13.2.3多项式乘以多项式
多项式乘多项式运算法则
多项式乘多项式运算法则一、多项式乘多项式定义和运算法则多项式乘多项式是指将两个多项式相乘的运算,其中一个多项式被称为被乘数,另一个多项式被称为乘数。
多项式的乘法运算可以通过展开式的形式来进行计算,也可以通过分配律和合并同类项的法则简化运算。
二、多项式乘多项式的展开式计算展开式是指将一个多项式乘以另一个多项式,然后将结果进行合并同类项的运算。
在展开式中,被乘数中的每一项都要和乘数中的每一项进行相乘,并将结果进行合并同类项的运算。
例如,将多项式(2x+3)(x+5)展开:(2x+3)(x+5) = 2x * x + 2x * 5 + 3 * x + 3 * 5= 2x^2 + 10x + 3x + 15= 2x^2 + 13x + 15三、多项式乘法运算法则1. 分配律:对于多项式(a+b+c)(d+e+f),可以将其中的每一项与另一个多项式中的每一项进行相乘,然后将结果进行合并同类项的运算。
例如,将多项式(2x+3)(x+5)使用分配律进行计算:(2x+3)(x+5) = 2x * x + 2x * 5 + 3 * x + 3 * 5= 2x^2 + 10x + 3x + 15= 2x^2 + 13x + 152. 合并同类项:将合并同类项的运算结果进行合并,即将具有相同指数的项进行相加或相减。
例如,将多项式2x^2 + 10x + 3x + 15进行合并同类项的运算:2x^2 + 10x + 3x + 15 = 2x^2 + (10x + 3x) + 15= 2x^2 + 13x + 15四、多项式乘多项式的性质1. 交换律:多项式的乘法满足交换律,即对于任意两个多项式a和b,都有a * b = b * a。
2. 结合律:多项式的乘法满足结合律,即对于任意三个多项式a、b和c,都有(a * b) * c = a * (b * c)。
五、多项式乘多项式的应用多项式乘法在代数中有广泛的应用,特别是在求解方程和解决实际问题中。
《多项式乘以多项式》教案
《多项式乘以多项式》教案一、教学目标:1. 让学生理解多项式乘以多项式的概念和意义。
2. 让学生掌握多项式乘以多项式的计算方法和步骤。
3. 培养学生运用多项式乘以多项式解决实际问题的能力。
二、教学内容:1. 多项式乘以多项式的概念和意义。
2. 多项式乘以多项式的计算方法和步骤。
3. 多项式乘以多项式在实际问题中的应用。
三、教学重点与难点:1. 教学重点:多项式乘以多项式的计算方法和步骤。
2. 教学难点:多项式乘以多项式在实际问题中的应用。
四、教学方法:1. 采用讲解法,让学生理解多项式乘以多项式的概念和意义。
2. 采用演示法,让学生掌握多项式乘以多项式的计算方法和步骤。
3. 采用案例分析法,培养学生运用多项式乘以多项式解决实际问题的能力。
五、教学过程:1. 引入新课:通过复习多项式的基本概念,引导学生进入多项式乘以多项式的新课。
2. 讲解多项式乘以多项式的概念和意义:解释多项式乘以多项式的定义,让学生理解其意义。
3. 演示多项式乘以多项式的计算方法和步骤:通过示例,让学生掌握多项式乘以多项式的计算方法。
4. 练习与巩固:布置一些练习题,让学生运用所学知识进行计算,巩固所学内容。
5. 案例分析:给出一些实际问题,让学生运用多项式乘以多项式的方法进行解决,培养学生的应用能力。
6. 小结与总结:对本节课的内容进行总结,强调多项式乘以多项式的计算方法和实际应用。
7. 作业布置:布置一些课后作业,巩固所学知识。
六、教学评价:1. 通过课堂讲解和练习,评估学生对多项式乘以多项式的概念和意义的理解程度。
2. 通过计算练习题,评估学生对多项式乘以多项式的计算方法和步骤的掌握情况。
3. 通过案例分析,评估学生运用多项式乘以多项式解决实际问题的能力。
七、教学资源:1. 多项式乘以多项式的教材和教学指导书。
2. 多媒体教学设备,如投影仪和白板。
3. 练习题和案例分析题的资料。
八、教学进度安排:1. 第1周:讲解多项式乘以多项式的概念和意义。
多项式与多项式乘法法则
多项式与多项式乘法法则
多项式与多项式乘法法则如下:
多项式与多项式相乘:先用一个多项式的每一项分别乘以另一个多项式每一项,再把所得的积相加。
方法:
由多项式乘多项式法则可以得到
(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd。
上面的运算过程,也可以表示为(a+b)(c+d)=ac+ad+bc+bd。
多项式乘以多项式就是利用乘法分配律法则得出的。
乘法(multiplication),是指将相同的数加起来的快捷方式。
其运算结果称为积,“x”是乘号。
从哲学角度解析,乘法是加法的量变导致的质变结果。
整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。
乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。
矩形的区域不取决于首先测量哪一侧,这说明了交换属性。
两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。
多项式乘以多项式法则
多项式乘以多项式法则
多项式乘以多项式法则是数学中的一个基本法则,用于计算两个多项式相乘的结果。
这个法则基于代数的基本性质和多项式的定义,可以推广到任意两个多项式的乘法运算中。
多项式乘以多项式法则的基本步骤是:将第一个多项式的每一项分别与第二个多项式的每一项相乘,然后将得到的所有乘积相加。
这样,我们就得到了两个多项式相乘的结果。
例如,考虑两个多项式 A(x) = 2x^2 + 3x + 1 和 B(x) = x^3 - x^2 + 1。
根据多项式乘以多项式法则,我们可以这样计算它们的乘积:
A(x) × B(x) = (2x^2 + 3x + 1) × (x^3 - x^2 + 1)
= 2x^2 × x^3 + 2x^2 × (-x^2) + 2x^2 × 1 + 3x × x^3 + 3x × (-x^2) + 3x ×1 + 1 × x^3 + 1 × (-x^2) + 1 × 1
= 2x^5 - 2x^4 + 2x^2 + 3x^4 - 3x^3 + 3x + x^3 - x^2 + 1
= 2x^5 - 2x^4 + 3x^4 - x^3 - 3x^3 + x^2 - x^2 + 3x + 1
= 2x^5 + x^4 - 4x^3 + 3x + 1
这就是 A(x) 和 B(x) 的乘积。
多项式乘以多项式法则在数学中有广泛的应用,例如在解方程、求函数的值、计算多项式的根等方面都会用到这个法则。
掌握这个法则对于理解和学习更高级的数学概念和方法非常重要。
多项式乘多项式-优秀教案可修改全文
可编辑修改精选全文完整版多项式乘多项式【教学目标】1.知识与能力目标:理解多项式与多项式的乘法法则,掌握多项式与多项式相乘的运算。
2.过程与方法目标:由求一个长方形的面积的不同方法,引出多项式与多项式的乘法法则,体会数形之间的统一。
3.情感、态度与价值观目标:在探究“法则”的过程中,培养学生观察,概括与抽象的能力。
【教学重难点】重点:多项式与多项式相乘的乘法法则及法则的推导。
难点:在运算中遇到各种细节处理,比如相乘时的符号处理等问题。
【教学过程】一、自主学习(约8分钟)1.问题引入:一个矩形的长为(m+n)米,宽为(a+b)米,则它的面积为米²。
2.结合图形,发现(m+n)(a+b)=3.讨论如何计算:(m+n)(a+b)=?多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的分别乘以另一个多项式的,再把。
注意:每一项必须连同前面的符号相乘。
二、自测(1)(a+b)(c+d)= ;(2)(m+n)(x+y)= ;(3)(m+n)(a-b)= ;(4)(x-1)(y-2)= ;练习(1)(2x+1) (x+3) (2)(m+2n)(m-3n) (3)(a-1)²(4)(2x²-1)(x-4) (5)(x²+3)(2x-5) (6)(3x-1)(2x+1)三、小组合作探究并展示(约5分钟)(1)两项式乘以两项式,结果一定是两项式吗?(2)项数多于两项的多项式乘多项式,能用多项式乘以多项式的法则进行计算吗?(3)二项式乘以三项式,展开是几项式?例:计算)32(222y xy x y x -+-)(四、当堂训练(约12分钟)要求:认真、规范、独立完成习题,注意知识与方法额应用、书写认真,步骤规范,成绩计入小组量化。
(A 组为必做题,做完的同学请举手示意,B 组为选做题)(一)计算1.(3m-n)(m-2n) 2.(2x-3)(x+4) 3.(x+y) 24.(-x+3y+4)(x-y) 5.(x -1)(x²-2x +3) 6.(3a-2)(a-1)+(a+1)(a+2)7.解方程 5x(x+1)=3x ²+2(x 2-5)8.若(x ²+ax +8)(x ²-3x +b )的乘积中不含x ²和x ³项,则a =_______,b =_______。
多项式乘多项式公式
多项式乘多项式公式
多项式乘以多项式表达公式为:(a+b)×(c+d)=ac+ad+bc+bd。
多项式乘多项式法则是:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
多项式简介
在数学中,多项式(polynomial)是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。
对于比较广义的定义,1个或0个单项式的和也算多项式。
按这个定义,多项式就是整式。
实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。
0作为多项式时,次数定义为负无穷大(或0)。
单项式和多项式统称为整式。
多项式中不含字母的项叫做常数项。
如:5X+6中的6就是常数项。
多项式乘以多项式.2.3多项式乘以多项式--杨阳
比一比:
(1)
(2)
(x+5)(x–7)
(2a+3+5y)(x–7y)
(2m+3n)(2m–3n)
回顾
& 思考 ☞
(a+b) c= ? (a+b)c=ac+bc
如何进行单项式与多项式乘法的运算? ① 将单项式分别乘以多项式的各项, ② 再把所得的积相加。 把c换成m+n, 如何计算(a+b)(m+n)呢?
12.2.3 多项式与多项式相乘
长春市五十三中学 杨阳
某地区在退耕还林期间,有一块原长m米,宽
(2) (3x -1)(2x+1)
先定符号。 所得积的符号由这 两项的符号来确定: 同号得正 异号得负。
= 3x﹒2x +3x - 2 x -1 = 6x2 +3x -2 x -1 = 6x2 +x-1
最后的结果要 合并同类项.
【例2】计算:
(1)(x−3y)(x+7y)
解: (1) (x−3y)(x+7y)
练习2:计算:
(1)
2 2 (a+b)(a -ab+b )
( 2 ) (2x–1)(-x2+3x-1)
练习3: 一个三角形铁板的底边长是(2a+6b)米,这边上 的高是(4a-5b)米,求这个铁板的面积.
拓展训练:
如果(x2+bx+8)(x2 – 3x+c)的乘 积中不含x2和x3的项,求b、c的值。
解:原式=
x4 – 3x3 + c x2 +bx3 2 2 – 3bx +bcx+8 x – 24x+8c
多项式乘以多项式的两个基本方法
多项式乘以多项式的两个基本方法
◎杨大为
多项式的乘法不仅是本节的重点内容,也是前面所学知识的综合运用,多项式与多项式相乘时,如何做到不重、不漏,简便易行呢?下面给同学们介绍两种常用的方法.
一、普遍乘:箭头法
两个多项式相乘,可根据箭头指示并结合原式计算,即先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.
例1 计算:(a-2b)(-a-3b)
.
=-a2-3ab+2ab+6b2
=-a2-ab+6b2.
评注:利用箭头法计算,要防止出现漏项,检查有无漏项的方法是:两个多项式相乘,在没有合并同类项之前,积的项数应是这两个多项式项数的积.多项式是单项式的和,每一项都包括前面的符号.在计算时,可根据有理数的乘法法则“两数相乘,同号得正,异号得负”直接来确定积中各项的符号.
二、整体乘:整体法
两个多项式相乘时,我们可以把其中的一个多项式看成一个“整体”,先按单项式与多项式相乘的法则来计算,然后再进一步求解.
例2 计算:(2m-3)(m2+3m).
(2m-3)(m2+3m)
=2m(m2+3m)-3(m2+3m)
=2m3+6m2-3m2-9m
=2m3+3m2-9m.
评注:依据转化思想,多项式的乘法可转化为单项式与多项式相乘,进而再转化为单项式与单项式相乘.。
多项式乘以多项式.2.3多项式与多项式相乘
五、小结:
1、由学科班长对本节课进行总结。 2、教师补充。 六、作业: 29页:练习1——4 30页:5,6
三、质疑再探:
对于本节课,你还有什么不明白的问题,结合本节所学内容,编几道题考一考同学。如果教师在巡视
中发现好题,可展示给大家。 (二)教师与预设题,在学生编题达不到时选用。 (1)(x-y)(x2+5xy+3y2)= (2)(5x2+10y2)(5x2-10y2)= (3)若(x-3)(2x+m)中不含x的一次项,则m= ( 4)计算(x-2)(x+3)= (x+2)(x+3)= (x+2)(x-3)= (x-2) (x-3) = 归纳: (x+a)(x+b)= (5)化简求解。 (3x+1)(2x-3)-(6x-5)(x-4) 其中X=-2 (6)已知x+5y=6, 求x2+5xy+30y的解。 (7)已知x2-4=0, 求x(x+1)2-x(x2+x)-x-7的解。 展示、评价要求如前。
(m+n)(a+b)=ma+mb+na+nb
概括:
法则:多项式与多项式相乘,先用一个多
项式的每一项分别乘以另一个多项式的每 一项,再把所得的积相加。
(二)处理例3、例4 小结:引导学生总结法则运用注意事项 1、必须做到不重复,不遗漏。 2、注意确定积中的每一项符号。 3、结果应做为最简。
a米的长方形林区的长、宽分别增加n米和b米。尝试用两 种方法表示这块林区现在的面积。 如图所示,变化(长、宽增加)后林区由哪几小块组成? 因此林区面积可怎样表示? 2、变化后林区变成了长、宽分别为多少的长方形? 因此根据长方形的面积公式,林区的面积可怎样表示? 3、由于1.2中面积表示的是同一块地的面积,由此你可以 得到什么结论? 4、若将(m+n)或(a+b)看作一个整体,你能根据单项 式乘以多项式的法则,推导出3 中的结论吗?动手试一试。
多项式乘以多项式练习题A3(通用版)(5篇材料)
多项式乘以多项式练习题A3(通用版)(5篇材料)第一篇:多项式乘以多项式练习题 A3(通用版)13.2.3多项式乘多项式习题一、选择题1.计算(2a-3b)(2a+3b)的正确结果是()A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b22.若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+bB.-a-bC.a-bD.b-a3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是()A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y34.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=qB.p=±qC.p=-qD.无法确定5.若0<x<1,那么代数式(1-x)(2+x)的值是()A.一定为正B.一定为负C.一定为非负数D.不能确定6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是()A.2(a2+2)B.2(a2-2)C.2a3D.2a67.方程(x+4)(x-5)=x2-20的解是()A.x=0B.x=-4C.x=5D.x=408.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1B.a=2,b=2,c=-1 C.a=2,b=1,c=-2D.a=2,b=-1,c=29.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()A.36B.15C.19D.2110.(x+1)(x-1)与(x4+x2+1)的积是()A.x6+1B.x6+2x3+1C.x6-1D.x6-2x3+1二、填空题1.(3x-1)(4x+5)=__________.2.(-4x-y)(-5x+2y)=__________.3.(x+3)(x+4)-(x-1)(x-2)=__________.4.(y-1)(y-2)(y-3)=__________.5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.6.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.7.若a2+a+1=2,则(5-a)(6+a)=__________.8.当k=__________时,多项式x-1与2-kx的乘积不含一次项.9.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,则a=_______,b=_______. 10.如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________.三、解答题1、计算下列各式(1)(2x+3y)(3x-2y)(2)(x+2)(x+3)-(x+6)(x-1)(3)(3x2+2x+1)(2x2+3x-1)(4)(3x+2y)(2x+3y)-(x-3y)(3x +4y)(5)(-4a)•(ab2+3a3b-1);(6)(-1x3y2)(4y+8xy32);(7)a(a-b)-b(b-a);(8)3x(x2-2x+1)-2x2(x-1).2、求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.3、2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x2-52),其中x=-1,y=2.4、解方程组⎧⎪⎨(x-1)(2y+1)=2(x+1)(y-1)⎪⎩x(2+y)-6=y(x-4)5、先化简,再求值:x-2(1-32x)-2x3x(2-2),其中x=26、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.7、若(x2+mx+8)(x2-3x+n)的展开式中不含x3和x2项,求m和n的值8、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题(1)(x-4)(x-9)(2)(xy-8a)(xy+2a)9、已知:A=-2ab,B=3ab(a+b),C=2a2b-3ab2,且a、b 异号,a 是绝对值最小的负整数,b=2,求3A·B-12A·C的值.第二篇:《多项式乘以多项式》教案专题教案【教学目标】:知识与技能:理解并掌握多项式乘以多项式的法则.过程与方法:经历探索多项式与多项式相乘的过程,通过导图,理解多项与多项式的结果,能够按多项式乘法步骤进行简单的多项式乘法的运算,达到熟练进行多项式的乘法运算的目的.情感与态度:培养数学感知,体验数学在实际应用中的价值,树立良好的学习态度.【教学重点】:多项式乘以多项式法则的形成过程以及理解和应用【教学难点】:多项式乘以多项式法则正确使用【教学关键】:多项式的乘法应先转化为单项式与多项式相乘进行运算,进一步再转化为单项式的乘法,紧紧扣住这一线索.【教具】:多媒体课件【教学过程】:一、情境导入(一)回顾旧知识。
多项式乘多项式说课稿
多项式乘多项式说课稿一、说教材本文“多项式乘多项式”在数学课程中扮演着重要的角色,它是代数学中的基础内容,也是学生接触代数运算的入门知识。
本节内容不仅是后续学习如多项式除法、因式分解等高级代数运算的基础,而且在解决实际问题时具有广泛的应用。
通过本节内容的学习,学生能够掌握代数表达式中乘法的基本法则,培养他们的逻辑思维能力和解决复杂问题的能力。
本文主要内容包括:1. 多项式乘法的定义与性质。
2. 多项式乘法法则的推导与应用。
3. 举例说明如何将多项式乘法应用于解决实际问题。
在教材体系中,本节内容承前启后,既是对单项式乘法的延伸,也为将来学习多项式除法打下基础。
它强化了学生对代数表达式的理解和操作能力,对于提高学生的数学素养具有重要意义。
二、说教学目标学习本课,学生应达到以下教学目标:1. 知识目标:- 理解并掌握多项式乘多项式的定义和法则。
- 能够熟练地运用多项式乘法法则进行计算。
- 了解多项式乘法在实际问题中的应用。
2. 能力目标:- 提高逻辑思维能力和解题技巧。
- 培养学生的运算速度和准确性。
- 增强学生将理论知识应用于实际问题的能力。
3. 情感目标:- 激发学生对数学学习的兴趣和热情。
- 培养学生面对困难时坚持不懈的良好学习态度。
三、说教学重难点本节课的重点是多项式乘法法则的推导和应用,而难点则在于如何让学生理解并灵活运用这些法则来解决复杂的代数问题。
1. 教学重点:- 多项式乘多项式的定义和法则。
- 不同类型多项式相乘的解题方法。
2. 教学难点:- 理解并记忆多项式乘法法则。
- 将多项式乘法应用于具体问题的策略选择。
在教学过程中,需要特别关注学生的理解程度,通过反复练习和实例讲解,帮助学生克服这些难点,确保他们对知识点的熟练掌握。
四、说教法在教学“多项式乘多项式”这一节时,我计划采用以下几种教学方法,旨在提高教学效果,并突出与其他教学方法的差异。
1. 启发法:- 通过引入实际生活中的问题,激发学生的好奇心和探究欲望,从而引出多项式乘多项式的概念。
多项式乘以多项式的教案
一、教学目标:1. 让学生掌握多项式乘以多项式的计算方法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学内容:1. 多项式乘以多项式的概念。
2. 多项式乘以多项式的计算法则。
3. 多项式乘以多项式的实际应用。
三、教学重点与难点:1. 教学重点:多项式乘以多项式的计算方法。
2. 教学难点:多项式乘以多项式的过程中的运算顺序和符号判断。
四、教学方法:1. 采用讲解法,引导学生理解多项式乘以多项式的计算法则。
2. 采用示例法,让学生通过观察、模仿,掌握多项式乘以多项式的计算方法。
3. 采用练习法,巩固学生对多项式乘以多项式的掌握程度。
五、教学过程:1. 导入:通过复习多项式的基本概念,引导学生进入多项式乘以多项式的新课。
2. 讲解:讲解多项式乘以多项式的计算法则,举例说明运算顺序和符号判断。
3. 示例:给出几个简单的多项式乘以多项式的例子,让学生跟随老师一起计算,巩固理解。
4. 练习:布置一些练习题,让学生独立完成,检验对多项式乘以多项式的掌握程度。
5. 总结:对本节课的内容进行总结,强调多项式乘以多项式的计算法则和注意事项。
6. 作业布置:布置一些课后作业,让学生巩固所学知识。
六、教学评估:1. 通过课堂练习和课后作业,评估学生对多项式乘以多项式的掌握程度。
2. 关注学生在计算过程中的符号判断和运算顺序,及时发现问题并进行讲解。
3. 鼓励学生提问,积极解答学生的疑问,提高学生的理解能力。
七、教学拓展:1. 引导学生思考:多项式乘以多项式在实际生活中的应用。
2. 介绍一些相关的数学问题,激发学生对数学的兴趣。
3. 鼓励学生进行自主学习,探索多项式乘以多项式的更多规律。
八、教学反思:1. 总结本节课的教学效果,反思教学过程中的优点和不足。
2. 根据学生的反馈,调整教学方法,提高教学效果。
3. 关注学生的学习进度,及时调整教学计划。
九、课后作业:1. 请学生完成课后练习题,巩固多项式乘以多项式的知识。
多项式乘多项式
多项式乘多项式多项式乘多项式是数学中常用的一种方法,主要用来求解多项式的乘积。
同时它也可以帮助我们理解和解决许多复杂的数学问题。
本文将介绍多项式乘多项式的算法和运算步骤,一起来探究它的智慧之处!首先,要计算两个多项式的乘积,需要先把他们分别写成表达式形式并标记每一对对应项的指数和系数。
比如,2x2+6x+7和x2+2x+3的乘积为:(2x2+6x+7)(x2+2x+3)。
由于每个多项式在乘积中有两个项,因此称它们为一对。
接下来,我们可以用乘法公式乘出每一组乘积:(2x2)(x2)= 2x4;(2x2)(2x) = 4x3;(2x2)(3)= 6x2;(6x)(x2)=6x3;(6x)(2x)=12x2;(6x)(3)=18x;(7)(x2)=7x2;(7)(2x)=14x;(7)(3)=21。
最后,需要将每一组乘积中指数相同的项相加,直到将所有的项合并,从而得出所有乘积的完整表达式,即:(2x2+6x+7)(x2+2x+3) = 2x4 + 4x3 +6x2 +6x3 + 12x2+18x +7x2 +14x+21 。
以上便是多项式乘多项式的计算过程,下面我们再来看看,它是如何帮助我们解决复杂的数学问题的!假设我们要计算的是一组多项式的函数值,也就是根据每一组多项式的特定输入值,计算其输出值。
在这种情况下,多项式乘多项式的算法可以帮助我们更快更准确地完成任务。
因为它可以让我们利用乘法公式,将复杂的函数拆解成多个更简单的组合,从而更加容易地计算出结果。
总的来说,多项式乘多项式的算法可以帮助我们求解多项式乘积,也可以帮助解决复杂的数学问题,它的智慧之处,在于充分利用乘法公式将多项式的乘积拆解成更容易处理的表达式。
只要掌握了基本的算法运算步骤,不管提出什么复杂和繁琐的问题,只要坚持,就一定能破解出它。
多项式乘多项式(解析版)
9.3多项式乘多项式题型一:多项式乘以多项式计算【例题1】(2021·广西)计算:()()36x x -+. 【答案】x 2+3x -18【分析】根据多项式乘以多项式的计算方法进行计算即可. 【详解】解:(x -3)(x +6)=x 2+6x -3x -18 =x 2+3x -18.【点睛】本题考查多项式乘以多项式的计算方法,掌握多项式乘以多项式的计算法则,是解决问题的关键. 变式训练【变式1-1】(2021·陕西)计算:()()()241221x x x x +---. 【答案】92x -【分析】先根据多项式与多项式乘法及单项式与多项式的乘法法则计算,再去括号合并同类项即可. 【详解】解:()()()241221x x x x +--- =4x 2-x +8x -2-(4x 2-2x ) =4x 2-x +8x -2-4x 2+2x =92x -.【点睛】本题考查了整式的混合运算,熟练掌握运算顺序是解答本题的关键.混合运算的顺序是先算乘方,知识点管理 归类探究再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序. 【变式1-2】(2021·江西南昌·八年级期末)计算:(1)()()211x x x -++;(2)()()()321x x x x +---. 【答案】(1)31x -;(2)26x -【分析】根据多项式乘以多项式,单项式乘以多项式的法则计算即可. 【详解】(1)解:原式3221x x x x x =++---31x =-.(2)解:原式22236x x x x x =-+--+26x =-.【点睛】本题考查了整式的乘法,熟练掌握单项式乘以多项式,多项式乘以多项式法则是解题的关键. 【变式1-3】(2021·湖南七年级期中)计算: (1)222(35)a a b - (2)(53)(32)x y x y +-.【答案】(1)42610a a b -;(2)22156x xy y --【分析】(1)根据单项式乘多项式的计算方法及同底数幂的乘法运算直接计算; (2)根据多项式乘多项式的计算方法及同底数幂的乘法运算,合并同类项直接计算. 【详解】解:(1)22422(35)610a a b a a b -=-, (2)22(53)(32)151096x y x y x xy xy y +-=-+- 22156x xy y =--.【点睛】本题考查了单项式乘多项式、多项式乘多项式,解题的关键是掌握基本的运算法则. 题型二:(x+a)(x+b)型多项式相乘【例题2】(2021·福建省宁化县教师进修学校七年级月考)(Ⅰ)计算,将结果直接填在横线上: (1)(2)x x ++=______.(1)(2)x x --=______. (1)(2)x x -+=______.(1)(2)x x +-=______.(Ⅰ)认真观察(Ⅰ)中的算式与计算结果的特征,总结其中运算规律,用公式来表示这种运算规律(用a ,b 表示常数,).【答案】(1)x 2+3x +2,x 2−3x +2,x 2+x −2,x 2−x −2;(2)(x +a )(x +b )=x 2+(a +b )x +ab 【分析】(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.(2)根据(1)计算的结果,式子的一般形式是(x +a )(x +b )=x 2+(a +b )x +ab . 【详解】解:(1)(x +1)(x +2)=x 2+3x +2, (x −1)(x −2)=x 2−3x +2, (x −1)(x +2)=x 2+x −2, (x +1)(x −2)=x 2−x −2.故答案是:x 2+3x +2,x 2−3x +2,x 2+x −2,x 2−x −2;(2)可以发现题(1)中,左右两边式子符合(x +a )(x +b )=x 2+(a +b )x +ab 结构. 【点睛】本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键. 变式训练【变式2-1】(2019·全国七年级单元测试)若(x +a )(x +2)=x 2-5x +b ,求a +b 的值. 【答案】-21.【分析】先根据多项式乘多项式法则把多项式的左边展开,合并同类项后再根据多项式两边相同字母的系数相等,列出方程,求出a ,b 的值即可.【详解】解:()()222225x a x x ax x a x x b ++=+++=-+,则252a a b +=-=,, 解得714.a b =-=-, 则21.a b +=-【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键. 【变式2-2】(2021·福建)阅读理解: (1)计算()()21232x x x x ++=++,()()12x x --=____________________, ()()12x x -+=_______________,()()12x x +-=___________________,()()()2x a x b x x ++=++_____________;( 2)应用已知a 、b 、m 均为整数,且()()212x a x b x mx ++=++,则m 的可能取值有_____________个.【答案】(1)232x x -+,22x x +-,22x x --;a b +,ab ;(2)6【分析】(1)根据多项式乘法的法则逐一计算即可,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.(2)根据(1)计算的结果,式子的一般形式是2()()()x p x q x p q x pq ++=+++,121122634(1)(12)(2)(6)(3)(4)=⨯=⨯=⨯=-⨯-=-⨯-=-⨯-,故m 的取值6个.【详解】解:(1)2(1)(2)32x x x x ++=++, 2(1)(2)32x x x x --=-+,2(1)(2)2x x x x -+=+-,2(1)(2)2x x x x +-=--;()()()2x a x b x a b x ab ++=+++(2)可以发现题(1)中,左右两边式子符合2()()()x p x q x p q x pq ++=+++结构,因为12可以分解以下6组数,112a b ⨯=⨯,26⨯,34⨯,(1)(12)-⨯-,(2)(6)-⨯-(3)(4)-⨯-,所以m a b =+应有6个值.【点睛】本题考查了多项式乘多项式法则,熟练掌握运算法则是解题的关键.【变式2-3】(2020·厦门外国语学校海沧附属学校八年级期中)已知(x+a)(x+b)=x 2+mx+n (1)若a=1,b=2,则m=______,n=_______ (2)若a=6,b=-3,求2m+2n 的值 【答案】(1)m=3,n=2;(2)-28【分析】把已知式子展开,得出m ,n 和a ,b 的关系式,带入求解即可;【详解】Ⅰ()()()22x a x b x a b x ab x mx n ++=+++=++,Ⅰa b m +=,ab n =, (1)Ⅰa =1,b =2,Ⅰ123m =+=,122n =⨯=, 故答案是:3,2. (2)Ⅰa =6,b =-3,Ⅰ()633m =+-=,()6318n =⨯-=-,Ⅰ()322221883628m n +=+⨯-=-=-.【点睛】本题主要考查了代数式求值,准确利用整式乘法展开计算是解题的关键. 题型三:多项式乘以多项式化简求值【例题3】(2021·江苏鼓楼·七年级期中)先化简,再求值:(1)(2)3(3)2(2)(1)x x x x x x ---+++-,其中12x =. 【答案】102x --; 7-【分析】多项式乘以多项式,单项式乘以多项式展开,合并同类项对整式进行化简,然后再代值求解即可. 【详解】解:(1)(2)3(3)2(2)(1)x x x x x x ---+++-()2223239222x x x x x x x =-+--++--,222122224x x x x =--+++-, 102x =--,当12x =时,原式110272=-⨯-=-. 【点睛】本题主要考查整式的乘法运算,多项式乘以多项式,单项式乘以多项式展开,合并同类项代入求值,熟练掌握整式的乘法运算法则是解题的关键. 变式训练【变式3-1】(2021·江苏省江阴市第一中学七年级阶段练习)先化简,再求值:(3)(4)2(1)(5)y y y y +---+,其中2y =-【答案】292y y ---;12.【分析】利用多项式乘以多项式法则计算,去括号合并得到最简结果,把y 的值代入计算即可求出值. 【详解】解:(3)(4)2(1)(5)y y y y +---+22(12)2(45)y y y y =---+- 22122810y y y y =----+ 292y y =---,当2y =-时,原式()()22922=---⨯--12=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则,准确计算是解本题的关键.【变式3-2】(2021·浙江七年级期中)先化简,再求值:()222242(()3)m m m m m -++--,其中2m =-【答案】368m m -+-,12-【分析】先分别根据多项式乘多项式、单项式乘单项式计算,再合并同类项,最后代入2m =-即可求解. 【详解】解:原式322382++44622m m m m m m m ---+-=33826m m m -=-+368m m =-+-,当2m =-时,原式()()32628=--+⨯--8128=--12=-【点睛】本题考查整式的化简求值,解题的关键是熟练掌握多项式乘多项式、单项式乘单项式计算法则. 【变式3-3】(2020·江苏省盐城中学新洋分校七年级期中)先化简,再求值:(x+2)(x -1)-2x (x+3),其中x=-1.【答案】252x x ---,2.【分析】原式利用多项式乘以多项式、单项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式=222226x x x x x -+---, =252x x ---, 当x=-1时, 原式=-1+5-2=2.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 题型四:已知多项式乘积不含某项求字母的值【例题4】(2017·江苏·兴化市海河学校七年级阶段练习)若(x 2+ax +8)(x 2﹣3x +b )的乘积中不含x 2和x 3项,求a ,b 的值. 【答案】a =3,b =1【分析】直接利用多项式乘以多项式运算法则,进而利用合并同类项法则得出x 2和x 3项的系数为零进而得出答案.【详解】解:(x 2+ax +8)(x 2-3x +b ) =x 4-3x 3+bx 2+ax 3-3ax 2+abx +8x 2-24x +8b=x 4+(-3+a )x 3+(b -3a +8)x 2+(ab -24)x +8b , Ⅰ(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项, Ⅰ-3+a =0,b -3a +8=0, 解得:a =3,b =1.【点睛】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键. 变式训练【变式4-1】(2021·江苏·常熟市第一中学七年级阶段练习)若关于x 的多项式()2(3)x x m mx +-⋅-的展开式中不含2x 项,求4(1)(2)(25)(3)m m m m +--+-的值. 【答案】16【分析】将多项式展开,合并同类项,根据不含2x 项得到m 值,再代入计算.【详解】解:原式()2(3)x x m mx =+-⋅-3222333mx x mx x m x m =-+--+()322(3)33mx m x m x m =+--++由题意得30m -=, Ⅰ3m =,Ⅰ原式4(31)(32)(235)(33)16=⨯+⨯--⨯+⨯-=.【点睛】本题考查了整式的混合运算和求值,多项式的应用,解此题的关键是能根据整式的运算法则进行化简,难度不是很大.【变式4-2】(2021·江苏·昆山市第二中学七年级阶段练习)若()2(2)x x ax b -++的积中不含x 的二次项和一次项,求2(32)2a b ab -+的值. 【答案】20【分析】原式利用多项式乘多项式法则计算,由积中不含x 的二次项和一次项,求出a 与b 的值,再把a 、b 的值代入计算可得.【详解】解:(x -2)(x 2+ax +b )=x 3+ax 2+bx -2x 2-2ax -2b =x 3+(a -2)x 2+(b -2a )x -2b , Ⅰ(x -2)(x 2+ax +b )的积中不含x 的二次项和一次项, Ⅰa -2=0且b -2a =0, 解得:a =2、b =4,将a =2、b =4代入2(32)2a b ab -+=2(3224)224⨯-⨯+⨯⨯ =4+16 =20.【点睛】本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则. 【变式4-3】(2021·江苏省江阴市第一中学七年级阶段练习)若()2133x p x x q ⎛⎫+-+ ⎪⎝⎭的积中不含x 项与2x 项(1)求p 、q 的值; (2)求代数式20192020p q 的值 【答案】(1)13p =,3q =;(2)3 【分析】(1)先用多项式乘以多项式的运算法则展开求它们的积,并且把p 、q 看作常数合并关于x 的同类项,令x 2及x 的系数为0,分别求出p 、q 的值. (2)把p 、q 的值代入求解即可. 【详解】解:(1)21(3)()3x p x x q +-+=2321333x x qx px px pq -++-+=23131)(3+3()x p x q p x pq -+-+又Ⅰ式子展开式中不含x 2项和x 项, Ⅰ310p -=,13=03q p -解得,13p =,3q = (2)当13p =,3q =时,20192019201920201=()(3)31333p p q q q =⨯⨯=⨯= 【点睛】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.题型五:多项式乘以多项式面积问题【例题5】(2020·江苏·泰兴市实验初级中学七年级期中)如图是火箭模型截面图,上面是三角形,中间是长方形,下面是梯形.(1)用含有a 、b 的代数式表示该截面的面积S ;(需化简) (2)当a =8cm ,b =5cm 时,求这个截面图的面积.【答案】(1)S=2a 2+2ab ;(2)208【分析】(1)先算出上面三角形的面积,中间长方形的面积,下面梯形的面积,即可表示出横截面的面积; (2)把a ,b 代入(1)式中求解即可;【详解】(1)上面三角形的面积为12ab ,中间长方形的面积为22a ,下面梯形的面积为()13222a b b ab +=,则该截面的面积为221322222S ab a ab a ab =++=+; (2)当a =8cm ,b =5cm 时,22226428512880208S a ab =+=⨯+⨯⨯=+=.【点睛】本题主要考查了代数式求值,准确计算是解题的关键. 变式训练【变式5-1】(2021·江苏淮安·七年级期末)如图,某市有一块长(3)a b +米,宽为(2)a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间空白处将修建一座雕像.(1)求绿化的面积是多少平方米. (2)当2,1a b ==时求绿化面积. 【答案】(1)5a 2+3ab ;(2)26平方米【分析】(1)绿化面积=长方形的面积-正方形的面积; (2)把a =2,b =1代入(1)求出绿化面积.【详解】解:(1)S 绿化面积=(3a +b )(2a +b )-(a +b )2 =6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab ;答:绿化的面积是(5a 2+3ab )平方米; (2)当a =2,b =1时,绿化面积=5×22+3×2×1 =20+6 =26.答:当a =2,b =1时,绿化面积为26平方米.【点睛】本题考查了多项式乘多项式及代数式求值,看懂题图掌握多项式乘多项式法则是解决本题的关键. 【变式5-2】(2021·江苏滨湖·七年级期中)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解决下列问题.(1)在图4中,黑色瓷砖有 块,白色瓷砖有 块;(2)已知正方形白色瓷砖边长为1米,长方形黑色瓷砖长为1米,宽为0.5米.现准备按照此图案进行装修,瓷砖无需切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.请回答下列问题: Ⅰ铺设图2需要的总费用为 元;Ⅰ铺设图n 需要的总费用为多少元?(用含n 的代数式表示) 【答案】(1)20;20;(2)Ⅰ1380; Ⅰ2115345230n n ++.【分析】(1)通过观察发现规律得出,第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +,将4n =代入即可求解;(2)Ⅰ求得图2的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可;Ⅰ求得图n 的白瓷砖的块数和黑色瓷砖的块数,然后再求得占用的面积,根据费用求解即可; 【详解】解:(1)通过观察图形可知,1n =时,黑色瓷砖的块数为8,白色瓷砖的块数为22n =时,黑色瓷砖的块数为12,白色瓷砖的块数为6 3n =时,黑色瓷砖的块数为16,白色瓷砖的块数为12则第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +当4n =时,黑色瓷砖的块数为20,白瓷砖的块数为20故答案为20,20(2)Ⅰ图2,黑色瓷砖的块数为12,白色瓷砖的块数为6,所占用的面积为1210.561112⨯⨯+⨯⨯=(平方米)所需的费用为1250610012151380⨯+⨯+⨯=(元)故答案为1380Ⅰ第n 个图形中,黑色瓷砖的块数可以表示为4(1)n +,白瓷砖的块数可以表示为(1)n n +占用的面积为4(1)10.5(1)112(1)(1)(1)(2)n n n n n n n n +⨯⨯++⨯⨯=+++=++所需的费用为24(1)50(1)10015(1)(2)115345230n n n n n n n +⨯++⨯+⨯++=++故答案为2115345230n n ++【点睛】此题考查了图形类规律的探索问题,涉及了列代数式,整式的乘法等运算,解题的关键是根据前面图形,找到规律.【变式5-3】(2021·江苏徐州·七年级期中)(1)探究:我们小学时学过乘法分配律a (b +c )=ab +ac . 下面我们用等积法证明乘法分配律:如图,方法一:长方形ABCD 的一边长为a ,另一边长为(b +c ),所以长方形ABCD 的面积为a (b +c );方法二,长方形ABFE 的面积为ab ,长方形CDEF 的面积为ac ,所以长方形ABCD 的面积为(ab +ac ),所以a (b +c )=ab +ac .我们把这种用两种不同的方式表示同一图形面积的方法称为等积法.(2)应用请你用等积法,画出图形,并仿照上面的说理方法证明:(a +b )(c +d )=ac +ad +bc +bd ;(3)拓展请直接写出(a +b )(c +d +e )= .【答案】(2)证明见解析;(3)ac ad ae bc bd be +++++【分析】(2)画出图形,并仿照(1)的说理方法证明即可;(3)根据(1)的方法画出图形,进行计算即可.【详解】(2)如图,方法一:长方形ABCD 的一边长为()a b +,另一边长为()c d +,所以长方形ABCD 的面积为()()a b c d ++; 方法二,长方形AGOE 的面积为ac ,长方形EODH 的面积为ad ,长方形GOFB 的面积为bc ,长方形OFCH 的面积为bd ,所以长方形ABCD 的面积为(ac ad bc bd +++),所以()()a b c d ac ad bc bd ++=+++.(3)如图,同理可得:方法一可得长方形ABCD 的面积为()()a b c d e +++,方法二可得长方形ABCD 的面积为ac ad ae bc bd be +++++∴()()a b c d e ac ad ae bc bd be +++=+++++故答案为:ac ad ae bc bd be +++++【点睛】本题考查了多项式乘法与图形面积的关系,数形结合是解题的关键.题型六:多项式乘以多项式规律问题【例题6】(2021·常熟市第一中学七年级月考)观察下列各式:223324(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x -+=--++=--+++=-(1)根据以上的规律得:123(1)(1)_______m m m x x x x x ----+++++=(m 为正整数)(2) 请你利用上面的结论,完成下面两题的计算:Ⅰ23468691222222+++++++Ⅰ(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1【答案】(1)x m -1;(2)Ⅰ7021-;Ⅰ51213+ 【分析】(1)归纳出一般规律可得;(2)Ⅰ原式乘(2-1),用规律即可得出结论;Ⅰ将原式变形为()()()()()5049481121222213++⎦⎡⎤-⨯---+--⋯+-+⎣,再依照所得规律计算即可. 【详解】解:(1)(x -1)(x m -1+x m -2+…+x +1)═x m -1(m 为正整数);(2)Ⅰ23468691222222+++++++ =()()2346869212222221+++++++- =7021-;Ⅰ()()()()50494822221---⋯++-+++ =()()()()()5049481121222213++⎦⎡⎤-⨯---+--⋯+-+⎣ =()511123⎡⎤--⨯-⎣⎦ =51213+ 【点睛】本题考查找规律解题,仔细观察,找出规律是求解本题的关键.变式训练【变式6-1】(2021·利辛县第四中学七年级期中)(1)计算:(1)(1)______a a -+=;2(1)(1)____a a a -++=;......猜想:9998972(1)(......1)_____a a a a a a -++++++=;(2)请你利用上式的结论,求199198212+2++2+2+1的值;(3)请直接写出202020192018213+3+3+3+3+1+的值.【答案】(1)231;1;a a --1001a -;(2)20021-;(3)20211(31)2⋅-. 【分析】(1)根据多项式乘多项式可进行求解;(2)由2-1=1及(1)中结论可直接进行求解;(3)根据(1)中结论可进行求解.【详解】解:(1)由题意得:2(1)(1)1a a a -+=-,23223(1)(1)11a a a a a a a a a -++=++---=-,……猜想:9998972100(1)(......1)1a a a a a a a -++++++=-;故答案为231,1,a a --1001a -;(2)由(1)可得:原式=()()19919819720021222......2121-+++++=- (3)由(1)的结论可得:原式=()()2020201928201210211)3+3+3131(31221+3+3+-+=⨯⨯⋅-. 【点睛】本题主要考查多项式乘多项式的应用,熟练掌握多项式乘多项式是解题的关键.【变式6-2】(2021·辽宁)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方(左右)两数之和.事实上,这个三角形给出了(a +b )n (n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1、2、1,恰好对应(a +b )2=a 2+2ab +b 2展开式中各项的系数;第四行的四个数1、3、3、1,恰好对应着(a +b )3=a 3+3a 2b +3ab 2+b 3展开式中各项的系数等等.(1)根据上面的规律,(a +b )4展开式的各项系数中最大的数为 ;(2)求出25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5的值;(3)若(x ﹣1)2020=a 1x 2020+a 2x 2019+a 3x 2018+……+a 2019x 2+a 2020x +a 2021,求出a 1+a 2+a 3+……+a 2019+a 2020的值.【答案】(1)6;(2)﹣1;(3)﹣1【分析】(1)由“杨辉三角”构造方法判断即可确定出(a+b )4的展开式中各项系数最大的数;(2)将原式写成“杨辉三角”的展开式形式,即可的结果;(3)当x =0时,a 2021=1,当x =1时,得到a 1+a 2+a 3+……+a 2019+a 2020+a 2021=0,即可得到结论.【详解】解:(1)第五行即为1、 4、 6、 4 、1对应(a +b )4展开式中各项的系数,Ⅰ(a +b )4展开式的各项系数中最大的数为6,故答案为6;(2)Ⅰ(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,......根据展式中的2最大指数是5,首项a =2,末项b =-3,Ⅰ25+5×24×(﹣3)+10×23×(﹣3)2+10×22×(﹣3)3+5×2×(﹣3)4+(﹣3)5=[2+(﹣3)]5=(2﹣3)5=﹣1;(3)Ⅰ(x ﹣1)2020=a 1x 2020+a 2x 2019+a 3x 2018+……+a 2019x 2+a 2020x +a 2021,Ⅰ当x =1时,(1﹣1)2020=a 1×12020+a 2×12019+a 3×12018+……+a 201912+a 2020×1+a 2021,即a 1+a 2+a 3+……+a 2019+a 2020+a 2021=0,当x =0时,(0﹣1)2020=a 1×02020+a 2×02019+a 3×02018+……+a 2019×02+a 2020×0+a 2021,即a 2021=1,Ⅰa 1+a 2+a 3+……+a 2019+a 2020= a 1+a 2+a 3+……+a 2019+a 2020+a 2021- a 2021=0﹣1=﹣1.【点睛】本题考查完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应a b n +()中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高. 【变式6-3】(2021·河南省淮滨县第一中学)好学的小东同学,在学习多项式乘以多项式时发现:14(25)(36)2x x x ⎛⎫++- ⎪⎝⎭的结果是一个多项式,并且最高次项为:312332x x x x ⋅⋅=,常数项为:45(6)120⨯⨯-=-,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:15(6)2(6)434532⨯⨯-+⨯-⨯+⨯⨯=-,即一次项为3x -. 请你认真领会小东同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算()()()23153x x x ++-所得多项式的一次项系数为______.(2)若计算()()2213(21)x x x x a x ++-+-所得多项式不含一次项,求a 的值;(3)若202120212020201901220202021(1)x a x a x a x a x a +=+++⋯++,则2020a =______.【答案】(1)-11;(2)3a =-;(3)2021.【分析】根据题意可得出结论多项式和多项式相乘所得结果的一次项系数是每个多项式的一次项系数分别乘以其他多项式的常数项后相加所得.(1)(2)(31)(53)x x x ++-中每个多项式的一次项系数分别是1、3、5,常数项分别是2、1、-3,再根据结论即可求出(2)(31)(53)x x x ++-所得多项式的一次项系数.(2)22(1)(3)(21)x x x x a x ++-+-中每个多项式的一次项系数分别是1、-3、2,常数项分别是1、a 、-1,再根据22(1)(3)(21)x x x x a x ++-+-所得多项式的一次项系数为0,结合结论即可列关于a 的一元一次方程,从而求出a .(3)2021(1)x +中每个多项式一次项系数为1,常数项系数也为1,2020a 为2021(1)x +所得多项式的一次项系数.所以根据结论2020a 为2121个11⨯相加,即可得出结果.【详解】(1)根据题意可知(2)(31)(53)x x x ++-的一次项系数为:()()11333252111⨯⨯-+⨯-⨯+⨯⨯=-.故答案为-11.(2)根据题意可知22(1)(3)(21)x x x x a x ++-+-的一次项系数为:()()()11311213a a a ⨯⨯-+-⨯⨯-+⨯⨯=+Ⅰ该多项式不含一次项,即一次项系数为0,Ⅰ30a +=解得3a =-.(3)根据题意可知2020a 即为2021(1)x +所得多项式的一次项系数.Ⅰ20202021(11111111)2021a =⨯+⨯+⨯++⨯=故答案为2021【点睛】本题考查多项式乘多项式以及对多项式中一次项系数的理解,根据题意找出多项式乘多项式所得结果的一次项系数与多项式乘多项式中每个多项式的一次项系数和常数项关系规律是解题关键.【真题1】(2019·江苏南京·中考真题)计算22()()x y x xy y +-+.【答案】33x y +【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn ,计算即可.【详解】解:()()22x y x xy y +-+322223x x y xy x y xy y =-++-+33x y =+.【点睛】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.【真题2】(2013·江苏南京·中考真题)计算11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫----++++------+++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的结果是_______. 【答案】16【详解】设11112345x +++=, 则原式()111166x x x x ⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭= 22115666x x x x x +---+= 16= 【真题3】(2015·江苏连云港·中考真题)已知m +n =mn ,则(m -1)(n -1)=_______.【答案】1【详解】试题分析:根据乘法公式多项式乘以多项式,用第一个多项式的每一项乘以第二个多项式的每一项,可求(1)(1)m n --=mn -m -n+1=mn -(m+n )+1,直接代入m+n=mn 可求得(1)(1)m n --=1.考点:整体代入法【真题4】(2019·台湾·中考真题)计算()()2334xx +﹣的结果,与下列哪一个式子相同?( ) A .74x -+B .712x --C .2612x -D .2612x x --【答案】D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再链接中考把所得的积相加,合并同类项后所得的式子就是它们的积.【详解】解:由多项式乘法运算法则得()()22233468912612x x x x x x x-+=+---=-.故选D.【点睛】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.【拓展1】(2021·江苏阜宁·七年级期中)如图,长方形的长为a,宽为b,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是___.【答案】2ab ac bc c--+【分析】先把阴影的为平行四边形的面积化为长方形的面积,然后经过平移得到空白部分的为长方形,长为a-c,宽为b-c,根据长方形面积公式列式计算即可求解即可求解.【详解】解:原图形可化为图1,将阴影部分平移得到图2,所以空白部分的面积为:()()2=a cbc ab ac bc c----+.故答案为:2ab ac bc c--+满分冲刺【点睛】本题考查了列代数式,平移,多项式乘以多项式等知识,根据题意,将平行四边形的面积转化为长方形的面积,进而进行平移,将空白部分面积转化为长方形的面积是解题关键.【拓展2】(2020·江苏徐州·七年级期中)阅读以下材料:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-; ()324(1)11x x x x x -+++=-(1)根据以上规律,()123(1)1n n n x x x x x ----+++++= ;(2)利用(1)的结论,求2345201820192000155555555+++++++++的值 【答案】(1)1nx -;(2)2021514- 【分析】(1)仔细观察上式就可以发现得数中x 的指数是式子中x 的最高指数减1,根据此规律就可求出本题.(2)不难看出所求式子是材料中等号左边式子的一个因式,将所求式子转化成()123(1)1n n n x x x x x ----+++++形式,即可利用(1)的结论进行求解.【详解】(1)()123(1)1n n n x xx x x ----+++++中最高次项为1n n x x x -•=, 所以()123(1)1n n n x x x x x ----+++++=n x -1;(2)2345201820192000155555555+++++++++ =14(5-1)(2345201820192000155555555+++++++++) =2021514- 【点睛】仔细观察式子,总结出运算规律,是解决此类题的关键.【拓展3】(2020·江苏·南通市八一中学八年级期中)阅读材料小明遇到这样一个问题:求计算()()()22334x x x +++所得多项式的一次项系数.小明想通过计算()()()22334x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x ++所得多项式中的一次项系数,通过观察发现:也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数.延续上面的方法,求计算()()()22334x x x +++所得多项式的一次项系数,可以先用2x +的一次项系数1,23x +的常数项3,34+x 的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34+x 的常数项4,相乘得到16;然后用34+x 的一次项系数3,2x +的常数项223x +的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()443x x ++所得多项式的一次项系数为____________________.(2)计算()()()13225x x x +-+所得多项式的一次项系数为_____________.(3)若231x x -+是422x ax bx +++的一个因式,求a 、b 的值.【答案】(1)19;(2)1;(3) a= -6,b= -3.【分析】(1)根据两多项式常数项与一次项系数乘积的和即为所得多项式一次项系数可得;(2)根据三个多项式中两个多项式的常数项与另一个多项式一次项系数的乘积即为所求可得;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,根据三次项系数为0、二次项系数为a 、一次项系数为b 列出方程组求出a 、b 的值,可得答案.【详解】解:(1)(x+4)(4x+3)所得多项式的一次项系数为1×3+4×4=19,故答案为19;(2)()()()13225x x x +-+所得多项式的一次项系数为1×(-2)×5+1×3×5+1×(-2)×2=1,故答案为1;(3)由x 4+ax 2+bx+2中4次项系数为1、常数项为2可设另一个因式为x 2+mx+2,则(x 2-3x+1)(x 2+mx+2)=x 4+ax 2+bx+2,13101211(3)321m m a m b ⨯-⨯=⎧⎪∴⨯+⨯+-⨯=⎨⎪-⨯+⨯=⎩解得: 363m a b =⎧⎪=-⎨⎪=-⎩故答案为a= -6,b= -3.【点睛】本题考查多项式乘多项式,解题关键是熟练掌握多项式乘多项式的运算法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.。
多项式乘以多项式
多项式乘以多项式在代数学中,多项式是由一系列常数、变量和指数幂的和构成的表达式。
多项式的乘法是代数学中的一项重要运算,它用于计算两个多项式之间的相乘结果。
本文将详细介绍多项式乘法的定义、性质以及一些常用的计算方法。
1. 多项式乘法的定义给定两个多项式:P(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0Q(x) = b_mx^m + b_{m-1}x^{m-1} + ... + b_1x + b_0其中,P(x)和Q(x)分别是关于变量x的多项式,a_i和b_i是其中的系数,n和m是对应的指数幂。
则两个多项式相乘的结果为:P(x) * Q(x) = c_{n+m}x^{n+m} + c_{n+m-1}x^{n+m -1} + ... + c_1x + c_0其中,c_k是新的系数,计算方式如下:c_k = a_0b_k + a_1b_{k-1} + ... + a_kb_02. 多项式乘法的性质多项式乘法具有以下几个性质:2.1 交换律多项式乘法满足交换律,即P(x) * Q(x) = Q(x) *P(x)。
2.2 结合律多项式乘法满足结合律,即(P(x) * Q(x)) * R(x) = P(x) * (Q(x) * R(x))。
2.3 零乘性质如果一个多项式的所有系数都为零,那么与任何多项式相乘,结果仍为零多项式。
2.4 常数乘法如果一个多项式P(x)的所有系数都为常数c,那么与另一个多项式相乘时,结果每一项都乘以c。
3. 多项式乘法的计算方法多项式乘法的计算方法有多种,以下介绍两种常用的方法:3.1 嵌套循环计算法嵌套循环计算法是一种较为直观的计算方法,其基本思想是使用两个循环分别遍历两个多项式的系数,然后将对应位置的系数相乘并累加到结果中。
def multiply_polynomials(polynomial1, polynomial2):result = [0] * (len(polynomial1) + len(polyno mial2) -1)for i in range(len(polynomial1)):for j in range(len(polynomial2)):result[i + j] += polynomial1[i] * pol ynomial2[j]return result3.2 快速傅里叶变换(FFT)快速傅里叶变换是一种高效的多项式乘法算法,它基于傅里叶变换的性质和分治策略。
12.2.3多项式乘以多项式
x2-2x-15 x2+2x-15 x2+8x+15 x2-8x+15
观察上面四题的特点,你能发现它们计算结果的规律吗?
2 (x+a)(x+b)=x +(a+b)x+ab
含有相同字母的两个一次二项式的乘积,是同一个字 母的二次三项式 .其中,二次项是这个相同字母的平方; 一次项系数是两个常数的和,常数项是两个常数的积.
第12章
整式的乘除
多项式乘以多项式
12.2.3
单项式与多项式相乘法则:
单项式与多项式相乘,将单项式分别乘以多项式的 每一项,再将所得的积相加。
m(a+b+c)= ma+mb+mc
(m、a、b、c都是单项式)
计算下列各题:
注意:① 不能漏乘;
② 去括号时注意符号的确定.
你能用不同的形式表示下图的面积吗?
?
合作探究:当a为何值时,(x2+ax+1)(x2-3x+2)
的运算结果不含有x2项.
先利用多项式与多项式相乘的乘法法 则进行计算,然后合并同类项,合并 时含有x2的系数和为0即可。
Байду номын сангаас
本节课你的收获是什么?
合作探究:
(x+3)(x-5)= (2) (x-3)(x+5)= (3) (x+3)(x+5)= (4) (x–3) (x-5)=
2 2y)(x +2xy
2 −3y );
填空:若(x+a)(x+2)=x2-5x+b,
则a=_____,b_______.
当x=2018时,求代数式(x-1)(3x+2)-3x(x+3)+10x的值.
论述12.2.3多项式与多项式相乘课件ppt.ppt
图1
b
a
m
n
图2
这块林区现在长为(m+n)米,宽为(a+b)米
由图1,可得总面积为 (a+b)(m+n);
由图2,可得总面积为 a(m+n)+b(m+n)或 m(a+b)+n(a+b) 或
或am+an+bm+bn.
最新.课件
5
由于(m+n)(a+b)和(ma+mb+na+nb) 表示同一块地的面积,故有:
(m+n)(a+b)= ma + mb + na+ nb
你能运用所学的知识说明此等式成立的道理吗?
实际上,把(m+n)看成一个整体,有:
(m+n)(a+b) = (m+n)a+(m+n)b
= m最新a.课+件mb+na+nb
6
ห้องสมุดไป่ตู้
合探一:
2
1
1
2
3
4
(m+n)(a+b) = ma+mb+na +nb
3 4
观察上面四个等式,你能发现什么规律?
你能根据这个规律解决下面的问题吗?
(x + a)(x + b) x2 + _(a__+_b_) x + __a_b__
最新.课件
方法与规 律 13
小结
• 多项式乘以多项式的法则:
多项式与多项式相乘,先用一个多项式的每一项 分别乘以另一个多项式的每一项,再把所得的积 相加
12.2.3多项式与多项式相乘
练习
计算:
2. (x 5 y) ( x 7 y)
1. (x 5) ( x 7)
解: (x 5) ( x 7)
解: (x 5 y) ( x 7 y)
=x2-7x+5x-35 =x2-2x-35
3. (2m 3n) (2m 3n) (2m 3n) (2m 3n) 解:
解: (x 2) ( x 3)
解:(2 x 5 y) (3x 2 y)
=x2-3x+2x-6 =x2-x-6
注意
=6x2-4xy+15yx-10y2 =6x2+11xy-10y2
两项相乘时,先定符号。 所得的积符号由这两项的符号来 确定:负负得正 一正一负得负 最后的结果要合并同类项
观察上面四个等式,你能发现什么规律? 你能根据这个规律解决下面的问题吗?
(x+a)(x+b)=x2+(a+b)x + ab
方法与规律
试一试 3.下列多项式相乘,结果为 a2+6a-16 的是( ) A.(a-2)(a-8) C.(a-2)(a+8) 4.若
(x+)
B.(a+2)(a-8) D.(a+2)(a+8)
回顾与反思
如何进行单项式与多项式乘法的运算
① 单项式分别乘以多项式的每一项;
② 再把所得的积相加。 字母表达式:m(a b c) ma mb mc
进行单项式与多项式的乘法运算时,要注意什么?
① 不能漏乘:即单项式要乘遍多项式的每一项; ② 去括号时注意符号的确定。
某地区在退耕还林期间,将一块长m米、宽 a 米 的长方形林地的长、宽分别增加 n 米和 b 米,用 这两种方法表示这块林地现在的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试一试
1
多 项 式 与 多 项 式 相 乘
2
(a+b)(m+n)= am+an +bm+bn
3
直接利用:多项式 乘以多项式的法则 1 2
3
4
1计算:
( x 2)(x 3) ( 2) (3x 1)(2x 1)
( 1)
4
(3)
2 2 (x+y)(x –xy+y )
注 意 !
2.(3a–2)(a–1)–(a+1)(a+2)是多项 式的积与积的差,后两个多项式 乘积的展开式要用括号括起来。
计算:
(2x 3)(x 2) ( x 1)
2
例 运动会举行200米赛 跑,每条跑道的道宽为1.22 米,比赛的终点线定在C处, 由于不同跑道上的运动员 要经过不同的弯道,因此他 们不应从同一起跑线上起 跑,问第一、第二两道上的 运动员的起跑线应相隔多 远才比较公平?(精确到 0.01米)
3
2 2
2
2
3
(4)4ab[2a b (ab ab ) 3b]
2 2
4ab[2a b (ab 3b ab 3b)]
2 2
4ab[2a b 3ab 3ab ] 3 2 8a b 12a 2b3 12a 2b4 .
2
2
3
3计算 (1)(2a+b)2
(2) (3a–2)(a–1)–(a+1)(a+2)
注 意 !
1.计算(2a+b)2应该这样做:
(2a+b)2=(2a+b)(2a+b) =4a2+2ab+2ab+b2 =4a2+4ab+b2
切记 一般情况下 (2a+b)2不等于4a2+b2 .
2
观察上面四个等式,你能发现什么规律? 你能根据这个规律解决下面的问题吗?
口答:
ab (a b) x _____ ( x a)(x b) x _____
2
(- 2) (- 35) ( x-7)( x+5) x __ x __
2
提高题:
1 1 (3) y y 2 3 3 (4) 2 x 4 6 x 4
(5)(m+3n)(m-3n)
(6)
x 2
2
课堂练习 1.(x+5)(x-7)
2.(x+5y)(x-7y) 3.(2m+3n)(2m-3n) 4.(2a+3b)(2a+3b)
活动& 探索
2 填空: 5 x __ 6 ( x 2)(x 3) x __
( x 2)(x 3) x __ __ 1 x (-6) 2 ( x 2)(x 3) x (-1) __ x (-6) __ 2 6 ( x 2)(x 3) x (-5) __ x __
多 项 式 与 多 项 式 相 乘
2
1
(a+b)(m+n)=am+an+bm+bn
1
(a+b)(m+n)= am+an +bm+bn
3 4
2
3
4
多项式的乘法法则:
多项式与多项式相乘,先用一个 多项式的每一项分别乘以另一个多项 式的每一项,再把所得的积相加。
学前准备
这些你会吗? 1、-x3y2(x+3y) 解 原式=-x4y2-3x3y3
2、-2xy3(x-3y) 解 原式=-2x2y3+6xy4
(3) x( x xy y ) y( x xy y )
2 2 2 2
x x y xy x y xy y 3 3 2 x 2x y y ;
多 项 式 与 多 项 式 相 乘
课后思考
小东找来一张挂历画包数 学课本,已知课本长a厘米, 宽b厘米,厚c厘米,小东想 将课本封面与封底的每一边 都包进去m厘米。问小东应在 挂历画上裁下一块多大面积43;2)(x+3) (2)(a-4)(a+1)
文文帮爸爸把原长为m米宽为b米的菜地加长了n米, 拓宽了a米,你能迅速表示出这块菜地现在的总面积 吗?你还能用更多的方法表示吗?
a b
am
an bn
n
(1) (a+b)(m+n)
bm
m
(2) m(a+b)+n(a+b)
(3) a(m+n)+b(m+n)
(4)am+an+bm+bn
(a+b)(m+n)=am+an+bm+bn
1.先化简,后求值
(a b)(a ab b ) b (b a) a
2 2 2
2
2.若 x px 3 x 2x q
2 2
的乘积中,不含 x 和
P,q的值.
2
x
3
项,试求
多 项 式 与 多 项 式 相 乘
说一说:
你注意到了吗?
多项式乘以多项式,展 开后项数很有规律,在合并 同类项之前,展开式的项数 恰好等于两个多项式的项数 的积。
学一学
多 项 式 与 多 项 式 相 乘
2计算: (1)(3x-2)(2x-3)(x+2)
2 2 (2)(a-b)(a+b)(a -b )
三个多项式相乘,应该选 其中的两个先相乘,把它 们的积用括号括起来,再 与第三个相乘。