2003年高考数学试题(北京理)及答案

合集下载

2002年全国高考数学试题数学(北京理)-推荐下载

2002年全国高考数学试题数学(北京理)-推荐下载

2.答卷前将密封线内的项目填写清楚。
题号 二
分数
17
18
(0,1)

(
2
,3)
C. f 2 (x), f3 (x) D. f 4 (x)
19
得分 评卷人 二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横 线上.
13. arcsin( 2), arccos( 3), arctg( 5) 从小到大的顺序是54 Nhomakorabea4
14.等差数列{an}中,a1=2,公差不为零,且 a1,a3,a11 恰好是某等比数列的前三项,那么
该等比数列公比的值等于
.
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2003年高考.全国卷.理科数学试题及答案

2003年高考.全国卷.理科数学试题及答案

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1。

答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2。

每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长。

)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B)247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D)2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A)(1-,1) (B)(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)4.函数)cos (sin sin 2x x x y +=的最大值为 ( )(A )21+ (B )12- (C )2 (D )25.已知圆C:4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C)12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C)238R π (D)223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A)π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二。

2003年高考北京卷数学-文试题与解答

2003年高考北京卷数学-文试题与解答

当u,v∈[-1,0]时,同理有|g(u)-g(v)|=|u-v|; 当u·v<0时,不妨设u∈[-1,0),v∈(0,1],有 |g(u)-g(v)|=|(1+u)-(1-v)|=|u+v|≤|v-u|。 所以,函数g(x)满足题设条件。
(Ⅲ)答:这样的函数不存在。理由如下:
假设存在f(x)满足条件,则由f(-1)=f(1)=0,得
∴//平面。 (18)本小题主要考查直线、椭圆和双曲线等基本知识,考查分析 问题和解决问题的能力。满分15分。 (Ⅰ)解:由图可知,a=5,c=4,所以。 该椭圆的方程为,准线方程为。
(Ⅱ)证明:设K点坐标为。点P,的坐标分别记为,,其中,则 。……① 直线,的方程分别为: ,……② 。……③ ②式除以③式得。 化简上式得,代入②式得。 于是,直线与的交点M的坐标为。 因为, 所以,直线与的交点M在双曲线上。 (19)本小题主要考查函数,不等式等基本知识,考查运用数学知 识分析问题和解决问题的能力。满分14分。
(Ⅰ)解:因为
=cos2x-sin2x , 所以f(x)的最小正周期。
(Ⅱ)解:因为,所以f(x)的最大值为,最小值为。
(16)本小题主要考查等差、等比数列等基本知识,考查综合运用 数学知识和方法解决问题的能力。满分13分。
(Ⅰ)解:设数列的公差为d, 则, 又,得d=2。 所以。
(Ⅱ)解:由,得 ,① ② 将①式减去②式,得
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给
出的四个选项中,只有一项是符合题目要求的。
(1)设集合,,则A∩B等于
(A){x|x>1}
(B){x|x>0}
(C){x|x<-1}
(D){x|x<-1或x>1}

2003年高考理综试题(北京卷)及答案

2003年高考理综试题(北京卷)及答案

2003年普通高等学校招生全国统一考试(全国卷)理科综合能力测试一、在下列各题的四个选项中,只有一个选项是最符合题目要求的。

1.取适量干重相等的4份种子进行不同处理:(甲)风干,(乙)消毒后浸水萌发,(丙)浸水后萌发,(丁)浸水萌发后煮着冷却,消毒。

然后分别放入4个保温瓶中。

一段时间后,种子堆内温度最高的是 ( )A .甲B .乙C .丙D .丁2.植物叶片从幼到老的整个生命活动过程中 ( )A .有机物输出也输入,矿质元素只输入B .有机物只输出,矿质元素只输入C .有机物只输出,矿质元素输入也输出D .有机物与矿质元素都既输入,又输出3.下列关于叶绿素合成和功能的叙述。

错误的是 ( )A .光是叶绿素合成的必要条件B .低温抑制叶绿素的合成C .矿质元素影响叶绿素的合成D .提取的叶绿素溶液,给予适宜的温度、光照和CO 2,可进行光合作用4.一只成年雄狗仍然保持幼年的体态,且精神萎靡、反应迟钝、行动呆笨,无求偶行为, 其原因是 ( )A .睾丸发育不全B .甲状腺功能低下C .生长激素分泌不足D .生长激素分泌不足、睾丸发育不全5.据图判断,下列叙述不.符合生态学原理的是 ( )A .物质经过了多级利用,实现了良性循环B .每一级生产环节都获得产品,提高了生态经济效益C .由于食物链延长,能量逐级损耗,系统总能量利用效率降低D .由于各级产物都可以利用,减少了废物和污染6.人类探测月球发现,在月球的土壤中含有较丰富的质量数为3的氦,它可以作为未来核聚变的重要原料之一。

氦的该种同位素应表示为 ( )A .He 43B .He 32C .He 42D .He 337.在两个容积相同的容器中,一个盛有HCl 气体,另一个盛有H 2和Cl 2的混合气体。

在同 温同压下,两容器内的气体一定具有相同的 ( )A .原子数B .密度C .质量D .质子数8.某无色混合气体可能由CH 4、NH 3、H 2、CO 、CO 2和HCl 中的某几种气体组成。

2003年高考全国卷.理科数学试题及答案

2003年高考全国卷.理科数学试题及答案

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( )(A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是 15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示)(II )求点1A 到平面AED 的距离19.(本小题满分12分) 已知0>c ,设P :函数x c y =在R 上单调递减 Q :不等式1|2|>-+c x x 的解集为R 如果P 和Q 有且仅有一个正确,求c 的取值范围20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南102arccos (=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?D E KBCABAFC G东21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:3 569 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k.2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cosr r z +=,则复数.2r z 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+ 22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DGk k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长 当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值2当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分) (Ⅰ)解:用(t,s)表示22ts+,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2) 9(0,3) 10(1,3) 12(2,3) — — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s数列}{n a 中小于02t的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s++=(r,t,s ),10731160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C依次为 (0,1,3) (0,2,3) (1,2,3) 23C (0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10).........(0,7,10)( 1,7,10)(2,7,10)(3,7,10) (2)7C +422222397()4145.k C C C C =+++++=。

2002年高考试题数学理(北京卷)(含答案)

2002年高考试题数学理(北京卷)(含答案)

2002年普通高等学校招生全国统一考试数 学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至9页。

共150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦 干净后,再选涂其它答案。

不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并交回。

参考公式:三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足条件M ∪{1}={1,2,3}的集合M 的个数是A .1B .2C .3D .42.在平面直角坐标系中,已知两点)20sin ,20(cos ),80sin ,80(cos ︒︒︒︒B A 则|AB|的值是A .21B .22C .23D .13.下列四个函数中,以π为最小正周期,且在区间(ππ,2)上为减函数的是A .x y 2cos =B .|sin |2x y= C .x y cos )31(=D .ctgx y-=4.64个直径都为4a的球,记它们的体积之和为V 甲,表面积之和为S 甲;一个直径为a 的球, 记其体积为V 乙,表面积为S 乙,则A .V 甲>V 乙且S 甲>S 乙B .V 甲<V 乙且S 甲<S 乙正棱台、圆台的侧面积公式 l c c S )(21+'=台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长球体的体积公式334R V π=球其中R 表示球的半径C .V 甲=V 乙且S 甲>S 乙D .V 甲=V 乙且S 甲=S 乙5.已知某曲线的参数方程是ϕϕϕ(,sec ⎩⎨⎧==tg y x 为参数).若以原点为极点,x 轴的正半轴为极轴, 长度单位不变,建立极坐标系,则该曲线的极坐标方程是A .1=ρB .12cos =θρC .12sin 2=θρD .12cos 2=θρ6.给定四条曲线:①2522=+y x ,②14922=+y x ,③1422=+y x ,④1422=+y x .其中与直线05=-+y x 仅有一个交点的曲线是A .①②③B .②③④C .①②④D .①③④7.已知C z z ∈21,且|z 1|=1.若i z z 221=+,则||21z z -的最大值是A .6B .5C .4D .38.若1121=+-θθctg ctg ,则θθ2sin 12cos +的值为A .3B .-3C .-2D .21-9.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方 案共有A .4448412C C C 种B .44484123C C C 种C .3348412P C C 种D .334448412P C C C 种 10.设命题甲:“直四棱柱ABCD —A 1B 1C 1D 1中,平面ACB 1与对角面BB 1D 1D 垂直”;命题乙:“直四棱柱ABCD —A 1B 1C 1D 1是正方体”.那么,甲是乙的 A .充分必要条件B .充分非必要条件C .必要非充分条件D .既非充分又非必要条件11.已知)(x f 的定义在(-3,3)上的奇函数,当0<x <3时,)(x f 的图象如图所示,那么不等式0cos )(<x x f 的解集是A .)3,2()1,0()2,3(ππY Y --B .)3,2()1,0()1,2(ππY Y --C .)3,1()1,0()1,3(Y Y --D .)3,1()1,0()2,3(Y Y π--12.如图所示,)4,3,2,1)((=i x f i 是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中任意的x 1和x 2,任意)()1()(])1([],1,0[2121x f x f x x f λλλλλ-+≤-+∈恒成立”的只有A .)(),(31x f x fB .)(2x fC .)(),(32x f x fD .)(4x f第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷共7页,用钢笔或圆珠笔直接答在试题卷中。

2003年高考试题——数学理(全国卷)及答案

2003年高考试题——数学理(全国卷)及答案

2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。

2003年高考数学试题及答案(北京文)

2003年高考数学试题及答案(北京文)

绝密★启用前2003年普通高等学校招生全国统一考试数 学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅周长,l 表示斜高或母线长. )]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232c o s -=α”是“Z k k ∈+=,1252ππα”的 ( ) A .必要非充分条件 B .充分非必要条件 C .充分必要条件 D .既非充分又非必要条件 4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( )A .若m ∥α,α∩β=n ,则m//nB .若m ∥n ,α∩β=n ,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为 ( )A .51 B .52C .55 D .552 6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23C .π332 D .π218.若数列{}n a 的通项公式是 ,2,1,23)1(3=-+=--n a nn n n ,则)(lim 21n n a a a +++∞→ 等于( )A .241B .81 C .61 D .21 9.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上, 其中黄瓜必须种植,不同的种植方法共有 ( ) A .24种 B .18种 C .12种 D .6种10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为( ) A .kk a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.已知某球体的体积与其表面积的数值相等,则此球体的半径为 . 12.函数x tg x h x x g x x f 2)(|,|2)(),1lg()(2=-=+=中, 是偶函数.13.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为 .三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值、最小值. 16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(3R x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AB=a . (Ⅰ)求证:直线A 1D ⊥B 1C 1; (Ⅱ)求点D 到平面ACC 1的距离;(Ⅲ)判断A 1B 与平面ADC 的位置关系,并证明你的结论.18.(本小题满分15分)如图,A 1,A 为椭圆的两个顶点,F 1,F 2为椭圆的两个焦点. (Ⅰ)写出椭圆的方程及准线方程;(Ⅱ)过线段OA 上异于O ,A 的任一点K 作OA 的垂线,交椭圆于P ,P 1两点,直线 A 1P 与AP 1交于点M.求证:点M 在双曲线192522=-y x 上. 19.(本小题满分14分)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=13km ,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图)(Ⅰ)若希望点P 到三镇距离的平方和为最小,点P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小, 点P 应位于何处? 20.(本小题满分14分)。

5.复数模的运算与几何意义

5.复数模的运算与几何意义

[决胜高考数学母题](第008号)复数模的运算与几何意义复数与坐标平面內的点具有一一对应关系,由此可定义复数的模:若复数z=a+bi,则z 的模|z|=22b a +,复数的模具有优美的运算性质和直观的几何意义.[母题结构]:(Ⅰ)(模的运算):|z 1z 2|=|z 1||z 2|;|z|2=|z 2|,|21z z |=||||21z z . (Ⅱ)(几何意义):复数的两层几何意义:复数z=a+bi ←→Z(a,b)←→OZ =(a,b).(Ⅲ)(模的意义)①|z-z o |⇔z 对应的点Z 与z o 对应的点Z o 的距离;②|z-z 1|=|z-z 2|⇔复数z 对应的点Z 在线段Z 1Z 2的垂直平分线上,其中Z 1、Z 2分别是复数z 1、z 2的对应点;③|z-z 0|=R ⇔复数z 对应的点Z 在以点Z 0为圆心,半径为R 的圆上,其中Z 0是复数z 0的对应点;④|z-z 1|+|z-z 2|=|z 1-z 2|⇔复数z 对应的点P 在线段Z 1Z 2上,其中Z 1、Z 2分别是复数z 1、z 2的对应点.[母题解析]:略.1.模的运算子题类型Ⅰ:(2010年课标卷高考试题)已知复数z=2)31(3i i-+,则|z|=( ) (A)41 (B)21 (C)1 (D)2 [解析]:由z=2)31(3i i-+⇒|z|=2|31||3|i i -+=222=21.故选(B). [点评]:利用复数模的运算性质求复数的模,无需把所给复数化成a+bi 的形式,可直接求解,减少计算量,是解决该类高考试题的最佳途径.[同类试题]:1.(2013年课标Ⅱ卷高考试题)|i+12|=( ) (A)22 (B)2 (C)2 (D)12.(2013年山东高考试题)复数z=ii 2)2(-(i 为虚数单位),则|z|=( ) (A)25 (B)41 (C)5 (D)5 2.几何意义子题类型Ⅱ:(2003年上海春招试题)复数z=ii m 212+-(m ∈R,i 为虚数单位)在复平面上对应的点不可能位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限[解析]:由z=i i m 212+-=51(m-2i)(1-2i)=51(m-4)-52(m+1)i;如果在第一象限,则⎩⎨⎧<+>-0104m m ,而该不等式组无解.故选(A). [点评]:复数的几何意义:复数z=a+bi ←→点Z(a,b);本题把复数的几何意义与解不等式进行有机结合,不仅体现了知识的交汇,而且呈现了逆向思维.[同类试题]:3.(2007年复旦大学保送生考试试题)复数z=ii a 212+-(a ∈R,i 为虚数单位)在复平面内对应的点不可能位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限4.(1989年全国高中数学联赛试题)若A,B 是锐角△ABC 的两个内角,则复数z=(cosB-sinA)+i(sinB-cosA)在复平面内所对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3.模的意义子题类型Ⅲ:(2002年北京高考试题)己知z 1,z 2∈C,且|z 1|=1,若z 1+z 2=2i,则|z 1-z 2|的最大值是( )(A)6 (B)5 (C)4 (D)3[解析]:令z 1、z 2对应的点分别为P 、Q,A(0,2),由|z 1|=1⇒点P 在圆x 2+y 2=1上;又由z 1+z 2=2i ⇒点Q 满足:OP +OQ =OA ,且|z 1-z 2|=|PQ|=|OP -OQ |=|2OP -(OP +OQ )|=|2OP -OA |≤2|OP |+|OA |=4,当且仅当z 1=-i,z 2=3i 时,等号成立.故选(C).[点评]:复数的几何意义有两个层次:复数z=a+bi ←→点Z(a,b)←→向量OZ =(a,b);复数模的意义:|z-z o |⇔z 对应的点Z 与z o 对应的点Z o 的距离;由此作图,根据几何直观是解决模的最值问题的最佳选择.[同类试题]:5.(1990年广东高考试题)如果z 1,z 2是复数,且|z 1|=3,|z 2|=4,|z 1-z 2|=5,那么|z 1+z 2|的值是 .6.(2003年安徽春招试题)若复数z 满足|z-1|=|z-2|=|z-i|,则z= .4.子题系列:7.(2013年广东高考试题)若i(x+yi)=3+4i,x,y ∈R,则复数x+yi 的模是( )(A)2 (B)3 (C)4 (D)58.(2010年江苏高考试题)设复数z 满足z(2-3i)=6+4i(i 为虚数单位),则z 的模为 .9.(2013年辽宁高考试题)复数z=11-i 的模为( ) (A)21 (B)22 (C)2 (D)2 10.(2013年课标Ⅱ卷高考试题)|i +12|=( ) (A)22 (B)2 (C)2 (D)111.(2013年山东高考试题)复数z=ii 2)2(-(i 为虚数单位),则|z|=( ) (A)25 (B)41 (C)5 (D)512.(2013年重庆高考试题)已知复数z=ii 215+(i 为虚数单位),则|z|= . 13.(2017年江苏高考试题)已知z=(1+i)(1+2i),其中i 是虚数单位,则z 的模是 .14.(2017年高考全国Ⅲ理科试题)设复数z 满足(1+i)z=2i,则|z|=( ) (A)21 (B)22 (C)2 (D)2 15.(2017年山东高考试题)已知a ∈R,i 是虚数单位.若z=a+3i,z z =4,则a=( )(A)1或-1 (B)7或-7 (C)-3 (D)316.(2017年高考全国Ⅲ文科试题)在复平面内表示复数z=i(-2+i)的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限17.(2011年山东高考试题)复数z=ii +-22(i 为虚数单位)在复平面内对应的点所在象限为( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限18.(2005年辽宁高考试题)复数z=ii ++-11-1在复平面内,z 所对应的点在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.(2005年浙江高考试题)在复平面内,复数ii +1+(1+3i)2对应的点位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限20.(2004年北京春招试题)当32<m<1时,复数z=(3m-2)+(m-1)i 在复平面内所对应的点位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限21.(2017年北京高考试题)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )(A)(-∞,1) (B)(-∞,-1) (C)(1,+∞) (D)(-1,+∞)22.(2008年江西高考试题)在复平面内,复数z=sin2+icos2对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限23.(2003年北京高考试题)若z ∈C,且|z+2-2i|=1,则|z-2-2i|的最小值是( )(A)2 (B)3 (C)4 (D)524.(2004年北京高考试题)满足条件|z-i|=|3+4i|的复数z 在复平面上对应点的轨迹是( )(A)一条直线 (B)两条直线 (C)圆 (D)椭圆25.(1994年全国高考试题)如果复数z 满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是( ) (A)1 (B)2 (C)2 (D)526.(1999年全国高中数学联赛河北初赛试题)若复数z 满足|z+1+i|+|z-1-i|=22,记|z+i|的最大值和最小值分别为M,m,则mM = . 27.(1989年广东高考试题)满足条件|z|=1及|z+21|=|z-23|的复数z 的集合是 . 5.子题详解:1.解:|i +12|=|1|2i +=22=2.故选(C). 2.解:|z|=|i i 2)2(-|=|||2|2i i -=5.故选(C). 3.解:z=i i a 212+-=51(a-4)-52(a+1)i.故选(A). 4.解:由A+B>900⇒cosB-sinA<0,sinB-cosA>0.故选(B).5.解:在复平面内,令z 1,z 2对应的点分别为A,B,则|OA|=3,|OB|=4,|AB|=5⇒△OAB 是直角三角形⇒|z 1+z 2|=|AB|=5.6.解:在复平面内,令点A(1,0),B(2,0),C(0,1),由|z-1|=|z-2|知,复数z 对应的点P 在线段AB 的垂直平分线x=23上,又由|z-1|=|z-i|知,复数z 对应的点P 在线段AC 的垂直平分线y=x ⇒y=x=23⇒P(23,23)⇒z=23+23i. 7.解:由i(x+yi)=3+4i ⇒|i||x+yi|=|3+4i|⇒|x+yi|=5.故选(D).8.解:由z(2-3i)=6+4i ⇒|z|=2.9.解:|z|=|11-i |=|1|1-i =22.故选(B).10.解:|i +12|=|1|2i +=22=2.故选(C). 11.解:|z|=|i i 2)2(-|=|||2|2i i -=5.故选(C). 12.解:|z|=|ii 215+|=5. 13.解:由z=(1+i)(1+2i)⇒|z|=|1+i||1+2i|=2⋅5=10.14.解:由(1+i)z=2i ⇒|1+i||z|=|2i|⇒|z|=2.故选(C).15.解:由z z =4⇒|z|=2⇒a=1或-1.故选(A).16.解:由z=i(-2+i)=-1-2i.故选(C).17.解:由z=i i +-22=51(3-4i).故选(D). 18.解:由z=ii ++-11-1=i-1.故选(B). 19.解:由i i +1+(1+3i)2=2)341(3i ++-.故选(B). 20.解:由3m-2>0,m-1<0.故选(D).21.解:由(1-i)(a+i)=(a+1)+(1-a)i 在第二象限⇒a<-1.故选(B).22.解:由sin2>0,cos2<0.故选(D).23.解:在复平面内,令z,-2+2i,2+2i 对应的点分别为P,A,B,则|PA|=|z+2-2i|=1,|z-2-2i|=|PB|≥|AB|-1=3.故选(B).24.解:令z 1=i 则z 1对应的点Z 1(0,1),设z 对应的点为P,则|z-i|=|3+4i|⇔|PZ 1|=5⇔点P 的轨迹是圆.故选(C).25.解:在复平面上,设A(0,-1),B(0,1),M(-1,-1),P:z,则|AB|=2,由|z+i|+|z-i|=2⇒点P 在线段AB 上⇒|x+i+1|=|PM|≥|AM|=1.故选(A).26.解:在复平面上,设A(-1,-1),B(1,1),C(0,-1),则|AB|=22⇒|z+1+i|+|z-1-i|=22点P 在线段AB 上⇒M=|BC|= 5,m=22. 27.解:在复平面内,令点A(-21,0),B(23,0),由|z+21|=|z-23|⇒复数z 对应的点P 在线段AB 的垂直平分线x=21上;又由|z|=1⇒点P 在圆x 2+y 2=1上⇒y=±23⇒z=21±23i ⇒复数z 的集合是{21±23i}.。

2003年高考.北京卷.理科数学试题及答案

2003年高考.北京卷.理科数学试题及答案

2003年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式:正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅周长,l 表示斜高或母线长.)]cos()[cos(21sin sin βαβαβα--+-=⋅球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于()A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则()A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232cos -=α”是“Z k k ∈+=,125ππα”的()A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分又非必要条件4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是()A .若m ∥n ,m ⊥α,则n ⊥αB .若m ∥α,α∩β=n ,则m ∥nC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.极坐标方程1cos 22cos 2=-θρθρ表示的曲线是()A .圆B .椭圆C .抛物线D .双曲线6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是()A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为()A .π2B .π23C .π332D .π218.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()A .24种B .18种C .12种D .6种9.若数列{}n a 的通项公式是 ,2,1,2)23()1(23=--++=----n a n n n n n n ,则)(lim 21n n a a a +++∞→ 等于()A .2411B .2417C .2419D .242510.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij 其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为()A .k k a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .kk a a a a a a 2122122111+++ 第Ⅱ卷(非选择题共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.函数x tg x h x x x x x x g x x f 2)(.1,2.1||0.1,2)(),1lg()(2=⎪⎩⎪⎨⎧>+-≤-<+=+=中,是偶函数.12.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是13.如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积是.14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为.三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --=(Ⅰ)求)(x f 的最小正周期;(Ⅱ)若2,0[π∈x ,求)(x f 的最大值、最小值..16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(R x x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC —A 1B 1C 1的底面边长的3,侧棱AA 1=,233D 是CB 延长线上一点,且BD=BC.(Ⅰ)求证:直线BC 1//平面AB 1D ;(Ⅱ)求二面角B 1—AD —B 的大小;(Ⅲ)求三棱锥C 1—ABB 1的体积.18.(本小题满分15分)如图,椭圆的长轴A 1A 2与x 轴平行,短轴B 1B 2在y 轴上,中心为M (0,r )().0>>r b (Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率;(Ⅱ)直线x k y 1=交椭圆于两点);0)(,(),,(22211>y y x D y x C 直线x k y 2=交椭圆于两点).0)(,(),,(44433>y y x H y x G 求证:4343221211x x x x k x x x x k +=+;(Ⅲ)对于(Ⅱ)中的C ,D ,G ,H ,设CH 交x 轴于点P ,GD 交x 轴于点Q.求证:|OP|=|OQ|.(证明过程不考虑CH 或GD 垂直于x 轴的情形)19.(本小题满分14分)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=a ,BC=2b.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图)(Ⅰ)若希望点P 到三镇距离的平方和为最小,点P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小,点P 应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件:(i );0)1()1(==-f f (ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有(Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有(Ⅱ)证明:对任意的;1|)()(|],1,1[,≤--∈v f u f v u 都有(Ⅲ)在区间[-1,1]上是否存在满足题设条件的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当若存在,请举一例:若不存在,请说明理由.2003年普通高等学校招生全国统一考试数学试题(理工农医类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.1.A 2.D 3.A 4.B5.D 6.B7.C8.C9.C10.C二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.)();(x g x f 12.)4(362--=x y 13.)(212b a r +π14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分.(Ⅰ)解:因为xx x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x 所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为,20π≤≤x 所以.45424πππ≤+≤x 当442ππ=+x 时,)42cos(π+x 取得最大值22;当ππ=+42x 时,)42cos(π+x 取得最小值-1.所以)(x f 在]2,0[π上的最大值为1,最小值为-.216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分.(Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a 所以.2n a n=(Ⅱ)解:令,21n n b b b S +++= 则由,2n n n n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=- ①,2)22(42132++-+++=n n n nx x n x x xS ②当1≠x时,①式减去②式,得,21)1(22)(2)1(112++---=-++=-n nn n n nx xx x nx x x x S x 所以.12)1()1(212x nx x x x S n n n----=+当1=x 时,)1(242+=+++=n n n S n 综上可得当1=x 时,)1(+=n n S n 当1≠x时,.12)1()1(212x nx x x x Sn n n----=+17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力.满分15分.(Ⅰ)证明:CD//C 1B 1,又BD=BC=B 1C 1,∴四边形BDB 1C 1是平行四边形,∴BC 1//DB 1.又DB 1⊂平面AB 1D ,BC 1⊄平面AB 1D ,∴直线BC 1//平面AB 1D.(Ⅱ)解:过B 作BE ⊥AD 于E ,连结EB 1,∵B 1B ⊥平面ABD ,∴B 1E ⊥AD ,∴∠B 1EB 是二面角B 1—AD —B 的平面角,∵BD=BC=AB ,∴E 是AD 的中点,.2321==AC BE 在Rt △B 1BE 中,.32332311===∠BEB B BE B tg ∴∠B 1EB=60°。

2003年高考.全国卷.理科数学试题及答案

2003年高考.全国卷.理科数学试题及答案

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( )(A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||zD E KBCABAFCG18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (II )求点1A 到平面AED 的距离 19.(本小题满分12分) 已知0>c ,设P :函数x c y =在R 上单调递减 Q :不等式1|2|>-+c x x 的解集为R 如果P 和Q 有且仅有一个正确,求c 的取值范围 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南102arccos (=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由东22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts+ t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cosr r z +=,则复数.2r z 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+ 22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为(以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法) 20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DG k k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak ) 直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长 当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值2当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分) (Ⅰ)解:用(t,s)表示22ts+,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2)9(0,3) 10(1,3) 12(2,3) — — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s数列}{n a 中小于02t的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s++=(r,t,s ),10731160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C依次为 (0,1,3) (0,2,3) (1,2,3) 23C(0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10).........(0,7,10)( 1,7,10)(2,7,10)(3,7,10) (2)7C +422222397()4145.k C C C C =+++++=。

高考数学试题中的靓丽风景线——构造函数法证明不等式

高考数学试题中的靓丽风景线——构造函数法证明不等式

点的切线 ,利用导数求斜率 即可 :第二问给出的是
设l 厂 ( ) : ( 一 1 ) 一 l n x , > 0 ,.  ̄ J l f, ( ) : 2 x 一 1 一 :
两个图形 之间的位置关系 ,如何用数或式来表示这种 位置关系成为 问题 的关键点 ,由题意可把问题转化为
面对 2 0 1 3 年 高考试题 的分析 ,在下一 年的高考
复习 中我们需要从下述几个方 面人手 :
1 . 注 重 基 础 知 识 的全 面 性 、熟 练 性 . 由 于 考 试
点 ,对解三角形 、统计案例 、独立性检验 、随散型随
机变量及其分布等要适 当加强.
题 目涉及知识 的覆盖面较广 .因此 .要注意全面掌握
函数 P ( ) =( 1 + ) e 一 l + x , 虽然 也 证 明 了结论 , 但 又 需 要 对 导 函 数进 一 步 求导 来判 断 导 函数 的符 号 . 比起 证
( 垫± ) ( = 因此- 厂 ( ) 在( 0 , 1 ) 上单调递减 ,在 ( 1 , + o 。 ) 单调递
增.
两个 函数比较函数值问题 , l p f (  ̄ ) ≥g ( ) 恒成立的问题 再转化为 , ( ) _ g ( ) 10 > 恒成立 ,即转化为 ) _ g ( ) 的
( I I )证 明 :除切 点 ( 1 ,0 )之外 ,曲线 C在直
线f 的 下方 .
故V > o R ≠1 时g ( ) > g ( 1 ) : 0 , 所 以 一 1 >


【 分 析】题 目的第一问属于常规题 目,求函数在

证 法二 :只需 要证 明 V > 0 且 ≠ 1 时, 一 1 >

2003年普通高等学校招生全国统一考试(北京卷)数学(文)及答案

2003年普通高等学校招生全国统一考试(北京卷)数学(文)及答案

绝密★启用前2003年普通高等学校招生全国统一考试数 学(文史类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅ 其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅周长,l 表示斜高或母线长. )]cos()[cos(21sin sin βαβαβα--+-=⋅ 球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的. 1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232cos -=α”是“Z k k ∈+=,1252ππα”的 ( )A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分又非必要条件 4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是 ( )A .若m ∥α,α∩β=n ,则m//nB .若m ∥n ,α∩β=n ,则n ⊥αC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.如图,直线022:=+-y x l 过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为 ( )A .51 B .52C .55 D .552 6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是( )A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为 ( )A .π2B .π23C .π332 D .π218.若数列{}n a 的通项公式是 ,2,1,23)1(3=-+=--n a nn n n ,则)(lim 21n n a a a +++∞→ 等于( )A .241 B .81 C .61 D .21 9.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上, 其中黄瓜必须种植,不同的种植方法共有 ( ) A .24种 B .18种 C .12种 D .6种10.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令 ⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为( ) A .kk a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .k k a a a a a a 2122122111+++第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.已知某球体的体积与其表面积的数值相等,则此球体的半径为12.函数x tg x h x x g x x f 2)(|,|2)(),1lg()(2=-=+=中, 是偶函数.13.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是 14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值、最小值. 16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(3R x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AB=a.(Ⅰ)求证:直线A1D⊥B1C1;(Ⅱ)求点D到平面ACC1的距离;(Ⅲ)判断A1B与平面ADC的位置关系,并证明你的结论.CBC B118.(本小题满分15分)如图,A 1,A 为椭圆的两个顶点,F 1,F 2为椭圆的两个焦点. (Ⅰ)写出椭圆的方程及准线方程;(Ⅱ)过线段OA 上异于O ,A 的任一点K 作OA 的垂线,交椭圆于P ,P 1两点,直线 A 1P 与AP 1交于点M.求证:点M 在双曲线192522=-y x 上.19.(本小题满分14分)有三个新兴城镇,分别位于A,B,C三点处,且AB=AC=13km,BC=10km.今计划合建一个中心医院,为同时方便三镇,准备建在BC的垂直平分线上的P点处,(建立坐标系如图)(Ⅰ)若希望点P到三镇距离的平方和为最小,点P应位于何处?(Ⅱ)若希望点P到三镇的最远距离为最小,点P应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件: (i );0)1()1(==-f f(ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有 (Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有 (Ⅱ)判断函数⎩⎨⎧∈--∈+=]1,0[,1)0,1[,1)(x x x x x g 是否满足题设条件;(Ⅲ)在区间[-1,1]上是否存在满足题设条件的函数)(x f y =,且使得对任意的 .|)()(|],1,1[,v u v f u f v u -=--∈都有若存在,请举一例:若不存在,请说明理由.绝密★启用前2003年普通高等学校招生全国统一考试 数学试题(文史类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分.1.A 2.D 3.A 4.A 5.D 6.B 7.C 8.B 9.B 10.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.3 12.)();(x g x f 13.)4(362--=x y 14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为),42cos(2)(π+=x x f 所以)(x f 的最大值为2,最小值为-216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分. (Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a所以.2n a n=(Ⅱ)解:由,323n n n nn a b ==得,323)22(343212n n n n n S ⋅+-+⋅+⋅=- ①.323)22(34323132+⋅+⋅-++⋅+⋅=n n n n n S ②将①式减去②式,得 .32)13(332)333(22112++⋅--=⋅-++-=-n n n n n n n S所以.32)31(31+⋅+-=n nnn S17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力.满分15分.(Ⅰ)证法一:∵点D 是正△ABC 中BC 边的中点,∴AD ⊥BC ,又A 1A ⊥底面ABC ,∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.证法二:连结A 1C 1,则A 1C=A 1B. ∵点D 是正△A 1CB 的底边中BC 的中点, ∴A 1D ⊥BC ,∵BC ∥B 1C 1,∴A 1D ⊥B 1C 1.(Ⅱ)解法一:作DE ⊥AC 于E , ∵平面ACC 1⊥平面ABC ,∴DE ⊥平面ACC 1于E ,即DE 的长为点D 到平面ACC 1的 距离. 在Rt △ADC 中,AC=2CD=.23,a AD a =∴所求的距离.43a AC AD CD DE =⋅=CC 1解法二:设点D 到平面ACC 1的距离为x , ∵体积111ACC D ACD C V V --= .21318331112x CC a CC a ⋅⋅⋅=⋅⋅∴,43a x =∴即点D 到平面ACC 1的距离为a 43. (Ⅲ)答:直线A 1B//平面ADC 1,证明如下:证法一:如图1,连结A 1C 交AC 1于F ,则F 为A 1C 的中点,∵D 是BC 的中点,∴DF ∥A 1B , 又DF ⊂ 平面ADC 1,A 1B ⊄平面ADC 1,∴A 1B ∥平面ADC 1. 证法二:如图2,取C 1B 1的中点D 1,则AD ∥A 1D 1,C 1D ∥D 1B ,∴AD ∥平面A 1D 1B ,且C 1D ∥平面A 1D 1B ,∴平面ADC 1∥平面A 1D 1B ,∵A 1B ⊂平面A 1D 1B ,∴A 1B ∥平面ADC 1.图(2)图(1)C 11C18.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解决问题的能力.满分15分. (Ⅰ)解:由图可知,.3a b ,4,522=-===c c a 所以该椭圆的方程为,192522=+y x准线方程为.425±=x(Ⅱ)证明:设K 点坐标)0,(0x ,点P 、P 1的坐标分别记为),(),,(0000y x y x -, 其中,500<<x 则,19252020=+y x ……① 直线A 1P ,P 1A 的方程分别为:),5()5(00+=+x y y x ……② ).5()5(00-=-x y y x ……③ ②式除以③式得,555500-+=-+x x x x 化简上式得,250x x =代入②式得,50x y y =于是,直线A 1P 与AP 1的交点M 的坐标为).5,25(0x y x 因为.1)251(2525)5(91)25(25120202020020=--=-x x x x y x所以,直线A 1P 与AP 1的交点M 在双曲线上192522=+y x .19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.满分14分. (Ⅰ)解:设P 的坐标为(0,y ),则P 至三镇距离的平方和为 .146)4(3)12()25(2)(222+-=-++=y y y y f所以,当4=y 时,函数)(y f 取得最小值. 答:点P 的坐标是).4,0((Ⅱ)解法一:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 因为225y +在[),*+∞y 上是增函数,而]y ,(-|12|*∞-在y 上是减函数. 所以*y y =时,函数)(y g 取得最小值. 答:点P 的坐标是);24119,0(解法二:P 至三镇的最远距离为 ⎪⎩⎪⎨⎧-<+--≥++=.|12|25|,12||,12|25,25)(222y y y y y y x g 当当 由|12|252y y -≥+解得,24119≥y 记,24119*=y 于是 ⎪⎩⎪⎨⎧<-≥+=.|,12|,,25)(**2y y y y y y x g 当当 函数)(y g x =的图象如图)(a ,因此,当*y y =时,函数)(y g 取得最小值.答:点P 的坐标是);24119,0(解法三:因为在△ABC 中,AB=AC=13,且,(b).,4,51222如图π=∠=>=-ACB OC OC AC 所以△ABC 的外心M 在线段AO 上,其坐标为)24119,0(, 且AM=BM=CM. 当P 在射线MA 上,记P 为P 1;当P 在射线MA 的反向延长线上,记P 为P 2,这时P 到A 、B 、C 三点的最远距离为P 1C 和P 2A ,且P 1C ≥MC ,P 2A ≥MA ,所以点P 与外心M重合时,P 到三镇的最远距离最小.答:点P 的坐标是);24119,0( 20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)证明:由题设条件可知,当]1,1[-∈x 时,有,1|1||)1()(||)(|x x f x f x f -=-≤-= 即.1)(1x x f x -≤≤-(Ⅱ)答:函数)(x g 满足题设条件.验证如下:).1(0)1(g g ==- 对任意的]1,1[,-∈v u ,当|;||)1()1(||)()(|,0,1][,u v u v u v g u g v -=---=-∈有时当|;||)()(|,,0]1-[,u v u v g u g v -=-∈同理有时 当0,u <⋅v不妨设],1,0(),0,1[∈-∈v u 有.|||||)1()1(||)()(|u v v u v u v g u g -≤+=--+=-所以,函数)(x g 满足题设条件.(Ⅲ)答:这样满足的函数不存在.理由如下:假设存在函数)(x f 满足条件,则由,0)1()1(==-f f 得,0|)1()1(|=--f f ①由于对任意的]1,1[,-∈v u ,都有.|||)()(|v u v f u f -=-所以,.2|)1(1||)1()1(|=--=--f f ② ①与②矛盾,因此假设不成立,即这样的函数不存在.。

2003年高考数学试题及答案(全国理)

2003年高考数学试题及答案(全国理)

绝密★启用前2003年普通高等学校招生全国统一考试数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =( )A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( ) A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则 =-||n m( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y xC .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.92)21(xx -展开式中9x 的系数是 . 14.使1)(log 2+<-x x 成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得 使用同一颜色,现有4种颜色可 供选择,则不同的着色方法共有 种.(以数字作答) 16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中点,能得出l ⊥面MNP 的图形的序号是 .(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤. 17.(本小题满分12分)已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .18.(本小题满分12分) 如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G. (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离. 19.(本小题满分12分)已知.0 c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围. 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos(=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由. 22.(本小题满分12分,附加题4分)(Ⅰ)设Z}t s,,0|2{2}{t ∈<≤+且是集合t s a sn 中所有的数从小到大排列成的数列,即.,12,10,9,6,5,3654321 ======a a a a a a将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表: 35 69 10 12— — — —— — — — — (i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设Z}t s,r,,0|22{2}{r ∈<<≤++且是集合t s r b st n 中所有的数都是从小到大排列成的数列,已知k.,1160求=k b绝密★启用前2003年普通高等学校招生全国统一考试数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos r r z+=,则复数.2rz 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin .323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED=⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19. 解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭. 21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。

2003高考数学全国卷及答案理

2003高考数学全国卷及答案理

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (II )求点1A 到平面AED 的距离 19.(本小题满分12分) 已知0>c ,设D E KBC 1A 1B 1AFCGP:函数x cy=在R上单调递减Q:不等式1|2|>-+cxx的解集为R如果P和Q有且仅有一个正确,求c的取值范围20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东东O偏南102arccos (=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由 22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 6 9 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cosr r z +=,则复数.2r z 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为(以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法) 20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DG k k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak ) 直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+aa y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长 当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值2 当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分)(Ⅰ)解:用(t,s)表示22t s +,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2)9(0,3) 10(1,3) 12(2,3)— — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s 数列}{n a 中小于02t 的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s++=(r,t,s ),10731160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C 依次为 (0,1,3) (0,2,3) (1,2,3) 23C(0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10)………(0,7,10)( 1,7,10)(2,7,10)(3,7,10)…… 27C +422222397()4145.k C C C C =+++++=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时, 函数取得最小值.
答:当时,点P的坐标是
当时,点P的坐标是,其中
20.本小题考查函数、不等式等基本知识,考查综合运用数学知识分析
问题和解决问题的能力.满分14分.
(Ⅰ)证明:由题设条件可知,
当时,有即
(Ⅱ)对任意的,

当不妨设 则
从而有
总上可知,对任意的,都有
(Ⅲ)答:这样满足所述条件的函数不存在.理由如下:
整理得
入椭圆方程,同理可得

由 ①、②得 =
所以结论成立
(Ⅲ)证明:设点P,点Q 由C、P、H共线,得 解得 由D、Q、G共线,同理可得
由 = 变形得 = 所以

19.本小题主要考查函数,不等式等基本知识,考查运用数学知识分析 问题和解决问题的能力.满分14分.
(Ⅱ)解:过B作BE⊥AD于E,连结EB1,
∵ BB1⊥平面ABD ∴ B1E⊥AD ∴ ∠B1EB是二面角B1—AD—B的平面角 ∵ BD=BC=AB ∴ E是AD的中点,
∴ BE=AC= 在RtB1BE中,tan∠B1EB=
∴ ∠B1EB= 即二面角B1—AD—B的大小为
(Ⅲ)解法一:过A作AF⊥BC于F,
或演算步骤. 15.(本小题满分13分)已知函数 (Ⅰ)求的最小正周期; (Ⅱ)求在区间上的最大值和最小值.
16.(本小题满分13分)已知数列是等差数列,且, (1)求数列的通项公式; (2)设数列(),求数列的前项和公式.
17.(本小题满分15分)如图,已知正三棱柱底面边长为3,,为延长 线上一点,且. (1)求证:直线∥面; (2)求二面角的大小; (3)求三棱锥的体积. 18.(本小题满分15分)如图,已知椭圆的长轴与轴平行,短轴在轴 上,中心(
综上可知,当x=1时, 当x≠1时,
17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体 积等基本知识,考查空间想象能力和逻辑推理能力. 满分15分. (Ⅰ)证明:∵CD∥C1B1 ,又BD=BC=B1C1,
∴四边形BDB1C1是平行四边形
∴BC1∥DB1
又DB1平面AB1D,BC1平面AB1D ∴直线BC1∥平面AB1D
(Ⅰ)写出椭圆方程并求出焦点坐标和离心率; (Ⅱ)设直线与椭圆交于,(),直线与椭圆次于,().求证:;
(Ⅲ)对于(Ⅱ)中的在,设交轴于 点,交轴于点,求证: (证明过程不考虑或垂直于轴的情形)
19.(本小题满分14分)有三个新兴城镇分别位于、、三点处,且,, 今计划合建一个中心医院,为同时方便三镇,准备建在的垂直平分线上 的点处(建立坐标系如图). (Ⅰ)若希望点到三镇距离的平方和最小,则应位于何处? (Ⅱ)若希望点到三镇的最远距离为最小,则应位于何处?
(Ⅰ)解:由题设条件a>b>0,设P的坐标为(0,),则P至三镇距离 的平方和为 =
所以,当时,函数取得最小值. 答:点P的坐标是
(Ⅱ)解:记 P至三镇的最远距离为
由解得记 于是
,即时,
因为在[上是增函数,而上是减函数.
所以时,函数取得最小值. 点P的坐标是
,即时,因为在[上当y=0函数取得最小值b,而上是减函数,且 ,所以
权)按“0”.令
其中,且,则同时同意第1、2号同学当选的人数为
(A) (B)
(C)
(D)
第Ⅱ卷(非选择题共100分)
二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中
横线上.
11.,,,其中 为偶函数. 12.已知双曲线方程为,则以双曲线左顶点为顶点,右焦点为焦点的抛 物线方程为 . 13.一底面半径为的圆柱,被一平面所截剩下部分母线最大值为,最小 值为,那么圆柱被截后剩下部分的体积为 . 14.一根长为1的铁丝,分成两段分别围成一个正方形和一个圆,当正 方形和圆的面积之和最小时,正方形的周长为 . 三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程
∵ BB1⊥平面ABC, ∴ 平面ABC⊥平面BB1C1C, ∴ AF⊥平面BB1C1C 且AF= ∴ ==
= = 即三棱锥C1—ABB1的体积为
18.本小主要考查直线、椭圆和双曲线等基本知识,考查分析问题和解 决问题的能力.满分15分.
(Ⅰ)解:椭圆方程为
焦点坐标为,
离心率
(Ⅱ)证明:证明:将直线CD的方程代入椭圆方程,得
假设存在函数满足条件,则由 得
又,所以

又因为为奇函数,所以,
由条件 得
所以

①与②矛盾,因此假设不成立,即这样的函数不存在.
(1)设集合,,则等于 (A) (B) (C) (D)或 (2)设,,,则 (A) (B) (C) (D) (3)“”是“”的 (A)必要非充分条件 (B)充分非必要条件 (C)充分必要条 件 (D)既非充分又非必要条件 4.已知是平面,是直线,下列命题中不正确的是 (A)若∥,,则∥ (B)若∥,,则 (C)若,,则∥ (D)若,,则. 5.极坐标方程表示的曲线是 (A)圆 (B)椭圆 (C)抛物线 (D)双曲线 6.若,且,则的最小值是 (A)2 (B)3 (C)4 (D)5 7.如果圆台的母线与底面成角,那么这个圆台的侧面积与轴截面面积 的比为 (A) (B) (C) (D) 8.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同 土质的三块土地上,其中黄瓜必须种植.不同的种植方法共有 (A)24种 (B)18种 (C)12种 (D)6种 9.若数列的通项公式是,,则等于 (A) (B) (C) (D) 10.某班试用电子投票系统选举班干部候选人.全班名同学都有选举权 和被选举权,他们的编号分别为.规定:同意按“1”,不同意(含弃
所以的最小正周期 (Ⅱ)解:因为,所以
时,取最大值为, 时,取最小值为-1 的最大值为1,最小值为-
16.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识 和方法解决问题的能力.满分13分.
(Ⅰ)解:设数列公差为,则 又 所以
(Ⅱ)解:由得 ① ② 当x≠1时,将①式减去②式,得 ∴ 当x=1时,
2003年普通高等学校招生全国统一考试(北京卷)
数 学(理工农医类)
第Ⅰ卷(选择题共50分)
参考公式: 三角函数的积化和差公式: 公式
其中、分别表示 上、下底面周长,表示斜高或母线长. 球体的体积公式: ,其中R
正棱台、圆台的侧面积
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四 个选项中,只有一项是符合要求的.
20.(本小题满分14分)设是定义在区间
上的函数,且满足条件,① ②对任意的、,都有 (Ⅰ)证明:对任意,都有 (Ⅱ)证明:对任意的都有 (Ⅲ)在区间
上是否存在满足题设条件的奇函数且使得 若存在请举一例,若不存在,请说明理由.
2003年普通高等学校招生全国统一考试(北京卷) 数学(理工农医类)答案
一、选择题:本题考查基本知识和基本运算. 每小题5分,满分50分. 1.A 2.D 3.A 4.B 5.D 6.B 7.C 8.B 9.C 10.
C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.
11. 12. 13. 14. 三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过 程或演算步骤. 15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质
等基本知识,考查运算能力,满分13分. (Ⅰ)解:因为
相关文档
最新文档