大学物理课后习题答案(上下册全)武汉大学出版社 习题2详解
大物下册课后习题答案
大物下册课后习题答案大物下册课后习题答案大学物理是一门重要的基础学科,它涉及到我们周围的自然现象和物质运动规律的研究。
作为学习大学物理的学生,课后习题是巩固知识、提高能力的重要途径。
下面将为大家提供大物下册课后习题的答案,希望对大家的学习有所帮助。
第一章:运动的描述1. 速度与位移的区别是什么?答:速度是描述物体在单位时间内位移的快慢,是矢量量,有大小和方向;位移是描述物体从一个位置到另一个位置的距离和方向,是矢量量,有大小和方向。
2. 什么是匀速直线运动?答:匀速直线运动是指物体在相等时间内位移相等的运动。
在匀速直线运动中,速度大小和方向保持不变。
3. 什么是加速度?答:加速度是描述物体速度变化率的物理量,是矢量量,有大小和方向。
加速度的大小等于速度变化量与时间的比值。
第二章:牛顿定律与运动学1. 牛顿第一定律是什么?答:牛顿第一定律,也称为惯性定律,指出当物体受力为零时,物体将保持静止或匀速直线运动的状态。
2. 什么是牛顿第二定律?答:牛顿第二定律指出,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
即F=ma,其中F为物体所受合力,m为物体的质量,a为物体的加速度。
3. 什么是牛顿第三定律?答:牛顿第三定律指出,任何一个物体受到的作用力都有一个大小相等、方向相反的反作用力作用在另一个物体上。
第三章:动能、功和能量守恒定律1. 动能是什么?答:动能是物体由于运动而具有的能量,它与物体的质量和速度的平方成正比。
动能的表达式为:K=1/2mv²,其中K为动能,m为物体的质量,v为物体的速度。
2. 什么是功?答:功是描述力对物体做功的物理量,它等于力与物体位移的乘积。
功的表达式为:W=Fs,其中W为功,F为力,s为物体的位移。
3. 能量守恒定律是什么?答:能量守恒定律指出,在一个封闭系统内,能量的总量是不变的。
能量可以相互转化,但不能被创造或破坏。
第四章:动量和碰撞1. 动量是什么?答:动量是物体运动的量度,它等于物体的质量与速度的乘积。
(完整版)大学物理学上下册习题与答案
习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03 q . (B) 04 q (C) 03 q . (D) 06 q [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02(B)S q 022 (C) 2022S q (D) 202Sq [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q ,M 点有负电荷q .今将一试验电荷0q 从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V ]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)[C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E . (B) 电势M N U U .(C) 电势能M N W W . (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q 和2q 的两个点电荷分别置于1x m 和1x m 处.一试验电荷置于x 轴上何处,它受到的合力等于零? x2q q 0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x 即:22221(2)0121011x x x x22212210x x x x2610(322)x x x m 。
(完整版)大学物理课后习题答案详解
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解
3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
大学物理课后习题及答案
习 题 二2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。
[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 t v mma f d d == 即 tvm kv d d ==-所以 t m kv v d d -=对等式两边积分 ⎰⎰-=tv v t m k v v 0d d 0得 t mkv v -=0ln因此 t m kev v -=0(2) 由牛顿第二定律 x vmv t x x v m t v m ma f d d d d d d d d ==== 即 x vmv kv d d =-所以 v x mkd d =-对上式两边积分 ⎰⎰=-000d d v sv x m k得到 0v s mk-=-即 kmv s 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得即 tvm ma kv F mg d d ==--整理得mtkv F mg v d d =-- 对上式两边积分⎰⎰=--t vmt kv F mg v00d d得 mktF mg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。
[解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
大学物理课后习题答案上册和下册
大学物理习题及解答习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理课本课后习题答案
大学物理课本课后习题答案大学物理课本课后习题答案作为大学物理课程的一部分,课后习题是学生巩固所学知识、培养解决问题能力的重要环节。
然而,很多学生在自学过程中会遇到一些难题,特别是对于一些较为复杂的习题,往往很难找到正确的答案。
为了帮助学生更好地理解和掌握物理知识,本文将提供一些大学物理课本课后习题的答案,供学生参考和学习。
第一章:运动的描述1. 一个物体在2秒内沿直线运动,初速度为2m/s,加速度为3m/s²。
求物体在2秒内的位移。
答案:利用公式s = ut + 0.5at²,代入已知数据得到s = 2 × 2 + 0.5 × 3 × 2² = 10m。
2. 一个物体从静止开始做匀加速直线运动,加速度为2m/s²,经过5秒后速度为10m/s。
求物体在这段时间内的位移。
答案:利用公式v = u + at,代入已知数据得到10 = 0 + 2 × 5,解得加速度为2m/s²。
再利用公式s = ut + 0.5at²,代入已知数据得到s = 0 × 5 + 0.5 × 2 × 5² = 25m。
第二章:力和运动1. 一个质量为2kg的物体受到一个10N的力,求物体的加速度。
答案:根据牛顿第二定律F = ma,代入已知数据得到10 = 2a,解得加速度为5m/s²。
2. 一个质量为3kg的物体受到一个5N的力,求物体的加速度。
答案:根据牛顿第二定律F = ma,代入已知数据得到5 = 3a,解得加速度为5/3m/s²。
第三章:牛顿定律和万有引力1. 一个质量为5kg的物体在水平面上受到一个10N的水平力和一个5N的竖直向下的重力,求物体的加速度。
答案:根据牛顿第二定律F = ma,水平方向上的合力为10N,竖直方向上的合力为5N,代入已知数据得到10 = 5a,解得加速度为2m/s²。
大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解.pdf
3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
大学物理第二册习题答案详解
(1)在带电直线上取线元 ,其上电量 在 点产生电势为
(2)同理
8-19如题8-19图所示的绝缘细线上均匀分布着线密度为 的正电荷,两直导线的长度和半圆环的半径都等于 .试求环中心 点处的场强和电势.
解:(1)由于电荷均匀分布与对称性, 和 段电荷在 点产生的场强互相抵消,取
则 产生 点 如图,由于对称性, 点场强沿 轴负方向
答:(1)电容器两极板间距减小时:电荷不变,场强不变,电势差变小,电容变大,电容器储能减少。
(2)电荷增加,场强变大,电势差不变,电容变大,电容器储能增加。
9-4电容分别为C1,C2的两个电容器,将它们并联后用电压U充电与将它们串联后用电压2U充电的两种情况下,哪一种电容器组合储存的电量多?哪一种储存的电能大?
解:如题8-16图示
∴
8-17电荷q均匀分布在半径为R的球体内,试证明离球心r(r<R)处的电势为U=
证:场的分布具有球对称性,取同心球面为高斯面
r<R: ,
r>R: ,
∴
8-18电量q均匀分布在长2l的细直线上.试求:(1)带电直线延长线上离中点为r处的电势;(2)带电直线中垂线上离中点为r处的电势.
习题八
8-1根据点电荷场强公式 ,当被考察的场点距源点电荷很近(r→0)时,则场强E→∞,这是没有物理意义的,对此应如何理解?
解: 仅对点电荷成立,当 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.
8-2在真空中有 , 两平行板,相对距离为 ,板面积为 ,其带电量分别为+ 和- .则这两板之间有相互作用力 ,有人说 = ,又有人说,因为 = , ,所以 = .试问这两种说法对吗?为什么? 到底应等于多少?
大学物理教材课后习题参考答案
1.7 一质点的运动学方程为22(1,)x t y t ==-,x 和y 均以为m 单位,t 以s 为单位,试求:(1)质点的轨迹方程;(2)在t=2s 时,质点的速度v 和加速度a 。
解:(1)由运动学方程消去时间t 可得质点的轨迹方程,将t =21)y = 或1=(2)对运动学方程微分求速度及加速度,即 2x dx v t dt == 2(1)y dyv t dt==- 22(1)v ti t j =+- 22y x x y dv dva a dtdt==== 22a i j =+当t=2s 时,速度和加速度分别是42v i j =+ /m s 22a i j =+ 2/m s1.8 已知一质点的运动学方程为22(2)r ti t j =+- ,其中, r ,t 分别以 m 和s 为单位,试求:(1) 从t=1s 到t=2s 质点的位移;(2) t=2s 时质点的速度和加速度;(3) 质点的轨迹方程;(4)在Oxy 平面内画出质点运动轨迹,并在轨迹图上标出t=2s 时,质点的位矢r,速度v 和加速度a 。
解: 依题意有 x = 2t (1) y = 22t - (2)(1) 将t=1s,t=2s 代入,有(1)r = 2i j + , (2)42r i j =-故质点的位移为 (2)(1)23r r r i j ∆=-=-(2) 通过对运动学方程求导可得22dx dy v i j i t j dt dt =+=- 22222d x d y a i j j dt dt=+=-当t=2s 时,速度,加速度为 24v i j =- /m s 2a j =- 2/m s(3) 由(1)(2)两式消去时间t 可得质点的轨迹方程 22/4y x =- (4)图略。
1.11 一质点沿半径R=1m 的圆周运动。
t=0时,质点位于A 点,如图。
然后沿顺时针方向运动,运动学方程2s t t ππ=+,其中s 的单位为m ,t 的单位为s ,试求:(1)质点绕行一周所经历的路程,位移,平均速度和平均速率;(2)质点在第1秒末的速度和加速度的大小。
大学物理上册课后练习答案解析
初速度大小为dt1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。
现测得其加速度 a = A-B V ,式中A 、1-1 已知质点的运动方程为:x 10t30t 2 ,y 15t 20t 2。
式中x 、y 的单位为m , t 的单位为s 。
试求: (1)初速度的大小和方向;(2)加速度的大小和方向。
分析由运动方程的分量式可分别求出速度、 加速度 分析本题亦属于运动学第二类问题,与上题不同之 处在于加速度是速度 V 的函数,因此 需将式d V = a (V )d t 分离变量为-d ^ dt 后再两边积分.a(v)的分量 再由运动合成算出速度和加速度的大小和方向. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.vdv dv v 0A Bv(3)船在行驶距离 x 时的速率为v=v 0e kx 。
一 dv[证明](1)分离变数得 — kdt ,v第一章质点的运动B 为正恒量,求石子下落的速度和运动方程。
解(1)速度的分量式为Vv y当 t = 0 时,V o x = -10 m sdx10 60tdt dy15 40t dt-1, V o y = 15 m-1(1)由题dvadt 用分离变量法把式 A Bv(1)改写为dvA Bv将式(2)两边积分并考虑初始条件,有(1)dt ⑵V 0 V 0x V 0y 18.0m得石子速度 V -(1 e Bt)B 设V o 与x 轴的夹角为a 则tanV 0y V ox由此可知当,t is 时,v A为一常量,通常称为极限速度Ba= 123 °1(2)加速度的分量式为a x dV x dt 60a ydV y dt40或收尾速度.(2)再由v—y —(1 e 氏)并考虑初始条件有dt BytABtdy -(1 e )dt 0 0 BA A得石子运动方程y t 2 (e Bt 1)B B 2则加速度的大小为 a .. a x 2a y 272.1 ms 2a y2 设a 与x 轴的夹角为B,则tan B -a x3B= -33 °1 '(或326 °9 )1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于 阻力得到一个与速度反向、 大小与船速平方成正比例的加 速度,即a = - kv 2, k 为常数。
大学物理课后习题答案(上下册全)武汉大学出版社 习题2详解
2-1 如题2-1图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为[ ]A. 3mg .B. 2mg .C. 1mg .D. 8mg / 3.答案: D题 2-1图 2-2 一质点作匀速率圆周运动时,[ ] A.它的动量不变,对圆心的角动量也不变。
B.它的动量不变,对圆心的角动量不断改变。
C.它的动量不断改变,对圆心的角动量不变。
D.它的动量不断改变,对圆心的角动量也不断改变。
答案: C2-3 质点系的内力可以改变[ ] A.系统的总质量。
B.系统的总动量。
C.系统的总动能。
D.系统的总角动量。
答案: C2-4 一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头。
不计水和空气阻力,则在此过程中船将:[ ] A.不动 B.后退LC.后退L 21 D.后退L 31答案: C2-5 对功的概念有以下几种说法:[ ]①保守力作正功时,系统内相应的势能增加。
②质点运动经一闭合路径,保守力对质点作的功为零。
③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:A.①、②是正确的。
B.②、③是正确的。
C.只有②是正确的。
D.只有③是正确的。
答案: C2-6 某质点在力(45)F x i =+(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m的过程中,力F所做功为 。
答案: 290J2-7 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最小加速度 。
< < < < <m 2m答案: ()cos sin g μθθ-2-8 一质量为1Kg 的球A ,以5m /s 的速率与原来静止的另一球B 作弹性碰撞,碰后A 球以4m /s 的速率垂直于它原来的运动方向,则B 球的动量大小为 。
大学物理课后习题答案(上下册全)武汉大学出版社 第7章 热力学基础习题解答
第7章 热力学基础7-1在下列准静态过程中,系统放热且内能减少的过程是[ D ] A .等温膨胀. B .绝热压缩. C .等容升温. D .等压压缩.7-2 如题7-2图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A →B 等压过程; A →C 等温过程; A →D 绝热过程 . 其中吸热最多的过程是[ A ] A .A →B 等压过程 B .A →C 等温过程.C .A →D 绝热过程. 题7-2图 D .A →B 和A → C 两过程吸热一样多.7-3 一定量某理想气体所经历的循环过程是:从初态(V 0 ,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度T 0, 最后经等温过程使其体积回复为V 0 , 则气体在此循环过程中[ B ]A .对外作的净功为正值.B .对外作的净功为负值.C .内能增加了.D .从外界净吸收的热量为正值. 7-4 根据热力学第二定律,判断下列说法正确的是 [ D ] A .功可以全部转化为热量,但热量不能全部转化为功.B .热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体.C .不可逆过程就是不能向相反方向进行的过程.D .一切自发过程都是不可逆的.7-5 关于可逆过程和不可逆过程有以下几种说法,正确的是[ A ] A .可逆过程一定是准静态过程. B .准静态过程一定是可逆过程. C .无摩擦过程一定是可逆过程.D .不可逆过程就是不能向相反方向进行的过程.7-6 理想气体卡诺循环过程的两条绝热线下的面积大小(题7-6图中阴影部分)分别为S 1和S 2 , 则二者的大小关系是[ B ] A .S 1 > S 2 . B .S 1 = S 2 .C .S 1 < S 2 .D .无法确定. 题7-6图 7-7 理想气体进行的下列各种过程,哪些过程可能发生[ D ] A .等容加热时,内能减少,同时压强升高 B . 等温压缩时,压强升高,同时吸热 C .等压压缩时,内能增加,同时吸热 D .绝热压缩时,压强升高,同时内能增加7-8 在题7-8图所示的三个过程中,a →c 为等温过程,则有[ B ] A .a →b 过程 ∆E <0,a →d 过程 ∆E <0. B .a →b 过程 ∆E >0,a →d 过程 ∆E <0. C .a →b 过程 ∆E <0,a →d 过程 ∆E >0.D .a →b 过程 ∆E >0,a →d 过程 ∆E >0. 题7-8图7-9 一定量的理想气体,分别进行如题7-9图所示的两个卡诺循环,若在p V -图上这两个循环过程曲线所围的面积相等,则这两个循环的[ D ] A .效率相等.B .从高温热源吸收的热量相等.C .向低温热源放出的热量相等.D .对外做的净功相等. 题7-9图7-10一定质量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单原子分子气体,则该过程中需吸热__500__ J ;若为双原子分子气体,则需吸热__700___ J 。
大学物理第二册习题答案详解 (修复的)
习题八8-1 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强E →∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-2 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-3 一个点电荷q 放在球形高斯面的中心,试问在下列情况下,穿过这高斯面的E 通量是否改变?高斯面上各点的场强E 是否改变?(1) 另放一点电荷在高斯球面外附近. (2) 另放一点电荷在高斯球面内某处.(3) 将原来的点电荷q 移离高斯面的球心,但仍在高斯面内.(4) 将原来的点电荷q 移到高斯面外.答:根据高斯定理,穿过高斯面的电通量仅取决于面内电量的代数和,而与面内电荷的分布情况及面外电荷无关,但各点的场强E 与空间所有分布电荷有关,故:(1) 电通量不变, Φ1=q 1 / ε0,高斯面上各点的场强E 改变(2) 电通量改变,由Φ1变为Φ2=(q 1+q 2 ) /ε 0,高斯面上各点的场强E 也变(3) 电通量不变,仍为Φ1.但高斯面上的场强E 会变 。
(4) 电通量变为0,高斯面上的场强E 会变.8-4 以下各种说法是否正确,并说明理由.(1) 场强为零的地方,电势一定为零;电势为零的地方,场强也一定为零.(2) 在电势不变的空间内,场强一定为零.(3) 电势较高的地方,场强一定较大;场强较小的地方,电势也一定较低.(4) 场强大小相等的地方,电势相同;电势相同的地方,场强大小也一定相等.(5) 带正电的带电体,电势一定为正;带负电的带电体,电势一定为负.(6) 不带电的物体,电势一定为零;电势为零的物体,一定不带电.答:场强与电势的微分关系是, U E -∇=.场强的大小为电势沿等势面法线方向的变化率,方向为电势降落的方向。
精选-大学物理上下册课后习题答案
=v
t+1at
(1)
图1-4
2
1
0
2
1gt2
y2
=h+v0t−
(2)
2
y1
=y2
(3)
解之
t=
2d
g+a
1-5.一质量为m的小球在高度h处以初速度v0水平抛出,求:
(1)小球的运动方程;
(2)小球在落地之前的轨迹方程;
(3)落地前瞬时小球的dr
,dv,dv.
dt
dt
dt
解:(1)
x = v0t
式(1)
y= 3 + 2t
消去t得轨道方程为:x=(y−3)2
2)v=ddrt=8ti+2j
r=∫01vdt=∫01(8ti+2j)dt=4i+2j
3)v(0)=2jv(1)=8i+2j
1-3.已知质点位矢随时间变化的函数形式为r=t2i+2tj,式中r的单位为
m,t的单位为s.求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
y = h−1gt2
式(2)
2
1gt2)j
r(t)=v0ti+(h -
2
(2)联立式(1)、式(2)得
y = h−
gx2
2v02
(3)
dr
= v0i- gtj
而落地所用时间
t =
2h
g
dt
所以
dr
= v0i-
2ghj
dv
=−gj
dt
dt
v =
v2x
+ v2y= v02
+ (−gt)2
《新编大学物理》(上、下全册)桑建平教材习题答案解析武汉大学出版社
第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别题1.2: 答案:[A]题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R r j ri ==-,21v v v ∆=-,12,v v v i v j =-=-题1.5: 答案:[D]提示:t=0时,x=5; t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返题1.6: 答案:[D]提示:a=2t=d dt v,2224t v tdt t ==-⎰,02tx x vdt -=⎰,即可得D 项题1.7:答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+v v v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率题1.9:答案:2915t t -,0.6 提示: 2915dxv t t dt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dydt dt =+v i j (2) t=1s 时,24t =-v i j ,4d dt==-va j (3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i j t=1s 到t=2s ,同样代入()t =r r 可求得26r∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s 提示:2(2)2412(/)dv d x a v x m s dt dt=====题1.12: 答案:1/m sπ提示: 200t dvv v dt t dt =+=⎰,11/t vm s ==,201332tv dt t R θπ===⎰,r π∆==题1.13:答案:2015()2t v t gt -+-i j 提示: 先对20(/2)v t g t =-r j 求导得,0()y v gt =-v j 与5=v i 合成得05()v gt =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQ v R Rt dt τ==,88a R τ==,2264n dQ a R t dt ⎛⎫== ⎪⎝⎭三、计算题 题1.15:解:(1)3t dv a t dt == 003v tdv tdt =∴⎰⎰ 232v t ∴= 又232ds v t dt == 20032stds t dt =∴⎰⎰ 312S t =∴ (2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434n v a t R == 4334t t =∴t =∴题1.16:解:(1)dv a kv dt ==- 0v tdv kdt v =-∴⎰⎰, 0ln v kt v =-(*) 当012v v =时,1ln 2kt =-,ln 2t k=∴ (2)由(*)式:0ktv v e-=0kt dxv e dt -=∴,000xtkt dx v e dt -=⎰⎰ 0(1)kt v x e k-=-∴第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2y y S v t t == x 方向上做匀加速运动(初速度为0),Fa m=22tx v a d t t ==⎰,223tx x t S v dt ==⎰ 2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg = 'F F = 杆受力 1()F Mg F M m g =+=+ 1()F M m g a M M+==题2.4 :答案:[D] 提示:a a A22A BA B m g T m a T m a aa ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45A a g = (2A B a a =,通过分析滑轮,由于A 向下走过S ,B 走过2S) 2A B a a =∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故 0(cos 60)()1010m mv m v =+ 共 0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h RRθ-=分析条件得,只有在h 高度时,向心力与重力分量相等所以有22cos ()mv mg v g h R Rθ=⇒=- 由机械能守恒得(以地面为零势能面)22001122mv mv mgh v =+⇒=题2.7: 答案:[B]提示: 运用动量守恒与能量转化题2.8: 答案:[D] 提示:v v y由机械能守恒得2012mgh mv v =⇒=0sin y v v θ=sin Gy Pmgv mg ==∴题2.9: 答案: [C]题2.10: 答案: [B]提示: 受力如图fT F由功能关系可知,设位移为x (以原长时为原点)2()xF mg Fx mgx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题题2.11: 答案:2mb提示: '2v x bt == '2a v b == 2F m a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N 8Nxy 0由题意,22/x a m s = 4x F N =8y F N = 2Fm k g a== 24/y y F a m s m==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+ 27/5v adt m s ⇒==⎰ 当t=2时,1110a =题2.14: 答案:180kg提示:由动量守恒,=m S -S m 人人人船相对S ()=180kg m ⇒船题2.15: 答案:11544+i j 提示:各方向动量守恒题2.16:答案: ()mv +i j ,0,-mgR提示:由冲量定义得 ==()()mv mv mv --=+I P P i j i j 末初- 由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合 =W m g R -外题2.17: 答案:-12提示:3112w Fdx J -==⎰题2.18:答案: mgh ,212kx ,Mm G r - h=0,x=0,r =∞ 相对值题2.19: 答案: 02mgk ,2mg,题2.20: 答案: +=0A∑∑外力非保守力三、计算题 题2.21:解:(1)=m F xg L 重 ()mf L xg L μ=- (2)1()(1)ga F f x g m Lμμ=-=+-重(3)dv a v dx =,03(1)v LL g vdv x g dx Lμμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,v =题2.22: 解:(1)以摆车为系统,水平方向不受力,动量守恒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-1 如题2-1图所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为[ ]A. 3mg .B. 2mg .C. 1mg .D. 8mg / 3.答案: D题 2-1图 2-2 一质点作匀速率圆周运动时,[ ] A.它的动量不变,对圆心的角动量也不变。
B.它的动量不变,对圆心的角动量不断改变。
C.它的动量不断改变,对圆心的角动量不变。
D.它的动量不断改变,对圆心的角动量也不断改变。
答案: C2-3 质点系的内力可以改变[ ] A.系统的总质量。
B.系统的总动量。
C.系统的总动能。
D.系统的总角动量。
答案: C2-4 一船浮于静水中,船长L ,质量为m ,一个质量也为m 的人从船尾走到船头。
不计水和空气阻力,则在此过程中船将:[ ] A.不动 B.后退LC.后退L 21 D.后退L 31答案: C2-5 对功的概念有以下几种说法:[ ]①保守力作正功时,系统内相应的势能增加。
②质点运动经一闭合路径,保守力对质点作的功为零。
③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:A.①、②是正确的。
B.②、③是正确的。
C.只有②是正确的。
D.只有③是正确的。
答案: C2-6 某质点在力(45)F x i =+(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m的过程中,力F所做功为 。
答案: 290J2-7 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最小加速度 。
< < < < <m 2m答案: ()cos sin g μθθ-2-8 一质量为1Kg 的球A ,以5m /s 的速率与原来静止的另一球B 作弹性碰撞,碰后A 球以4m /s 的速率垂直于它原来的运动方向,则B 球的动量大小为 。
答案: 6.4Kg m /s ⋅2-9 一个质点在恒力359F i j k =--+ (SI)的作用下产生的位移为:456r i j k ∆=-+(SI),则此力在该位移过程中所作的功为 . 答案: 67J2-10 如题2.10图所示,一圆锥摆,质量为m 的小球在水平面内以角速度ω匀速转动.在小球转动一周的过程中:(1)小球动量增量的大小等于 ;(2)小球所受重力的冲量的大小等于 ;(3)小球所受绳子拉力的冲量大小等于 。
题2-10图 答案: 0,2mgπω,2mgπω2-11 在下列情况下,说明质点所受合力的特点:(1)质点作匀速直线运动; (2)质点作匀减速直线运动; (3)质点作匀速圆周运动; (4)质点作匀加速圆周运动。
解:(1)所受合力为零;(2)所受合力为大小、方向均保持不变的力,其方向与运动方向相反; (3)所受合力为大小保持不变、方向不断改变总是指向圆心的力;(4)所受合力为大小和方向均不断变化的力,其切向力的方向与运动方向相同,大小恒定;法向力方向指向圆心。
2-12 质量为0.5Kg 的质点,受一外力3F ti =(SI )的作用,t 为时间。
0=t 时该质点以2j =v (SI )的速度通过坐标原点,求该质点在任意时刻的位置矢量r 。
解: 6Fa ti m ==21d (6)d 3a t C ti t C t i C =+=+=+⎰⎰ v根据题意:0=t 时,2j =v ,则 12C j =232t i j =+ v23222d (32)d 2r t C t i j t C t i tj C =+=++=++⎰⎰ v2-13 一质量为M ,角度为θ的劈形斜面A ,放在粗糙的水平面上,斜面上有一质量为m 的物体B ,沿斜面下滑,如图所示.若A ,B 之间的滑动摩擦系数为μ,且B 下滑时A 保持不动,求斜面A 受到地面压力和摩擦力各多大?解:以A为研究对象,受力图如图所示X 方向:0cos sin 12='-'+-θθf N f B (1) Y 方向:0cos sin 1='-'--θθBA N f Mg N (2) 同时,θμcos 11mg f f ='=(3)θcos mg N N BB ='= (4) (1)、(2)、(3)、(4)联立求解:θθμθθθsin cos cos sin cos 21mg mg Mg f N Mg N BA ++='+'+=θμθθθθ212cos sin cos cos sin mg mg f N f B-='-'=题2-13图 题2-14图2-14 如图所示(圆锥摆),长为l 的细绳一端固定在天花板上,另一端悬挂质量为m 的小球,小球经推动后,在水平面内绕通过圆心O 的铅直轴作角速度为ω的匀速率圆周运动. 问绳和铅直方向所成的角度θ为多少?空气阻力不计.解: T F P m a+=22T n sin F ma m mr rθω===vT c o s 0F P θ-= s i n r l θ= T c o s F P θ=,2T F m l ω=2a r c c o s glθω=gm BN1fABθ2-15 如题2-15图所示,质量为m 的物体通过不可伸长的绳跨过定滑轮与水平轻质弹簧(劲度系数为k )相连。
当弹簧为自然伸长时,将物体从静止开始释放,求物体下落任一距离x 时的加速度及速度大小(应用牛顿运动定律求解)。
解:以物体为研究对象⑴ 由m =F a 得 kx mg f mg ma-=-=x mkg a -= ⑵再由 dxdv v dt dx dx dv dt dv a =⋅==两边积分: ⎰⎰=vdv adx⎰⎰=-v xvdv dx x mkg 00)( 22xmk gx v -=题2-15 图 题2-16图2-16 如题2-16图,质量为2m 的斜面可在光滑的水平面上滑动,斜面倾角为α,质量为1m 的运动员与斜面之间亦无摩擦,求运动员相对于斜面的加速度及其对斜面的压力。
解:以相对地面向右作加速直线运动的斜面为参考系(非惯性系,设斜面相对地的加速度为a 2),取m 1为研究对象,其受力及运动情况如左图所示,其中N 1为斜面对人的支撑力,f *为惯性力,a'即人对斜面的加速度,方向显然沿斜面向下,选如图所示的坐标系o'-x'y',应用牛顿第二定律建立方程:y N 2 a 2 x N 1'=N 1 α m 2g αx' N 1a' f*=m 1ay' m 1gαm 1m 2αkmx⎩⎨⎧=+=+-)2('cos sin )1(0sin cos 12112111a m a m g m a m g m N αααα再以地为参考系,取m 2为研究对象,其受力及运动情况如右图所示,选图示坐标o-xy,应用牛顿第二定律建立方程:⎩⎨⎧=--=)4(0cos )3(sin 122221 ααN g m N a m N 联立,即可求得:g m m m m a g m m m m N αααα21221212211sin sin )('sin cos ++=+=2-17 如图所示,质量为 1.5kg M =的物体,用一根长为 1.25m l =的细绳悬挂在天花板上,今有一质量为10g m =的子弹以0500m /s =v 的水平速度射穿物体,刚穿出物体时子弹的速度大小30m /s =v ,设穿透时间极短。
求:(1)子弹刚穿出时绳中张力的大小; (2)子弹在穿透过程中所受的冲量. 解:子弹与物体组成的系统水平方向动量守恒,设子弹刚穿出物体时的物体速度为'v ,有 0m m M '=+v v v0(m M '=v v -v)/(1)绳中张力 2/T Mg M l '=+v220()/()26.5N Mg m Ml =+=v - v(2)子弹所受冲量 0() 4.7N S I m ==- v -v 负号表示与子弹入射方向相反.2-18一颗子弹由枪口射出时速率为10m s -⋅v ,当子弹在枪筒内被加速时,它所受的合力为() N F a bt =-)(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得bat =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将b a t =代入,得 ba I 22=l mv 0 vM 题2-17图(3)由动量定理可求得子弹的质量202bv a v I m == 2-19 一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v +m kT 2, v -kmT2证明: 设一块为1m ,则另一块为2m ,21km m =及m m m =+21于是得 1,121+=+=k mm k km m ① 又设1m 的速度为1v , 2m 的速度为2v ,则有 2222211212121mv v m v m T -+=② 2211v m v m mv += ③ 联立①、③解得12)1(kv v k v -+= ④ 将④代入②,并整理得21)(2v v kmT-= 于是有 kmT v v 21±= 将其代入④式,有mkTv v 22±= 又,题述爆炸后,两弹片仍沿原方向飞行,故只能取1222,T kTv v v v km m=-=+证毕.2-20 设76N =-合F i j .(1) 当一质点从原点运动到3416m =-++r i j k 时,求F 所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化.解: (1)由题知,合F为恒力,∴ )1643()67(k j i j i r F A++-⋅-=⋅=合J 452421-=--= (2) w 756.045==∆=t A P (3)由动能定理,J 45-==∆A E k2-21 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如图,则铁钉所受阻力为ky f -=第一锤外力的功为1A⎰⎰⎰==-='=ssky ky y f y f A 112d d d ① 式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y k ky y ky A②由题意,有2)21(212kmv A A =∆== ③即 222122kk ky =-所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-22 设已知一质点(质量为m )在其保守力场中位矢为r点的势能为()/nP E r k r =-, 试求质点所受保守力的大小和方向.解: 1d ()()d p n E r nk F r rr +=-=-方向与位矢r的方向相反,方向指向力心.2-23 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端又挂一重物C ,C 的质量为M ,如题2-23图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-23图所示平衡时,有Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆ 弹性势能之比为 题2-23图12222211121212k kx k x k E E p p =∆∆=2-24 如图所示,倔强系数为k 的弹簧,一端连在墙上,另一端连一质量为m 1的木块。