数学规律题:一次函数(1)
全国历年中考数学真题精选汇编:一次函数1
全国历年中考数学真题精选汇编:一次函数1一、单选题1.(2021·衢州)已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地()A. 15kmB. 16kmC. 44kmD. 45km2.(2020·台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t (单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B. C. D.3.(2020·杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图像经过点p(1,2),则该函数的图像可能是( )A. B. C. D.4.(2019·杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A. B.C. D.5.(2019·绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A. -1B. 0C. 3D. 46.(2020·连云港)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程与它们的行驶时间之间的函数关系.小欣同学结合图像得出如下结论:①快车途中停留了;②快车速度比慢车速度多;③图中;④快车先到达目的地.其中正确的是()A. ①③B. ②③C. ②④D. ①④7.(2019·扬州)若点P在一次函数的图像上,则点P一定不在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.(2021·安徽)某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系,若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm。
2023年数学中考试题精选:一次函数应用(一)
2023年数学中考试题精选(一)1.(2023.大连22题)为了增强学生身体素质,学校要求男女同学练习跑步,开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为 4.5m/s,当到达终点时男、女均停止跑步,女生从开始匀速跑到停止跑步共用时120s。
已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则:(1)男女跑步的总路程为________.(2)当男、女相遇时,求此时男、女同学距离终点的距离。
2.(2023.江苏省无锡市26题)某景区旅游商店以20元/kg的价格采购一款旅游食品加工后出售,销售价格不低于22元/kg,不高于45元/kg,经市场调查发现每天的销售量y(kg)与销售价格x(元/kg)之间的函数关系如图所示.(1)求y关于x的函数表达式;(2)当销售价格定为多少时,该商店销售这款食品每天获得的销售利润最大?最大销售利润是多少?【销售利润=(销售价格-采购价格)•销售量】3.(2023.锦州市23题)端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y(袋)与售价x(元/袋)满足如图所示的一次函数关系。
(1)求y与x之间的函数关系式;(2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?3.(2023.湖北黄冈市22题)加强劳动教育,落实五育并举,孝礼中学在当地政府的支持下,建成了一处劳动实践基地. 2023年计划将其中1000m2的土地全部种植甲乙两种蔬菜. 经调查发现:甲种蔬菜种植成本y(单位:元/m2)与其种植面积x(单位:m2)的函数关系如图所示,其中200≤x≤700; 乙种蔬菜的种植成本为50元/m2.(1)当x=____m2时,y=35元/m2;(2)设2023年甲乙两种蔬菜总种植成本为w元,如何分配两种蔬菜的种植面积,使w最小?(3)学校计划今后每年在这1000m2土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降a%,当a为何值时,2025年的总种植成本为28920元?4.(2023.牡丹江25题)在一条高速公路上依次有A,B,C三地,甲车从A地出发匀速驶向C地,到达C地休息1h后调头(调头时间忽略不计)按原路原速驶向B地,甲车从A地出发1.5h后,乙车从C地出发匀速驶向A地,两车同时到达目的地,两车距A地路程ykm与甲车行驶时间xh之间的函数关系如图所示,请结合图象信息,解答下列问题:(1)甲车行驶的速度是___km/h,乙车行驶的速度是______km/h; (2)求图中线段MN所表示的y与x之间的函数解析式,并直接写出自变量x的取值范围;(3)乙车出发多少小时,两车距各自出发地路程的差是160km?请直接写出答案。
苏科版数学八年级上册第六章一次函数一次函数第1课时(共21张)
(2) l 与 x 之间的函数关系式为: l = 4x, l是 x 的一次函数,也是正比例函数.
6.2 一次函数(1)
例2: 用函数表达式表示下列变化过程中两 个变量之间的关系,并指出其中的一次函数、 正比例函数。
(3)长方形的长为常量 a 时,面积 S 与 宽x 之间的函数关系;
解:(3) S 与 x 之间的函数关系 式为:S =a x。 因为a为常数,且a ≠0,所以 S 是 x 的 一次函数,也是正比例函数.
6.2 一次函数(1)
例2: 用函数表达式表示下列变化过程中两 个变量之间的关系,并指出其中的一次函数、
解:(1)y=450-15t
(2)y=10t.
6.2 一次函数(1)
由上面情境,我们得到了一些函数表达式:
y=60x、Q=25t、Q=25t+6、y=450-15t、y=10t
(1)这些函数表达式有什么共同特点?(小组合作交流) (2)你能否将它们分类? (3)你能再写两个类似的式子吗? (4)能不能归纳一下一般情势?
1.水池中有水 300 m3,每小时排水10m3, 排水 t h后,水池中还有水 y m3.试写出 y 与 t 之间的函数表达式,并判断 y 是否为 t 的一次函数,是否为 t 的正比例函数;写出 自变量的取值范围.
解:y=-10t+300(0≤t≤30) y 是 t 的一次函数,但不是正比例函数.
6.2 一次函数(1)
老师想对你说
实际生活
一次函数 :y=k x+b (k、b为 具有y= k x常+数b (,k、且bk为≠常0);
数,且k≠0)的情势.
正比例函数 :y=k x ( k 为常
【中考数学压轴题专题突破41】一次函数综合问题(1)
【中考压轴题专题突破41】一次函数综合问题(1)1.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y1=x 交于点C.(1)当直线AB解析式为y2=﹣x+10时,如图1.①求点C的坐标;②根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.2.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.3.如图1,在平面直角坐标系中,OB=10,F是y轴正半轴上一点.(1)若OF=2,求直线BF的解析式;(2)设OF=t,△OBF的面积为s,求s与t的函数关系(直接写出自变量t的取值范围);(3)如图3,在(2)的条件下,过点B作BA⊥x轴,点C在x轴上,OF=OC,连接AC,CD⊥直线BF于点D,∠ACB=2∠CBD,AC=13,OF=OC,AC.BD交于点E,求此时t的值.4.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB =OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.5.对于两个一次函数y1=k1x+b1和y2=k2x+b2(其中k1、k2、b1,b2均为常数且k1、k2均不为0),任取一个自变量x,当x<0时,y=y12+y2;当x≥0时,y=y12﹣y2,我们称这样的函数为函数y1=k1x+b1和y2=k2x+b2的“组合函数”.例如:y1=x﹣1和y2=x+1的“组合函数“为y=(1)已知一次函数y1=x﹣1和y2=4x﹣1.①求一次函数y1=x﹣1和y2=4x﹣1的“组合函数”所对应的函数表达式.②一次函数y1=x﹣1和y2=4x﹣1的“组合函数”的函数值y随x的增大而减小时,x的取值范围是.③当﹣4≤x≤4时,该“组合函数”的函数值y的取值范围是.(2)记一次函数y1=x﹣n(n>0)和y2=4nx+n2(其中n为常数)的“组合函数”的图象为G.①当n=1时,若直线y=a(a为常数)与图象G有三个不同的交点时,记三个交点的横坐标分别为x1、x2、x3(x1<x2<x3),求x1+x2+x3的取值范围.②在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(2,2),点B在第二象限.图象G与正方形ABCD的边恰好有两个公共点时,直接写出n的取值范围.6.如图,点O是平面直角坐标系的原点,直线y=kx+3交x轴于点A,交y轴于点B,OA =OB.(1)求k的值;(2)点P为第一象限内线段AB上方一点,点P的坐标为(t,),连接P A,PB,设△P AB的面积为S,求S关于t的函数关系式;(3)在(2)的条件下,在PB上方取一点C,连接BC,PC,使∠BCP=90°,且BC =PC.点D在线段AP上,且横坐标为,连接OC,CD,当∠OCD=45°时,求点P 的坐标.【中考压轴题专题突破41】一次函数综合问题(1)参考答案与试题解析1.解:(1)①由題意,,解得:,所以C(4,4).②观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∵ON平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ.∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB⊥ON,∴∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=6,∵△OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.2.解:(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,∴点B(0,6),点A(﹣3,0)∴AO=3,BO=6,∴AO=CO=3,∴点C(3,0),设直线BC解析式为:y=kx+b,则,解得:∴直线BC解析式为:y=﹣2x+6;(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,∴点Q(m,﹣2m+6),∵AB=CB,∴∠BAC=∠BCA=∠CHQ,∠PGA=∠QHC=90°,AP=CQ,∴△PGA≌△QHC(AAS),∴PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,直线AB的表达式为:y=2x+6,即2m﹣6=2x+6,解得:x=m﹣6,故点P(m﹣6,2m﹣6);(3)如图2,连接AM,CM,过点P作PE⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠P AM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠P AM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠P AO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠P AO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=3,∴2m﹣6=3,∴m=,∴Q(,﹣3),P(﹣,3)设直线PQ的解析式为:y=ax+c,∴,解得:∴直线PQ的解析式为:y=﹣x+.3.解:(1)∵OB=10,OF=2,∴B(﹣10,0),F(0,2),设直线BF的解析式为y=kx+b,∵直线y=kx+b经过点B(﹣10,0),F(0,2),∴,解得:,∴直线BF的解析式为y=x+2;(2)△OBF的面积为S==5t(t>0);(3)如图,延长AB至点R,使BR=AB,连接CR,延长CD交y轴于点T,过点T,作TM∥x轴交BA的延长线于点M,过点T作TK⊥CR交RC的延长线于点K,连接RT,∵AB⊥BC,AB=BR,∴BC垂直平分AR,∴AC=CR=13,∴∠ACB=∠RCB,设∠CBD=α,则∠ACB=2α,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=90°﹣α,∵∠ACB=∠RCB=2α,∴∠ACK=180°﹣4α,∴∠KCT=∠BCK﹣∠BCD=∠BCA+∠ACK﹣∠BCD=90°﹣α,∴∠KCT=∠BCD,∵TK⊥KR,OT⊥OC,∴OT=TK,∵TC=TC,∴Rt△OTC≌Rt△KTC(HL),∴OC=CK=TK=t,∵OF=OC,∠BOF=∠TOC,∠FBO=∠OTC,∴△BOF≌△TOC(AAS),∴OB=OT=10,∴TK=10,∵∠ABO+∠BOT=90°+90°=180°.∴MB∥OT,∵MT∥OB,∴四边形OBMT为平行四边形,∵OB=OT,∠BOT=90°.∴四边形OBMT为正方形,∴MB=MT=OT=10,∴MT=TK,∵RT=RT,∴Rt△RMT≌Rt△RTK(HL),∴RK=RM=CR+CK=13+t,∴BR=RM﹣MB=3+t,∵BC=OB+OC=10+t,在Rt△BRC中,BR2+BC2=RC2,∴(3+t)2+(10+t)2=132,解得:t=2(t=﹣15舍去).∴t的值为2.4.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).5.解:(1)①当x≥0时,y=y12﹣y2,=(x﹣1)2﹣(4x﹣1)=x2﹣6x+2,当x<0时,y=y12+y2=,=(x﹣1)2+(4x﹣1)=x2+2x,∴y=②∵当x≥0时,函数解析式为:y=x2﹣6x+2,∴当0≤x≤3时,y随x的增大而减小.当x<0时,函数解析式为:y=x2+2x,∴x≤﹣1时,y随x的增大而减小.故答案为:x≤﹣1或0≤x≤3;③∵当﹣4≤x<0时,函数解析式为:y=x2+2x,∴﹣1≤y≤8,当0≤x≤4时,函数解析式为:y=x2﹣6x+2,∴﹣7≤y≤2,∴当﹣4≤x≤4时,﹣7≤y≤8;故答案为:﹣7≤y≤8;(2)①当n=1时,y1=x﹣1,y2=4x+1,∴组合函数为:y=∵直线y=a(a为常数)与图象G有三个不同的交点,∴1<a<2,∴当x2﹣6x=1时,x=3+,x=3﹣(舍去),当x2﹣6x=2时,x=3+,x=3﹣(舍去),∵x1+x2=﹣2,∴1+<x1+x2+x3<1+;②∵一次函数y1=x﹣n(n>0)和y2=4nx+n2,∴组合函数y=若y=x2﹣6nx(x>0)的顶点在正方形ABCD内时,∴﹣9n2>﹣2,0<3n<2,∴n2<,且0<n<,∴0<n<,此时y=x2+2nx+2n2与正方形ABCD的边也有1个交点,∴0<n<符合题意;若y=x2﹣6nx(x>0)的顶点不在正方形ABCD内部时,且与正方形ABCD的边有一个交点,∴22﹣6×n×2<﹣2,∴n>即y=x2+2nx+2n2与正方形ABCD的边有一个交点,∴2n2≤2∴n≤1,∴<n≤1;若y=x2+2nx+2n2的顶点在正方形ABCD的AB边上时,图象G与正方形ABCD的边恰好有两个公共点,∴n2=2,∴n=,综上所述:当0<n<或<n≤1或n=时,图象G与正方形ABCD的边恰好有两个公共点.6.解:(1)∵直线y=kx+3交y轴于点B,∴点B坐标(0,3),∴OB=3,∵OA=OB=3,∴点A(3,0),∴0=3k+3,∴k=﹣1;(2)如图1,过点P作PQ⊥OA,交AB于点Q,由(1)知,AB的解析式为:y=﹣x+3,∵点P的坐标为(t,),∴Q点的坐标为(t,﹣t+3),∴PQ=t+,∵,∴;(3)如图2,过点P作PM⊥OA于M,过点D作DN⊥OA于N,过点O作OH⊥OC,交CD的延长线于点H,连接AH,∵∠OCD=45°,∴∠OCH=∠OHC=45°,∴OC=OH,∵∠AOB=∠COH=90°,∴∠BOC=∠AOH,在△OBC和△OAH中,,∴△OBC≌△OAH(SAS),∴BC=AH,∠OCB=∠OHA,∵BC=CP,∴AH=PC,∵∠BCP=90°,∠OCD=45°,∴∠PCD=45°﹣∠OCB,∵∠AHD=45°﹣∠OHA,∴∠PCD=∠AHD,在△PCD和△AHD中,,∴△PCD≌△AHD(AAS),∴PD=P A,∵PM∥DN,∴MN=AN,∵D的横坐标为,点P的坐标为(t,),∴M(t,0),N(,0),∴﹣t=3﹣,∴t=,∴P(,).。
一次函数的像特征及其变化规律
一次函数的像特征及其变化规律一次函数是指形式为y = kx + b的函数,其中k和b是常数,k表示斜率,b表示截距。
一次函数的图像通常表现为一条直线。
在讨论一次函数的像特征及其变化规律之前,首先来了解一下一次函数的基本性质。
一、基本性质1. 斜率 k:一次函数的斜率 k 决定了直线的倾斜程度。
当 k > 0 时,图像向右上方倾斜;当 k < 0 时,图像向右下方倾斜;当 k = 0 时,图像为水平直线。
2. 截距 b:一次函数的截距 b 决定了直线与y轴的交点。
当 b > 0 时,图像在y 轴上方与y轴相交;当 b < 0时,图像在y轴下方与y轴相交;当 b = 0 时,图像与y轴相切。
3. 零点 x0:一次函数的零点即为满足y = 0的x值,表示函数与x轴的交点。
零点可以通过解方程 kx + b = 0 找到,即 x0 = -b/k。
二、像特征的变化规律一次函数的像特征主要包括斜率和截距的变化规律。
1. 斜率的变化规律:(1)当 k > 0 时,随着k的增大,直线的倾斜程度越大,图像越陡峭。
(2)当 k < 0 时,随着k的减小,直线的倾斜程度越大,图像越陡峭。
(3)当 k = 0 时,直线为水平线,斜率不变。
(4)当 k > 1 或 k < -1 时,直线倾斜程度更大,图像越陡。
2. 截距的变化规律:(1)当 b > 0 时,随着b的增大,直线与y轴的交点越靠上。
(2)当 b < 0 时,随着b的减小,直线与y轴的交点越靠下。
(3)当 b = 0 时,直线与y轴相切。
(4)当截距 b 不变时,直线与y轴的交点也不变。
三、例题分析例1:考虑函数 f(x) = 2x + 1斜率 k = 2,截距 b = 1。
根据斜率和截距的定义,我们可以得出以下结论:(1)斜率 k > 0,表示直线向右上方倾斜;(2)截距 b > 0,表示直线与y轴交点在y轴的正半轴上;(3)直线与x轴的交点为 x0 = -b/k = -1/2,即 x = -0.5。
中考数学复习:专题3-4 一次函数考点分析及典型试题
一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。
⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。
⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。
类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。
19.2.2 一次函数(1) 人教版数学八年级下册同步练习(含解析)
第十九章 一次函数19.2.2 一次函数(1)基础过关全练知识点1 一次函数的定义1.下列函数关系式中,属于一次函数的是( )A.y =2x -1 B.y =x 2+1C.y =kx +b (k 、b 是常数)D.y =1-2x2.(2022黑龙江哈尔滨期末)当m 为何值时,函数y =(m -3)x 3-|m |+m +2是一次函数( )A.2B.-2C.-2或2D.3知识点2 一次函数的图象与性质3.【教材变式·P92例3变式】下列函数图象中,表示直线y =2x +1的是( )A B C D4.【教材变式·P91思考变式】将直线y =5x 向下平移2个单位长度,所得直线的表达式为( )A.y =5x -2B.y =5x +2C.y =5(x +2)D.y =5(x -2)5.(2020黑龙江牡丹江中考)已知一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,则m 、n 的取值是( )A.m >3,n >3B.m >32,n >-13 C.m <32,n <13 D.m >32,n <136.【新独家原创】新定义:[a,b,c]为函数y=ax2+bx+c(a,b,c为实数)的“关联数”.若“关联数”为[m-2,m,-1]的函数为一次函数,对于该一次函数,下列说法正确的是( ) A.它的图象过点(1,0) B.y值随着x值的增大而减小C.它的图象经过第二象限D.当x>1时,y>07.(2022云南八中期末)在一次函数y=(5a2+8)x-3(a为常数)的图象上有A(x1,y1),B(x2,y2),C(x3,y3)三点.若x1<x2<x3,则y1,y2,y3的大小关系为( )A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y18.(2020辽宁丹东中考)已知一次函数y=-2x+b,且b>0,则它的图象不经过第 象限.9.(2021四川眉山中考)一次函数y=(2a+3)x+2的值随x值的增大而减小,则常数a的取值范围是 .10.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若该函数的图象与直线y=3x-3平行,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围. 能力提升全练11.(2022湖南邵阳中考,8,★☆☆)在直角坐标系中,已知点,m,点,n是直线y=kx+b(k<0)上的两点,则m,n的大小关系是( )A.m<nB.m>nC.m≥nD.m≤n12.(2022河南信阳期末,8,★☆☆)已知点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,则在平面直角坐标系内,它的图象大致是( )A B C D13.(2022浙江绍兴中考,9,★★☆)已知(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,则以下判断正确的是( ) A.若x1x2>0,则y1y3>0 B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>014.(2020四川凉山州中考,7,★★☆)若一次函数y=(2m+1)x+m-3的图象不经过第二象限,则m的取值范围是( ) A.m>-12B.m<3C.-12<m<3 D.―12<m≤315.(2022安徽芜湖一中期末,12,★☆☆)已知点A(x1,y1),B(x2,y2)在一次函数y=(a-2)x+1的图象上,当x1>x2时,y1<y2,则a的取值范围是 .16.(2022重庆期末,12,★★☆)若关于x的分式方程6xx―1=3+axx―1的解为整数,且一次函数y=(7-a)x+a的图象不经过第四象限,则符合题意的整数a的个数为 .素养探究全练17.【几何直观】在平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;(2)如图,一次函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.18.【运算能力】一次函数y=(m-2)x+m2-1的图象经过点A(0,3).(1)求m的值,并写出函数解析式;(2)若函数图象与x轴交于点B,直线y=(n+2)x+n2-1也经过点A(0,3),且与x轴交于点C,求线段BC的长.答案全解全析基础过关全练1.D y =2x -1中,2x 不是整式,不是一次函数,y =x 2+1不是一次函数,y =kx +b (k 、b 是常数)中,当k =0时,不是一次函数,y =1-2x 是一次函数.故选D .2.C 由题意得3-|m |=1且m -3≠0,∴m =±2且m ≠3,∴m 的值为2或-2,故选C .3.B ∵k =2>0,b =1>0,∴直线经过第一、二、三象限.故选B .4.A 将直线y =5x 向下平移2个单位长度,所得直线的表达式为y =5x -2.故选A .5.B ∵一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,∴2m ―3>0,3n +1>0,解得m >32,n >-13,故选B .6.D 根据题意可得m -2=0,且m ≠0,解得m =2,所以该一次函数表达式为y =2x -1,把x =1代入y =2x -1得到y =1,故该函数图象经过点(1,1),不经过点(1,0),故选项A 错误;函数y =2x -1中,k =2>0,则y 值随着x 值的增大而增大,故选项B 错误;函数y =2x -1中,k =2>0,b =-1<0,则该函数图象经过第一、三、四象限,故选项C 错误;当x >1时,2x -1>1,即y >1,故y >0正确,故选项D 正确.故选D .7.A 一次函数y =(5a 2+8)x -3(a 为常数)中,5a 2+8>0,∴y随x的增大而增大,∵x1<x2<x3,∴y1<y2<y3,故选A.8.答案 三解析 ∵一次函数y=-2x+b,且b>0,∴它的图象经过第一、二、四象限,不经过第三象限.9.答案 a<-32解析 ∵一次函数y=(2a+3)x+2的值随x值的增大而减小,∴2a+3<0,解得a<-32.10.解析 (1)∵函数y=(2m+1)x+m-3的图象经过原点,∴当x=0时,y=0,即m-3=0,解得m=3.(2)∵函数y=(2m+1)x+m-3的图象与直线y=3x-3平行,∴2m+1=3,且m-3≠-3,解得m=1.(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<-12.能力提升全练11.A ∵点,m,点,n是直线y=kx+b上的两点,且k<0,∴y随x的增大而减小,∵32>72,∴m<n,故选A.12.A ∵点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,∴k>0,b>0,∴直线y=kx+b经过第一、二、三象限,故选A.13.D ∵y=-2x+3中,-2<0,∴y随x的增大而减小,当y=0时,x=1.5,∵(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选D.14.D 根据题意得2m+1>0,m―3≤0,解得―12<m≤3.故选D.15.答案 a<2解析 ∵当x1>x2时,y1<y2,∴a-2<0,∴a<2,故答案为a<2.16.答案 3解析 ∵一次函数y=(7-a)x+a的图象不经过第四象限,∴7―a>0,a≥0,解得0≤a<7,由分式方程6xx―1=3+axx―1得x=3a―3,∵分式方程6xx―1=3+axx―1的解为整数,且x≠1,∴整数a=0,2,4,∴符合题意的整数a的个数为3.素养探究全练17.解析 (1)∵当x=m+1时,y=m+1-2=m-1,∴点P(m+1,m-1)在函数y=x-2的图象上.(2)∵函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,∴A (6,0),B (0,3),∵点P 在△AOB 的内部,∴0<m +1<6,0<m -1<3,m -1<-12(m +1)+3,∴1<m <73.18.解析 (1)由题意得m 2-1=3,所以m =±2.又m -2≠0,所以m ≠2,所以m =-2,所以y =-4x +3.(2)由题意可得点B ,0.因为直线y =(n +2)x +n 2-1经过点A (0,3),所以n 2-1=3,所以n =±2.又n +2≠0,所以n ≠-2,所以n =2.所以y =4x +3,所以点C 的坐标为―34,0,所以线段BC 的长为34―=32.。
初二一次函数经典例题
初二一次函数经典例题一、题目背景在初中数学中,学生常常遇到关于一次函数的问题。
一次函数是一种非常基础的函数类型,在数学中具有很重要的地位。
通过学习一次函数的性质和应用,可以为学生建立起一种较为系统的数学思维方式和解决问题的方法。
本文将给出一些初二一次函数的经典例题,以帮助学生更好地理解一次函数的概念和应用。
二、例题一题目:某种商品的价格与销量之间存在一种线性关系,已知当销量为0时,价格为100元;当销量为200时,价格为50元。
那么销量为350时,价格是多少元?解析:我们可以设商品的价格为P,销量为S。
根据题目中给出的信息,可以列出两个点的坐标:(0, 100)和(200, 50)。
由于这两个点在直线上,我们可以利用直线的斜率公式来求解。
首先,我们需要计算出直线的斜率k。
斜率可以通过两个点的纵坐标之差除以横坐标之差来计算。
在这个例子中,斜率k为:k = (50 - 100) / (200 - 0) = -50 / 200 = -1/4接下来,我们可以利用直线的斜截式方程来求解。
斜截式方程的一般形式为:y = kx + b,其中k为斜率,b为截距。
已知斜率k为-1/4,我们可以将一个已知点的坐标代入方程来求解截距b。
以(0, 100)代入方程:100 = (-1/4) * 0 + b,可以得到b = 100。
因此,直线的方程为:y = (-1/4)x + 100。
最后,我们可以代入销量为350的坐标x = 350,得到价格y = (-1/4) * 350 + 100 = 25。
所以销量为350时,价格为25元。
三、例题二题目:某家电商网站进行促销活动,设定了一次函数来计算用户购买商品的折扣。
已知当购买1件商品时,折扣为10%;当购买10件商品时,折扣为30%。
那么购买20件商品时,折扣是多少?解析:同样地,我们可以设折扣为D,购买商品的数量为N。
根据题目中给出的信息,可以列出两个点的坐标:(1, 0.1)和(10, 0.3)。
人教版数学八年级下册19.2.2 一次函数(1)同步练习(解析版)
19.2.2 一次函数(1)基础闯关全练1.下列函数关系式:①y=-x;②y=2x+11;③y=x²+x+1;④y=x1,其中一次函数的个数是()A.1 B.2 C.3 D.42.函数y-(m-2)x+(m+1)是关于x的一次函数,那么m的取值范围是()A.m≠2 B.m≠-1 C.m=-1 D.m≠2且m≠-13.一次函数y=-2x+3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在平面直角坐标系中,一次函数y=kx+b的图象如图19-2-2-1-1所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<O,b>0 D.k<0,b<0 5.一次函数y=kx+2(k为常数,且k≠0)的图象如图19-2-2-1-2所示,则k的可能值为_______.(写出一个即可)能力提升全练1.已知一次函数y=kx-m-2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是()A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k>2,m<0 2.把函数y=x向上平移3个单位长度,下列点在该平移后的直线上的是()A.(2,2) B.(2,3) C.(2,4) D.(2,5)3.如图19-2-2-1-3,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大 B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大 D.当x>1时,y随x的增大而减小三年模拟全练一、选择题1.下列函数关系式:①y=-2x+1;②y=x;③y=2x²+1;④y=123x,其中一次函数有()A.1个 B.2个 C.3个 D.4个2.关于函数y=-2x+1,下列结论正确的是()A.图象必经过点(-2,1) B.图象经过第一、二、三象限C.当x>21时,y<0 D. y随x的增大而增大3.在如图19-2-2-1-4所示的计算程序中,y与x之间的函数关系所对应的图象应为()A .B .C.D .二、填空题4.若一次函数y=(1-2k)·x+k的图象经过第一、二、三象限,则k的取值范围是_______.三、解答题5.已知一次函数y=(3-m)x+m-5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.五年中考全练一、选择题1.若b>0,则一次函数y=-x+b的图象大致是()A .B .C .D .2.已知点(-1,y₁),(4,y₂)在一次函数y=3x-2的图象上,则y₁,y₂,0的大小关系是 ( )A.O<y₁<y₂B.y₁<O<y₂C.y₁<y₂<0 D.y₂<O<y₁二、填空题3.将直线y=x向上平移2个单位长度,平移后直线的解析式为_______.4.在平面直角坐标系中,已知一次函数y=-2x+1的图象经过P₁(x₁,y₁.),P₂(x₂,y₂)两点,若x₁<x₂,则y₁_______y₂(填“>”“<”或“=”).5.已知点A是直线y=x+1上一点,其横坐标为-21,若点B与点A关于y轴对称,则点B的坐标为_________.核心素养全练1.已知关于x的一次函数y=(a+3)x+(b-2).(1)当a为何值时,y随x的增大而减小?(2)当a,b为何值时,函数图象与y轴的交点在x轴上方?(3)当a,b为何值时,函数图象经过第一、三、四象限?(4)当a,b为何值时,函数图象经过原点?(5)当a,b为何值时,函数的图象与直线y=-3x平行?2.一次函数y=(m-2)x+m²-1的图象经过点A(0,3).(1)求m的值,并写出函数解析式;(2)若(1)中的函数图象与x轴交于点B,直线y=(n+2)x+n²-1也经过点A(0,3),且与x轴交于点C,求线段BC的长.19.2.2一次函数(1)1.B①y=-x是一次函数;②y=2x+11是一次函数;③④不符合一次函数的定义,故不是一次函数,故选B.2.A根据一次函数的定义知,一次项系数不等于0.即m-2≠0.解得m≠2.3.C ∵k=-2<0,∴一次函数y=-2x+3的图象必过第二、四象限,∴b=3,∴函数图象交y轴于正半轴,∴函数图象经过第一、二、四象限,不经过第三象限.故选C.4.A由图象可知,直线从左往右呈上升趋势,故k>0,图象与y轴的交点在y轴正半轴上,故b>0.5.答案 -2(答案不唯一)解析观察图象可知,OB<OA,k<0.当x=0时,y=kx+2=2,∴OA=2,令OB=1.则点B(1,0),将(1,0)代入y=kx+2,得0=k+2,解得k=-2.1.A整理得y=(k-2)x-m,因为函数图象与y轴负半轴相交,所以-m<0.即m>0,又函数值y随x的增大而减小,所以k-2<0.即k<2.故选A.2.D 一次函数的平移规律是“左加右减,上加下减”,故把函数y=x向上平移3个单位长度后的函数关系式为y=x+3,当x=2时.y=2+3=5.故选D .3.A 由函数图象可知,当x <1时,y 随x 的增大而增大,因此A 正确,B 错误;当1<x <2时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,因此C 、D 错误,故选A .一、选择题1.B ①y=-2x+1和②y=x 是一次函数,③④不符合一次函数的定义.故选B .2.C ∵k <0,所以y 随x 的增大而减小,故D 错误;∵k <0,b >0,∴图象经过一、二、四象限,故B 错误;当x=-2时,y=4+1=5,故A 错误.故选C .3.A 由题意得y=-2x+3,所以当x=0时,y=3;当y=0时,x=1.5,即图象经过点(0,3)和点(1.5,0),选项A 符合要求,故选A .二、填空题4.答案0<k <21解析 ∵一次函数y=(1-2k)x+k 的图象经过第一、二、三象限,∴⎩⎨⎧-,0,021>>k k ∴0<k<21. 三、解答题5.解析(1)∵一次函数图象过原点, ∴⎩⎨⎧,0=5-m ,0≠m -3解得m=5.(2)∵一次函数的图象经过第二、三、四象限,⎩⎨⎧,<<05-m ,0m -3∴3<m <5. 一、选择题1.C 对于一次函数y=kx+b(k ≠0),当k >0时,图象从左到右上升;当k <0时,图象从左到右下降;当b >0时,图象与y 轴的交点在y 轴正半轴;当b=0时,图象与y轴的交点在原点;当b <0时,图象与y 轴的交点在y 轴负半轴∵-1<0,∴图象从左到右下降,又b >0,∴图象与y 轴的交点在y 轴正半轴,故选C .2.B 解法一:将x=-1代入y=3x-2,得y=-5,∴y ₁=-5;将x=4代入y=3x-2,得y=10,∴y ₂=10,所以y ₁<O <y ₂.故选B .解法二:∵k=3>0,∴y 随x 的增大而增大,易知x=32时,y=0,又-1<32<4,∴y ₁<0<y ₁,故选B .二、填空题 3.答案y=x+2解析 由平移规律“左加右减,上加下减”,可知向上平移2个单位长度后,直线的解析式为y=x+2. 4.答案 >解析 一次函数y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,因为y=-2x+1中的k=-2<0,所以当x ₁<x ₂时,y ₁>y ₂. 5.答案(2121,)解析把x=-21代入y=x+1得y=21,∴点A 的坐标为(-2121,),∵点8和点A 关于y 轴对称,∴点B 的坐标为(2121,).1.解析(1)由一次函数的性质可知,当a+3<0,即a <-3时,y 随x 的增大而减小. (2)由题意知,当a+3≠0且b-2>0时,即当a ≠-3且b >2时,函数图象与y 轴的交点在x 轴上方.(3)因为函数图象经过第一、三、四象限,所以a+3>0且b-2<0.所以a >-3且b <2,即当a >-3且b <2时,函数图象经过第一、三、四象限.(4)由题意,得a+3≠0且b-2=0,解得a ≠-3且b=2.即当a ≠-3且b=2时,函数图象经过原点.(5)由题意,得a+3=-3且b-2≠0,解得a=-6且b ≠2.所以当a=-6且b ≠2时,函数图象与直线y=-3x 平行. 2.解析(1)由题意得m ²-1=3, 所以m=±2. 又m-2≠0,即m ≠2, 所以m=-2,所以y=-4x+3.(2)由题意可得B 点的坐标为(43,0). 因为直线y=(n+2)x+n ²-1经过点A(0,3), 所以n ²-1=3,所以n=±2. 又n+2≠0.即n ≠-2.所以n=2. 所以y=4x+3,所以C 点的坐标为(-43,0).所以BC=2343--43=⎪⎭⎫ ⎝⎛.。
一次函数的图像和性质练习题
一次函数的图像和性质练习题一次函数(linear function)是数学中的基础函数之一,也被称为线性函数。
它的图像是一条直线,具有特殊的性质和规律。
本文将为您提供一些关于一次函数的图像与性质的练习题,通过解答这些题目,您将更深入地理解一次函数的图像和性质。
1. 练习题一已知一次函数f(x)的图像经过点A(2, 3)和点B(4, 7),求f(x)的解析式及函数图像。
解析:由题意可知,函数f(x)过点A(2, 3)和点B(4, 7)。
我们可以利用两点间的斜率公式求解析式。
首先,计算斜率k:k = (7 - 3)/(4 - 2) = 2然后,我们可以使用点斜式求得解析式:f(x) - 3 = 2(x - 2)f(x) = 2x - 1因此,一次函数f(x)的解析式为f(x) = 2x - 1。
其函数图像为一条斜率为2的直线,经过点A(2, 3)和点B(4, 7)。
2. 练习题二已知一次函数g(x)的图像经过点C(1, 2),且g(3) = 4,求g(x)的解析式及函数图像。
解析:根据题意,函数g(x)过点C(1, 2),且g(3) = 4。
我们可以利用点斜式和函数的性质求解析式。
首先,由点斜式可得:g(x) - 2 = k(x - 1)然后,我们利用g(3) = 4,代入得到的解析式中:4 - 2 = k(3 - 1)2 = 2kk = 1因此,一次函数g(x)的解析式为g(x) = x + 1。
其函数图像为一条斜率为1的直线,经过点C(1, 2)。
3. 练习题三已知一次函数h(x)的图像经过点D(0, 1),且在x轴上的截距为5,求h(x)的解析式及函数图像。
解析:根据题意,函数h(x)过点D(0, 1),且在x轴上的截距为5。
我们可以利用截距式求解析式。
由截距式可得:h(x) = kx + b其中,b表示函数在y轴上的截距,即h(x)在x=0时对应的值,b = 1。
将截距b和点D(0, 1)代入解析式中,可求得斜率k:1 = k * 0 + 1k = 0因此,一次函数h(x)的解析式为h(x) = x + 1。
一次函数知识点及其典型例题
一次函数知识点及其典型例题一次函数是数学中的基础概念之一。
其中,变量是在一个变化过程中可以取不同数值的量,而常量则是在一个变化过程中只能取同一数值的量。
例如,在匀速运动公式s=vt中,速度v和时间t是变量,路程s是常量。
在圆的周长公式C=2πr 中,周长C是常量,半径r是变量。
函数是指在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
判断y是否为x的函数,只需要看x取值确定的时候,y是否有唯一确定的值与之对应。
例如,y=πx、y=2x-1、y=-3x+2、y=x-1都是一次函数。
对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。
画一次函数图像的一般步骤是:第一步,列表(表中给出一些自变量的值及其对应的函数值);第二步,描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步,连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
函数的表示方法有三种:列表法、解析式法和图象法。
列表法一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法形象直观,但只能近似地表达两个变量之间的函数关系。
正比例函数是一种特殊的一次函数,其一般形式为y=kx(k是常数,k≠0)。
其中,k叫做比例系数。
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小。
正比例函数必过点(0,0)和(1,k)。
1.若y=x+2-3b是正比例函数,则b的值是()A。
2014中考数学专项复习一次函数(含答案)
一次函数(一)1 、(2013•大庆)对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(-1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大2、(2013•徐州)下列函数中,y随x的增大而减少的函数是()A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x3、(2013•莆田)如图,一次函数y=(m-2)x-1的图象经过二、三、四象限,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<24、(2013•遵义)P1(x1,y1),P2(x2,y2)是正比例函数y=-12x图象上的两点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y25、(2013•眉山)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是()A.B.C.D.6、(2013•福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0 B.a<0 C.b=0 D.ab<07、(2013•常州)已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,-2)和点B(1,0),则k= ,b= .8、(2013•重庆)已知正比例函数y=kx(k≠0)的图象经过点(1,-2),则这个正比例函数的解析式为()A.y=2x B.y=-2x C.y= 12x D.y=-12x9、(2013•黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3 C.x>32D.x>310、(2013•荆州)体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()进球数0 1 2 3 4 5人数 1 5 x y 3 2A.y=x+9与y=23x+223B.y=-x+9与y=23x+223C.y=-x+9与y=-23x+223D.y=x+9与y=-23x+22311、(2013•武汉)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.12、(2013•青岛)如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P,则这个正比例函数的表达式是.13.(2013•菏泽)一条直线y=kx+b,其中k+b=-5、kb=6,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限14.(2013•潍坊)设点A(x1,y1)和B(x2,y2)是反比例函数y=kx图象上的两个点,当x1<x2<0时,y1<y2,则一次函数y=-2x+k的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限15.(2013•潍坊)一次函数y=-2x+b中,当x=1时,y<1,当x=-1时,y>0.则b的取值范围是.16.(2013•泰安)把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<417.(2013•威海)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.经过0.25小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地503km18、(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.19、(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2-(3+1)x+3=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以 A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.20、(2013•株洲)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的解析式,并求该植物最高长多少厘米?21、(2013•湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.22.(2013•临沂)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x(单位:台)10 20 30y(单位:万元∕台)60 55 50(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)23.(2013•滨州)根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°.①求直线l3的函数表达式;②把直线l3绕原点O按逆时针方向旋转90°得到的直线l4,求直线l4的函数表达式.(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=-15x垂直的直线l5的函数表达式.24.(2013•济宁)如图,直线y=-12x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC 于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.一次函数(二)一、选择题1.(2013•湖州)若正比例函数y=kx的图象经过点(1,2),则k的值为()A.-12B.-2 C.12D.22.(2013•陕西)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<03.(2013•荆门)若反比例函数y=kx的图象过点(-2,1),则一次函数y=kx-k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限4.(2013•黔东南州)直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是()A.m>-1 B.m<1 C.-1<m<1 D.-1≤m≤15.(2013•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是()A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=-8t+25B.途中加油21升C.汽车加油后还可行驶4小时D.汽车到达乙地时油箱中还余油6升6.(2013•天门)小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题7.(2013•资阳)在一次函数y=(2-k)x+1中,y随x的增大而增大,则k的取值范围为.8.(2013•天津)若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是.9.(2013•鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.10.(2013•珠海)已知,函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1 y2(填“>”“<”11.(2013•永州)已知一次函数y=kx+b 的图象经过A (1,-1),B (-1,3)两点,则k 0(填“>”或“<”)12.(2013•昆明)已知正比例函数y=kx 的图象经过点A (-1,2),则正比例函数的解析式为 .13.(2013•成都)已知点(3,5)在直线y=ax+b (a ,b 为常数,且a≠0)上,则 5a b 的值为 . 14.(2013•包头)如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 .15.(2013•温州)如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴对称变换,得到△A′B′C′(A 和A′,B 和B′,C 和C′分别是对应顶点),直线y=x+b 经过点A ,C′,则点C′的坐标是 .16.(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.17.(2013•随州)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.三、解答题18.(2013•厦门)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.19.(2013•湘潭)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.20.(2013•盐城)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)21.(2013•河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.一次函数(一)答案:1、C.2、C。
一次函数找规律题
一次函数找规律题一次函数找规律题:在数学的奇妙世界里,一次函数有着独特的规律。
简单来说,一次函数的表达式为 y = kx + b(其中 k 、b 为常数,k ≠ 0),当 k > 0 时,函数图像是从左到右上升的,y 随 x 的增大而增大;当 k < 0 时,函数图像从左到右下降,y 随 x 的增大而减小。
这就好比我们去爬山,k 就像是山坡的陡峭程度。
当 k > 0 ,这山坡就是个让人兴奋的缓坡,你越往上爬(x 增大),所处的位置就越高(y 增大)。
而当 k < 0 时,这山坡就变成了让人望而却步的陡坡,你越往前走(x 增大),反而越往下掉(y 减小)。
再想象一下,一次函数的图像是一辆行驶中的汽车。
k 是汽车的油门,当 k > 0 ,就像猛踩油门,车一路飞驰,y 值越来越大;当 k < 0 ,如同猛踩刹车,车逐渐减速,y 值越来越小。
咱们来举个例子吧,比如说电话费的计算。
假设每月基础费用是 b 元,每分钟通话费用是 k 元,通话时长是 x 分钟,那么总费用 y 就可以用一次函数 y = kx + b 来表示。
如果每分钟通话费用 k 是 0.2 元,基础费用 b 是 20 元,通话 50 分钟,那总费用 y 就是 0.2×50 + 20 = 30 元。
又比如,小明去跑步,他的初始速度是 b ,每秒加速 k ,跑了 x 秒,那他的速度 y 就可以用这个一次函数来计算。
在实际生活中,一次函数的规律应用广泛。
比如商家制定销售策略,根据成本和预期利润,通过一次函数来确定商品的定价和销量之间的关系。
科学家在研究物理现象时,也常常会用到一次函数来描述变量之间的关系。
总结一下,一次函数的规律就像是一把神奇的钥匙,能帮我们打开很多问题的大门。
它在数学、物理、经济等领域都发挥着重要作用,让我们能更清晰地理解和预测各种变化。
如果您对一次函数的规律还意犹未尽,想要深入探究,那我推荐您去阅读《数学之美》这本书,或者登录“中国科普网”,那里有丰富的数学知识等着您去探索。
备战2021中考数学考点专题训练——专题一:一次函数(word解析版)
备战2021中考数学考点专题训练——专题一:一次函数1.快车与慢车分別从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程km;快车的速度为km/h;慢车的速度为km/h;(2)出发小时后,快慢两车相遇;(3)求快慢两车出发几小时后第一次相距150km?2.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)3.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:2 5 20 23 30离开宿舍的时间/min0.2 0.7离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.4.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣1 0y﹣2 1(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.5.小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x(h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为km/h,a的值为;(2)求小张加速前的速度和b的值;(3)在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km?6.如图,直线l1:y=x+3与直线l2:y=kx+b交于点E(m,4),直线l1与坐标轴交于点A、B,l2与x轴和y轴分别交于点C、D,且OC=2OB,将直线l1向下平移7个单位得到直线l3,交l2于点F,交y轴于点G,连接GE.(1)求直线CD的解析式;(2)求△EFG的面积.7.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距离A地的距离为y(km).甲车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车距离A地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)当乙车到达A地时,求甲车距离A地的距离.8.在平面直角坐标系中,点A(a,6),B(5,b),(1)若a,b满足+(a﹣b﹣1)2=0,求点A,B的坐标;(2)如图1,点C在在直线AB上,且点C的坐标为(m,n),求m,n应满足怎样的关系式?(3)如图2,将线段AB平移到EF,且点D在直线EF上,且D点的纵坐标为x,当满足S≥S△AOB时,求x的取值范围.△DOE9.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg (除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.10.如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.(1)求点A、B、C的坐标;(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.11.如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交y轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.(1)求点C的坐标及直线BC的函数表达式;(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.(ⅰ)若∠BDE=45°,求△BDE的面积;(ⅱ)在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.12.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(﹣,4),△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.(1)求直线BD的解析式;(2)求△BOH的面积;(3)点M在x轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+8交x轴于点A,交y轴于点B,点C在AB上,AC=5,CD∥OA,CD交y轴于点D.(1)求点D的坐标;(2)点P从点O出发,以每秒1个单位长度的速度沿OA匀速运动,同时点Q从点A出发,以每秒个单位长度的速度沿AB匀速运动,设点P运动的时间为t秒(0<t<3),△PCQ的面积为S,求S与t之间的函数关系式;(3)在(2)的条件下,过点Q作RQ⊥AB交y轴于点R,连接AD,点E为AD中点,连接OE,求t为何值时,直线PR与x轴相交所成的锐角与∠OED互余.14.如图,直线y1=﹣x+b分别与x轴、y轴交于A,B两点,与直线y2=kx﹣6交于点C(4,2).(1)b=;k=;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得以P,Q,A,B为顶点的四边形是菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,点C为OB 的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标.(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动,同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作PH⊥OA,垂足为H,连接MP,MH,设点P的运动时间为t秒.①若△MPH的面积为1,求t的值;②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值?如果有,求出相应的点P的坐标;如果没有,请说明理由.16.已知:如图,平面直角坐标系中,O为坐标原点,直线y=mx+10m交x轴于B,交y轴于A,△AOB的面积为50.(1)求m的值;(2)P为BA延长线上一点,C为x轴上一点,坐标为(6,0),连接PC,D为x轴上一点,连接PD,若PD=PC,P点横坐标为t,△PCD的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过C作CF⊥AB于F,当D在BO上时,过D作DG⊥CP于G,过F 作FE⊥DG于E,连接PE,当PE平分△PDG周长时,求E点坐标.17.问题:如图1,△ABC中,AB=a,∠ACB=α.如何用直尺和圆规作出点P,均使得∠APB=α?(不需解答)尝试:如图2,△ABC中,AC=BC,∠ACB=90°.(1)请用直角三角尺(仅可画直角或直线)在图2中画出一个点P,使得∠APB=45°(2)如图3,若AC=BC=,以点A为原点,直线AB为x轴,过点A垂直于AB的直线为y轴建立平面直角坐标系,直线y=(b≥0)交x轴于点M,交y轴与点N.①当b=7+时,请仅用圆规在射线MN上作出点P,使得∠APB=45°;②请直接写出射线MN上使得∠APB=45°或∠APB=135°时点P的个数及相应的b的取值范围;应用:如图4,△ABC中,AB=a,∠ACB=α,请用直尺和圆规作出点P,使得∠APB=α,且AP+BP最大,请简要说明理由.(不写作法,保留作图痕迹)18.已知,平面直角坐标系中,直线y=kx﹣4k交x轴A,交y轴正半轴于点B,直线y=﹣x+b经过点A,交y轴正半轴于点C,且BC=5OC.(1)如图1,求k的值;(2)如图2,点P为第二象限内直线AC上一点,过点P作AC的垂线,交x轴于点D,交AB于点E,设点P的横坐标为t,△ADE的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,Q为线段PE上一点,PQ=PC,连接AQ,过点C作CG⊥AQ 于G,交直线AB于点F,连接QF,若∠AQP=∠FQE,求点F的坐标.19.y=kx+b的图象经过点(﹣2,2)、(3,7)且与坐标轴相交于点、B两点.(1)求一次函数的解析式.(2)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化?若不变,请求出其值;若变化,请说明理由.(3)在(2)的条件下,在平面内有一点H,当以H、N、B、P为顶点的四边形为菱形时,直接写出点H的坐标.20.如图1,在平面直角坐标系中,点A的坐标是(﹣1,0),点B(2,3),点C(3,).(1)求直线AB的解析式;(2)点P(m,0)是x轴上的一个动点,过点P作直线PM∥y轴,交直线AB于点M,交直线BC于点N(P,M,N三点中任意两点都不重合),当MN=MP时,求点M的坐标;(3)如图2,取点D(4,0),动点E在射线BC上,连接DE,另一动点P从点D出发,沿线段DE以每秒1个单位的速度运动到点E,再沿线段EB以每秒个单位的速度运动到终点B,当点E的坐标是多少时,点P在整个运动过程中用时最少?请直接写出此时点E的坐标.备战2021中考数学考点专题训练——专题一:一次函数参考答案1.快车与慢车分別从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程km;快车的速度为km/h;慢车的速度为km/h;(2)出发小时后,快慢两车相遇;(3)求快慢两车出发几小时后第一次相距150km?【答案】解:(1)由函数图象可得,甲乙两地之间的路程是560km,快车的速度为:560÷(5﹣1)=140(km/h),慢车的速度为:560÷(5+4﹣1)=70(km/h),故答案为:140,70;(2)设出发a小时时,快慢两车相遇,140a+70a=560,解得,a=,即出发小时后,快慢两车相遇,故答案为:;(3)快慢两车出发b小时后第一次相距150km,140b+70b=560﹣150,解得,b=,即快慢两车出发小时后第一次相距150km2.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)【答案】解:(1)设ME的函数解析式为y=kx+b(k≠0),由ME经过(0,50),(3,200)可得:,解得,∴ME的解析式为y=50x+50;(2)设BC的函数解析式为y=mx+n,由BC经过(4,0),(6,200)可得:,解得,∴BC的函数解析式为y=100x﹣400;设FG的函数解析式为y=px+q,由FG经过(5,200),(9,0)可得:,解得,∴FG的函数解析式为y=﹣50x+450,解方程组得,同理可得x=7h,答:货车返回时与快递车图中相遇的时间h,7h;(3)(9﹣7)×50=100(km),答:两车最后一次相遇时离武汉的距离为100km.3.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知小亮所在学校的宿舍、食堂、图书馆依次在同一条直线上,食堂离宿舍0.7km,图书馆离宿舍1km.周末,小亮从宿舍出发,匀速走了7min到食堂;在食堂停留16min吃早餐后,匀速走了5min到图书馆;在图书馆停留30min借书后,匀速走了10min返回宿舍.给出的图象反映了这个过程中小亮离宿舍的距离ykm与离开宿舍的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:2 5 20 23 30离开宿舍的时间/min0.2 0.7离宿舍的距离/km(Ⅱ)填空:①食堂到图书馆的距离为km;②小亮从食堂到图书馆的速度为km/min;③小亮从图书馆返回宿舍的速度为km/min;④当小亮离宿舍的距离为0.6km时,他离开宿舍的时间为min.(Ⅲ)当0≤x≤28时,请直接写出y关于x的函数解析式.【答案】解:(Ⅰ)由图象可得,在前7分钟的速度为0.7÷7=0.1(km/min),故当x=2时,离宿舍的距离为0.1×2=0.2(km),在7≤x≤23时,距离不变,都是0.7km,故当x=23时,离宿舍的距离为0.7km,在28≤x≤58时,距离不变,都是1km,故当x=30时,离宿舍的距离为1km,故答案为:0.2,0.7,1;(Ⅱ)由图象可得,①食堂到图书馆的距离为1﹣0.7=0.3(km),故答案为:0.3;②小亮从食堂到图书馆的速度为:0.3÷(28﹣23)=0.06(km/min),故答案为:0.06;③小亮从图书馆返回宿舍的速度为:1÷(68﹣58)=0.1(km/min),故答案为:0.1;④当0≤x≤7时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为0.6÷0.1=6(min),当58≤x≤68时,小亮离宿舍的距离为0.6km时,他离开宿舍的时间为(1﹣0.6)÷0.1+58=62(min),故答案为:6或62;(Ⅲ)由图象可得,当0≤x≤7时,y=0.1x;当7<x≤23时,y=0.7;当23<x≤28时,设y=kx+b,,得,即当23<x≤28时,y=0.06x﹣0.68;由上可得,当0≤x≤28时,y关于x的函数解析式是y=.4.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣1 0y﹣2 1(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【答案】解:(1)∵直线l′:y=bx+k中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线1′的解析式为y=3x+1;∴直线1的解析式为y=x+3;(2)如图,解得,∴两直线的交点为(1,4),∵直线1′:y=3x+1与y轴的交点为(0,1),∴直线l'被直线l和y轴所截线段的长为:=;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣3+=0时,a=,当(a﹣3+0)=时,a=7,当(+0)=a﹣3时,a=,∴直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.5.小张和小王是同一单位在A、B两市的同事,已知A、B两市相距400km,周六上午小王从B市出发,开车匀速前往A市的公司开会,1小时后小张从A市的公司出发,沿同一路线开车匀速前往B市,小张行驶了一段路程后,得知小王要到A市的公司开会,便立即加速返回公司(折返的时间忽略不计).已知小张返回时的速度比去时的速度每小时快20km.两人距B市的距离y(km)与小张行驶时间x(h)间的关系如图所示,请结合图象解答下列问题:(1)小王的速度为km/h,a的值为;(2)求小张加速前的速度和b的值;(3)在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km?【答案】解:(1)由图象可得,小王的速度为:80÷1=80(km/h),a=400÷80﹣1=4,故答案为:80,4;(2)设小张加速前的速度为xkm/h,2.4x=(x+20)×(4.4﹣2.4),解得,x=100,b=400﹣2.4×100=160,即小张加速前的速度为100km/h,b的值是160;(3)由题意可得,相遇前:100x+80(x+1)=400﹣20解得,x=,相遇后到小张返回前:100x+80(x+1)=400+20解得,x=,小张返回后到小王到达A市前:80×(x+1)=(400﹣100×2.4)+(100+20)×(x﹣2.4)+20,解得,x=4.7(舍去),小王到达A市到小张返回到A市前,(400﹣100×2.4)+(100+20)×(x﹣2.4)+20=400,解得,x=,由上可得,在小张从出发到回到A市的公司过程中,当x为何值时,两人相距20km.6.如图,直线l1:y=x+3与直线l2:y=kx+b交于点E(m,4),直线l1与坐标轴交于点A、B,l2与x轴和y轴分别交于点C、D,且OC=2OB,将直线l1向下平移7个单位得到直线l3,交l2于点F,交y轴于点G,连接GE.(1)求直线CD的解析式;(2)求△EFG的面积.【答案】解:(1)∵直线l1:y=x+3经过点E(m,4),∴4=+3,解得m=2,∴E(2,4),∵直线l1与坐标轴交于点A、B,∴A(﹣6,0),B(0,3),∵OC=2OB,∴OC=6,∴C(6,0),把C(6,0),E(2,4)代入直线l2:y=kx+b得,解得,∴直线CD的解析式为y=﹣x+6;(2)将直线l1向下平移7个单位得到直线l3:y=x﹣4,令x=0,则y=﹣4,∴G(0,﹣4),由,解得,∴F的坐标为(,﹣),∴S△EFG=S△DFG﹣S△DEG=﹣=.7.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距离A地的距离为y(km).甲车行驶的时间为x(h),y与x之间的函数图象如图所示.(1)求甲车距离A地的距离y(km)与行驶时间x(h)之间的函数关系式;(2)当乙车到达A地时,求甲车距离A地的距离.【答案】解:(1)设甲车从A到B地对应的函数解析式为y=kx,1.5k=180,得k=120,即甲车从A到B地对应的函数解析式为y=120x,设甲车从B到A对应的函数解析式为y=ax+b,甲车从A到B用的时间为:300÷120=2.5,则函数y=ax+b过点(2.5,300),(5.5,0),,解得,,即甲车从B到A对应的函数解析式为y=﹣100x+550;(2)乙车的速度为:(300﹣180)÷1.5=80(km/h),乙车从B到A的时间为:300÷80=(小时),将x=代入y=﹣100x+550,得y=﹣100×+550=175,即当乙车到达A地时,甲车距离A地的距离是175km.8.在平面直角坐标系中,点A(a,6),B(5,b),(1)若a,b满足+(a﹣b﹣1)2=0,求点A,B的坐标;(2)如图1,点C在在直线AB上,且点C的坐标为(m,n),求m,n应满足怎样的关系式?(3)如图2,将线段AB平移到EF,且点D在直线EF上,且D点的纵坐标为x,当满足S≥S△AOB时,求x的取值范围.△DOE【答案】解:(1)由a,b满足+(a﹣b﹣1)2=0可知,解得,∴点A(3,6),B(5,2);(2)设直线AB的解析式为y=kx+c,把点A(3,6),B(5,2)代入得,解得,∴直线AB的解析式为y=﹣2x+12,∵点C在在直线AB上,且点C的坐标为(m,n),∴2m+n=12;(3)设直线EF的解析式为y=﹣2x+d,∴E(,0),F(0,d),∵EF=AB,∴()2+d2=(3﹣5)2+(6﹣2)2,解得d=﹣4或4(舍去),∴直线EF为y=﹣2x﹣4,E(﹣2,0),∵直线AB的解析式为y=﹣2x+12,∴直线AB与x轴,y轴的交点分别为(6,0),(0,12),∴S△AOB=﹣﹣=12,∵点D在直线EF上,且D点的纵坐标为x,∴D(x,﹣2x﹣4),∴S△DOE=×|﹣2x﹣4|=|﹣2x﹣4|,∵S△DOE≥S△AOB,∴|﹣2x﹣4|≥×12,解得x≤﹣10或x≥6,∴当满足S△DOE≥S△AOB时,x的取值范围是x≤﹣10或x≥6.9.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图象中线段BC所在直线对应的函数表达式.日期销售记录6月1日库存600kg,成本价8元/kg,售价10元/kg (除了促销降价,其他时间售价保持不变).6月9日从6月1日至今,一共售出200kg.6月10、11日这两天以成本价促销,之后售价恢复到10元/kg.6月12日补充进货200kg,成本价8.5元/kg.6月30日800kg水果全部售完,一共获利1200元.【答案】解:(1)200×(10﹣8)=400(元)答:截止到6月9日,该商店销售这种水果一共获利400元;(2)设点B坐标为(a,400),根据题意得:(10﹣8)×(600﹣a)+(10﹣8.5)×200=1200﹣400,解这个方程,得a=350,∴点B坐标为(350,400),设线段BC所在直线对应的函数表达式为y=kx+b,则:,解得,∴线段BC所在直线对应的函数表达式为.10.如图,直线y=x+9分别交x轴、y轴于点A、B,∠ABO的平分线交x轴于点C.(1)求点A、B、C的坐标;(2)若点M与点A、B、C是平行四边形的四个顶点,求CM所在直线的解析式.【答案】解:(1)∵直线y=x+9分别交x轴、y轴于点A、B,∴x=0时,y=9,当y=0时,x+9=0,解得x=﹣12.∴A(﹣12,0),B(0,9).∴OA=12,OB=9,∴AB===15,过点C作CD⊥AB于点D,如图1,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO(HL),∴BD=BO=9,CO=CD,∴AD=AB﹣BD=15﹣9=6,设CO=x,则AC=12﹣x,CD=x,∵CD2+AD2=AC2,∴x2+62=(12﹣x)2,解得x=.∴C(﹣,0).(2)如图2,当AB为平行四边形的一边时,∵CM∥AB,∴设CM的解析式为y=x+b,∴,解得b=,∴直线CM的解析式为y=.当AB为平行四边形的对角线时,BM∥AC,AM∥BC,∴BM=AC=AO﹣OC=,∴M(﹣,9).设直线CM的解析式为y=mx+n,∴,解得,∴CM的解析式为y=﹣3x﹣.综合以上可得:CM所在直线的解析式为y=x+或y=﹣3x﹣.11.如图,在平面直角坐标系xOy中,直线y=﹣2x+6交x轴于点A,交y轴于点B,过点B的直线交x轴负半轴于点C,且AB=BC.(1)求点C的坐标及直线BC的函数表达式;(2)点D(a,2)在直线AB上,点E为y轴上一动点,连接DE.(ⅰ)若∠BDE=45°,求△BDE的面积;(ⅱ)在点E的运动过程中,以DE为边作正方形DEGF,当点F落在直线BC上时,求满足条件的点E的坐标.【答案】解:(1)∵直线y=﹣2x+6交x轴于点A,交y轴于点B,∴A(3,0),B(0,6),∴OA=3,OB=6,∵AB=BC,OB⊥AC,∴OC=OA=3,∴C(﹣3,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=2x+6.(2)如图,取点Q(﹣1,3),连接BQ,DQ,DQ交AB于E.∵D(a,2)在直线y=﹣2x+6上,∴2=﹣2a+6,∴a=2,∴D(2,2),∵B(0,6),∴QB==,QD==,BD==2,∴BD2=QB2+QD2,QB=QD,∴∠BQD=90°,∠BDQ=45°,∵直线DQ的解析式为y=﹣x+,∴E(0,),∴OE=,BE=6﹣=,∴S△BDE=××2=.(3)如图,过点D作DM⊥OA于M,DN⊥OB于N.∵四边形DEGF是正方形,∴∠EDF=90°,ED=DF,∵∠EDF=∠MDN=90°,∴∠EDN=∠DFM,∵DE=DF,DN=DM,∴△DNE≌△DMF(SAS),∴∠DNE=∠DMF=90°,EN=FM,∴点F在x轴上,∴当点F与C重合时,FM=NE=5,此时E(0,7),同法可证,点F′在直线y=4上运动,当点F′落在BC上时,E(0,﹣1),综上所述,满足条件的点E的坐标为(0,7)或(0,﹣1).12.如图,四边形OABC是矩形,点A、C在坐标轴上,B点坐标(﹣,4),△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H.(1)求直线BD的解析式;(2)求△BOH的面积;(3)点M在x轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【答案】解:(1)∵四边形ABCO是矩形,B(﹣,4),△ODE是由△OCB旋转得到,∴OC=OD=4,∴D(4,0),设直线BD的解析式为y=kx+b,则有,解得,∴直线BD的解析式为y=﹣x+3.(2)∵E(4,),∴直线OE的解析式为y=x,由,解得,∴H(,),∴OH==,∵OB==,∴S△BOH=•OB•OH=××=.(3)如图,由题意F(0,3),D(4,0),∴OF=3,OD=4,∴DF==5,当DM1为菱形的对角线时,M1(﹣4,0),N1(0,﹣3).当DM=DF时,M2(﹣1,0)或M3(9,0),可得N2(﹣5,3),3(5,3),当DF为对角线时,M4(,0),可得N4(,3),综上所述,满足条件的点N的坐标为(0,﹣3)或(﹣5,3)或(5,3)或(,3).13.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+8交x轴于点A,交y轴于点B,点C在AB上,AC=5,CD∥OA,CD交y轴于点D.(1)求点D的坐标;(2)点P从点O出发,以每秒1个单位长度的速度沿OA匀速运动,同时点Q从点A出发,以每秒个单位长度的速度沿AB匀速运动,设点P运动的时间为t秒(0<t<3),△PCQ的面积为S,求S与t之间的函数关系式;(3)在(2)的条件下,过点Q作RQ⊥AB交y轴于点R,连接AD,点E为AD中点,连接OE,求t为何值时,直线PR与x轴相交所成的锐角与∠OED互余.【答案】解:(1)如图1中,∵直线y=﹣x+8交x轴于点A,交y轴于点B,∴A(6,0),B(0,8)∴OA=6,OB=8,∴AB===10,∵AC=5,∴AC=BC=5,∵CD∥OA,∴BD=OD=4,∴D(0,4).(2)如图2,作PF⊥AB于点F,PA=6﹣tPF=PA sin∠PAF=(6﹣t),∴CQ=5﹣t,S=•CQ•PF=(5﹣t)•(6﹣t)=t2﹣6t+12.(3)如图3中,作OG⊥AD于点G,在Rt△AOD中,AD===2,∵S△AOD=•OD•OA=•AD•OG∴OG==,∴DG===,∵DE=AE=,∴GE=DE﹣DG=﹣=,∵∠OED+∠OPR=90°,∠OED+∠EOG=90°,∴∠OPR=∠EOG,∴tan∠OPR=tan∠EOG=∵BR===﹣t,∵tan∠OPR==,OP=t,∴OR=t,当R在y轴的负半轴上,如图3中,OR=BR﹣8=﹣t,∴t=﹣t,解得t=,当R在y轴的正半轴上,如图4中,OR=8﹣BR=t﹣,∴t=t﹣,解得t=,综上,当t值为或,直线PR与x轴相交所成的锐角与∠OED互余.14.如图,直线y1=﹣x+b分别与x轴、y轴交于A,B两点,与直线y2=kx﹣6交于点C(4,2).(1)b=;k=;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得以P,Q,A,B为顶点的四边形是菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.【答案】解:(1)∵直线y2=kx﹣6交于点C(4,2),∴2=4k﹣6,∴k=2,∵直线y1=﹣x+b过点C(4,2),∴2=﹣2+b,∴b=4,∴直线解析式为:y1=﹣x+4,直线解析式为y2=2x﹣6,∵直线y1=﹣x+b分别与x轴、y轴交于A,B两点,∴当x=0时,y=4,当y=0时,x=8,∴点B(0,4),点A(8,0),故答案为:4,2,(0,4);(2)∵点E在线段AB上,点E的横坐标为m,∴,F(m,2m﹣6),①当0≤m≤4时∴.∵四边形OBEF是平行四边形,∴BO=EF,∴,解得:;②当4≤m≤8时,2m﹣6﹣()=4,解得,综上所述:当或时,四边形OBEF是平行四边形;(3)存在.理由如下:①若以AB为边,AP为边,如图1所示:∵点A(8,0),B(0,4),∴.∵四边形BAPQ为菱形,∴AP=AB=4=BQ,AP∥BQ,∴点Q(4,4),点Q'(﹣4,4),若以AB为边,AP是对角线,如图1,∵四边形ABPQ是菱形,∴OB=OQ=4,∴点Q(0,4);②以AB为对角线,如图2所示:∵四边形APBQ是菱形,∴AP=BP=BQ,AP∥BQ,∵BP2=OP2+OB2,∴AP2=(8﹣AP)2+16,∴AP=5,∴BQ=5,∴点Q(5,4)综上所述:若点P为x轴上一点,当点Q坐标为或剧哦(0,﹣4)或(5,4)时,使以P,Q,A,B为顶点的四边形是菱形.15.如图,在平面直角坐标系中,直线y=x+4分别交x轴,y轴于A,B两点,点C为OB 的中点,点D在第二象限,且四边形AOCD为矩形.(1)直接写出点A,B的坐标,并求直线AB与CD交点的坐标.(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动,同时,动点M从点A出发,沿线段AB以每秒个单位长度的速度向终点B运动,过点P作PH⊥OA,垂足为H,连接MP,MH,设点P的运动时间为t秒.①若△MPH的面积为1,求t的值;②点Q是点B关于点A的对称点,问BP+PH+HQ是否有最小值?如果有,求出相应的点P的坐标;如果没有,请说明理由.【答案】解:(1)设直线AB交CD于E.∵直线y=x+4分别交x轴,y轴于A,B两点,∴A(﹣4,0),B(0,4),∵OC=BC=2,四边形AOCD是矩形,∴D(﹣4,2),当y=2时,2=x+4,∴x=﹣2,∴E(﹣2,2).(2)①如图2﹣1作MF⊥OA于F.在Rt△AMF中,∵∠AFM=90°,AM=t,∠MAF=45°,∴AF=FM=t当点P在线段OE上时,S△PHM=×2×(4﹣t﹣t)=1解得t=.如图2﹣2中,当点P在线段DE上时,同法可得:S△PHM=×2×(t+t﹣4)=1解得t=,综上所述,满足条件的t的值为或.②如图2﹣3中,BP+PH+HQ存在最小值.连接CQ交AO于H,作HP⊥CD于P,∵BC=PH,BC∥PH,∴四边形BCHP是平行四边形,∴BP=CH,∵BP+PH+HQ=CH+BC+HQ=BC+CQ=定值,根据两点之间线段最短,可知此时BP+PH+HQ的值最小,∵B(0,4),A(4,0),∵AQ=AB,∴Q(﹣8,﹣4),∵C(0,2),Q(﹣8,﹣4),∴直线CQ的解析式为y=x+2,令y=0,解得x=﹣,∴H(﹣,0),∴P(﹣,2).16.已知:如图,平面直角坐标系中,O为坐标原点,直线y=mx+10m交x轴于B,交y轴于A,△AOB的面积为50.(1)求m的值;(2)P为BA延长线上一点,C为x轴上一点,坐标为(6,0),连接PC,D为x轴上一点,连接PD,若PD=PC,P点横坐标为t,△PCD的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过C作CF⊥AB于F,当D在BO上时,过D作DG⊥CP于G,过F 作FE⊥DG于E,连接PE,当PE平分△PDG周长时,求E点坐标.【答案】解:(1)由题意可得:A(0,10m),B(﹣10,0),∴S△AOB=×10×|10m|=50,∴m=1或﹣1(舍弃)∴m=1.(2)如图1中,∵PD=PC,P点横坐标为t,C(6,0),∴CD=2|6﹣t|,∴S△PCD=×2|6﹣t|×|10+t|=|t2+4t﹣60|,当t>6时,S=t2+4t﹣60,当﹣10<t<6时,S=﹣t2﹣4t+60.(3)如图2中,在边CD的下方作⊙K与CD相切于点E,与PD相切于点R,与PC相切于点Q,连接PK,CK,DK,EK,PK交CD于T,作FW⊥PK于W.∵DE=DR,GE=GQ,PR=PQ,∵PD+DE=PG+EG,∴PE平分△PDG的周长,∴当F,E,K共线时,PE平分△PDG的周长,∵DK平分∠RDG,PK平分∠DPG,∴∠DKP=∠DGP=45°,∵∠DTK=90°,∴∠KDT=∠DCK=45°,∴∠DKC=90°,∴DT=TC﹣TK=6﹣t,∵EF⊥DG,DG⊥PC,∴FK∥PQ,∴∠FKW=∠CPT,∵FW⊥PK,∴tan∠FKW=tan∠CPT,∴=,∵BC=16,△FBC是等腰直角三角形,∴F(﹣2,8),∵K(t,t﹣6),∴=,解得t=2,∴P(2,12),D(﹣2,0),K(2,﹣4),∴直线PQ的解析式为y=﹣3x+18,直线FK的解析式为y=﹣3x+2,∵DG⊥PQ,∴直线DG的解析式为y=x+,。
初三数学试题——一次函数的应用(1)
S (千米) t (时)(时) O 10 22.5 7.5 0.5 3 1.5 l B l A 一次函数的应用(1)1.如图的折线表示一辆自行车离家的距离与时间的关系,骑车者9:00离开家,15:00回家,根据图象回答:回答:(1)离家最远的距离是)离家最远的距离是 千米,对应的时间是千米,对应的时间是 . (2)何时开始第一次休息?答:)何时开始第一次休息?答: , 休息多长时间?答:息多长时间?答: (3)第一次休息时,离家多远?答:)第一次休息时,离家多远?答:(4)在11:00-12:00他骑车的路程是多少千米?答:答:(5)在9:00-10:00和10:00-10:30的平均速度各是多少?答:速度各是多少?答:(6)他在何时至何时停止前进并休息午餐?)他在何时至何时停止前进并休息午餐? 答:答:(7)他在停止前进后返回,骑了多少千米?)他在停止前进后返回,骑了多少千米? 答:答:(8)返回时的平均速度是多少?)返回时的平均速度是多少?答:答:(9)11:30和13:30分别离家多远?答:分别离家多远?答: (10)何时距家22千米?答:千米?答:2、如图,l A l B 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系。
的关系。
(1)B 出发时与A 相距相距 千米。
千米。
(2)走了一段路后,自行车发生故障,进行)走了一段路后,自行车发生故障,进行 修理,所用的时间是修理,所用的时间是 小时。
小时。
(3)B 出发后出发后 小时与A 相遇。
相遇。
(4)若B 的自行车不发生故障,保持出发时的自行车不发生故障,保持出发时的速度前进,的速度前进, 小时与A 相遇,相遇点相遇,相遇点 离B 的出发点的出发点 千米。
在图中表示出千米。
在图中表示出这个相遇点C 。
(5)求出A 行走的路程S 与时间t 的函数关系式。
的函数关系式。
2.某机动车出发前油箱内有油42升,行驶若干小时后,途中在加油站加油若干升。
专题13 一次函数中的找规律问题训练(解析版)八年级数学下学期(人教版)
专题13 一次函数中的找规律问题训练(时间:60分钟 总分:120) 班级 姓名 得分一、选择题1.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ,以22A B 为腰作等腰直角三角形223A B B ,…按照这样的规律进行下去,那么2020A 的坐标为( )A .()2019201921,2- B .()2019201922,2- C .()2020202021,2- D .()2020202022,2- 【答案】B 【分析】根据直线的解析式以及等腰直角三角形的性质即可得出A 2(0,2),A 3(2,4),A 4(6,8),根据坐标的变化即可找出变化规律A n (2n -1-2,2n -1).即可得出点A 2020的坐标. 【详解】解:∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4, ∵A 1(-1,1),∵A 2(0,2),A 3(2,4),A 4(6,8), ,…,∵A n (2n -1-2,2n -1).∵A 2020的坐标为(22019-2,22019). 故选:B . 【点睛】本题考查一次函数图象上点的坐标特征、等腰直角三角形的性质以及规律型中点的坐标,解题的关键是找出A n 坐标的变化规律,注意掌握解决该题型题目时,结合一次函数图象上点的坐标特征以及等腰直角三角形的性质找出线段的变化规律是解题的关键. 2.如图,在平面直角坐标系中,点1A ,2A ,3A ,和1B ,2B ,3B ,分别在直线15y x b =+和x 轴上,11OA B ∆,122B A B ∆,233B A B ∆,是以1A ,2A ,3A,为顶点的等腰直角三角形.如果点()11,1A ,那么点2020A 的纵坐标是( )A .201932⎛⎫ ⎪⎝⎭B .202032⎛⎫ ⎪⎝⎭C .201923⎛⎫ ⎪⎝⎭D .202023⎛⎫ ⎪⎝⎭【答案】A 【分析】设点A 2,A 3,A 4…,A 2019坐标,结合函数解析式,寻找纵坐标规律,进而解题. 【详解】 解:1(1,1)A 在直线15y x b =+, 45b ∴=, 1455y x ∴=+,设22(A x ,2)y ,33(A x ,3)y ,44(A x ,4)y ,⋯,20202020(A x ,2019)y ,则有221455y x =+,331455y x =+,⋯,202020201455y x =+,又∵11OA B ,∵122B A B ,∵233B A B ,⋯,都是等腰直角三角形, 2122x y y ∴=+,312322x y y y =++,⋯,2020123201920202222x y y y y y =+++⋯++.将点坐标依次代入直线解析式得到:21112y y =+,3121131222y y y =++=2y ,432y =3y ,⋯,2020201932y y =,又11y =,232y ∴=,233()2y =,343()2y =,⋯,201920203()2y =,故选:A . 【点睛】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律.3.正方形1112A B C A ,2223A B C A ,3334A B C A ,…,按如图所示的方式放置,点123A A A ,…和点123B B B ,…分别在直线1y x =+和x 轴上.则点2020C 的纵坐标是( )A .20202B .20192C .202021-D .201921-【答案】B 【分析】先根据一次函数图象上点的坐标特征及正方形的性质确定点A 1,A 2,A 3,A 4,A 5进而确定C 1,C 2,C 3,C 4,C 5的坐标并总结出点C n 的纵坐标的规律为2n -1(n 为正整数),将n=2030代入即可解答. 【详解】解:由题意可知,A 1纵坐标为1,A 2的纵坐标为2,A 3的纵坐标为4,A 4的纵坐标为8, A 1和C 1,A 2和C 2,A 3和C 3,A 4和C 4的纵坐标相同,∵C 1,C 2,C 3,C 4,,C 5,…C n 的纵坐标分别为1,2,4,8,16,…2n -1 ∵2020C 的纵坐标为22020-1=22019. 故答案为B . 【点睛】本题考查了一次函数图像上点的坐标特征、正方形的性质以及找规律,找出C n 点纵坐标的规律为2n -1(n 为正整数)是解答本题的关键.4.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3……都是等腰Rt△,直角顶点P 1(3,3),P 2,P 3……,均在直线y =﹣13x+4上,设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3……的面积分别为S 1,S 2,S 3……则S 2019的值为( )A .201894 B .201994 C .401894 D .401994【答案】A 【分析】分别过点P 1、P 2、P 3作x 轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案. 【详解】解:如图,分别过点P 1、P 2、P 3作x 轴的垂线段,垂足分别为点C 、D 、E ,∵P 1(3,3),且∵P 1OA 1是等腰直角三角形, ∵OC =CA 1=P 1C =3, 设A 1D =a ,则P 2D =a , ∵OD =6+a ,∵点P 2坐标为(6+a ,a ), 将点P 2坐标代入y =﹣13x+4,得:﹣13(6+a )+4=a , 解得:a =32,∵A 1A 2=2a =3,P 2D =32, 同理求得P 3E =34、A 2A 3=32,∵S 1=12×6×3=9、S 2=12×3×32=94、S 3=12×32×34=294、…… ∵S 2019=201894.故选:A . 【点睛】本题考查了几何类的规律题,掌握等腰直角三角形的性质、三角形面积的规律是解题的关键. 5. 已知:直线y=1n n +x+11n +(n 为正整数)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+S 3+…+S 2019( ) A .20182019B .20192020C .20182038D .20194040【答案】D 【分析】依次求出S 1、S 2、S 3,就发现规律:S n =12×()11n n +,然后求其和即可求得答案.注意()11111n n n n =-++.【详解】解:∵当n=1时,直线为y=12x+12, ∵直线与两坐标轴的交点为(0,12),(-1,0),∵S 1=12×1×12=14;当n=2时,直线为y=23x+13, ∵直线与两坐标轴的交点为(0,13),(-12,0),∵S 2=12×12×13=12×()1221⨯+;当n=3时,直线为y=34x+14, ∵直线与两坐标轴的交点为(0,14),(-13,0), ∵S 3=12×13×14=12×()1331⨯+;…, S n =12×()11n n +, ∵S 1+S 2+S 3+…+S 2019=12×(1-12+1231-+1341-+…+12019-12020)=12⨯(1-12020)=20194040故选:D . 【点睛】本题考查的是一次函数图象上点的坐标特点,根据题意找出规律是解答此题的关键. 6.如图,函数y =x 和y =-12x 的图象分别为直线l 1、12,过点A 1(1,-12)作x 轴的垂线交l 1于点A 2,过点A 2作y 轴的垂线交l 2于点A 3,过点A 3作x 轴的垂线交l 1于点A 4,过点A 4作y 轴的垂线交l 2于点A 5,……,依次进行下去,则A 2019的横坐标为( )A .-21007B .21008C .-21008D .-21009【答案】D 【分析】可根据点A 1坐标结合两条直线的解析式求出点23456,,,,A A A A A 这几个点的坐标,找出其横坐标的变化规律,再确定A 2019的横坐标 【详解】解:2A 点的横坐标与1A 的横坐标相同均为1,将21A x =代入y =x 得21A y =,可得31A y =,代入y =-12x 得32A x =-,依次类推可得23456(1,1),(2,1),(2,2),(4,2),(4,4)A A A A A ----, 观察可知其规律为01122123456(2,1),(2,1),(2,1),(2,2),(2,2),(2,4)A A A A A A ----,且一四象限点的横坐标相同,二三象限点的横坐标相同.所以先确定点2019A 的所在象限.20194504......3÷=∴点2019A 在第三象限与点2020A 的横坐标相同202021010÷=∴点2020A 的横坐标为10101100922--=-所以点2019A 的横坐标为10092- 故选:D 【点睛】本题是平面直角坐标系中点坐标规律的探究题,找准点的变化规律是解题的关键.二、填空题7.如图,点()12,2A 在直线y x =上,过点作11//A B y 轴交直线12y x =于点1B ,以点1A 为直角顶点,11A B 为直角边在11A B 的右侧作等腰直角111A B C △,再过1C 点作过点22//A B y 轴交直线y x =和直线12y x =于2A ,2B 两点,以点2A 为直角顶点,22A B 为直角边在22A B 的右侧作等腰直角222A B C △,…,按此规律进行下去,则等腰直角n n n A B C 的边长n n B C 为_____.(用含正整数n 的代数式表示)【答案】132n -⎛⎫ ⎪⎝⎭【分析】列出各点坐标寻找规律,横纵坐标成32倍扩大. 【详解】 解:点1(2,2)A 在直线y x =上, ∴点1B 横坐标为2,将2x =代入12y x =得1y =, ∴点1B 坐标为(2,1).∵111A B C 为等腰直角三角形,1111211A B AC ∴==-=,∴点1C 坐标为(3,2).11B C过1C 点作22//A B y 轴,2A ∴,2B 的横坐标为3,将3x =分别代入y x =与12y x =中得2A ,2B 的纵坐标分别为3,32, 即2(3,3)A ,23(3,)2B ,2233322A B =-=,2222B C B ∴==.点2C 坐标为9(,3)2.同理可得333()2B C =443()2B C =3()2n n n B C -∴=故答案为:3()2n - 【点睛】本题考查一次函数图象上点的特征及等腰直角三角形的性质,解题关键是通过计算找出点及边长变化规律.8.如图,在平面直角坐标系中,点123,,,,n A A A A 在x 轴上,点123,,,,n B B B B 在直线3y x =上.若1(1,0)A ,且1122231,,,n n n A B A A B A A B A +都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为123,,,,n S S S S ,则2021S 可表示为____.【答案】2【分析】由等边三角形性质可知,A 1B 1∵A 2B 2…∵A n B n ,因为直线y =与x 轴的夹角∵B 1OA 1=30°,∵OA 1B 1=120°,可得出OA 1=A 1B 1,A 1B 1=1,∵OB 2A 2=30°,…,∵OB n A n =30°,B 2A 2=OA 2=2,B 3A 3=4,…,B n A n =2n ﹣1,因为∵OB 1A 2=90°,根据勾股定理可知B 1B 2=则S 1112=⨯=【详解】解:由等边三角形可知: A 1B 1∵A 2B 2∵…∵A n B n , B 1A 2∵B 2A 3∵…∵B n A n +1,∵直线y =与x 轴的夹角∵B 1OA 1=30°,∵OA 1B 1=120°, ∵∵OB 1A 1=30°, ∵OA 1=A 1B 1, ∵A 1(1,0), ∵A 1B 1=1,同理∵OB 2A 2=30°,…,∵OB n A n =30°, ∵B 2A 2=OA 2=2,B 3A 3=4,…,B n A n =2n ﹣1, 可知∵OB 1A 2=90°,…,∵OB n A n +1=90°,∵B 1B 2=B 2B 3=…,B n B n +1=2n ﹣∵S 1112=⨯S 2122=⨯⨯=,…,S n =22n ﹣∵当n =2021时,0202142S =故答案为:2. 【点睛】本题主要考查了一次函数函数图像点的坐标特征,合理利用函数图像上点的坐标规律是解决本题的关键.9.如图,在平面直角坐标系中,函数3y x =和yx =-的图象分别为直线1l ,2l ,过点(1,0)作x 轴的垂线交1l 于点1A ,过点1A 作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,…,依次进行下去,则点6A 的坐标为________;点2022A 的坐标为________.【答案】(27,27)-, ()101110113,3- 【分析】写根据一次函数图象上点的坐标特征可得出点A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8等的坐标,根据坐标的变化即可找出变化规律“A 4n +1(32n ,32n +1),A 4n +2(﹣32n +1,32n +1),A 4n +3(﹣32n +1,﹣32n +2),A 4n +4(32n +2,﹣32n +2)(n 为自然数)”,依此规律结合2022=505×4+2即可找出点A 2022的坐标.【详解】解:当x =1时,y =3x =3,∵点A 1的坐标为(1,3);当y =﹣x =3时,x =﹣3,∵点A 2的坐标为(﹣3,3);同理可得:A 3(﹣3,﹣9),A 4(9,﹣9),A 5(9,27),A 6(﹣27,27),A 7(﹣27,﹣81),…, ∵A 4n +1(32n ,32n +1),A 4n +2(﹣32n +1,32n +1),A 4n +3(﹣32n +1,﹣32n +2),A 4n +4(32n +2,﹣32n +2)(n 为自然数).∵2022=505×4+2,∵点A 2022的坐标为()101110113,3-, 故答案为:(﹣27,27),()101110113,3-. 【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律“A 4n +1(32n ,32n +1),A 4n +2(﹣32n +1,32n +1),A 4n +3(﹣32n +1,﹣32n +2),A 4n +4(32n +2,﹣32n +2)(n 为自然数)”是解题的关键.10.如图,直线y =x +4与y 轴交于A 1,按如图方式作正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…,点A 1,A 2,A 3…在直线y =x +4上,点C 1,C 2,C 3,…在x 轴上,图中阴影部分三角形的面积从左到右依次记为S 1,S 2,S 3…,S n ,则S n 的值为______(用含n 的代数式表示,n 为正整数).【答案】22n +1【分析】根据直线解析式判断出直线与坐标轴相交构成的三角形是等腰直角三角形,再求出OA 1,即第一个正方形的边长,同理依次求出第二个、第三个正方形的边长,然后根据规律写出第n个正方形的边长,如果根据阴影部分的面积等于相应正方形的面积的一半列式计算即可得解.【详解】∵直线y =x +4的k =1,∵直线与x 轴的夹角为45°,∵直线与坐标轴相交构成的三角形是等腰直角三角形,当x =0时,y =4,所以,OA 1=4,即第一个正方形的边长为4,所以,第二个正方形的边长为4+4=8,第三个正方形的边长为8+8=16,…,第n 个正方形的边长为2n +1,∵S 1=12×4×4=422, S 2=12×8×8=622, S 3=12×16×16=822, …,S n =12×2n +1×2n +1=2222n +=22n +1. 故答案为22n +1.【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质,根据直线解析式判断出等腰直角三角形是解题的关键,也是本题的难点.11.如图,在平面直角坐标系中,点123n A A A A ⋯,,,,在 x 轴上,123n B B B B ⋯,,,,在直线 y x =上,若1(2,0)A ,且 1122231,,,n n n A B A A B A A B A +⋯都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为 123,,,,n S S S S ⋯.则 n S 可表示为 _________ .【答案】22n -【分析】直线y x =与x 轴的成角1130B OA ∠=︒,可得2230OB A ∠=︒,⋯,30n n OB A ∠=︒,1290OB A ∠=︒,⋯,190n n OB A +∠=︒;根据等腰三角形的性质可知111A B =,2222B A OA ==,334B A =,⋯,12n n n B A -=;根据勾股定理可得12B B =23B B =⋯,1123n n n B B ,再由面积公式即可求解.【详解】解:∵112A B A 、∵223A B A ∵1n n n A B A +都是等边三角形,112233////////n n A B A B A B A B ,1223341////////n n B A B A B A B A ,直线3y x =与x 轴的成角1130B OA ∠=︒,11120OA B ∠=︒, 1130OB A ∴∠=︒,111OA A B ,∵1(2,0)A ,112A B ,同理2230OB A ∠=︒,⋯,30n n OB A ∠=︒,2224B A OA ,338B A ,⋯,2n n n B A ,易得1290OB A ∠=︒,⋯,190n n OB A +∠=︒,1223B B ,2343B B ,⋯,12n n B B += 11223232S ,21443832S ,⋯,211223232n n n n S ;故答案是:22n -【点睛】本题考查一次函数的图象及性质,等边三角形和直角三角形的性质;能够判断阴影三角形是直角三角形,并求出每边长、应用相似三角形规律求解是解题的关键.12.正方形111A B C O ,2221A B C C ,2333A B C C 2333A B C C …按如图的方式放置,1A ,2A ,3A …和点1C ,2C ,3C …分别在直线2y x =+和x 轴上,则点3C 的横坐标是_________【答案】14【分析】先利用直线的解析式可求出点1A 的坐标,从而可得1OC 的长,再利用直线的解析式分别求出23,A A 的坐标,然后利用正方形的性质即可得.【详解】对于直线2y x =+,当0x =时,2y =,即1(0,2)A ,12OA ∴=,四边形111A B C O ,2221A B C C ,2333A B C C 都是正方形,11121223232,,OC OA C C C A C C C A ∴====,∴点2A 的横坐标为2,将2x =代入直线解析式得:224y =+=,即2(2,4)A ,12124C C C A ∴==,2112246OC OC C C ∴=+=+=,∴点3A 的横坐标为6,将6x =代入直线解析式得:628y =+=,即3(6,8)A ,23238C C C A ∴==,32236814OC OC C C ∴=+=+=,则点3C 的横坐标为14,故答案为:14.【点睛】本题考查了正方形的性质、一次函数图象上的点坐标等知识点,熟练掌握一次函数的性质是解题关键.13.如图,已知直线a :y=x ,直线b :y=-12x 和点P(1,0),过点P 作y 轴的平行线交直线a 于点P 1,过点P 1作x 轴的平行线交直线b 于点p 2,过点p 2作y 轴的平行线交直线a 于点p 3,过点p 3作x 轴的平行线交直线b 于点p 4,…,按此作法进行下去,则点P 2021的横坐标为_____________.【答案】10102【分析】点(1,0)P ,1P 在直线y x =上,得到1(1,1)P ,求得2P 的纵坐标1P =的纵坐标1=,得到2(2,1)P -,即2P 的横坐标为12(2)-=-,同理,3P 的横坐标为12(2)-=-,4P 的横坐标为24(2)=-,25(2)P =-,36(2)P =-,37(2)P =-,48(2)P =-⋯,求得221(2)n n n P P +==-,于是得到结论.【详解】 解:点(1,0)P ,1P 在直线y x =上, 1(1,1)P ∴,12//PP x 轴,2P ∴的纵坐标1P =的纵坐标1=, 2P 在直线12y x =-上, 112x ∴=-, 2x ∴=-,2(2,1)P ∴-,即2P 的横坐标为12(2)-=-,同理,3P 的横坐标为12(2)-=-,4P 的横坐标为24(2)=-,25(2)P =-,36(2)P =-,37(2)P =-,48(2)P =-⋯,221(2)n n n P P +∴==-,令212021n +=,则1010n =2021P ∴的横坐标为10101010(2)2=-,故答案为:10102.【点睛】本题考查了一次函数图象上点的坐标特征,规律型:点的坐标,正确的作出规律是解题的关键.14.如图,在平面直角坐标系中,点)A ,点()0,1B ,作第一个正方形111OA C B 且点1A 在OA 上,点1B 在OB 上,点1C 在AB 上;作第二个正方形1222A A C B 且点2A 在1A A 上,点2B 在12AC 上,点2C 在AB 上…,如此下去,其中1C 纵坐标为______,点n C 的纵坐标为______.n⎝⎭【分析】先确定直线AB的解析式,然后再利用正方形的性质得出点C1和C2的纵坐标,归纳规律,然后按规律求解即可.【详解】解:设直线AB的解析式y=kx+b则有:1bb+==⎪⎩,解得:31kb⎧=-⎪⎨⎪=⎩所以直线仍的解析式是:y=1x-+设C1的横坐标为x,则纵坐标为y=1x-+∵正方形OA1C1B1∵x=y,即1x x=+,解得x==∵点C1同理可得:点C2=232⎛-⎝⎭∵点C n的纵坐标为n⎝⎭.n⎝⎭.【点睛】本题属于一次函数综合题,主要考查了运用待定系数法求一次函数的解析式、正方形的性质、一次函数图象上点的坐标特点等知识,掌握数形结合思想是解答本题的关键.。
2020-2021学年八年级数学人教版下册 期末复习:一次函数实际应用(一)
2020-2021学年八年级数学人教版下册期末复习:一次函数实际应用(一)1.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)本次上学途中,小明一共行驶了米.一共用了分钟.(3)在整个上学的途中最快的速度是米/分.(4)小明当出发分钟离家1200米.2.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离y(千米)与轿车行驶时间x(小时)的关系.(1)求轿车在返回甲地过程中的速度;(2)当轿车从乙地返回甲地的途中与货车相遇时,求相遇处离甲地的距离;(3)请求出两车出发多久后相距10千米.3.小明家距离学校8千米.一天早晨,小明骑车上学途中自行车出现故障,他于原地修车,车修好后,立即在确保安全的前提下以更快的速度匀速骑行到达学校.如图反映的是小明上学过程中骑行的路程(千米)与他所用的时间(分钟)之间的关系,请根据图象,解答下列问题:(1)小明骑行了千米时,自行车出现故障;修车用了分钟;(2)自行车出现故障前小明骑行的平均速度为千米/分,修好车后骑行的平均速度为千米/分;(3)若自行车不发生故障,小明一直按故障前的速度匀速骑行,与他实际所用时间相比,将早到或晚到学校多少分钟?4.小明从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,小明的家、体育场、文具店在同一条直线上.如图是小明离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离小明家千米.(2)小明在文具店逗留了分钟.(3)求小明从文具店到家的速度是千米/时.5.如图反映的过程是:小明从家出发去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离,小明家,菜地,玉米地在同一直线上.根据图象回答下列问题:(1)菜地离小明家多远?小明走到菜地用了多长时间?小明给菜地浇水用了多长时间?(2)菜地离玉米地多远?小明草菜地到玉米地用了多长时间?(3)小明给玉米地锄草用了多长时间?(4)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?6.深圳校服已成为城市的一张名片,也成了在外游子“认亲”的凭证.夏季来临,深圳某校服生产厂为提高生产效益引进了新的设备来生产夏季校服,其中甲表示新设备的产量y (万套)与生产时间x(天)的关系,乙表示旧设备的产量y(万套)与生产时间x(天)的关系.(1)由图象可知,新设备因工人操作不当停止生产了天;(2)旧设备每天生产万套夏季校服,新设备正常生产每天生产万套夏季校服.(3)在生产过程中,x=时,新旧设备所生产的校服数量相同.7.小明和小华是姐弟俩,某日早晨,小明7:40先从家出发去学校,走了一段后,在途中广场看到志愿者们在向过往行人讲解卫生防疫常识,小明想起自己在学校学到的卫生防疫常识,于是停下来加入了志愿者队伍,后来发现上课时间快到了,就开始跑步上学,恰好在8:00赶到学校;小华离家后沿着与小明同一条道路前往学校,速度一直保持不变,也恰好在8:00赶到学校,他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图如图所示,请结合图中信息解答下列问题:(1)小明家和学校的距离是米;小明在广场向行人讲解卫生防疫常识所用的时间是分钟;(2)分别求小华的速度和小明从广场跑去学校的速度;(3)求小华在广场看到小明时是几点几分?(4)如果小明在广场进行卫生防疫常识讲解后,继续以之前的速度去往学校,假设讲解1次卫生防疫常识需要1分钟,在保证不迟到(不超过8:00)的情况下,通过计算求小明最多可以讲解几次?(结果保留整数)8.新冠病毒防疫期间,草莓摊主小钱为避免交叉感染的风险,建议顾客选择微信支付,尽量不使用现金,早上开始营业前,他查看了自己的微信零钱;销售完20kg后,他又一次查看了微信零钱,由于草莓所剩不多,他想早点卖完回家,于是每千克降价10元销售,很快销售一空,小钱弟弟根据小钱的微信零钱(元)与销售草莓数量(kg)之间的关系绘制了下列图象,请你根据以上信息回答下列问题:(1)图象中A点表示的意义是什么?(2)降价前草莓每千克售价多少元?(3)小钱卖完所有草莓微信零钱应有多少元?9.某长途客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需支付相应的行李费.设x表示行李的质量(kg),y表示行李费(元),y与x的函数关系如图所示,请写出x,y变化过程中的实际意义.10.A,B,C三地在同一条公路上,C地在A,B两地之间,且到A,B两地的路程相等.甲、乙两车分别从A,B两地出发,匀速行驶.甲车到达C地并停留1小时后以原速继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回C地停止行驶,乙车经C地到达A地停止行驶.在两车行驶的过程中,甲、乙两车距C地的路程y(单位:千米)与所用的时间x(单位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题:(1)直接写出A,B两地的路程和甲车的速度;(2)求乙车从C地到A地的过程中y与x的函数关系式(不用写自变量的取值范围);(3)出发后几小时,两车在途中距C地的路程之和为180千米?请直接写出答案.11.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B 地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过时间x(小时)之间的函数关系图象.(1)甲从B地返回A地的过程中,直接写出y与x之间的函数关系式及自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?(3)甲与乙同时出发后,直接写出经过多长时间他们相距20千米?12.某天,甲组工人为灾区加工棉衣,工作中有一次停产检修机器,然后继续加工,由于任务紧急,乙组工人加入与甲组工人一起加工棉衣,甲停产前后各保持匀速生产,乙在工作时间内保持匀速生产,两组各自加工棉衣的数量y(件)与甲组工人加工时间x(小时)的函数图象如图所示.(1)求乙组加工棉衣的数量y与时间x之间的函数关系式;(2)直接写出甲组加工棉衣总量a的值.(3)如果要求x=8时,加工棉衣的总数量为480件,求乙组工人应提前多长时间加工棉衣.13.四名同学两两一队,从学校集合进行徒步活动,目的地是距学校10千米的前海公园.由于乙队一名同学迟到,因此甲队两名同学先出发.24分钟后,乙队两名同学出发.甲队出发后第30分钟,一名同学受伤,处理伤口,稍作休息后,甲队由一名同学骑单车载受伤的同学继续赶往目的地.若两队距学校的距离s(千米)与时间t(小时)之间的函数关系如图所示,请结合图象,解答下列问题:(1)甲队在队员受伤前的速度是千米/时,甲队骑上自行车后的速度为千米/时;(2)当t=时,甲乙两队第一次相遇;(3)当t≥1时,什么时候甲乙两队相距1千米?14.明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y(单位:m)与所用时间x(单位:min)之间的对应关系.请根据相关信息,解决下列问题:(Ⅰ)填表:离开家的时间/min 2 5 8 11离家的距离/m400 600(Ⅱ)填空:①明明家与书店的距离是m;②明明在书店停留的时间是min;③明明与家距离900m时,明明离开家的时间是min.(Ⅲ)当6≤x≤14时,请直接写出y与x的函数关系.15.A,B,C三地在同一条公路上,C地在A,B两地之间,且与A,B两地的路程相等.甲、乙两车分别从A,B两地同时出发,匀速行驶.甲车到达C地停留1小时后以原速度继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回A地停止;乙车经C地到达A地停止,且比甲车早1小时到达A地.两车距B地的路程y(km)与所用时间x(h)的函数关系如图所示.请结合图象信息解答下列问题:(1)A,B两地的路程为km,乙车的速度为km/h;(2)求图象中线段GH所表示的y与x的函数解析式(不需要写出自变量x的取值范围);(3)两车出发后经过多长时间相距120km的路程?请直接写出答案.参考答案1.解:(1)由图象可得,小明家到学校的路程是1500米,故答案为:1500;(2)本次上学途中,小明一共行驶了:1500+(1200﹣600)×2=2700(米),一共用了14(分钟),故答案为:2700,14;(3)由图象可知,在整个上学的途中,12分钟至14分钟小明骑车速度最快,最快的速度为:(1500﹣600)÷(14﹣12)=450米/分钟,故答案为:450;(4)设t分钟时,小明离家1200米,则t=6或t﹣12=(1200﹣600)÷450,得t=13,即小明出发6分钟或13分钟离家1200米.故6或13.2.解:(1)根据图象可得当x=1.5小时时,离甲地的距离是90千米,当x=2.5小时时,离甲地的距离是0千米,∴轿车在返回甲地过程中的速度为:90÷(2.5﹣1.5)=90(千米/小时),答:轿车在返回甲地过程中的速度为90千米/小时;(2)设货车离甲地的距离y(千米)与轿车行驶时间x(小时)的的函数解析式是y=kx+b,则2k=90,解得:k=45,则函数解析式是y=45x(0≤x≤2);设轿车在返回甲地过程中离甲地的距离y(千米)与轿车行驶时间x(小时)的的解析式是y=mx+b,则,解得:,则函数解析式是y=﹣90x+225.根据题意得:﹣90x+225=45x,解得:x=,则轿车从乙地返回甲地的途中与货车相遇时,相遇处到甲地的距离是45×=75(千米).答:当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离是75千米;(3)设两车出发a小时相距10千米轿车到达乙地前,(90÷1.5﹣45)a=10,解得:a=;轿车到达乙地后与货车相遇前:﹣90a+225﹣45a=10,解得:a=;轿车到达乙地后与货车相遇后:45a﹣(﹣90a+225)=10,解得:a=;答:两车出发小时或小时或小时后相距10千米.3.解:(1)由图可知,小明行了3千米时,自行车出现故障,修车用了15﹣10=5(分钟);故答案为:3;5;(2)修车前速度:3÷10=0.3(千米/分),修车后速度:5÷15=(千米/分);故答案为:0.3;;(3)8÷(分钟),30﹣=(分钟),故他比实际情况早到分钟.4.解:(1)由图象可知,体育场离小明家2.5千米.故答案为:2.5;(2)由图象可知,小明在文具店逗留了:65﹣45=20(分钟).故答案为:20;(3)1.5÷=(km/h),即小明从文具店到家的速度为km/h.故答案为:.5.解:由图象得:(1)菜地离小明家1.1千米,小明从家到菜地用了15分钟,小明给菜地浇水用了25﹣15=10(分钟);(2)菜地离玉米地2﹣1.1=0.9(千米),小明从菜地到地用了37﹣25=12(分钟);(3)小明给玉米地锄草用了55﹣37=18(分钟);(4)玉米地离小明家2千米,小明从玉米地走回家的平均速度=2÷=4.8(千米/小时).6.解:(1)由图象知,新设备因工人操作不当停止生产了2天,故答案为:2.(2)旧设备每天生产:1.4÷7=0.2(万套),新设备每天生产:0.4÷1=0.4(万套),故答案为:0.2,0.4;(3)①0.2x=0.4,解得x=2;②0.2x=0.4(x﹣2),解得x=4;故答案为:2或4.7.解:(1)由图象可知,小明家和学校的距离是1280米;小明在广场向行人讲解卫生防疫常识所用的时间是:14﹣8=6(分钟);故答案为:1280;6;(2)小华的速度为:1280÷(20﹣4)=80(米/分),小明从广场跑去学校的速度为:(1280﹣560)÷(20﹣14)=120(米/分);(3)560÷80=7(分),40+4+7=51(分),答:小华在广场看到小明时是7:51;(4)1280÷(560÷8)=(分),20﹣=(分),,答:在保证不迟到的情况下,小明最多可以讲解1次.8.解:(1)由图象可知,小钱开始营业前微信零钱有50元;(2)由图象可知,销售草莓20kg后,小钱的微信零钱为650元,∴销售草莓20kg,销售收入为650﹣50=600元,∴降价前草莓每千克售价为:600÷20=30(元);(3)降价后草莓每千克售价为:30﹣10=20元,∴小钱卖完所有草莓微信零钱为:650+5×20=750(元),答:小钱卖完所有草莓微信零钱应该有750元.9.解:∵y是x的一次函数,∴设y=kx+b(k≠0)由图可知,函数图象经过点(40,6),(60,10),,∴函数表达式为y=0.2x﹣2,将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,所以,旅客最多可免费携带行李的质量为10kg;当x>10,即当行李质量超过10kg时,超出部分的行李每千克需要加收0.2元.10.解:(1)当0h时,甲车和乙车距C地为180km,∴两地的路程为:180+180=360km,设甲车经过180km用了xh,则:x+x+x+1=5.5,∴x=1.5,则甲车速度为:180÷1.5=120(km/h);(2)设乙车从C地到A地的过程中y与x的函数关系式为:y=kx+b(k≠0),将(3,0),(6,180)代入y=kx+b(k≠0),得:,解得:,∴乙车从C地到A地的过程中y与x的函数关系式为:y=60x﹣180;(3)由图可知,分别在3个时间段可能两车在途中距C地路程之和为180km,①甲车从A地到C地,乙车从B到C,﹣120x+180+60x+180=180,解得:x=1;②甲车从C到B,乙车从C到A,﹣120x﹣300+60x﹣180=180,记得:x=;③甲车从B到C,乙车从C到A,﹣120x+660+60x﹣180=180,解得:x=5.总上所述:分别在1h,h,5h这三个时间点,两车在途中距C地的路程之和为180km.11.解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据题意得:,解得,所以y=﹣60x+180(1.5≤x≤3);(2)∵当x=时,y=﹣60×1.8+180=72,∴骑电动车的速度为72÷1.8=40(千米/时),∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.答:乙从A地到B地用了135分钟.(3)根据题意得:90x﹣40x=20或60(x﹣1.5)+40x=90﹣20或60(x﹣1.5)+40x =90+20,解得x=或x=或x=2,答:经过时或时或2时,他们相距20千米.12.解:(1)设y乙=kx+b(k≠0),将(4.5,0),(8,252)代入得:,解得,∴y乙=72x﹣324;(2)把x=7代入y乙=72x﹣324,得y乙=72×7﹣324=180,当4≤x≤8时,设甲组加工棉衣的数量y与时间x之间的函数关系式为y甲=mx+n,将(7,180),(4,90)代入得:,解得,∴y甲=30x﹣30(4≤x≤8),将x=8代入,得y甲=30×8﹣30=210,即a=210;(3)由图象可知,乙组工人加工252件棉衣所用时间为:8﹣4.5=3.5(小时),∴乙的加工速度为:252÷3.5=72(件/小时),∵480﹣210=270(件),270÷72=3.75(小时),∴3.75﹣3.5=0.25(小时),即乙组工人应提前0.25小时加工棉衣.13.解:(1)由图象可得,甲队在队员受伤前的速度是:2÷=4(千米/时),甲队骑上自行车后的速度为:(10﹣2)÷(2﹣1)=8(千米/时),故答案为:4,8;(2)由图象可得,乙队的速度为:10÷(2.4﹣)=5(千米/时),令5×(t﹣)=2,解得t=0.8,即当t=0.8时,甲乙两队第一次相遇,故答案为:0.8;(3)由题意可得,[5×(t﹣)]﹣[2+8(t﹣1)]=1或[2+8(t﹣1)]﹣[5×(t﹣)]=1或[5×(t ﹣)]=10﹣1,解得t=1或t=或t=,即当t≥1时,1小时、小时或小时时,甲乙两队相距1千米.14.解:有图象可知,明明从家到学校分四段,当0≤x≤6时,图象经过(0,0)和(6,1200),∴解析式为:y1=200x;当6<x≤8时,设函数解析式为:y2=kx+b,∵图象经过(6,1200)和(8,600),∴,解得:,∴函数解析式为:y2=﹣300x+3000;当8<x≤12时路程没有变化说明明明在书店停留,∴y3=600;当12<x≤14时,设函数解析式为:y4=ax+m,∵图象经过(12,600)和(14,1500),∴,解得:,∴函数解析式为:y4=450x﹣4800;Ⅰ∵x=5时属于第①钟情况,∴y=1000(m),∵x=11时属于第③种情况,∴y=600(m);Ⅱ①由图象知明明家书店的距离是600m;②明明在书店停留的时间为:12﹣8=4(min);③从图象上可知x在0~6,6~8,12~14时可以距家900m,当0≤x≤6时,当y=900时,即200x=900,∴x=(min),当6<x≤8时,当y=900时,即﹣300x+3000=900,∴x=7(min),当12<x≤14时,当y=900时,即450x﹣4800=900,∴x=(min),∴明明与家距离900m时,明明离开家的时间为min或7min或min;Ⅲ由上面解法知:y=.故答案为:Ⅰ、1000,600;Ⅱ、①600,②4,③或7或.15.解:(1)∵C地在A,B两地之间,且与A,B两地的路程相等,且E、F纵坐标为180,∴A、B两地距离为180×2=360(km),又P横坐标为6,∴乙车速度为360÷6=60(km/h),故答案为:360,60;(2)∵乙车经C地到达A地停止,且比甲车早1小时到达A地,∴H(7,360),∵甲车到达C地停留1小时后以原速度继续前往B地,∴甲车行驶的时间一共6小时,即甲车行驶360km需要3小时,∴甲车速度为120km/h,G(4,0),设GH的解析式为y=kx+b,将H(7,360)、G(4,0)代入得:,解得:,∴GH的解析式为y=120x﹣480;(3)有三个时刻两车距120km,①刚出发t小时两车距120km,则360﹣(120t+60t)=120,解得:t=(h),②甲车停1小时后重新出发,设经过的时间是x小时两车相距120km,则120(x﹣1)+60x﹣120=360,解得:x=(h),③甲4小时达到B地,此时乙所行路程为4×60=240(千米),即两车此时距240千米,设再过y小时二车相距120千米,则120y﹣60y=240﹣120,解得y=2,∴两车第三次相距120千米,经过的时间是4+y=6(h),综上所述,两车出发后相距120km的路程,时间分别是小时、小时、6 小时.。
2021年全国各省市数学中考真题分类汇编:一次函数解答(一)
2021年全国各省市数学中考真题分类汇编:一次函数解答(一)1.(2021•牡丹江)在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C 地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.2.(2021•牡丹江)某商场计划购进一批篮球和足球,其中篮球的单价比足球多30元.已知用360元购进的足球和用480元购进的篮球数量相等.(1)问篮球和足球的单价各是多少元?(2)若篮球的售价为150元,足球的售价为110元,商场计划用不超过10350元购进两种球共100个,其中篮球不少于40个,问商场共有几种进货方案?哪种方案商场获利最大?(3)某希望小学为庆祝中国共产党成立100周年,举行百人球操表演,准备购买(2)中商场获利最大方案购进的这100个篮球和足球,商场知晓后决定从中拿出30个球赠送给这所希望小学,这样,希望小学相当于七折购买这批球.请直接写出商场赠送的30个球中篮球和足球的个数.3.(2021•南通)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A超市的购物金额为:300×0.9+(500﹣300)×0.7=410(元);去B超市的购物金额为:100+(500﹣100)×0.8=420(元).(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x 的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.4.(2021•毕节市)某中学计划暑假期间安排2名老师带领部分学生参加红色旅游.甲、乙两家旅行社的服务质量相同,且报价都是每人1000元.经协商,甲旅行社的优惠条件是:老师、学生都按八折收费;乙旅行社的优惠条件是:两位老师全额收费,学生都按七五折收费.(1)设参加这次红色旅游的老师学生共有x名,y甲,y乙(单位:元)分别表示选择甲、乙两家旅行社所需的费用,求y甲,y乙关于x的函数解析式;(2)该校选择哪家旅行社支付的旅游费用较少?5.(2021•湘西州)2020年以来,新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机,开始组建团队,制作面向A、B两个不同需求学生群体的微课视频.已知制作3个A类微课和5个B类微课需要4600元成本,制作5个A 类微课和10个B类微课需要8500元成本.李老师又把做好的微课出售给某视频播放网站,每个A类微课售价1500元,每个B类微课售价1000元.该团队每天可以制作1个A类微课或者1.5个B类微课,且团队每月制作的B类微课数不少于A类微课数的2倍(注:每月制作的A、B两类微课的个数均为整数).假设团队每月有22天制作微课,其中制作A类微课a天,制作A、B两类微课的月利润为w元.(1)求团队制作一个A类微课和一个B类微课的成本分别是多少元?(2)求w与a之间的函数关系式,并写出a的取值范围;(3)每月制作A类微课多少个时,该团队月利润w最大,最大利润是多少元?6.(2021•黑龙江)如图,矩形ABOC在平面直角坐标系中,点A在第二象限内,点B 在x轴负半轴上,点C在y轴正半轴上,OA,OB的长是关于x的一元二次方程x2﹣9x+20=0的两个根.解答下列问题:(1)求点A的坐标;(2)若直线MN分别与x轴,AB,AO,AC,y轴交于点D,M,F,N,E,S△AMN =2,tan∠AMN=1,求直线MN的解析式;(3)在(2)的条件下,点P在第二象限内,在平面内是否存在点Q,使以E,F,P,Q为顶点的四边形是正方形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.7.(2021•黑龙江)A,B,C三地在同一条公路上,C地在A,B两地之间,且到A,B 两地的路程相等.甲、乙两车分别从A,B两地出发,匀速行驶.甲车到达C地并停留1小时后以原速继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回C地停止行驶,乙车经C地到达A地停止行驶.在两车行驶的过程中,甲、乙两车距C地的路程y(单位:千米)与所用的时间x(单位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题:(1)直接写出A,B两地的路程和甲车的速度;(2)求乙车从C地到A地的过程中y与x的函数关系式(不用写自变量的取值范围);(3)出发后几小时,两车在途中距C地的路程之和为180千米?请直接写出答案.8.(2021•黔东南州)黔东南州某销售公司准备购进A、B两种商品,已知购进3件A商品和2件B商品,需要1100元;购进5件A商品和3件B商品,需要1750元.(1)求A、B两种商品的进货单价分别是多少元?(2)若该公司购进A商品200件,B商品300件,准备把这些商品全部运往甲、乙两地销售.已知每件A商品运往甲、乙两地的运费分别为20元和25元;每件B商品运往甲、乙两地的运费分别为15元和24元.若运往甲地的商品共240件,运往乙地的商品共260件.①设运往甲地的A商品为x(件),投资总运费为y(元),请写出y与x的函数关系式;②怎样调运A、B两种商品可使投资总费用最少?最少费用是多少元?(投资总费用=购进商品的费用+运费)9.(2021•襄阳)为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如表所示:售价(元/斤)品种进价(元/斤)鲢鱼a 5草鱼b销量不超过200斤的部分销量超过200斤的部分8 7已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.(1)求a,b的值;(2)老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼x斤(销售过程中损耗不计).①分别求出每天销售鲢鱼获利y1(元),销售草鱼获利y2(元)与x的函数关系式,并写出x的取值范围;②端午节这天,老李让利销售,将鲢鱼售价每斤降低m元,草鱼售价全部定为7元/斤,为了保证当天销售这两种鱼总获利W(元)最小值不少于320元,求m的最大值.10.(2021•绥化)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息.已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m=,n=;(2)求CD和EF所在直线的解析式;(3)直接写出t为何值时,两人相距30米.11.(2021•大庆)如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度y(cm)与注水时间x(min)之间的关系如图②所示,根据图象解答下列问题:(1)图②中折线EDC表示槽中水的深度与注入时间之间的关系;线段AB表示槽中水的深度与注入时间之间的关系;铁块的高度为cm.(2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)12.(2021•呼和浩特)下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.探究3电话计费问题下表中有两种移动电话计费方式.月使用费/元主叫限定时间/min 主叫超时费/(元/min)被叫方式一58 150 0.25 免费方式二88 350 0.19 免费考虑下列问题:月使用费固定收:主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费.(1)设一个月内用移动电话主叫为tmin(t是正整数).根据上表,列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量x和自变量的函数y,请你帮小明写出:x表示问题中的,y表示问题中的.并写出计费方式一和二分别对应的函数解析式;(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象直接写出如何根据主叫时间选择省钱的计费方式.(注:坐标轴单位长度可根据需要自己确定)13.(2021•黑龙江)已知A、B两地相距240km,一辆货车从A前往B地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B地前往A地,到达A地后(在A地停留时间不计)立即原路原速返回.如图是两车距B地的距离y(km)与货车行驶时间x(h)之间的函数图象,结合图象回答下列问题:(1)图中m的值是;轿车的速度是km/h;(2)求货车从A地前往B地的过程中,货车距B地的距离y(km )与行驶时间x(h)之间的函数关系式;(3)直接写出轿车从B地到A地行驶过程中,轿车出发多长时间与货车相距12km?14.(2021•贵阳)为庆祝“中国共产党的百年华诞”,某校请广告公司为其制作“童心向党”文艺活动的展板、宣传册和横幅,其中制作宣传册的数量是展板数量的5倍,广告公司制作每件产品所需时间和利润如表:产品展板宣传册横幅1制作一件产品所需时间(小时)制作一件产品所获利润20 3 10(元)(1)若制作三种产品共计需要25小时,所获利润为450元,求制作展板、宣传册和横幅的数量;(2)若广告公司所获利润为700元,且三种产品均有制作,求制作三种产品总量的最小值.15.(2021•吉林)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过a天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x (天)之间的关系如图所示.(1)直接写出乙地每天接种的人数及a的值;(2)当甲地接种速度放缓后,求y关于x的函数解析式,并写出自变量x的取值范围;(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.16.(2021•长春)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:【实验观察】实验小组通过观察,每2小时记录一次箭尺读数,得到如表:供水时间x(小时)0 2 4 6 8箭尺读数y(厘米) 6 18 30 42 54【探索发现】①建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.②观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.【结论应用】应用上述发现的规律估算:①供水时间达到12小时时,箭尺的读数为多少厘米?②如果本次实验记录的开始时间是上午8:00,那当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)17.(2021•黑龙江)一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km.两车相遇后休息一段时间,再同时继续行驶.两车之间的距离y(km)与货车行驶时间x(h)之间的函数图象如图所示的折线AB﹣BC﹣CD﹣DE,结合图象回答下列问题:(1)甲、乙两地之间的距离是km;(2)求两车的速度分别是多少km/h?(3)求线段CD的函数关系式.直接写出货车出发多长时间,与轿车相距20km?18.(2021•齐齐哈尔)在一条笔直的公路上依次有A、C、B三地,甲、乙两人同时出发,甲从A地骑自行车匀速去B地,途经C地时因事停留1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行匀速从B地至A地.甲、乙两人距A 地的距离y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)甲的骑行速度为米/分,点M的坐标为;(2)求甲返回时距A地的距离y(米)与时间x(分)之间的函数解析式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回到A 地之前,分钟时两人距C地的距离相等.19.(2021•河南)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶类别价格进货价(元/个)40 30销售价(元/个)56 45(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率=×100%)20.(2021•福建)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?参考答案1.【解答】解:(1)由函数图象得B地跑步到A地的路程是400米,∵乐乐从B地跑步到A地,休息1分钟后接到通知,∴a=3﹣1=2,∴乐乐去A地的速度为:400÷2=200(米/分钟),故答案为:2,200米/分钟;(2)设FG的解析式为:s=kt+b(k≠0),∵s=kt+b(k≠0)的图象过点F(3,0)、G(7,1200),∴,解得:,∴FG的解析式为:s=300t﹣900(3<t≤7),即乐乐从A地到C地的函数解析式:s=300t﹣900(3<t≤7);(3)设OH的解析式为:s=kt(k≠0),∵s=kt(k≠0)的图象过点H(8,1200),∴1200=8k,解得:k=150,∴OH的解析式为:s=150t(0≤t≤8),即男男从A地到C地的函数解析式:s=150t,①0≤t≤2时,200t=400﹣150t,解得:t=;②2<t≤3时,400=150t﹣400,解得:t=>3,舍去;③3<t≤7时,400﹣(300t﹣900)=150t﹣400或(300t﹣900)﹣400=150t﹣400,解得:t=或t=6,综上,两人距B地的距离相等的时间为分钟或分钟或6分钟.2.【解答】解:(1)设足球单价为x元,则篮球单价为(x+30)元,由题意得:,解得:x=90,经检验:x=90是原分式方程的解,则x+30=120,答:足球单价为90元,则篮球单价为120元;(2)设购买篮球n个,则购买足球(100﹣n)个,由题意得:120n+90(100﹣n)≤10350,解得:n≤45,∵篮球不少于40个,∴40≤n≤45,∴有6种方案:设商场获利w元,由题意得:w=(150﹣120)n+(110﹣90)(100﹣n)=10n+2000,∵10>0,∴w随n的增大而增大,∴n=45时,w有最大值,100﹣45=55(个),答:商场共有6种货方案,购买篮球45个,购买足球55个,商场获利最大;(3)设商场赠送的30个球中篮球m个,足球(30﹣m)个,由题意得:110×[55﹣(30﹣m)]+150×(45﹣m)=(150×45+110×55)×0.7,解得:m=,∵m是正整数,∴m=13或14,30﹣m=17或16,答:商场赠送的30个球中篮球13个和足球17个或篮球14个和足球16个.3.【解答】解:(1)由题意可得,当x≤300时,y A=0.9x;当x>300时,y A=0.9×300+0.7(x﹣300)=0.7x+60,故;当x>100时,y B=100+0.8(x﹣100)=0.8x+20;;(2)由题意,得0.9x>0.8x+20,解得x>200,∴200<x≤300时,到B超市更省钱;0.7x+60>0.8x+20,解得x<400,∴300<x<400,到B超市更省钱;0.7x+60=0.8x+20,解得x=400,∴当x=400时,两家超市一样;0.7x+60<0.8x+20,解得x>400,∴当x>400时,到A超市更省钱;综上所述,当200<x<400到B超市更省钱;当x=400时,两家超市一样;当x>400时,到A超市更省钱.4.【解答】解:(1)y甲=0.8×1000x=800x,y=2×1000+0.75×1000×(x﹣2)=750x+500;乙(2)①y甲<y乙,800x<750x+500,解得x<10,②y甲=y乙,800x=750x+500,解得x=10,③y甲>y乙,800x>750x+500,解得x>10,答:当老师学生数超10人时,选择乙旅行社支付的旅游费用较少;当老师学生数为10人时,两旅行社支付的旅游费用相同;当老师学生数少于10人时,选择甲旅行社支付的旅游费用较少.5.【解答】解:(1)设团队制作一个A类微课的成本为x元,制作一个B类微课的成本为y元,根据题意得:,解得,答:团队制作一个A类微课的成本为700元,制作一个B类微课的成本为500元;(2)由题意,得w=(1500﹣700)a+(1000﹣500)×1.5(22﹣a)=50a+16500;1.5(22﹣a)≥2a,又∵每月制作的A、B两类微课的个数均为整数,∴a为偶数,解得a≤8,∴0≤a≤8(且a为偶数);(3)由(2)得w=50a+16500,∵50>0,∴w随a的增大而增大,∴当a=8时,w有最大值,w最大=50×8+16500=16900(元).答:每月制作A类微课8个时,该团队月利润w最大,最大利润是16900元.6.【解答】解:(1)由x2﹣9x+20=0,得(x﹣4)(x﹣5)=0.解得x1=4,x2=5.∵OB<OA∴OB=4,OA=5..∵点A在第二象限,∴点A(﹣4,3).(2)∵tan∠AMN=1,∴∠AMN=45°.∵S△AMN=2,∴AN=AM=2.∴BM=1.∴点M(﹣4,1).∵AB=3,AC=OB=4,∴CN=AC﹣AN=4﹣2=2.∴点N(﹣2,3).设直线MN的解析式为y=kx+b,把点M(﹣4,1),N(﹣2,3),代入得,解得.∴直线MN的解析式为y=x+5.(3)如图所示,过点F作FQ3⊥y轴于点Q3,过点P1作P1G⊥x轴,与FQ3交于点G.点E的坐标为(0,5),∵OA过原点,∴OA的表达式为y=kx,把点A(﹣4,3)代入得.列方程组,解得.∴点F(,),点Q3(0,)..情况一:以EF为正方形的边可作正方形EFQ1P1或FEP2Q2,则△P1GF≌△FQ3E,.P的纵坐标为,1P的横坐标为﹣()=﹣.1∴Q2的坐标为(,5).同理可得Q1的坐标为(,).情况二:以EF为对角线在EF的左侧作正方形FQ3EP3,FQ=EQ3,且∠EFQ3=45°,3此时Q3的坐标为(0.).综上,当点Q的坐标分别为Q1,Q2,Q3时,存在E,F,P,Q为顶点的正方形.7.【解答】解:(1)当0h时,甲车和乙车距C地为180km,∴两地的路程为:180+180=360km,设甲车经过180km用了xh,则:x+x+x+1=5.5,∴x=1.5,则甲车速度为:180÷1.5=120(km/h);(2)设乙车从C地到A地的过程中y与x的函数关系式为:y=kx+b(k≠0),将(3,0),(6,180)代入y=kx+b(k≠0),得:,解得:,∴乙车从C地到A地的过程中y与x的函数关系式为:y=60x﹣180;(3)由图可知,分别在3个时间段可能两车在途中距C地路程之和为180km,①甲车从A地到C地,乙车从B到C,﹣120x+180+(﹣60x+180)=180,解得:x=1;②甲车从C到B,乙车从C到A,﹣120x﹣300+60x﹣180=180,解得:x=;③甲车从B到C,乙车从C到A,﹣120x+660+60x﹣180=180,解得:x=5.总上所述:分别在1h,h,5h这三个时间点,两车在途中距C地的路程之和为180km.8.【解答】解:(1)设A商品的进货单价为x元,B商品的进货单价为y元,根据题意,得,解得:,答:A商品的进货单价为200元,B商品的进货单价为250元;(2)①设运往甲地的A商品为x件,则设运往乙地的A商品为(200﹣x)件,运往甲地的B商品为(240﹣x)件,运往乙地的B商品为(60+x)件,则y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,∴y与x的函数关系式为y=4x+10040;②投资总费用w=200×200+300×250+4x+10040=4x+125040,自变量的取值范围是:0≤x≤200,∵k=4>0,∴y随x增大而增大.当x=0时,w取得最小值,w最小=125040(元),∴最佳调运方案为:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地,最小费用为125040元.答:调运240件B商品到甲地,调运200件A商品、60件B商品到乙地总费用最小,最小费用为125040元.9.【解答】解:(1)根据题意得:,解得;(2)①由题意得,y1=(5﹣3.5)x=1.5x(80≤x≤120),当300﹣x≤200时,100≤x≤120,y2=(8﹣6)×(300﹣x)=﹣2x+600;当300﹣x>200时,80≤x<100,y2=(8﹣6)×200+(7﹣6)×(300﹣x﹣200)=﹣x+500;∴;②由题意得,W=(5﹣m﹣3.5)x+(7﹣6)×(300﹣x)=(0.5﹣m)x+300,其中80≤x≤120,∵当0.5﹣m≤0时,W=(0.5﹣m)x+300≤300,不合题意,∴0.5﹣m>0,∴W随x的增大而增大,∴当x=80时,W的值最小,由题意得,(0.5﹣m)×80+300≥320,解得m≤0.25,∴m的最大值为0.25.10.【解答】解:(1)∵小刚原来的速度=16÷4=4米/秒,小亮的速度=720÷144=5米/秒,B点小亮追上小刚,相遇,∴4m+16=5m,解得:m=16,∵E点是小刚到达乙地,∴n=[]×(6﹣5)=,故答案为:16;,(2)由题意可知点C横坐标为16+=48,∵小刚原来的速度=16÷4=4米/秒,小亮的速度=720÷144=5米/秒,∴纵坐标为(5﹣4)×(48﹣16)=32,∴C(48,32),设S CD=k1t+b1,将C(48,32),D(80,0)代入,,解得:,∴S CD=﹣t+80(48≤t≤80),∴E点横坐标为,E点纵坐标为,∴E(,),设S EF=k2t+b2,将E,F两点坐标代入可得,,解得:,∴S EF=﹣5t+720(),(3)∵B(16,0),C(48,32),D(80,0),E(,),F(144,0),设S BC=k3t+b3,将B,C两点坐标代入可得,,解得:,∴S BC=t﹣16(16<t≤48),设S DE=k4t+b4,将D,E两点坐标代入可得,,解得:,∴S DE=t﹣80(80<t≤),当S=30时,S BC=t﹣16=30,解得t=46;S CD=﹣t+80=30,解得t=50;S DE=t﹣80=30,解得t=110;S EF=﹣5t+720=30,解得t=138;综上,t为46,50,110,138时,两人相距30米.11.【解答】解:(1)由题意可知,乙槽在注入水的过程中,由于有圆柱铁块在内,所以水的高度出现变化,∴EDC表示的是乙槽的水深与注水时间的关系;∵甲槽的水是匀速外倒,∴线段AB表示甲槽水深与注水时间的关系;折线EDC中,在D点表示乙槽水深16cm,也就是铁块的高度16cm;故答案为:乙,甲,16;(2)由图像可知,两个水槽深度相同时,线段ED与线段AB相交,设AB的解析式为y=kx+b,将点(0,14),(7,0)代入,得解得,,∴y=﹣2x+14;设ED的解析式为y=mx+n,将点(0,4),(4,16)代入,得,解得,∴y=3x+4;联立方程,∴,∴注水2分钟,甲、乙两个水槽的水深度相同.12.【解答】解:(1)由题意,可得x表示问题中的主叫时间,y表示问题中的计费;方式一:y=;方式二:y=;故答案为:主叫时间,计费;(2)大致图象如下:由图可知:当主叫时间在270分钟以内选方式一,270分钟时两种方式相同,超过270分钟选方式二.13.【解答】解:(1)由图象得,m=1+(3﹣1)×2=5;轿车的速度为:240÷2=120(km/h);故答案为:5;120;(2)①设y MN=k1x+b1(k1≠0)(0≤x<2.5),∵图象经过点M(0,240)和点N(2.5,75),∴,解得,∴y MN=﹣66x+240(0≤x<2.5),y NG=75(2.5≤x<3.5);③设y GH=k2x+b2(k2≠0)(3.5≤x≤5),∵图象经过点G(3.5,75)和点H(5,0),∴,解得,∴y GH=﹣50x+250,∴;(3)货车从A前往B地的速度为:(240﹣75)÷2.5=66(km/h),设轿车出发a小时与货车相距12km,根据题意,得66(1+a)+120a=240+12或66(1+a)+120a=240﹣12,解得a=1或a=,答:轿车从B地到A地行驶过程中,轿车出发1小时或小时与货车相距12km.14.【解答】解:(1)设制作展板数量为x件,横幅数量为y件,则宣传册数量为5x件,由题意得:,解得:,答:制作展板数量10件,宣传册数量50件,横幅数量10件;(2)设制作种产品总量为w件,展板数量m件,则宣传册数量5m件,横幅数量(w ﹣6m)件,由题意得:20m+3×5m+10(w﹣6m)=700,解得:w=m+70,∴w是m的一次函数,∵k=,∴w随m的增加而增加,∵三种产品均有制作,且w,m均为正整数,∴当m=2时,w有最小值,则w min=75,答:制作三种产品总量的最小值为75件.15.【解答】解:(1)乙地接种速度为40÷80=0.5(万人/天),0.5a=25﹣5,解得a=40.(2)设y=kx+b,将(40,25),(100,40)代入解析式得:,解得,∴y=x+15(40≤x≤100).(3)把x=80代入y=x+15得y=×80+15=35,40﹣35=5(万人).16.【解答】解:【探索发现】①如图②,②观察上述各点的分布规律,可得它们是否在同一条直线上,设这条直线所对应的函数表达式为y=kx+b,则,解得:,∴y=6x+6;【结论应用】应用上述发现的规律估算:①x=12时,y=6×12+6=78,∴供水时间达到12小时时,箭尺的读数为78厘米;②y=90时,6x+6=90,解得:x=14,∴供水时间为14小时,∵本次实验记录的开始时间是上午8:00,8:00+14=22:00,∴当箭尺读数为90厘米时是22点钟.17.【解答】解:(1)由函数图象得,甲、乙两地之间的距离是180km,故答案为:180;(2)设货车的速度为x千米/小时,则轿车的速度为(x+20)千米/小时,根据题意,得:x+(x+20)=180,解得x=80,答:货车的速度为80千米/小时,轿车的速度为100千米/小时;(3)设点D的横坐标为x,则:80(x﹣1.5)+100(x﹣1.5)=144,解得x=2.3,故点D的坐标为(2.3,144),设线段CD的函数关系式为y=kx+b(k≠0),则:,解得,∴y=180x﹣270;当180x﹣270=20时,解得x=;设AB的解析式为y=mx+n(m≠0),则:,解得,∴线段AB的解析式为:y=﹣180x+180,当﹣180x+180=20时,解得x=,∴货车出发小时或小时,与轿车相距20km18.【解答】解:(1)由题意得:甲的骑行速度为:(米/分),240×(11﹣1)÷2=1200(米),因为甲往返总时间为11分,中间休息一分钟,所以M的横坐标为6,则点M的坐标为(6,1200),故答案为:240,(6,1200);(2)设MN的解析式为:y=kx+b(k≠0),∵y=kx+b(k≠0)的图象过点M(6,1200)、N(11,0),∴,解得,∴直线MN的解析式为:y=﹣240x+2640;即甲返回时距A地的路程y与时间x之间的函数关系式:y=﹣240x+2640;(3)设甲返回A地之前,经过x分两人距C地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200﹣1020=180,分5种情况:①当0<x≤3时,1020﹣240x=180﹣60x,x=,此种情况不符合题意;②当3<x<﹣1时,即3<x<,甲、乙都在A、C之间,∴1020﹣240x=60x﹣180,x=4,此种情况符合题意;③当<x<6时,甲在B、C之间,乙在A、C之间,∴240(x﹣1)﹣1020=60x﹣180,x=6,此种情况不符合题意;④当x=6时,甲到B地,距离C地180米,乙距C地的距离:6×60﹣180=180(米),即x=6时两人距C地的路程相等,⑤当x>6时,甲在返回途中,当甲在B、C之间时,180﹣[240(x﹣1)﹣1200]=60x﹣180,x=6,此种情况不符合题意,当甲在A、C之间时,240(x﹣1)﹣1200﹣180=60x﹣180,x=8,综上所述,在甲返回A地之前,经过4分钟或6分钟或8分钟时两人距C地的路程相等.故答案为:4或6或8.19.【解答】解:(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个,由题意,得40x+30(30﹣x)=1100,解得:x=20.30﹣20=10(个).答:A款玩偶购进20个,B款玩偶购进10个;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元,由题意,得y=(56﹣40)a+(45﹣30)(30﹣a)=a+450.∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.∴a≤(30﹣a),∴a≤10,∵y=a+450.∴k=1>0,∴y随a的增大而增大.∴a=10时,y最大=460元.∴B款玩偶为:30﹣10=20(个).答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)第一次的利润率=×100%≈42.7%,第二次的利润率=×100%=46%,∵46%>42.7%,∴对于小李来说第二次的进货方案更合算.20.【解答】解:(1)设该公司当月零售这种农产品x箱,则批发这种农产品(100﹣x)箱,依题意得70x+40(100﹣x)=4600,解得:x=20,100﹣20=80(箱),答:该公司当月零售这种农产品20箱,批发这种农产品80箱;(2)设该公司当月零售这种农产品m箱,则批发这种农产品(1000﹣m)箱,依题意得0<m≤1000×30%,解得0<m≤300,。
第20章 专题07 一次函数的规律探究性问题(学生版)
编者小k 君小注:本专辑专为2022年初中沪教版数学第二学期研发,供中等及以上学生使用。
思路设计:重在培优训练,分选择、填空、解答三种类型题,知识难度层层递进,由中等到压轴,基础差的学生选做每种类型题的前4题;基础中等的学生必做前4题、选做5-8题;尖子生全部题型必做,冲刺压轴题。
专题07 一次函数的规律探究性问题(学生版)错误率:___________易错题号:___________一、单选题1.如图,在平面直角坐标系中,直线l :1y x =+交x 轴于点A ,交y 轴于点1A ,2A ,3A ,…在直线l 上,点1B ,2B ,3B ,…在x 轴的正半轴上,若11AOB ,212A B B △,323A B B △,…,依次均为等腰直角三角形,直角顶点都在x 轴上,则第10个等腰直角三角形是10910A B B ,其点10B 的横坐标为( )A .512B .1023C .2047D .20482.如图,在平面直角坐标系中,已知点A 坐标为(4-,5),点B 坐标为(0,3),点D 在x 轴上.若线段DB 交直线12y x =-于点C ,当点D 从点O 向x 轴负半轴方向运动时,△ABC 面积的变化趋势是( )A .先变大再变小B .先变小再变大C .无法确定D .保持不变3.如图,在直角坐标系中,正方形111A B C O 、2221A B C C 、…、1n n n n A B C C -按如图所示的方式放置,其中点1A 、2A 、3A 、…、n A 均在一次函数1y x =+的图象上,点1C 、2C 、3C 、…、n C 均在x 轴上,则点2021A 的坐标为( )A .()2021202121,2-B .()2020202021,2-C .()2021202021,2- D .()2020202121,2-4.如图所示,已知点1B ,2B ,3B ……在直线2y x =-+上,点1A ,2A ,3A ……在x 轴上,点1C ,2C ,3C ……分别在y 轴、11A B 、22A B 上,四边形111A B C O 、2221A B C A 、3332A B C A ……都是正方形,则下列说法:①点1B 的坐标是(1,1);①11222A B A B =;①点n B 的横坐标是112n⎛⎫- ⎪⎝⎭;①正方形1n n n n A B C A -的边长是112n -⎛⎫⎪⎝⎭其中错误的个数有( )A .1个B .2个C .3个D .0个5.如图所示,在平面直角坐标系中,点1A ,2A ,3A ,…都在x 轴上,点1B ,2B ,3B ,…都在直线y x =上,①11OA B ,①112B A A ,①212B B A ,①223B A A ,①323B B A ,…都是等腰直角三角形,如果11OA =,则点2021B 的坐标是( )A .()2021202122,B .()2020202022,C .()2019201922,D .()2018201822,6.如图,正方形AOCD 、正方形111A CC D 、正方形2122A C C D 的顶点A 、1A 、2A 和O 、C 、1C 、2C 分别在一次函数1y x =+的图象和x 轴上,若正比例函数y kx =则过点5D ,则k 的值是( )A .6332B .3263C .3116D .16317.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示,依次作正方形111A B C O 、正方形2221A B C C ,、正方形1n n n n A B C C -,使得点123,,,A A A 在直线l 上,点123,,,C C C 在y 轴正半轴上,则点2021B 的坐标为( )A .()201920202,21-B .()202020202,2C .()202020212,21-D .()201920202,21+8.如图,直线1:1l y x =+与直线211:22l y x =+相交于点()1,0P -.直线1l 与y 轴交于点A .一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线2l 上的点1B 处后,改为垂直于x 轴的方向运动,到达直线1l 上的点1A 处后,再沿平行于x 轴的方向运动,到达直线2l 上的点2B 处后,又改为垂直于x 轴的方向运动,到达直线1l 上的点2A 处后,仍沿平行于x 轴的方向运动,…照此规律运动,动点C 依次经过点1B ,1A ,2B ,2A ,3B ,3A ,…,2014B ,2014A ,…则当动点C 到达2021A 处时,运动的总路径的长为( )A .22021B .202122-C .202021+D .202222-9.如图,在平面直角坐标系中,四边形11112222333,,OA B C A A B C A A B C ,…都是菱形,点123,,A A A …都在x 轴上,点123,,C C C ,…都在直线33y x =+上,且11212323160,1C OA C A A C A A OA ∠=∠=∠==︒=,则点nC 的横坐标是( )A .2321n -⨯-B .2321n -⨯+C .1321n -⨯-D .1321n -⨯+10.如图所示,直线y x =y 轴相交于点D ,点1A 在直线y =1B 在x 轴上,且11OA B 是等边三角形,记作第一个等边三角形;然后过1B 作121B A OA ∥与直线y x =2A ,点2B 在x 轴上,再以12B A 为边作等边三角形221A B B ,记作第二个等边三角形;同样过2B 作231B A OA ∥与直线y x =3A ,点3B 在x 轴上,再以23B A 为边作等边三角形332A B B ,记作第三个等边三角形;…依此类推,则第n 个等边三角形的顶点n A 纵坐标为( )A .12n -B .22n -C .12n -D .22n -二、填空题11.如图在平面直角坐标系中,①P 1OA 1,①P 2A 1A 2,①P 3A 2A 3…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3…均在直线143y x =-+上,则点P 2021的纵坐标是 ___.12.正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图所示的方式放置,点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,已知点()11,1B ,()23,2B ,则n B 的横坐标是_____.13.如图,在平面直角坐标系中,点123,,,A A A ,都在x 轴正半轴上,点123,,,B B B ,都在直线y kx =上,1130B OA ∠=︒,112223334,,,A B A A B A A B A ∆∆∆,都是等边三角形,且11OA =,则点6B 的横坐标是_______.14.如图,在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形1n n n n A B C C -,使得点1A 、2A 、3A 、…在直线l 上,点1C 、2C 、3C 、…在y 轴正半轴上,则点2021B 的坐标是__________.15.正方形111A B C O ,正方形2221A B C C ,正方形3332A B C C ,…按如图所示放置,点1A ,2A ,3A ,…在直线y kx b =+上,1C ,2C ,3C ,…在x 轴上,已知()11,1B ,()23,2B ,则n B 的坐标为______.16.如图,在平面直角坐标系中,点1A ,2A ,3A ,⋯和1B ,2B ,3B ,⋯分别在直线15y x b =+和x 轴上,①11OA B ,①122B A B ,①233B A B ,⋯都是等腰直角三角形,如果点1(1,1)A ,那么点2020A 的纵坐标是__.17.平面直角坐标系xOy 中,点A 1,A 2,A 3,……和B 1,B 2,B 3,……分别在直线y =13x +23和x 轴上,①OA 1B 1,①B 1A 2B 2,①B 2A 3B 3,……都是等腰直角三角形,如果A 1(1,1),则点A 2021的纵坐标是 ___.18.如图,已知直线a :y x =,直线b :12y x =-和点()1,0P ,过点P 作y 轴的平行线交直线a 于点1P ,过点1P 作x 轴的平行线交直线b 于点2P ,过点2P 作y 轴的平行线交直线a 于点3P ,过点3P 作x 轴的平行线交直线b 于点4P ,…,按此作法进行下去,则点2021P 的横坐标为________.19.如图,在平面直角坐标系中,点()11,1A 在直线y x =图象上,过1A 点作y 轴平行线,交直线y x =-于点1B ,以线段11A B 为边在右侧作正方形1111D C B A ,11C D 所在的直线交y x =的图象于点2A ,交y x =-的图象于点2B ,再以线段22A B 为边在右侧作正方形2222A B C D 依此类推,按照图中反应的规律,第2020个正方形的边长是_______.20.如图,点B 1在直线l :y =12x 上,点B 1的横坐标为2,过点B 1作B 1A 1①l ,交x 轴于点A 1,以A 1B 1为边,向右作正方形A 1B 1B 2C 1,延长B 2C 1交x 轴于点A 2;以A 2B 2为边,向右作正方形A 2B 2B 3C 2,延长B 3C 2交x 轴于点A 3;以A 3B 3为边,向右作正方形A 3B 3B 4C 3,延长B 4C 3交x 轴于点A 4;…;照这个规律进行下去,则第n 个正方形A n B n B n +1C n 的边长为 ___(结果用含正整数n 的代数式表示).三、解答题21.在学习了一次函数后,某校数学兴趣小组根据学习的经验,对函数y=-|x|-2的图象和性质进行了探究,下面是该兴趣小组的探究过程,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:①n= ;①如图,在所给的平面直角坐标系中,描出以表中各组对应值为坐标的点,根据描出的点画出该函数的图象;(2)当一2<x≤5时,y的取值范围是;(3)根据所画的图象,请写出一条关于该函数图象的性质.22.数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则”.材料一:平方运算和开方运算是互逆运算.如a 2±2ab+b 2=(a±b )2a b =±,如何将5±222±=完全平方的形式,材料二:在直角坐标系xOy 中,对于点P(x ,y)和Q(x ,y’)给出如下定义:若(0)y (0)y x y x ≥⎧=⎨-<'⎩则称点Q 为点P 的“横负纵变点”.例如:点(3,2)的“横负纵变点”为(3,2),点(﹣2,5)的“横负纵变点”为(﹣2,﹣5).问题:(1)点的“横负纵变点”为 ,点()2--的“横负纵变点”为 ;(2(3)已知a 为常数(1≤a≤2),点M(m)是关于x 的函数1y x=-图像上的一点,点M’是点M 的“横负纵变点”,求点M’的坐标.23.小东同学根据函数的学习经验,对函数y =1x - +3x +进行了探究,下面是他的探究过程: (1)已知x =-3时3x += 0;x =1 时1x -= 0,化简: ①当x <-3时,y = ; ①当-3≤x ≤1时,y = ; ①当x >1时,y = .(2)在平面直角坐标系中画出y =|x ﹣1|+|x +3|的图象,根据图象,写出该函数的一条性质: ;24.城关中学九(6)班的毕业复习资料复印业务原来由宏图复印社承接,其收费y 1(元)与复印页数x (页)的关系如下表:(1)y1与x的函数关系是否满足一次函数关系?(2)现在另一家复印社明晰复印社表示:若学校先按每月付给200元的承包费,则可按每页0.10元收费,请写出明晰复印社每月收费y2(元)与复印页数x(页)的函数表达式;(3)你若是班级的学习委员,在复印资料时,选择哪家复印社比较优惠,说明理由.25.正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…按如图所示的方式放置点A1、A2、A3、…和点C1、C2、C3、…分别在直线y=ka+b(k>0)和x轴上,已知点B1(1,1),B2(3,2).(1)求k、b的值;(2)填写下列各点的坐标:B3( ,),B n( ,).26.平面直角坐标系中,设一次函数y=(2a﹣1)x+3﹣b的图象是直线l1.(1)如果把l1向下平移2个单位后得到直线y=3x+1,求a,b的值;(2)当直线l1过点(m,6﹣b)和点(m+3,4a﹣7)时,且﹣3<b<12,求a的取值范围;(3)点P(﹣2n+3,3n﹣1)在直线l2上运动,直线l2与直线l1无交点,求a、b所需满足的条件.27.一个水库的水位在最近5h内持续上涨.表记录了这5h内6个时间点的水位高度,其中t表示时间,y 表示水位高度.(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你能发现水位变化有什么规律吗?(2)水位高度y是否为时间t的函数?如果是,试写出一个符合表中数据的函数解析式,并画出这个函数的图象.这个函数能表示水位的变化规律吗?(3)据估计这种上涨规律还会持续2h,预测再过2h水位高度将为多少米.28.小明根据学习函数的经验,对函数43kxy x b-=++进行了探究,已知当0x=时,13y=;当2x=时,1y =.探究过程如下,请补充完整:(1)k = ,b = ;(2)在给出的平面直角坐标系中,画出函数图象,并写出这个函数的一条性质:; (3)若函数21y mx =+的图象与该函数有两个交点,则m 的取值范围为 . 29.如图,在平面直角坐标系中,将ABO 绕点B 顺时针旋转到A 1BO 1的位置,使点A 的对应点A 1落在直线y 上,再将A 1BO 1绕点A 1顺时针旋转到A 1B 1O 2的位置,使点O 1的对应点O 2落在直线yx 上,依次进行下去…,若点A 的坐标是(0,1),点B 的坐标是1),则点A 2020的横坐标是__.30.在平面直角坐标系xOy 中,A 1,A 2…A k 是k 个互不相同的点,若这k 个点横坐标的不同取值有m 个,纵坐标的不同取值有n 个,p=m+n 则称p 为这k 个点的“平面特征值”,记为T <A 1,A 2,…A k >=p .如:点M (2,1)点N (3,1),则T <M ,N >=2+1=3如图,正方形ABCD 的边AB 在x 轴上,直线l 与直线AC ,CD 交y 轴于点E ,已知O 为AB 的中点,点B 的坐标为(4,0).(1)T<A,B>=,T<A,B,E>=;(2)点F(0,b)为y轴上一动点,过点P作直线l//x轴,直线BD的交点记为P,Q,请直接写出T<A,B,C,D,E,F,P,以及相应的b的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n=2
S2=4
n=3
S3=8 S3=12
…
数学规律题:一次函数(1)
例题:(1)1,3,5,7……根据规律第6个数是,第n个数是。
(2)3,5,7,9……根据规律第6个数是,第n个数是。
(3)1,5,9,13……根据规律下5个数是,第n个数是。
课堂训练
1.下列每个形如四边形的图案,都是由若干个圆点按照一定规律组成的.当每条边上有n(n≥2)个圆点时(包括顶点),图案的圆点数为Sn.那么n=8时,S8= ,按此规律Sn与n的函数关系式为.
2、为庆祝“六 一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:
按照上面的规律,摆6个“金鱼”需用火柴棒的根数为;那么第n个为
3、按如下规律摆放三角形:第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为_____________;
4. 观察下列等式:16115
-=;25421
-=;36927
-=;491633
-=;… …
用自然数n(其中1
n≥)表示上面一系列等式所反映出来的规律
是.
5.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成,图中,第1个
黑色L形由3个正方形组成,第2个黑色L形由7个正方形组成,……那么第6
个黑色L形的正方形个数是,第n个黑色L形的正方形个数是
6.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,……,依次规律,拼搭第8个图案需小木棒根.
7.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n组应该有种子数()粒。
A、1
2+
n B、1
2-
n C、n2D、2
+
n
8.观察下列图形,则第n个图形中三角形的个数是()
第1第2第4
第3
A.22
n+B.44
n+
C.44
n-D.4n
9.王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n个“中”字形图案
需根火柴棒.
10.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖-__________块,第n个图形中需要黑色瓷砖__________块(用含n的代数式表示).
11.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”
的个数为.
12.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.
13.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有
个小圆.
14.如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第
5个“广”字中的棋子个数是________,第n个“广”字中的棋子个数是___ _
____
第1个图第2个图第3个图第4个图…
(1)(2)(3)…………
(1(2)(
3
……
第1个第2个第3个
……
第1幅第2幅第3幅第n幅。