高中数学北师大版选修1-2+1.1归纳推理教案
高中数学(北师大版)选修2-2教案:第1章 归纳推理 参考教案1
归纳推理一、教学目标1.知识与技能:(1)结合已学过的数学实例,了解归纳推理的含义;(2)能利用归纳进行简单的推理;(3)体会并认识归纳推理在数学发现中的作用.2.方法与过程:归纳推理是从特殊到一般的一种推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
3.情感态度与价值观:通过本节学习正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析事物、发现事物之间的质的联系的良好品质,善于发现问题,探求新知识。
二、教学重点:了解归纳推理的含义,能利用归纳进行简单的推理。
教学难点:培养学生“发现—猜想—证明”的归纳推理能力。
三、教学方法:探析归纳,讲练结合四、教学过程(一)、引入新课归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。
归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。
也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。
拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。
由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。
”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。
这里就有着归纳推理的运用。
从一个或几个已知命题得出另一个新命题的思维过程称为推理。
见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理 (二)、例题探析例1、在一个凸多面体中,试通过归纳猜想其顶点数、棱数、面数满足的关系。
解:考察一些多面体,如下图所示:将这些多面体的面数(F )、棱数(E )、顶点数(V )列出,得到下表: 多面体面数(F )棱数(E )顶点数(V )三棱锥 4 6 4 四棱锥 5 8 5 五棱锥 6 10 6 三棱柱 5 9 6 五棱柱 7 15 10 立方体 6 12 8 八面体 8 12 6 十二面体 123020从这些事实中,可以归纳出:V-E+F=2例2、如果面积是一定的,什么样的平面图形周长最小,试猜测结论。
最新-高中数学 归纳推理的课件 北师大版选修1-2 精品
第二节 完全归纳推理
• 一、什么是完全归纳推理
• 完全归纳推理是根据某类事物中每一个对象具有某种属性, 推出该类事物的全部对象都具有这种属性的推理。
• 完全归纳推理的结构可用公式表示为 : • S1是(或不是)P; • S2是(或不是)P; • S3是(或不是)P; • …… • Sn是(或不是)P。 • S1、S2、 S3……Sn是S类中的全部对象, • 所以,所有的S都是(或不是)P。
• 三、求同求异并用法
• 1、求同求异并用法的内容
• 求同求异并用法亦称“契合差异并用法”, 其基本内容是:有两组场合,一组是由被 研究现象出现的若干场合组成的,称正面 场合;另一组是由被研究现象不出现的若 干场合组成的,称反面场合。如果在被研 究现象出现的一组场合中,只有一个共同 情况,而在被研究现象不出现的一组场合 中,却都没有这个情况,那么,这个情况 就与被研究现象之间有因果联系。
• 2、求异法的逻辑形式
• 求异法可用图式表示为:
•
场合
相关情况
被研究现象
•
(1) A、B、C、D
a
•
(2) — B、C、D
—
•
……
• 所以,A与a之间有因果关系。
• 3、运用求异法应注意的问题
• 第一,两个场合有无其他差异情况。
• 第二,两个场合中惟一不同的情况是被研究现象的 整个原因还是部分原因。
重复中未遇到相反的情况。 • 所以,一切S都是P。
• 2.提高简单枚举法结论可靠性的方法
• 简单枚举法的结论是或然的,要提高其结论 的可靠性,就应该做到以下几点:
• ⑴ 前提中考察的对象要尽可能多些。因为某 类事物中被考察的对象越多,则漏掉相反情 况的可能性就越小,推理的根据就越充分, 因而结论的可靠程度就越高。
高中数学复习课二推理与证明教案含解析北师大版选修1_2
复习课(二) 推理与证明[对应学生用书P43]其中归纳推理出现的频率较高,重点考查归纳、猜想、探究、类比等创新能力.[考点精要]1.归纳推理的特点及一般步骤2.类比推理的特点及一般步骤[典例] (1)在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.(2)观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, ……,据此规律,第n 个等式可为_________________________________. [解析] (1)正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127. (2)等式的左边的通项为12n -1-12n ,前n 项和为1-12+13-14+…+12n -1-12n ;右边的每个式子的第一项为1n +1,共有n 项,故为1n +1+1n +2+…+1n +n. [答案] (1)127 (2)1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n[类题通法](1)用归纳推理可从具体事例中发现一般规律,但应注意,仅根据一系列有限的特殊事例,所得出的一般结论不一定可靠,其结论的正确与否,还要经过严格的理论证明.(2)进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.[题组训练]1.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数.则f (4)=________,f (n )=________.解析:因为f (1)=1,f (2)=7=1+6,f (3)=19=1+6+12,所以f (4)=1+6+12+18=37,所以f (n )=1+6+12+18+…+6(n -1)=3n 2-3n +1.答案:37 3n 2-3n +12.若数列{a n }为等差数列,S n 为其前n 项和,则有性质“若S m =S n (m ,n ∈N *且m ≠n ),则S m -n =0.”类比上述性质,相应地,当数列{b n }为等比数列时,写出一个正确的性质:________________________________________________________________________________________________________________________________________________. 答案:数列{b n }为等比数列,T m 表示其前m 项的积,若T m =T n ,(m ,n ∈N *,m ≠n ),则T m -n =1(1)获得解题思路以及用综合法有条理地表达证明过程.(2)理解综合法与分析法的概念及区别,掌握两种方法的特点,体会两种方法的相辅相成、辩证统一的关系,以便熟练运用两种方法解题.[考点精要](1)综合法:是从已知条件推导出结论的证明方法;综合法又叫做顺推证法或由因导果法.(2)分析法:是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“只需证……”等分析到一个明显成立的结论P ,再说明所要证明的数学问题成立.[典例] 设a >0,b >0,a +b =1, 求证:1a +1b +1ab≥8.[证明] 法一:综合法 因为a >0,b >0,a +b =1,所以1=a +b ≥2ab ,ab ≤12,ab ≤14,所以1ab≥4,又1a +1b=(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥4,所以1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).法二:分析法因为a >0,b >0,a +b =1,要证1a +1b +1ab≥8.只要证⎝ ⎛⎭⎪⎫1a +1b +a +b ab≥8, 只要证⎝ ⎛⎭⎪⎫1a +1b +⎝ ⎛⎭⎪⎫1b +1a ≥8,即证1a +1b≥4.也就是证a +b a +a +bb≥4. 即证b a +a b≥2,由基本不等式可知,当a >0,b >0时,b a +a b≥2成立, 所以原不等式成立.[类题通法]综合法和分析法的特点(1)综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题的常用的方法,综合法是由因导果的思维方式,而分析法的思路恰恰相反,它是执果索因的思维方式.(2)分析法和综合法是两种思路相反的推理方法:分析法是倒溯,综合法是顺推,二者各有优缺点.分析法容易探路,且探路与表述合一,缺点是表述易错;综合法条理清晰,易于表述,因此对于难题常把二者交互运用,互补优缺,形成分析综合法,其逻辑基础是充分条件与必要条件.[题组训练]1.若a >b >c >d >0且a +d =b +c , 求证:d +a <b +c . 证明:要证d +a <b +c , 只需证(d +a )2<(b +c )2, 即a +d +2ad <b +c +2bc , 因a +d =b +c ,只需证ad <bc ,即ad<bc,设a+d=b+c=t,则ad-bc=(t-d)d-(t-c)c=(c-d)(c+d-t)<0,故ad<bc成立,从而d+a<b+c成立.2.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R有f(a+b)=f(a)·f(b).(1)证明:f(0)=1;(2)证明:对任意的x∈R,恒有f(x)>0.证明:(1)令a=b=0,得f(0)=f(0)·f(0),又f(0)≠0,所以f(0)=1.(2)由已知当x>0时,f(x)>1,由(1)得f(0)=1,故当x≥0时,f(x)>0成立.当x<0时,-x>0,所以f(-x)>1,而f(x-x)=f(x)f(-x),所以f(x)=1f -x,可得0<f(x)<1.综上,对任意的x∈R,恒有f(x)>0成立.(1)问.(2)反证法是间接证明的一种基本方法,使用反证法进行证明的关键是在正确的推理下得出矛盾.[考点精要]1.使用反证法应注意的问题:利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.2.一般以下题型用反证法:(1)当“结论”的反面比“结论”本身更简单、更具体、更明确;(2)否定性命题、唯一性命题,存在性命题、“至多”“至少”型命题;(3)有的肯定形式命题,由于已知或结论涉及无限个元素,用直接证明比较困难,往往用反证法.[典例] (1)否定:“自然数a,b,c中恰有一个偶数”时正确的反设为( )A.a,b,c都是偶数B .a ,b ,c 都是奇数C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数(2)已知:ac ≥2(b +d ).求证:方程x 2+ax +b =0与方程x 2+cx +d =0中至少有一个方程有实数根.[解析] (1)自然数a ,b ,c 的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a ,b ,c 中恰有一个偶数”时正确的反设为“a ,b ,c 中都是奇数或至少有两个偶数.”答案:D(2)证明:假设两方程都没有实数根.则Δ1=a 2-4b <0与Δ2=c 2-4d <0,有a 2+c 2<4(b +d ),而a 2+c 2≥2ac ,从而有4(b +d )>2ac ,即ac <2(b +d ), 与已知矛盾,故原命题成立. [类题通法]反证法是利用原命题的否命题不成立则原命题一定成立来进行证明的,在使用反证法时,必须在假设中罗列出与原命题相异的结论,缺少任何一种可能,反证法都是不完全的.[题组训练]1.已知x ∈R ,a =x 2+12,b =2-x ,c =x 2-x +1,试证明a ,b ,c 至少有一个不小于1.证明:假设a ,b ,c 均小于1,即a <1,b <1,c <1, 则有a +b +c <3,而a +b +c =2x 2-2x +12+3=2⎝ ⎛⎭⎪⎫x -122+3≥3,两者矛盾,所以假设不成立, 故a ,b ,c 至少有一个不小于1.2.设二次函数f (x )=ax 2+bx +c (a ≠0)中的a ,b ,c 都为整数,已知f (0),f (1)均为奇数,求证:方程f (x )=0无整数根.证明:假设方程f (x )=0有一个整数根k , 则ak 2+bk +c =0,∵f (0)=c ,f (1)=a +b +c 都为奇数, ∴a +b 必为偶数,ak 2+bk 为奇数. 当k 为偶数时,令k =2n (n ∈Z),则ak 2+bk =4n 2a +2nb =2n (2na +b )必为偶数, 与ak 2+bk 为奇数矛盾;当k 为奇数时,令k =2n +1(n ∈Z),则ak 2+bk =(2n +1)·(2na +a +b )为一奇数与一偶数乘积,必为偶数,也与ak 2+bk 为奇数矛盾.综上可知方程f (x )=0无整数根.1.用演绎推理证明函数y =x 3是增函数时的大前提是( ) A .增函数的定义B .函数y =x 3满足增函数的定义 C .若x 1<x 2,则f (x 1)<f (x 2) D .若x 1>x 2,则f (x 1)>f (x 2)解析:选A 根据演绎推理的特点知,演绎推理是一种由一般到特殊的推理,所以函数y =x 3是增函数的大前提应是增函数的定义.2.数列{a n }中,已知a 1=1,当n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .a n =3n -2B .a n =n 2C .a n =3n -1D .a n =4n -3解析:选B 求得a 2=4,a 3=9,a 4=16,猜想a n =n 2.3.在平面直角坐标系内,方程x a +yb=1表示在x ,y 轴上的截距分别为a ,b 的直线,拓展到空间直角坐标系内,在x ,y ,z 轴上的截距分别为a ,b ,c (abc ≠0)的平面方程为( )A.x a +y b +z c =1B.x ab +y bc +zca=1C.xy ab +yz bc +zxca=1 D .ax +by +cz =1解析:选A 类比到空间应选A.另外也可将点(a,0,0)代入验证.4.用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根 D .方程x 3+ax +b =0恰好有两个实根解析:选A 至少有一个实根的否定是没有实根,故要做的假设是“方程x 3+ax +b =0没有实根”.5.来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起.他们除懂本国语言外,每人还会说其他三国语言中的一种.有一种语言是三个人会说的,但没有一种语言四人都懂,现知道:①甲是日本人,丁不会说日语,但他俩能自由交谈;②四人中没有一个人既能用日语交谈,又能用法语交谈;③乙、丙、丁交谈时,不能只用一种语言;④乙不会说英语,当甲与丙交谈时,他能做翻译.针对他们懂的语言,正确的推理是( )A .甲日德、乙法德、丙英法、丁英德B .甲日英、乙日德、丙德法、丁日英C .甲日德、乙法德、丙英德、丁英德D .甲日法、乙英德、丙法德、丁法英解析:选A 分析题目和选项,由①知,丁不会说日语,排除B 选项;由②知,没有人既会日语又会法语,排除D 选项;由③知乙、丙、丁不会同一种语言,排除C 选项,故选A.6.已知结论:“在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等”,则AO OM=( )A .1B .2C .3D .4解析:选C 如图,设正四面体的棱长为1,则易知其高AM =63,此时易知点O 即为正四面体内切球的球心,设其半径为r ,利用等积法有4×13×34r =13×34×63⇒r =612,故AO =AM -MO =63-612=64,故AO ∶OM =64∶612=3.7.观察下图,可推断出“x ”处应该填的数字是________.解析:由前两个图形发现:中间数等于四周四个数的平方和,所以“x ”处应填的数字是32+52+72+102=183.答案:1838.如图,圆环可以看作线段AB 绕圆心O 旋转一周所形成的平面图形,又圆环的面积S =π(R 2-r 2)=(R -r )×2π×R +r2.所以圆环的面积等于以线段AB =R -r 为宽,以AB 中点绕圆心O 旋转一周所形成的圆的周长2π×R +r2为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:在平面直角坐标系xOy 中,若将平面区域M ={(x ,y )|(x -d )2+y 2≤r 2}(其中0<r <d )绕y 轴旋转一周,则所形成的旋转体的体积是________.解析:平面区域M 的面积为πr 2,由类比知识可知:平面区域M 绕y 轴旋转一周得到的旋转体的体积等于以半径为r 的圆为底面,以圆心为O 、半径为d 的圆的周长2πd 为高的圆柱的体积,所以旋转体的体积V =πr 2×2πd =2π2r 2d .答案:2π2r 2d9.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是 .解析:分别观察正方体的个数为:1,1+5,1+5+9,…归纳可知,第n 个叠放图形中共有n 层,构成了以1为首项,以4为公差的等差数列, 所以S n =n +[n (n -1)×4]÷2=2n 2-n , 所以S 7=2×72-7=91. 答案:9110.已知|x |≤1,|y |≤1,用分析法证明:|x +y |≤|1+xy |. 证明:要证|x +y |≤|1+xy |, 即证(x +y )2≤(1+xy )2, 即证x 2+y 2≤1+x 2y 2, 即证(x 2-1)(1-y 2)≤0,因为|x |≤1,|y |≤1, 所以x 2-1≤0,1-y 2≥0,所以(x 2-1)(1-y 2)≤0,不等式得证.11.已知:sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=32.通过观察上述两等式的规律,请你写出一般性的命题:__________________________=32,(*) 并给出(*)式的证明. 解:一般形式:sin 2α+sin 2(α+60°)+sin 2(α+120°)=32.证明如下:左边=12(1-cos 2α)+12[1-cos(2α+120°)]+12[1-cos(2α+240°)]=32-12[cos 2α+cos(2α+120°)+cos(2α+240°)] =32-12[cos 2α+cos 2αcos 120°-sin 2αsin 120°+cos 2αcos 240°-sin 2αsin 240°]=32-12cos 2α-12cos 2α-32sin 2α-12cos 2α+32sin 2α=32=右边. ∴原式得证.12.设函数f (x )=e xln x +2ex -1x,证明:f (x )>1.证明:由题意知f (x )>1等价于x ln x >x e -x-2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e,则h ′(x )=e -x(1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0. 故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e .综上,当x >0时,g (x )>h (x ),即f (x )>1.。
高中数学 第一章 推理与证明章节复习教案 北师大版选修22
第一章 推理与证明一、教学目标1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用。
2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程与特点。
3、了解间接证明的一种基本方法——反证法;了解反证法的思考过程与特点。
4、了解数学归纳法原理,能用数学归纳法证明一些简单的数学命题。
二、教学重点:1、能利用归纳和类比等进行简单的推理2、能用综合法、分析法、反证法、数学归纳法证明一些简单的数学命题。
教学难点:数学归纳法 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)知识结构本章在回顾已有知识的基础上逐一介绍了合情推理的两种基本思维方式:归纳推理、类比推理,以及数学证明的主要方法:分析法、综合法、反证法、数学归纳法,上述推理方式和证明方法都是数学的基本思维过程,它们贯穿于整个高中数学的学习中,数学知识的学习过程推理与证明FBCMEA也是这些思维方法的领悟、训练和应用的过程,要通过学习感受逻辑思维在数学以及日常生活中的作用。
(二)、例题探析例1、将下面平面几何中的概念类比到立体几何中的相应结果是什么?请将下表填充完整。
例2、分别用分析法和综合法证明:在△ABC 中,如果AB =AC ,BE ,CF 分别是三角形的高线,BE 与CF 相交于点M ,那么,MB =MC 。
证明:(分析法)要证明MB =MC ,只需证明△BFM ≌△CEM 。
因为△BFM ,△CEM 均为直角三角形,且∠BMF =∠CME , 只需证明BF =CE 即可。
在Rt △BFC 与Rt △CEB 中,由于△ABC 为等腰三角形, ∠ABC =∠ACB ,BC =BC ,∠EBC =∠FCB ,有△BFC ≌△CEB ,BF =CE 以上各布可逆,故MB =MC 。
(综合法)在Rt △BFC 与Rt △CEB 中,由于△ABC 为等腰三角形, 有∠ABC =∠ACB ,BC =BC ,∠EBC =∠FCB ,可知△BFC ≌△CEB ,所以BF =CE 在Rt △BFM 与Rt △CEM 中,∠BMF=∠CME ,∠FBM =∠ECM , 所以△BFM ≌△CEM ,MB =MC ,得证。
高中数学(选修1—2)《归纳推理》教学设计
l 5 13 17
3
ll 1 95 9 2l 7 23 31
29
27
2 5
3 通 过 本 节 学 习 , 学 生 养 成 主 动 运 用 归 纳 推 理 思 维 的 . 使
意识 和 习惯 。
4 激 发 学 生 学 习 数 学 的 浓 厚 兴 趣 和 应 用 数 学 的 良好 品 . 质 , 步 形 成 发 现 新 知识 , 决 新 问 题 的 能力 。 逐 解
理能力。
质 , 利导 人本 节 新 课 。 顺 ( ) 二 引导 学生分析 总结 归纳思维解决数 学 问题 的方法步骤 。 1指 导 学 生 阅 读 课 本 例 题 : 1 哥 德 巴 赫 猜 想 ;2) 拉 公 . () ( 欧 式 ;3 数 列 通 项 公式 。 () 通 过 以 上 三 个 实 例 的 学 习 理 解 ,使 学 生 对 归 纳 推 理 有 一 个 初 步 的感 性认 识 。 2组 织 学 生 分 组 讨 论 : 励 学 生积 极 思 考 , 胆 发 表 自 己 . 鼓 大 的看 法 与 见 解 .结 合 教 材 内容 初 步 得 出归 纳 推 理 解 决 实 际 问 题 的“ 观察 规 律 一 猜 想 结 果一 检 验 论证 ” 方 法 步骤 。 的 3教 师 总结 归 纳 推 理 概 念 。 . 归 纳 推 理 是 根 据 一 类 事 物 中部 分 事 物 具 有 某 种 属 性 。 推 断 该 类 事 物 中所 有 事 物 都 具 有 这 种 属 性 的 一 种 推 理 形 式 。 它 是 由局 部 到 整 体 、 别 到 一 般 的 一 种思 维 方 式 。 个 ( ) 识 应 用 . 题 训 练 三 知 解 例 3将 正 奇 数 按 下 面 表 格 中 的 数 字 呈 现 的规 律填 入 各 方 . 格 中, 则数 字 5 位 于 第 几 行 第 几 列 ? 5
北师版数学高二选修1-2教案疑难规律方法
1合情推理的妙用合情推理包括归纳推理和类比推理,在近几年的高考试题中,关于合情推理的试题多与其他知识联系,以创新题的形式出现在考生面前.下面介绍一些推理的命题特点,揭示求解规律,以期对同学们求解此类问题有所帮助.一、归纳推理的考查1.数字规律周期性归纳例1观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 013的末四位数字为() A.3125 B.5625 C.0625 D.8125解析∵55=3 125,56=15 625,57=78 125,58末四位数字为0625,59末四位数字为3125,510末四位数字为5625,511末四位数字为8125,512末四位数字为0625,…,由上可得末四位数字周期为4,呈规律性交替出现,∴52 013=54×503+1末四位数字为3125.答案A点评对于具有周期规律性的数或代数式需要多探索几个才能发现规律,当已给出事实与所求相差甚“远”时,可考虑到看是否具有周期性.2.代数式形式归纳例2设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N +且n ≥2时,f n (x )=f (f n -1(x ))=________.解析 依题意,先求函数结果的分母中x 项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n =2n -1.又函数结果的分母中常数项依次为2,4,8,16,…,故其通项公式为b n =2n .所以当n ≥2时,f n (x )=f (f n -1(x ))=x(2n -1)x +2n.答案x(2n -1)x +2n点评 对于与数列有关的规律归纳,一定要观察全面,并且要有取特殊值最后检验的习惯. 3.图表信息归纳例3 古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:(1)(2)他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图(2)中的1,4,9,16,…这样的数为正方形数. 下列数中既是三角形数又是正方形数的是( ) A.289 B.1 024 C.1 225 D.1 378分析 将三角形数和正方形数分别视作数列,则既是三角形数又是正方形数的数字是上述两数列的公共项.解析 设图(1)中数列1,3,6,10,…的通项为a n ,其解法如下:a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n .故a n -a 1=2+3+4+…+n ,∴a n =n (n +1)2.而图(2)中数列的通项公式为b n =n 2,因此所给的选项中只有1 225满足a 49=49×502=b 35=352=1 225. 答案 C点评 此类图形推理问题涉及的图形构成的元素一般为点.题目类型为已知几个图形,图形中元素的数量呈现一定的变化,这种数量变化存在着简单的规律性,如点的数目的递增关系或递减关系,依据此规律求解问题,一般需转化为求数列的通项公式或前n 项和等. 二、类比推理的考查 1.类比定义在求解类比某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解.例1 等和数列的定义是:若数列{a n }从第二项起,以后每一项与前一项的和都是同一常数,则此数列叫作等和数列,这个常数叫作等和数列的公和.如果数列{a n }是等和数列,且a 1=1,a 2=3,则数列{a n }的一个通项公式是________.解析 由定义知,公和为4,且a n +a n -1=4,那么a n -2=-(a n -1-2), 于是a n -2=(-1)n -1(a 1-2).因为a 1=1,得a n =2+(-1)n 即为数列的一个通项公式. 答案 a n =2+(-1)n点评 解题的前提是正确理解等和数列的定义,将问题转化为一个等比数列来求解. 2.类比性质从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题.求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键.例2 平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行.类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件.解 类比平行四边形的两组对边分别平行可得,三组相对侧面互相平行是一个四棱柱为平行六面体的充要条件.类比平行四边形的两组对边分别相等可得,三组相对侧面分别全等是一个四棱柱为平行六面体的充要条件.类比平行四边形的一组对边平行且相等可得,一组相对侧面平行且全等是一个四棱柱为平行六面体的充要条件.类比平行四边形的对角线互相平分可得,主对角线互相 平分是一个四棱柱为平行六面体的充要条件.类比平行四边形的对角线互相平分可得,对角面互相平分是一个四棱柱为平行六面体的充要条件.点评 由平行四边形的性质类比到平行六面体的性质,注意结论类比的正确性. 3.类比方法有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.例3 已知数列{a n }的前n 项的乘积T n =3n +1,则其通项公式a n =________.解析 类比数列前n 项和S n 与通项a n 的关系a n =S n -S n -1(n ≥2),得到数列前n (n ≥2)项的乘积T n 与通项a n 的关系.注意对n =1的情况单独研究. 当n =1时,a 1=T 1=31+1=4. 当n ≥2时,a n =T nT n -1=3n +13n -1+1,a 1不适合上式,所以通项公式a n=⎩⎪⎨⎪⎧4,n =1,3n +13n -1+1,n ≥2.答案 ⎩⎪⎨⎪⎧4,n =1,3n +13n -1+1,n ≥22 各有特长的综合法与分析法例1 已知a >b >c ,求证:1a -b +1b -c +4c -a≥0. 分析 首先使用分析法寻找证明思路.证明 方法一 (分析法)要证原不等式成立,只需证1a -b +1b -c ≥4a -c .通分,得(b -c )+(a -b )(a -b )(b -c )≥4a -c ,即证a -c (a -b )(b -c )≥4a -c.因为a >b >c ,所以a -b >0,b -c >0,a -c >0. 只需证(a -c )2≥4(a -b )(b -c )成立. 由上面思路可得如下证题过程.方法二 (综合法)∵a >b >c ,∴a -b >0,b -c >0,a -c >0. ∴4(a -b )(b -c )≤2=(a -c )2.∴a -c(a -b )(b -c )≥4a -c ,即(b -c )+(a -b )(a -b )(b -c )-4a -c≥0. ∴1a -b +1b -c +4c -a ≥0. 从例题不难发现,分析法和综合法各有其优缺点:从寻求解题思路来看,分析法“执果索因”,常常根底渐近,有希望成功;综合法“由因导果”,往往枝节横生,不容易奏效.从表达过程而论,分析法叙述繁琐,文辞冗长;综合法形式简洁,条理清晰.也就是说,分析法利于思考,综合法宜于表达.因此,在实际解题时,把分析法和综合法孤立起来运用是脱离实际的,两者结合,互相弥补才是应该提倡的;先以分析法为主寻求解题思路,再用综合法有条理地表达解题过程.最后,提醒一下,对于一些较复杂的问题,不论是从“已知”推向“未知”,还是由“未知”靠拢“已知”,都是一个比较长的过程,单靠分析法或综合法显得较为困难.为保证探索方向准确及过程快捷,人们常常把分析法与综合法两者并列起来使用,即常采取同时从已知和结论出发,寻找问题的一个中间目标的“两头凑”的方法去寻求证明途径:先从已知条件出发,看可以得出什么结果,再从要证明的结论开始寻求,看它成立需具备哪些条件,最后看它们的差距在哪里,从而找出正确的证明途径.例2 设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图像关于y 轴对称.求证:f (x +12)为偶函数.证明 方法一 要证f (x +12)为偶函数,只需证f (x +12)的对称轴为x =0,只需证-b 2a -12=0,只需证a =-b .因为函数f (x +1)与f (x )的图像关于y 轴对称, 即x =-b 2a -1与x =-b2a关于y 轴对称,所以-b 2a -1=--b 2a ,所以a =-b ,所以f (x +12)为偶函数.方法二 要证f (x +12)是偶函数,只需证f (-x +12)=f (x +12).因为f (x +1)与f (x )的图像关于y 轴对称, 而f (x )与f (-x )的图像关于y 轴对称,所以f (-x )=f (x +1),f (-x +12)=f (-(x -12))=f ((x -12)+1)=f (x +12),所以f (x +12)是偶函数.点评 本题前半部分是用分析法证明,但寻找的充分条件不是显然成立的,可再用综合法证明,这种处理方法在推理证明中是常用的.3 体验反证法的独到之处反证法作为一种证明方法,在高考中,虽然很少单独命题,但是有时运用反证法的证明思路判断、分析命题有独到之处.下面举例分析用反证法证明问题的几个类型: 1.证明否定性问题例1 平面内有四个点,任意三点不共线.证明:以任意三点为顶点的三角形不可能都是锐角三角形.分析 假设以四点中任意三点为顶点的三角形都是锐角三角形,先固定三点组成一个三角形,则第四点要么在此三角形内,要么在此三角形外,且各个三角形的内角都是锐角,选取若干个角的和与一些已知结论对照即得矛盾.证明 假设以任意三点为顶点的四个三角形都是锐角三角形,四个点为A ,B ,C ,D . 考虑△ABC ,则点D 有两种情况: 在△ABC 内部和外部.(1)如果点D在△ABC内部(如图(1)),根据假设知围绕点D的三个角∠ADB,∠ADC,∠BDC 都小于90°,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC外部(如图(2)),根据假设知∠BAD,∠ABC,∠BCD,∠ADC都小于90°,即四边形ABCD的内角和小于360°,这与四边形内角和等于360°矛盾.综上所述,可知假设错误,题中结论成立.点评结论本身是否定形式、证明唯一性或存在性命题时,常用反证法.2.证明“至多”“至少”“唯一”“仅仅”等问题例2A是定义在上且满足如下两个条件的函数φ(x)组成的集合:①对任意的x∈,都有φ(2x)∈(1,2);②存在常数L(0<L<1),使得对任意的x1,x2∈,都有|φ(2x1)-φ(2x2)|<L|x1-x2|.设φ(x)∈A,试证:如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的.证明假设存在两个x0,x0′∈(1,2),x0≠x0′,使得x0=φ(2x0),x0′=φ(2x0′),则由|φ(2x0)-φ(2x0′)|<L|x0-x0′|,得|x0-x0′|<L|x0-x0′|.所以L>1.这与题设中0<L<1矛盾,所以原假设不成立.故得证.点评若直接证明,往往思路不明确,而运用反证法则能迅速找到解题思路,从而简便得证.3.证明较复杂的问题例3如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则()A.△A1B1C1和△A2B2C2都是锐角三角形B.△A1B1C1和△A2B2C2都是钝角三角形C.△A1B1C1是钝角三角形,△A2B2C2是锐角三角形D.△A1B1C1是锐角三角形,△A2B2C2是钝角三角形解析因为正弦值在(0°,180°)内是正值,所以△A1B1C1的三个内角的余弦值均大于0.因此△A1B1C1是锐角三角形.假设△A2B2C2也是锐角三角形,并设cos A1=sin A2,则cos A1=cos(90°-A2).所以A1=90°-A2.同理设cos B1=sin B2,cos C1=sin C2,则有B1=90°-B2,C1=90°-C2.又A1+B1+C1=180°,所以(90°-A2)+(90°-B2)+(90°-C2)=180°,即A2+B2+C2=90°.这与三角形内角和等于180°矛盾,所以原假设不成立,故选D.答案D例4已知a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.分析若从正面证明,比较复杂,需要考虑的方面比较多,故采用反证法来证明.证明假设a<0,由abc>0知,bc<0.由a+b+c>0知,b+c>-a>0,于是ab+bc+ca=a(b+c)+bc<0.这与已知矛盾.又若a=0,则abc=0,与abc>0矛盾.故a>0.同理可证b>0,c>0.点评至于什么情况下用反证法,应依问题的具体情况而定,切忌滥用反证法.一般说来,当非命题比原命题更具体、更明确、更简捷,易于推出矛盾时,才便于用反证法.运用反证法证题时,还应注意以下三点:1.必须周密考察原结论,防止否定有所遗漏;2.推理过程必须完全正确,否则,不能肯定非命题是错误的;3.在推理过程中,可以使用已知条件,推出的矛盾必须很明确,毫不含糊.另外,反证法证题的首要环节就是对所证结论进行反设,因此大家必须掌握一些常见关键词的否定形式.。
1[1].1.1 归纳推理 教案(北师大版选修2-2)
§1 归纳与类比1.1 归纳推理(教师用书独具)●三维目标1.知识与技能(1)引导学生发现归纳推理的特征、概括归纳推理的定义,知道归纳推理是科学发现的重要方法.(2)掌握归纳推理的一般性步骤:“观察——分析——归纳——猜想”,并能利用归纳推理解决简单问题.2.过程与方法通过具体实例的探究,使学生掌握观察问题的角度,培养学生分析问题的能力和抽象概括能力,体会从特殊到一般的认识规律.3.情感、态度与价值观(1)通过对具体实例的分析与探究,体会归纳推理是认识世界、改造世界的重要手段,培养学生探究精神和创新意识.(2)通过本节的学习和运用,体会发现问题、提出问题的方法,树立用数学思维方式创新探究的意识,不断提高自身的数学素养.●重点难点重点:了解归纳推理的含义,能利用归纳进行简单的推理.难点:用归纳进行推理,做出猜想.教学时应引导学生学会观察,例如先整体,再局部;哪些是共同点,哪些是区别?哪些量变化,哪些量不变,变化部分有什么规律?等等.通过不断地观察、分析、归纳提出猜想,从而化解难点.这一过程要让学生多探究、多交流,以便提高学生抽象概括能力.通过对具体问题的简单求解,使学生理解归纳推理是根据一类事物中部分事物具有的特征,推断该事物中每个事物都具有这种属性的推理方式,明确归纳推理的特点,强化重点.(教师用书独具)●教学建议本节内容属于数学思维方法——归纳法,结合生活实例和学生已学过的数学实例(如数列),把过去渗透在具体数学内容中的思维方法,以集中的、显性的形式呈现出来,使学生更加明确这些方法,并在今后的学习中有意识使用它提出猜想.因此,本节课宜采用探究式课堂教学模式,即在教师精心准备的具体问题情境下,让学生主动探究,然后通过师生、生生交流归纳、揭示规律,形成概念,获取方法,并在具体问题的求解中,深化规律,形成技能,使知识与思想方法得以升华.●教学流程创设情境,提出问题.在教师结合生活实例、具体数学实例引出推理的前提下,呈现例1.⇒错误!⇒错误!⇒运用规律,解决问题.利用归纳推理解决例2,加深对归纳推理的认识,初步认识归纳推理的特点.⇒变练演编,升华提高.通过习题1和习题2,让学生掌握归纳推理的一般步骤,可作变式训练,让学生学会观察.⇒错误!错误!1.已知数列{a n }的前5项依次为1,3,6, 10,15.这五项的变化是递增还是递减?有什么规律?【提示】 递增;从第2项起,每一项与前一项的差成等差数列.2.猜想问题1中第6项的值. 【提示】 213.猜想出的结论一定正确吗? 【提示】 不一定. 1.归纳推理的定义根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,这种推理方式称为归纳推理.2.归纳推理的特征归纳推理是由部分到整体,由个别到一般的推理. 利用归纳推理得出的结论不一定是正确的.已知数列{a n }满足a 1=1,a n a n +1=n n +1(n =1,2,3,…). (1)求a 2,a 3,a 4,a 5,并猜想通项公式a n ; (2)根据(1)中的猜想,有下面的数阵: S 1=a 1 S 2=a 2+a 3 S 3=a 4+a 5+a 6S 4=a 7+a 8+a 9+a 10S 5=a 11+a 12+a 13+a 14+a 15试求S 1,S 1+S 3,S 1+S 3+S 5,并猜想S 1+S 3+S 5+…+S 2n -1的值.【思路探究】→猜想通项公式a n →求解S 1,S 1+S 3,S 1+S 3+S 5并分析结论的特征→猜想S 1+S 3+S 5+…+S 2n -1的值【自主解答】 (1)因为a 1=1,由a n a n +1=nn +1知a n +1=n +1n ·a n ,故a 2=2,a 3=3,a 4=4,a 5=5.可归纳猜想出a n =n (n ∈N *). (2)根据(1)中的猜想,数阵为:S 1=1 S 2=2+3=5 S 3=4+5+6=15 S 4=7+8+9+10=34 S 5=11+12+13+14+15=65故S 1=1=14,S 1+S 3=1+15=16=24,S 1+S 3+S 5=1+15+65=81=34, 可猜想S 1+S 3+S 5+…+S 2n -1=n 4.1.本题中通项a n 易于猜想,而猜想S 1+S 3+…+S 2n -1时,应注意将每个式子及其结果同n 的取值对应,并尝试用含n 的代数式f (n )归纳.2.在对数与式进行归纳时,应坚持“先整体,后局部”的原则,先从整体上把握数与式的特征及变化规律,然后着眼局部变化规律的归纳.在数列{a n }中,a 1=1,且a n +1=2a n2+a n(n ∈N *),猜想这个数列的通项公式.【解】 ∵在{a n }中,a 1=1,a n +1=2a n2+a n,∴a 2=2a 12+a 1=23;a 3=2a 22+a 2=48=24;a 4=2a 32+a 3=25;…∴猜想{a n }的通项公式为a n =2(n ∈N *).1-1:图1-1-1由于图中1,3,6,10这些数能够表示成三角形,故被称为三角形数,试结合组成三角形数的特点,归纳第n 个三角形数的石子个数.【思路探究】 可根据图中点的分布规律归纳出三角形数的形成规律,如1=1,3=1+2,6=1+2+3;也可以直接分析三角形数与n 的对应关系,进而归纳出第n 个三角形数.【自主解答】 法一 由1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,可归纳出第n 个三角形数为1+2+3+…+n =n (n +1)2.法二归纳:第n 个三角形数的石子数应为:n (n +1)2.1.通过图形中石子的排列规律,分析出三角形数的形成规律是解答本题的关键,同时较法二来讲也易于操作;实质上数列1,3,6,10,…中从第2项起,每一项与前一项的差构成一个以2为首项,1为公差的等差数列,故这类数列求通项时,可借鉴三角形数的形成规律.如猜想5,7,10,14,19,…的通项时,可通过5=5,7=5+2,10=5+2+3,14=5+2+3+4,19=5+2+3+4+5,…,得a n =5+2+3+4+…+n =(n +2)(n -1)2+5=n 2+n +82.2.对于图与形的归纳一般有两种方法,一是通过图形中呈现的规律求解;二是将每个图形对应的数字求出后,分析各数的变化规律(如是增还是减?如何增减?等)后进而猜想,实质上就将问题转化为对数与式的猜想了.(1)如图①,将一个边长为1的正三角形的每条边三等分,以中间一段为边向三角形外作正三角形,并擦去中间一段,得图②,如此继续下去,得图③…试用n 表示出第n 个图形的边数a n =________.图① 图② 图③图1-1-2【解析】 观察图形可知,a 1=3,a 2=12,a 3=48,…,故{a n }是首项为3,公比为4的等比数列,故a n =3×4n -1.【答案】 3×4n -1(2)下面是按照一定规律画出的一列“树型”图:设第n 个图有a n 根树枝,则a n +1与a n (n ≥1)之间的关系是________.① ② ③④ ⑤图1-1-3【解析】 由图可得,第一个图形有1根树枝,a 1=1,第2个图形有3根树枝,即a 2=3,同理可知:a 3=7,a 4=15,a 5=31. 归纳可知:a 2=3=2×1+1=2a 1+1, a 3=7=2×3+1=2a 2+1, a 4=15=2×7+1=2a 3+1, a 5=31=2×15+1=2a 4+1, 由归纳推理可猜测: a n +1=2a n +1.n n (1)试分别计算数列{a n }中落入区间(9,92)和(92,94)内的项的个数;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m }的通项公式.【思路探究】 分别令9<a n <92,92<a n <94求解项数n 的范围,并求对应项数;利用(1)中的方法解答(2).【自主解答】 (1)令9<a n <92,即9<9n -8<92,解得1+89<n <9+89,故2≤n ≤9,因此,数列{a n }中落入区间(9,92)内的项的个数为8;同理,令92<a n <94,解得9+1≤n ≤93,故数列{a n }中落入区间(92,94)中的项的个数为93-9;(2)由题意,令9m <9n -8<92m ,得9m -1+89<n <92m -1+89,∴9m -1+1≤n ≤92m -1,故b m =92m -1-9m -1.1.解答本题第(2)问的关键是通过第(1)问中两种特殊情况的求解,归纳出一般性规律从而使问题获解.2.归纳推理是一种从特殊到一般,从实验事实到理论的一种寻找真理和发现真理的手段,是通过归纳得到结论或发现解决问题的途径的有效方法.如图1-1-4所示,点M 是椭圆x 2a 2+y 2b2=1(a >b >0)上一动点,由点M 到圆x 2+y 2=b 2的两条切点MA ,MB ,切点分别为A ,B .下面是探究当∠AMB =π2时,椭圆离心率e 的取值范围的过程.图1-1-4连接OA ,OB ,∵MA ,MB 与圆相切, ∴OA ⊥MA ,OB ⊥MB ,连接OM ,∵∠AMB =π2,∴∠AMO =π4,|OM |=2b ,又在椭圆中|OM |∈[b ,a ], 故2b ≤a , 即2b 2≤a 2,∴2(a 2-c 2)≤a 2,即a 2≤2c 2,c a ≥22,∴离心率e 的取值范围是[22,1).(1)若将“∠AMB =π2”改为“∠AMB =π3”,试探究离心率e 的取值范围.(2)试将本题加以推广,得到一个一般性结论.【解】 连接OA ,OB ,OM ,易知∠AMO =π6,在Rt △AOM 中,|OM |=bsinπ6=2b , 又|OM |≤a , 即2b ≤a .故椭圆的离心率的范围是[32,1). (2)同上述解法,设∠AMB =2α(0<α<π2),则∠AMO =α,在Rt △AOM 中,|OM |=bsin α,又|OM |∈[b ,a ],∴b sin α≤a ,即a 2-c 2≤a 2sin 2α, 整理,得a 2cos 2α≤c 2,故ca≥cos α,所以,离心率e 的取值范围是[cos α,1).忽视“项数n ”与“命题”间的对应关系致误已知2+23=223, 3+38=338,4+415=4415, 5+524=5524,……,则第n 个式子为( ) A.n +n n 2-1=n nn 2-1(n ∈N *) B.n +n n 2-1=n nn 2-1(n ≥2) C.(n +1)+n +1(n +1)2-1=(n +1)n +1(n +1)2-1(n ∈N *)D.(n +1)2+n +1(n +1)2-1=(n +1)n +1(n +1)2-1(n ≥2)【错解】 通过观察知3=22-1,8=32-1,15=42-1,24=52-1,故第n 个式子为n +n n 2-1=n n n 2-1(n ≥2),故选B. 【答案】 B【错因分析】 本题解答忽视了“项数n ”与“第n 个命题”间的对应关系,即第1个式子中用1表示为(1+1)+1+1(1+1)2-1=(1+1) 1+1(1+1)2-1. 【正解】 n =1时,有(1+1)+1+1(1+1)2-1=(1+1)1+1(1+1)2-1,n =2时,有(2+1)+2+1(2+1)2-1=(2+1)2+1(2+1)2-1,n =3时,有 (3+1)+3+1(3+1)2-1=(3+1)3+1(3+1)2-1,同理n =4,n =5时,也有相同规律.故猜想第n 个式子为(n +1)+n +1(n +1)2-1=(n +1)n +1(n +1)2-1(n ∈N *).应选C. 【答案】 C1.归纳推理是由特殊到一般的推理,是发现一般性结论或解题方法的重要途径. 2.归纳推理属于不完全归纳,故所得结论不一定可靠,需给出证明. 3.归纳推理的思维过程从具体问题出发→观察、分析、比较、联想→归纳→提出猜想.1.在数列{a n }中,a 1=0,a n +1=2a n +2,则a n 是( )A .2n -2-12B .2n -2C .2n -1+1 D .2n +1-4【解析】 当n =1,2,3时,求得a 2=2,a 3=6,a 4=14,观察知a n =2n -2. 【答案】 B2.已知数列{a n }的前n 项和S n =n 2·a n (n ≥2),且a 1=1通过计算a 2,a 3,a 4,猜想a n =( )A.2(n +1)2B.2n (n +1)C.22n -1D.22n -1【解析】 可以通过S n =n 2a n 分别代入n =2,3,4求得a 2=13,a 3=16,a 4=110,猜想a n=2n (n +1). 【答案】 B3.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形,如图1-1-5所示,则第七个三角形数是________.图1-1-5【解析】 第一个三角形数是1, 第二个三角形数是1+2=3, 第三个三角形数是1+2+3=6, 第四个三角形数是1+2+3+4=10.因此,由归纳推理得第n 个三角形数是1+2+3+4+…+n =(1+n )n2.由此可以得出第七个三角形数是28. 【答案】 284.平面内有n 条直线,其中任何两条都不平行,任何三条不过同一点,试归纳它们的交点个数.【解】 n =2时,交点个数:f (2)=1. n =3时,交点个数:f (3)=3. n =4时,交点个数:f (4)=6. n =5时,交点个数:f (5)=10.猜想f (n )=12n (n -1)(n ≥2).一、选择题1.已知数列23,1,112,214,338,…,猜想该数列的第6项为( )A .4516B .4316C .5316D .5116【解析】 将各项均写成假分数的形式为23,11,32,94,278,…,即3-12-1,3020,3121,3222,3323,…,故猜想第6项为3424=8116=5116.【答案】 D2.观察下列各式:72=49,73=343,74=2 401,…,则72 011的末两位数字为( ) A .01 B .43 C .07 D .49【解析】 ∵75=16 807,76=117 649,由运算规律知末两位数字以4为周期重复出现,故72 011=74×502+3,故其末两位数字为43.【答案】 B 3.(2013·厦门高二检测)观察下列等式:13+23=(1+2)2, 13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…, 根据上述规律第n 个等式为( )A .13+23+33+…+n 3=(1+2+3+…+n )2B .13+23+…+n 3=[1+2+3+…+(n +1)]2C .13+23+33+…+(n +1)3=(1+2+3+…+n )2D .13+23+33+…+(n +1)3=[1+2+3+…+(n +1)]2 【解析】 将各等式中的变化规律同n 对应起来可知选D. 【答案】 D4.有两种花色的正六边形地面砖,按下图的规律,拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是( )图1-1-6A .26B .31C .32D .36【解析】 设第n 个图案有a n 个菱形花纹的正六边形,则a 1=6×1-0,a 2=6×2-1,a 3=6×3-2,故猜想a 6=6×6-5=31.【答案】 B5.把正偶数列{2n }的各项从小到大依次排成如下的三角形状数表,记M (r ,t )表示该表中第r 行的第t 个数,则表中的数2 014对应于( )2 4 6 8 10 12 14 16 18 20……A .M (45,14)B .M (45,27)C .M (46,14)D .M (46,27)【解析】 由题意2 014是数列{2n }中的第1 007项,而数阵中的前r 行共有1+2+3+…+r =r ·(r +1)2,令r ·(r +1)2≤1 007知r 最大值为44.当r =44时,前44行共有990项,故2 014位于第45行,第1 007-990=27个数,即M (45,27).【答案】 B 二、填空题6.如图1-1-7所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有n (n >1,n ∈N +)个点,每个图形总的点数记为a n ,则a 6=______________,a n =______________.图1-1-7【解析】 依据图形特点可知当n =6时,三角形各边上各有6个点,因此a 6=3×6-3=15.由n =2,3,4,5,6时各图形的特点归纳得a n =3n -3(n ≥2,n ∈N +). 【答案】 15 3n -3(n ≥2,n ∈N +)7.设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.【解析】 由题意f (21)=32,f (22)>42,f (23)>52,f (24)>62,故一般的结论为f (2n )≥n +22.【答案】 f (2n )≥n +228.(2013·深圳高二检测)设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x3x +4,f 3(x )=f (f 2(x ))=x7x +8,f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.【解析】 依题意,先求函数结果的分母中x 项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n =2n -1.又函数结果的分母中常数项依次为2,4,8,16,…,故其通项公式为b n =2n .所以当n ≥2时,f n (x )=f (f n -1(x ))=x(2n -1)x +2n.【答案】 x(2n -1)x +2n三、解答题9.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立,在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中,其不等式为什么?【解】 不等式左边项数分别为3,4,5时,不等式右边的数依次为9π,162π,253π,其分子依次为32,42,52,分母依次为(3-2)π,(4-2)π,(5-2)π,故当不等式左边项数为n 个时,归纳猜想右边应为n 2(n -2)π(n ≥3,n ∈N *), 故所求为1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3,n ∈N *). 10.已知:sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=32. 观察上述两等式的规律,请你写出一般性的命题,并证明之.【解】 一般性的命题为sin 2θ+sin 2(60°+θ)+sin 2(120°+θ)=32. 证明如下:sin 2θ+sin 2(60°+θ)+sin 2(120°+θ)=1-cos 2θ2+1-cos (120°+2θ)2+1-cos (240°+2θ)2=32-12[cos 2θ+cos(120°+2θ)+cos(240°+2θ)] =32-12[2cos 60°cos(60°+2θ)+cos(180°+60°+2θ)] =32-12[cos(60°+2θ)-cos(60°+2θ)] =32. 11.设{a n }是集合{2t +2s |0≤s <t ,且s ,t ∈Z}中所有的数从小到大排列成的数列,即a 1=3,a 2=5,a 3=6,a 4=9,a 5=10,a 6=12,……将数列{a n }各项按照上小下大,左小右大的原则写成如右的三角形数表:35 69 10 12… … … …… … … … …(1)写出这个三角形数表的第四行、第五行;(2)求a 100.【解】 (1)由题意,a 1,对应的有序数对(s ,t )为(0,1).a 2,a 3对应的有序数对(s ,t )分别为(0,2),(1,2);a 4,a 5,a 6对应的有序数对(s ,t )分别为(0,3),(1,3),(2,3),故可归纳出第四行各项对应的有序数对依次为(0,4),(1,4),(2,4),(3,4).故第四行为17,18,20,24.第五行各项对应的有序数对(s ,t )依次为(0,5),(1,5),(2,5),(3,5),(4,5)故第五行为33,34,36,40,48.(2)将三角形数表中各项对应的有序数对列成下面的数表.(0,1)(0,2) (1,2)(0,3) (1,3) (2,3)(0,4) (1,4) (2,4) (3,4)(0,5) (1,5) (2,5) (3,5) (4,5)可以归纳出行数与t 相等,且各行中的项数与t 相等,故前t 行共有t (t +1)2项,令t (t +1)2≤100, 得t ≤13,当t =13时,t (t +1)2=91. 故a 100位于第14行中第9个数.故a 100对应的有序数对(s ,t )为(8,14).所以a 100=28+214.(教师用书独具)正整数按下表的规律排列则上起第2 005行,左起第2 006列的数应为( )A .2 0052B .2 0062C .2 005+2 006D .2 005×2 006【思路探究】 根据本题求结论的要求,只需归纳出第n 行,第n +1个数的规律即可.【自主解答】 第1行第2个数为2=1×2;第2行第3个数为6=2×3;第3行第4个数为12=3×4;第4行第5个数为20=4×5;故归纳出第2 005行第2 006个数为2 005×2 006.【答案】 D1.解答本题的关键是根据结论的要求准确把握归纳的对象是第n 行第n +1个数的规律.2.对数归纳时也可借助一些常见数列,如本题中2=22-2,6=32-3,12=42-4,20=52-5,……第n 行第n +1个数为(n +1)2-(n +1)=n ·(n +1).就借助了自然数的平方构成的数列和自然数列.观察下列各式:1=1,2+3+4=9,3+4+5+6+7=25,4+5+6+7+8+9+10=49,…,则由此可归纳出n +(n +1)+(n +2)+…+(3n -2)=________.【解析】 1=1=12=(2×1-1)2,2+3+4=9=32=(2×2-1)2,3+4+5+6+7=25=52=(2×3-1)2,4+5+6+7+8+9+10=49=72=(2×4-1)2,…故n +(n +1)+(n +2)+…+(3n -2)=(2×n -1)2.【答案】 (2n -1)2。
2019北师大版高中数学选修1-2课件:3.1.1 归纳推理
第三章
推理与证明
§1 归纳与类比 1.1 归纳推理
三维目标
1.知识与技能 (1)理解归纳推理的思想; (2)能够通过观察一些等式,猜想、归纳出它们的变化规律; (3)能够归纳、猜想出某些数列的通项公式. 2.过程与方法 让学生感受数学知识与实际生活的普遍联系,通过让学生积极参与,亲身 经历归纳推理定义的获得过程,培养学生归纳推理的思想.
考点类析
考点三 三角函数中的归纳推理
考点类析
【变式】 观察下列等式:
①cos 2α=2cos2α-1;
②cos 4α=8cos4α-8cos2α+1;
③cos 6α=32cos6α-48cos4α+18cos2α-1;
④cos 8α=128cos8α-256cos6α+160cos4α-
32cos2α+1;
⑤cos 10α=mcos10α-1280cos8α+
1120cos6α+ncos4α+pcos2α-1.
可以推测,m-n+p=
.
[答案] 962 [解析]观察各式可知, 2=21,8=23,32=25,128=27,∴m=29=512; 2=1×2,8=2×4,18=3×6,32=4×8, ∴p=5×10=50; 2-1=1,8-8+1=1,32-48+18-1=1,128-256+ 160-32+1=1, ∴m-1280+1120+n+p-1=1,∴n=-400, ∴m-n+p=962.
高中数学 北师大选修2-2 1.1.1归纳推理
写一横,告诉是个“一”字; 写两横,告诉是个“二”字; 写三横,告诉是个“三”字. 学到这里,儿子就告诉父亲说: “我已经学会了写字,不用先生再教了.” 于是,财主就把教书先生给辞退了. 一天,财主要邀请一位姓万的朋友,叫儿子写张 请帖.儿子从早晨进入书房,但到中午都没出来。
(4)
(5)
4.观察下列两式: sin230°+cos260°+sin30°·cos60°=43; sin220°+cos250°+sin20°·cos50°=43; sin215°+cos245°+sin15°·cos45°=43. 分析上面的两式的共同特点,写出反映一般规律的等式,
并证明你的结论.
【解析】推广结论: sin2α+cos2(α+30°)+sinα·cos(α+30°)=34. 证明如下: sin2α+cos2(α+30°)+sinα·cos(α+30°) =34sin2α+[cos(α+30°)+12sinα]2 =34sin2α+(cosαcos30°-sinαsin30°+12sinα)2 =34sin2α+43cos2α=34.
哥德巴赫猜想的过程: 具体的材料 观察分析
猜想出一般性的结论
【2】统计初步中的用样本估计总体 通过从总体中抽取部分对象进行观测或试验, 进而对整体作出推断.
【3】成语“一叶知秋”
意思是从一片树叶的凋落,知道秋天将要来到.比 喻由细微的迹象看出整体形势的变化,由部分推知全 体.
由某类事物的部分对象具有某些特征,推出 该类事物的全部对象都具有这些特征的推理,或 者由个别事实概括出一般结论的推理,称为归纳 推理(简称归纳).
分别把n=1,2,3,4代入an1
北师大版高中数学选修1-2《归纳推理》教案-新版
3.1归纳与类比归纳推理教材依据“归纳推理”是北京师范大学出版社出版的普通中学课程标准实验教科书数学(选修1-2)第三章第一节的内容。
教学目标:1.知识与技能目标:理解归纳推理的原理,并能运用解决一些简单的问题。
2.过程与方法目标:通过自主、合作与探究实现“一切以学生为中心”的理念。
3.情感、态度与价值观:感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
教学重点:归纳推理的原理教学难点:归纳推理的具体应用。
教学过程:1.创设情景:1.情景㈠:苹果落地的故事,正是基于这个发现,牛顿大胆地猜想,然后小心求证,终于发现了伟大的“万有引力定理”思考:整个过程对你有什么启发?教师:“科学离不开生活,离不开观察,也离不开猜想和证明”。
2.情景㈡:陈景润和他在“歌德巴赫猜想”证明中的伟大成就:任何一个大于4的偶数都可以写成两个奇素数之和。
如:6=3+3,8=3+5,10=5+5, 12=5+7,14=7+7,16=5+11,…,1000=29+971,1002=139+863,……2.探求研究:探究1.学生根据自备的多面体进行观察,统计多面体的面数、顶点数和棱数;(学生实验与教师课件演示结合)探究2.观察、猜想它们之间是否有稳定的数量关系?探究3.整理所得结论,并尝试证明;若得证,则改写成定理,否则修改猜想,进一步尝试证明。
教师指导,合作交流,归纳:22V V V =棱柱棱台棱锥=-,32EE E =棱柱棱台棱锥=,1F F F 棱柱棱台棱锥==+,F+V-E=2等等,其中“F+V -E=2”为“欧拉公式”。
3.概念讲解结合情景问题和探究过程所得,教师引导学生完成归纳推理的概念及分析。
定义:根据一类事物的部分事物具有某种属性,推断该类事物的每一个都具有这种属性的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).说明:⑴归纳推理的作用:发现新事实,获得新结论;(2)归纳推理的一般步骤:试验、观察→概括、推广→猜测一般性结论→证明;⑶归纳推理的结论不一定成立。
高中数学第一章推理与证明1.1归纳与类比1.1.2类比推理教案北师大版选修22word格式
1.2 类比推理讲课中应经过实例,指引学生运用合情推理去研究、猜想一些数学结论,并用演绎推理课标要求确认所得结论的正确性,也许用反例颠覆错误的猜想。
讲课的要点在于经过详尽实例理解合情推理与演绎推理,而不追求对看法的抽象表述。
1、知识与技术:( 1)联合数学实例,认识类比推理的含义三维目标( 2)能利用类比方法进行简单的推理,2、过程与方法:经过课例,加深对类比这类思想方法的认识。
3 、情感态度与价值观:体验并认识类比推理在数学发现中的作用。
意会类比法在数学发现中的基本作用:即经过类比,发现新问题、新结论;经过类比,发现解决问题的新方法。
培育剖析问题的能力、学会解决问题的方法;加强研究问题的学情剖析信心、收获论证成功的欢喜;体验数学发现的乐趣、意会数学方法的魅力!同时培育学生学数学、用数学,圆满数学的正确数学意识。
【讲课要点】:(1)意会并实践类比推理的研究过程讲课重难点(2)类比推理的限制【讲课难点】:指引和训练学生从已知的线索中归纳出正确的结论提炼的课题培育学生“发现—猜想—证明”的推理能力。
讲课手段运用探析归纳,讲练联合讲课资源选择教学过程环节学生要解决的问题或任务教师教与学生学设计企图1.工匠鲁班类比带齿的草叶和一、问蝗虫的牙齿,发了然锯题状况 2. 模拟鱼类的外型和它们在水中沉浮的原理, 发了然潜水艇3.科学家对火星进行研究 , 发现火星与地球有好多近似的特色;1)火星也绕太阳运转、饶轴自转学生阅的行星;读 2) 有大气层 , 在一年中也有季节更正 ;3)火星上大部分时间的温度适合地球上某些已知生物的生计,等等 . 科学家猜想 ; 火星上也可能有生命存在 .4.利用平面向量的本定理类比获得空间向量的基本定理二、看法讲课由两类对象拥有某些类似特色和此中一类对象的某些已知特色,推出另一类对象也拥有这些特色的推理 . 简言之,类比推理是由特别到特其余推理 .类比练习:(i)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径 . 由此结论如何类比到球体?(ii)平面内不共线的三点确立一个圆,由此结论如何类比获得空间的结论?由圆的一些特色,类比得到球体的相应特色 . (教材 73研究填表)小结:平面→空间,圆→球,线→面 .议论:以平面向量为基础学习空间向量,试举例此中的一些类比思想 .例 3、类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.思想:直角三角形中,,3条边的长度,2条直角边和1条斜边;→ 3 个面两两垂直的四周体引入课题经过阅读教材意会类比推理的思想过程类比推理――联想――普遍联系中,, 4 个面的面积和3 个“直角面”和1 个“斜面”.→ 拓展:三角形到四周体的类比.例 4、(可作为研究性学习资料)。
1.1归纳推理-北师大版选修1-2教案
1.1 归纳推理-北师大版选修1-2教案一、教学目标1.了解归纳推理的含义和基本方法。
2.能够运用归纳推理的方法对新事物进行分析和总结。
3.理解归纳推理在日常生活和科学研究中的作用。
二、教学重难点•归纳法的基本概念和方法。
•归纳法在实际问题中的应用。
三、教学内容及方法A. 归纳推理的概念和方法归纳法是基于具体实例得出一般结论的思维方法。
它基于一个前提,即通过已知的若干个具体实例推断出对所有实例都适用的一般性规律。
在归纳推理的过程中,需要遵循以下步骤:1.收集一定量的实例。
2.分析实例,找到它们之间的规律或共性。
3.根据上述规律,得出结论并进行检验。
4.如果结论符合实际情况,即可推广应用。
在教学中,可以通过让学生分析和总结日常生活和学习中的实际例子,引导学生了解归纳推理的概念和方法。
B. 归纳推理的应用归纳法是科学研究中的一种重要方法。
科学家通过对具体实验的观察和分析,引出一般性规律,并对新的实验进行预测和验证。
案例1:研究金属膨胀系数学生可以了解到,在科学研究中,为了确定金属的膨胀系数,科学家通过多次实验收集数据,并分析得出了数学公式,用于计算金属在温度变化时的膨胀率。
案例2:研究“生命起源”学生可以了解到,生命起源的理论是基于对生命形态和生理机能共性的归纳总结。
科学家通过对已知的生命形态和机能进行分析,得出了生命共性的模型,从而推断出生命的起源。
从案例中可以看出,归纳法不仅在日常生活中有着广泛的应用,而且在科学研究中起着至关重要的作用。
四、教学设计A. 教学过程1.导入环节通过让学生分析日常生活中的例子,了解归纳推理的概念和方法。
2.知识讲授讲解归纳法的定义、基本方法以及在科学研究中的应用。
3.案例分析引导学生通过案例分析,了解归纳法在日常生活和科学研究中的具体应用。
4.练习巩固教师出示一些具体的问题,让学生运用归纳法来解决。
5.总结反思让学生总结本节课的主要内容,反思自己在学习过程中的收获和不足。
1.1归纳推理-北师大版选修2-2教案
1.1 归纳推理 - 北师大版选修2-2教案一、教学目标1.了解归纳推理的概念和特点。
2.掌握常见的归纳推理模式。
3.学会运用归纳推理解决实际问题。
二、教学重点1.归纳推理的概念和特点。
2.常见的归纳推理模式。
三、教学难点1.拓宽学生的思维方式,使其能够运用归纳推理解决实际问题。
2.发掘学生的逻辑分析能力。
四、教学方法1.讲授法。
2.问答法。
3.组织学生讨论实际问题,引导他们运用归纳推理解决问题。
五、教学步骤1. 导入通过引入问题,激发学生的思考。
例如:“假设你被困在一个没有地图的密林里,你该如何找到出口?”引导学生尝试推理,展开思考,提高他们的思维敏捷性。
2. 归纳推理的概念和特点1.归纳推理的定义:从部分到整体,由特殊到一般,通过一定形式的推理,得出普遍性结论的思维方法。
2.归纳法的特点:明确事实依据,由此得出一般性结论。
3. 常见的归纳推理模式1.从实例到结论:通过对多个具有相同特点的实例进行比较归纳,得出一般性结论。
2.从对立面到结论:通过对立面间的比较得出结论,常见于对问题进行反证、对照分析、割裂对待等情况。
3.从一般到特殊:已知一般性结论,倒推到特殊的具体实例。
4.从反面到结论:通过分析否定段落和例句,得出一个结论5.从头到尾:按照整体的逻辑序列逐步清晰地推理下去,从而得出结论。
6.从结果到因素:分析问题的成因,推理出可能的结果和解决方案。
4. 教学实践1.提供实际问题:通过组织学生分组讨论解决实际问题的方式,引导他们运用归纳推理模式分析问题和解决问题。
2.分析学生的成果:评估学生的综合能力,思维方式和归纳推理的应用能力。
3.教师点评:巩固学生的成果,教师发表自己对于这个问题所得出的结论,加强学生对归纳推理模型的理解。
5. 结束总结授课内容,强调归纳推理的重要性并提出任务:练习归纳推理并运用于实际问题中。
六、教学评价1.教学效果:检查学生对课堂内容的掌握情况。
2.教学方法:评估教学方式对学生学习的促进作用。
(教师用书)高中数学 3.1.1 归纳推理课件 北师大版选修1-2
【自主解答】 观察这三个不等式发现,第n个不等式 的右边分母为n,分子为2n-1.
故f(n)=2n- n 1.
【答案】
2n-1 n
解决这类问题的步骤如下: (1)观察数与式的结构特征,如数、式与符号的关系,代 数式的相同或相似之处等; (2)提炼出数、式的变化规律; (3)运用归纳推理写出一般结论.
§1 归纳与类比 1.1 归纳推理
教师用书独具演示
●三维目标 1.知识与技能 (1)通过实例了解归纳推理的概念. (2)能利用归纳推理进行一些简单的推理.
2.过程与方法 通过实例,使学生经历观察、发现、归纳的过程,理解 归纳推理,并体会归纳推理的意义和价值. 3.情感、态度与价值观 培养学生勇于创新而又不失严谨的思维习惯.
数之间的关系;
(3)现已知某个平面图形有999个顶点,且围成了999个区
域,试根据以上关系确定这个平面图形的边数.
【思路探究】 本题可从各个图形的顶点数、边数、区 域数之间的关系作定量观察分析入手,来归纳出它们之间的 关系.
【自主解答】 (1)②8 12 5 ③6 9 4 ④10 15 6 (2)观察:8+5-12=1,6+4-9=1,10+6-15=1. 通过观察发现,它们的顶点数V,边数E,区域数F之间 的关系为V+F-E=1.
●教学建议 1.从学生熟悉的实例出发,引出归纳推理的概念;以 问题的形式启发学生思考如何进行归纳推理. 2.本节课应充分尊重学生的思维活动.在分组讨论的 过程中给学生想的时间、说的机会.
3.数学不仅仅是演绎的科学,更是归纳的科学.本节 课主要培养学生观察、分析及在此基础上的猜想能力.引导 学生观察、发现、归纳;鼓励学生发言,允许学生犯错.对 于几何习题,一般情况下,既可以从数字角度寻找规律,也 可以从几何图形角度出发,当然应该侧重于后者.
2019-2020学年北师大版选修1-2 合情推理 教案
合情推理(一)教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.教学重点:能利用归纳进行简单的推理.教学难点:用归纳进行推理,作出猜想.教学过程:一、新课引入:1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.2. 费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对020213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,于是提出猜想:对所有的自然数n ,任何形如221nn F =+的数都是素数. 后来瑞士数学家欧拉,发现5252142949672976416700417F =+==⨯不是素数,推翻费马猜想.3. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.二、讲授新课:1. 教学概念:① 概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理.② 归纳练习:(i )由铜、铁、铝、金、银能导电,能归纳出什么结论?(ii )由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?(iii )观察等式:2221342,13593,13579164+==++==++++==,能得出怎样的结论?③ 讨论:(i )统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? (ii )归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段) (iii )归纳推理的结果是否正确?(不一定)2. 教学例题:① 出示例题:已知数列{}n a 的第1项12a =,且1(1,2,)1n n na a n a +==+,试归纳出通项公式.(分析思路:试值n =1,2,3,4 → 猜想n a →如何证明:将递推公式变形,再构造新数列)② 思考:证得某命题在n =n 0时成立;又假设在n =k 时命题成立,再证明n =k +1时命题也成立. 由这两步,可以归纳出什么结论? (目的:渗透数学归纳法原理,即基础、递推关系)③ 练习:已知(1)0,()(1)1,f af n bf n ==-= 2,0,0n a b ≥>>,推测()f n 的表达式.3. 小结:①归纳推理的药店:由部分到整体、由个别到一般;②典型例子:哥德巴赫猜想的提出;数列通项公式的归纳.三、巩固练习:1. 练习:教材P 38 1、2题.2. 作业:教材P 44 习题A 组 1、2、3题.。
高中数学北师大版选修1-2第三章《归纳推理》word学案
3.1.1 归纳推理学习目标1. 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.学习过程一、课前准备在日常生活中我们常常遇到这样的现象:(1)看到天空乌云密布,燕子低飞,蚂蚁搬家,推断天要下雨;(2)八月十五云遮月,来年正月十五雪打灯.以上例子可以得出推理是的思维过程.二、新课导学※ 学习探究探究任务:归纳推理问题1:哥德巴赫猜想:观察 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜想: .问题2:由铜、铁、铝、金等金属能导电,归纳出 .新知:归纳推理就是由某些事物的 ,推出该类事物的的推理,或者由的推理.简言之,归纳推理是由的推理.※ 典型例题例1 观察下列等式:1+3=4=22,1+3+5=9=23,1+3+5+7=16=24,1+3+5+7+9=25=25,……你能猜想到一个怎样的结论?变式:观察下列等式:1=11+8=9,1+8+27=36,1+8+27+64=100,……你能猜想到一个怎样的结论?例2已知数列{}n a 的第一项11a =,且n n n a a a +=+11(1,2,3.)n =,试归纳出这个数列的通项公式.变式:在数列{n a }中,11()2n n n a a a =+(2n ≥),试猜想这个数列的通项公式.※ 动手试试练1..练2. 在数列{n a }中,11a =,122n n na a a +=+(*n N ∈),试猜想这个数列的通项公式.三、总结提升※ 学习小结1.归纳推理的定义.2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想)※ 知识拓展1.费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对020213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,提出猜想:对所有的自然数n ,任何形如221n n F =+的数都是素数. 后来瑞士数学家欧拉发现5252142949672976416700417F =+==⨯不是素数,推翻费马猜想.2.四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.下列关于归纳推理的说法错误的是( )A.归纳推理是由一般到一般的一种推理过程B.归纳推理是一种由特殊到一般的推理过程C.归纳推理得出的结论具有或然性,不一定正确D.归纳推理具有由具体到抽象的认识功能2.若2()41,f n n n n N =++∈,下列说法中正确的是( ).A.()f n 可以为偶数B. ()f n 一定为奇数C. ()f n 一定为质数D. ()f n 必为合数3.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为( ). A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+ 4.111()1()23f n n N n +=+++⋅⋅⋅+∈,经计算得357(2),(4)2,(8),(16)3,(32)222f f f f f =>>>>猜测当2n ≥时,有__________________________.5. 从22211,2343,345675=++=++++=中得出的一般性结论是_____________ .课后作业1. 对于任意正整数n ,猜想(21)n -与2(1)n +的大小关系.2. 已知数列{n a }的前n 项和n S ,123a =-,满足12(2)n n n S a n S ++=≥,计算1234,,,,S S S S 并猜想n S 的表达式.。
优课系列高中数学北师大版选修22 1.1.1归纳推理 课件(16张)
3、观察图示图形规律,在其右下角的空格内画
上合适的图形为( A )
• A.■ • C.□
B.△ D.○
4.根据给出的数塔猜测 123456×9+7=____
1×9+2=11 12×9+3=111 123×9+4=1111 1234×9+5=11111
……
1111111
5.设 f0(x)six,nf1(x)f0'(x) f2(x)f1'(x), ,
10
归纳推理所得到的结论并不可靠,为什么还要学习 归纳 推理呢?
由以上的实例说明:归纳推理是一种具有创造性的 推理,可以利用它去猜想和发现一些新的结论。
实际生活中的一些谚语(如“一叶落而知秋”,“瑞 雪兆丰年”等),就是人们根据长期的实践经验进行归纳 的结果,而物理学中的波义耳—马略特定律、化学中的门 捷列夫元素周期表、天文学中的开普勒行星运动定律等, 也都是在实验和观察的基础上,通过归纳发现的。
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
p 8436
例2、如果面积是一定的,什么样的平面图形 周长最小,试猜测结论。
解:考虑单位面积的正三角形、正四边形、正六边形、正八边 形, 它们的周长分别记作:,,,,可得下表:
P3
P4
P6
P8
4.56
4
3.72
3.64
归纳上述结果,可以发现:面积一定的正多边形中,边数越多,周长越小。 于是猜测:图形面积一定,圆的周长最小。
例3、思考:对一切正整数n, n2-n+11 具有什么特征?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精美句子
1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡
烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。
一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。
一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。
8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。