套试题及答案
复变函数与积分变换试题(一)一、填空(3分×10)1.)31ln(i --的模,幅角。
2.-8i 的三个单根分别为: , , 。
3.Ln z 在 的区域内连续。
4.z z f =)(的解极域为:。
5.xyi y x z f 2)(22+-=的导数=')(z f。
6.=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s。
7.指数函数的映照特点是: 。
8.幂函数的映照特点是:。
9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f。
10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知222121),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解析函数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2) 1.⎰=-2||)1(z z z dz2.⎰-c i z z3)(cos C :绕点i 一周正向任意简单闭曲线。
五、(10分)求函数)(1)(i z z z f -=在以下各圆环内的罗朗展式。
1.1||0<-<i z 2.+∞<-<||1i z六、证明以下命题:(5分×2)(1))(0t t -δ与o iwt e -构成一对傅氏变换对。
(2))(2ωπδ=⎰∞+∞-ω-dt e t i七、(10分)应用拉氏变换求方程组⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 满足x (0)=y (0)=z (0)=0的解y (t )。
八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1. 22942ln π+ ,ππk arctg 22ln 32+-2. 3-i 2i 3-i3. Z 不取原点和负实轴4. 空集5. 2z 6. 07.将常形域映为角形域8. 角形域映为角形域 9.⎰∞+∞-ωωπωωd e F i )(2110. ⎰∞+-0)(dt e t f st二、解:∵yu x x v ∂∂-=-=∂∂ xuy y v ∂∂==∂∂∴c xy u +=(5分)c xy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0 c =0 (3分)∴222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=(2分)三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z(2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) 23126⨯⨯i π=i 63π- 四、1.解:原式⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221(3分) z 1=0 z 2=1]11[2+-=i π=0 (2分)2.解:原式iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-==1ich π-五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)(11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=(2分)2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=2)(120)(11+∞=-=∑n n n i z i 2)(--∞=-=∑n n n i z i (2分) 六、1.解:∵00)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰ (3分) ∴结论成立(2)解:∵1)(2210==ωπδπ=ωω-ω-∞+∞-⎰ti t i e dw e(2分)∴)(2w πδ与1构成傅氏对∴)(2ωπδω=-∞+∞-⎰dt e t i(2分)七、解:∵⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX (3分)S (2)-(1): ∴⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s (3分)∴cht e e t Y t t -=--=-121211)( 八、解:①定义; ②C-R 充要条件Th ; ③v 为u 的共扼函数 10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数与积分变换期末试题及答案
复变函数与积分变换试题与答案一、填空题:(每题3分)1.i 31--的三角表达形式: ; 指数表达形式: ; 几何表达形式: . 2.=-i 2)3( ;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则≤⎰z z f C d )( . 4.级数21n z z z +++++的和函数的解析域是 。
5. 分式线性函数、指数函数、幂函数的映照特点各是 二、解答题(每题8分)1.设22()i f z xy x y =+,则()f z 在何处可导?何处解析?2.已知f (z )的虚部为222121),(y x y x v +-=,求解析函数0)0()(=+=f iv u z f 且.3.求积分 ,C I zdz =⎰ C 为沿单位圆(||1)z =的逆时针一周的曲线。
4.求sin d (1)Czz z z -⎰,其中C 为||2z =。
5.求e d cos zCz z⎰,其中C 为||2z =。
6.把函数)2)(1(12-+z z 在2||1<<z 内展开成罗朗级数。
7.指出 6sin )(z zz z f -= 在有限复平面上的孤立奇点及类型,并求奇点处的留数。
8.求将单位圆 | z | < 1内保形映照到单位圆 | w | < 1内, 且满足0)21(=f ,2)21(arg π='f 的分式线性映照。
四、利用拉氏变换求解微分方程(6分)⎩⎨⎧='==+'+''-1)0()0(34y y e y y y t (提示:1[]1t L e s -=+)试题答案一、填空题:(每题3分) 1.i 31--的三角表达形式:222[cos(2)sin(2)]33k i k ππππ-++-+; 指数表达形式:2(2)32k i eππ-+ ;几何表达形式:|12,-=2(1(2)3Arg k ππ-=-+. 2.=-i 2)3(222ln3k ieππ--+;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则()d Cf z z ML ≤⎰.4.级数21n z z z +++++的和函数的解析域是||1z <。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.填空题(每小题3分,共计15分)1.231i -的幅角就是( 2,1,0,23±±=+-k k ππ);2、)1(i Ln +-的主值就是( i 432ln 21π+ ); 3、 211)(z z f +=,=)0()5(f ( 0 ), 4.0=z 就是 4sin zzz -的( 一级 )极点; 5.zz f 1)(=,=∞]),([Re z f s (-1 ); 二.选择题(每题4分,共24分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为(B );(A) y x iu u z f +=')(; (B)y x iu u z f -=')(;(C)y x iv u z f +=')(; (D)x y iv u z f +=')(、2.C 就是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f .(A)23-z ; (B)2)1(3--z z ; (C)2)2()1(3--z z ; (D)2)2(3-z 、3.如果级数∑∞=1n n nz c 在2=z 点收敛,则级数在(C)(A)2-=z 点条件收敛 ; (B)i z 2=点绝对收敛;(C)i z +=1点绝对收敛; (D)i z 21+=点一定发散.4.下列结论正确的就是( B )(A)如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C)如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D)函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件就是),(y x u 、),(y x v在该区域内均为调与函数.5.下列结论不正确的就是( D ).的可去奇点;为、z A 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、z C 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2222y dxy cx i by axy x z f +++++=就是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
(2).计算⎰-C zz zz e d )1(2其中C 就是正向圆周: 解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程 因为函数zz e z f z2)1()(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(d )1(d )1(222C z C z C zz z z e z zz e z z z ei z e iz e i z zz z πππ2)1(2)(2021=-+'===无论采用那种方法给出公式至少给一半分,其她酌情给分。
(3).⎰=++3342215d )2()1(z z z z z解:设)(z f 在有限复平面内所有奇点均在:3<z 内,由留数定理]),([Re 2d )2()1(3342215∞-=++⎰=z f s i z z z z z π -----(5分) ]1)1([Re 22z z f s i π= ----(8分)234221521))1(2()11()1(1)1(z z zz z z f ++= 0,z )12()1(11)1(34222=++=有唯一的孤立奇点z z z z z f 1)12()1(11)1(]0,1)1([Re 34220202lim lim =++==→→z z z z zf z z f s z z ⎰==++∴33422152d )2()1(z i z z z z π --------(10分)(4)函数2332)3()(sin )2)(1()(-+-=z z z z z z f π在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级、 解:∞±±±==-+-=,的奇点为 ,3,2,1,0,)(sin )3()2)(1()(3232k k z z z z z z z f π(1)的三级零点,)为(032103=±±±==z k k z πsin ,,,,,(2)的可去奇点,是的二级极点,为,)()(,z f z z f z z 210-=±== (3)的一级极点,为)(3z f z =(4)的三级极点;,为)(4,3,2z f z ±-= (5)的非孤立奇点。
为)(z f ∞备注:给出全部奇点给5分 ,其她酌情给分。
四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数;(1)110<-<z ,(2)10<<z ,(3)∞<<z 1解:(1)当110<-<z])11(1[)1(1)1(1)(2'+---=-=z z z z z f而])1()1([])11(1['--='+-∑∞=n n n z z ∑∞=---=01)1()1(n n n z n∑∞=-+--=021)1()1()(n n n z n z f -------6分(2)当10<<z)1(1)1(1)(22z z z z z f --=-==∑∞=-021n nz z∑∞=--=02n n z -------10分(3)当∞<<z 1)11(1)1(1)(32zz z z z f -=-=∑∑∞=+∞===03031)1(1)(n n n n z z zz f ------14分 一.填空题(每小题3分,共计15分)1.21i -的幅角就是( ,2,10,24±±=+-k k ππ);2、)1(i Ln --的主值就是(42ln 21πi - );3、211)(zz f +=,=)0()7(f ( 0 ); 4.3sin )(z z z z f -=,=]0),([Re z f s ( 0 ) ;5.21)(zz f =,=∞]),([Re z f s ( 0 );.选择题(每小题3分,共计15分)就是解析函数),(),()(y x iv y x u z f +=的实部,则( A );(A))(2)(iy x z f +='; (B))(2)(iy x z f -=';(C))(2)(ix y z f +='; (D))(2)(ix y z f -='、2.C 就是正向圆周2=z ,如果函数=)(z f ( A ),则0d )(≠⎰Cz z f .(A) 11-z ; (B)z z sin ; (C)2)3(1-z ; (D)2)1(1-z 、3.如果级数∑∞=1n nnz c在i z 2=点收敛,则级数在( C )(A)2-=z点条件收敛 ; (B)i z 2-=点绝对收敛;(C)i z +=1点绝对收敛; (D)i z 21+=点一定发散.4.下列结论正确的就是( C )(A)如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果0)(=⎰Cdz z f ,其中C 复平面内正向封闭曲线, 则)(z f 在C 所围成的区域内一定解析;(C)函数)(z f 在0z 点解析的充分必要条件就是它在该点的邻域内一定可以展开成为0z z -的幂级数,而且展开式就是唯一的;(D)函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件就是),(y x u 、),(y x v 在该区域内均为调与函数.5.下列结论不正确的就是( C ). (A)lnz 就是复平面上的多值函数; (B)cosz 就是无界函数; (C)z sin 就是复平面上的有界函数;(D)z e 就是周期函数.(每小题10分,共计40分)(1)求d c ,,使)()(2222y dxy cx i by axy x z f +++++=就是解析函数,解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
(2).⎰-Cz z z d )1(12.其中C 就是正向圆周2=z ;解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程 因为函数zz z f 2)1(1)(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(1d )1(1d )1(1222C C C z z z z zz z z z0)1(12)1(2021=-+'===z z z iz i ππ(3).计算⎰-C zz z ez d )1(13,其中C 就是正向圆周2=z ; 解:设)(z f 在有限复平面内所有奇点均在:2<z 内,由留数定理122]),([Re 2(z)d -==∞-=⎰ic z f s i z f z ππ -----(5分)∞<<z 1)1111)(!31!2111(11)1(323221213 ++++++++-=--=-z z z z z z z ze z z e z zz)1111)(!41!31!21(3222++++++++-=zz z z z z z=+++-=-)!31!2111(1c 38-i z f z π238(z)d 2-=⎰=(4)函数332)(sin )2)(1()(z z z z f π+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级、∞±±±==,的奇点为 ,3,2,1,0,)(k k z z f的三级零点,)为(032103=±±±==z k k z πsin ,,,,,的可去奇点,是的二级极点,为)(2)(,1z f z z f z -=±= 的三级极点;,为)(4,3,2,0z f z ±-= 的非孤立奇点。